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Abstract: A Boutet de Monvel type calculus is developed for boundary value problems
on (possibly) noncompact manifolds. It is based on a class of weighted symbols and
Sobolev spaces. If the underlying manifold is compact, one recovers the standard calculus.
The following is proven:

(1) The algebra G of Green operators of order and type zero is a spectrally invariant
Fréchet subalgebra of L(H), H a suitable Hilbert space, i.e.
GNL(H)'=G"".

(2) Focusing on the elements of order and type zero is no restriction since there are
order reducing operators within the calculus.

(3) There is a necessary and sufficient criterion for the Fredholm property of boundary
value problems, based on the invertibility of symbols modulo lower order symbols,
and

(4) There is a holomorphic functional calculus for the elements of G in several complex
variables.
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Introduction

After earlier work by Vishik and Eskin [63], Boutet de Monvel’s calculus [2], established
in 1971, showed a new way of treating boundary value problems by pseudodifferential
methods and in the framework of operator algebras. In particular, the parametrix con-
struction within the calculus gave necessary and sufficient conditions for the Fredholm
property of boundary value problems on smooth compact manifolds generalizing the clas-
sical conditions of Lopatinski and Shapiro.

Functional calculus for boundary value problems on compact manifolds is a central topic
of G. Grubb’s 1986 monograph [18].

The present paper deals with both Fredholm criteria and functional calculus in the context
of manifolds that may be noncompact, also with noncompact boundaries — in a situation,
where the classical methods fail. It offers a new approach and a solution based on operator
algebra techniques.

The class of manifolds I am considering is described in an axiomatic way. It includes
Euclidean space, compact manifolds and all manifolds with finitely many cylindrical ends,
in particular the manifolds "Euclidean at Infinity’ of Choquet-Bruhat and Christodoulou
[5], those considered by Lockhart and McOwen [30], Rabinovich [35], Parenti [34], and
considerably more. For more details see [13], and [49].

Instead of a direct analysis of particular boundary problems, I am developing a version of
Boutet de Monvel’s calculus adapted to the noncompact situation. There, I am focusing
on the algebra G of elements of order and type zero. It is a Fréchet-*-subalgebra of L{H),
where H is a Hilbert space these operators are naturally acting on. Moreover, [ show that
G is spectrally invariant: GNL(H)™! = G~

The importance of spectral invariance in Fréchet algebras was observed by Gramsch [14].
He introduced the notion of W¥*-algebras: By definition, a W*-subalgebra of L(H), H
a Hilbert space, is a spectrally invariant, symmetric, continuously embedded Fréchet
subalgebra with the same unit.

Establishing the WU*-property is the crucial step towards a variety of interesting results.
Here, I will first show a Fredholm criterion for boundary problems on noncompact man-
ifolds; it is new even for differential problems on the half-space R}. Based on spectral
invariance and general Fredholm theory, the proof is much simpler than earlier concepts
that have been used e.g. in the case of classical pseudodifferential operators, based on
variants of Gohberg’s lemma.

In connection with results of Waelbroeck, the spectral invariance also yields a holomorphic
functional calculus for the elements of G in several complex variables.

Let us specialize for a moment to the case where the underlying manifold is compact. The
above algebra G then coincides with the standard Boutet de Monvel algebra constructed
from pseudodifferential symbols in the Hérmander class S7,. Spectral invariance and the
Y*.property have been open questions also in this case.

Grubb had suggested a different method to obtain functional calculus in the compact
situation [18]. She constructed a parameter-dependent version of Boutet de Monvel’s
calculus. The precise analysis of the resolvent then allowed various applications. As far
as functional calculus is concerned, however, the present result not only extends those
in [18] to several complex variables; it gives a stronger version even in one variable and



without the need to first establish a parameter-dependent calculus. Specializing further to
the algebra of classical (pseudohomogeneous) elements, one recovers G. Grubb’s theorem
for one variable and gets an extension to several. For this case, however, B.-W. Schulze
had proven spectral invariance in 1989, [52].

The W*-property gives access to results in perturbation theory, on non-abelian cohomol-
ogy and Oka principle (in case the algebra is additionally submultiplicative), on analytic
Fréchet submanifolds [14], [15], or for the division problem for operator-valued distribu-
tions [16]. Connes and Bost have shown that the K-theory of a W*-algebra coincides with
that of its C*-closure.

Spectral invariance for pseudodifferential operators was first proven by Beals in 1977, [1],
cf. [62]. Since then it has shown to hold in many interesting cases ([9], {41], [43], [44],
[45]), although it fails in slightly different situations, [67], [12].

In many algebras of pseudodifferential operators, there is a close connection between
the facts that the algebra is spectrally invariant and that the Fredholm property can be
characterized by ellipticity in a suitable sense. This has been observed and systematically
exploited in [44] and [45]. Already in 1989, Schulze has shown how to deduce spectral
invariance in an abstract setting, provided that only elliptic operators are Fredholm [52].
Questions related to spectral invariance naturally come up in analysis. While it is already
important for the parametrix construction in the theory of boundary value problems that
the inverses of the boundary symbol operators belong to the calculus (Boutet de Monvel
(2], Grubb [18], Section 3.2, Rempel-Schulze {37], Section 3.1), the study of spectral in-
variance becomes indispensable in connection with the analysis of operators on manifolds
with singularities, cf. Schulze [51], [53], [54]. The characterization of the Fredholm prop-
erty and the parametrix construction require the invertibility of operator-valued symbols
on various levels within the calculus, hence spectral invariance of algebras of operators on
the lower-dimensional skeletons of the manifold.

Compared to the Banach algebra techniques established by H.O. Cordes and his associates,
cf. [8], [10], [11], the present approach has the advantage that it yields existence and
regularity results at the same time: An elliptic operator is a Fredholm operator, and
whenever an operator in the calculus is Fredholm, there is a Fredholm inverse which is a
parametrix in the calculus. Since all these operators respect the whole scale of Sobolev
spaces, this allows conclusions on the regularity of solutions in the spirit of Weyl’s lemma:
As soon as the Fredholm property is established between one fixed pair of Sobolev spaces,
the application of the parametrix will give a hold on the regularity of the solution given
the regularity of the right hand side.

Acknowledgments and Remarks. | would like to thank B. Gramsch for many valuable and
productive discussions. Thanks also go to H.O. Cordes, Berkeley, and B.-W. Schulze, Potsdam,
for their advice and encouraging support. 1 am very grateful to G. Grubb, Copenhagen, T.
Hirschmann, Potsdam, and M. Wodzicki, Berkeley, who I consulted on several occasions.
Essential parts of these results were presented at the conference 25 Years of Microlocal Analy-
sis”, Irsee, in July 1990. Except for theorem 4.1 this paper contains a part of the results of the
author’s Habilitationsschrift, Mainz, Fall 1991. A concise version was published in [46].
Meanwhile, G. Grubb has proven spectral invariance for an algebra of boundary value problems
on a different class of manifolds [20]; in that case, however, it seems impossible to deduce
Fredholm criteria. Rabinovich [36] has obtained Fredholm criteria for boundary value problems
on certain noncompact manifolds in terms of ’limit operators’.



1 The SG-Calculus for Pseudodifferential Operators.
SG-Manifolds.

In order to overcome the basic difficulties stemming from the non-compactness of the
underlying manifold, we are going to use symbol classes and Sobolev spaces with a very
controlled behavior near infinity. On R™, the following concept is due to Shubin [58],
Parenti [33], and Cordes [7].

1.1 Definition. For m = (m;,m;) € R?* SG™ = SG™(R™) is the space of all smooth
functions p on R™ x R"™ such that for all multi-indices o, 8

DgDEp(z,€) < Cap ()™ 71 2y W, (1)

with (z) = (1 + |z|*)"/2. We will call m the order of the symbol p. The intersection
SG=> =N SG™ is the space of regularizing symbols.

One may also introduce SG ’double’ symbols: For m = (m,, m3,m3) we say that p €
SG™, if it is a smooth function on R™ x R" x R" with

Dg DID}p(z,y,€) = O((€)™ ™! ()™ ()™~ (2)
for every choice of multi-indices a, 3, .

In general, all symbols will take values in matrices. Occacionally, I will also consider the
case that E and F are Hilbert spaces, p(z,y,€) € L(E, F) and || Dg D2 D] p| (e, F) satisfies
the estimates (2). For the sake of clarity this will always be indicated.

As usual the pseudodifferential operator Op p or p(z, D) associated with the symbol p is
defined by

[p(e, D)f](x) = (Opplf(2) = @m) " [ [ €= p(a,y, )1 (v)dyd

this reduces to

(@m)™ [ el ©)f(e)dt,

if p is independent of y.

Here, f is a rapidly decreasing function; Ff(£) = f¢) = (2m)"% [ e f(z)dz is its
Fourier transform, and p is called the symbol of Op p.

Like in the standard theory, the SG double symbols play a minor role, since for p €
SG(mmama) there is a ¢ € SGm™m2tm3) guch that Opp = Opg.

1.2 Theorem. (Shubin, Parenti, Cordes) The SG-classes are closed under compositions
and adjoints: If p, ¢ are SG-symbols of orders m and m’, respectively, then OppoQOpg =
Opr for a symbol r of order m + m’, and (Opp)* = Ops, where s also has order m.
The pseudodifferential operators with reqularizing symbols are precisely the integral oper-
ators with rapidly decreasing kernel functions.



The SG-pseudodifferential operators naturally act on weighted Sobolev spaces.

1.3 Definition. For s = (s,3;) € R? let
H=H'R") ={ueSR"):(z)*(1-A)"%c L}R")}.
If £ is a Hilbert space, then H*(R", E) denotes the vector-valued analog.

A symbol p of order m yields a bounded linear operator Opp: H* — H*™™ for all s.

1.4 Definition. A symbol p € SG™ is called elliptic, if, for large |z| + ||, p(z,§) is
invertible and p(z,£)™" = O({¢)™™ (z)™™).

Ellipticity in this sense allows the construction of a parametrix modulo regularizing op-
erators. Given an elliptic p € SG™, there is a ¢ € SG™™ such that Oppo Opgq — I and
Op go Opgq — I are regularizing.

It is obvious that we will only be able to transfer these symbols to manifolds if the manifold
has a special structure near infinity.

1.5 Definition.  (Schrohe [40], Erkip & Schrohe [13]} Let §2 be an n-dimensional
manifold without boundary. Call @ SG — compatible if conditions (SG1) - (SG3) hold.

(SG1) There are finitely many coordinate charts that cover 2, say Q@ = U/_, Q;.
(SG2) This cover has a good shrinking.
(SG3)  All the changes of coordinates x satisfy 8°x(z) = O({z)' ™).

Let X be an n-dimensional submanifold of Q with boundary 0X = Y, where Y is an
n — 1-dimensional submanifold without boundary. Assume additionally that

(SG4) The coordinate charts x; : §t; — R"” map X N Q; to R}, Y NQ; to IR}, and
;N (A\X) to R?,

(SG5) There is a fixed Riemannian metric ¢ on ! whose tensor g;; satisfies (in local
coordinates) the estimates 9%g;;(z) = O({z) "), ¢~ (z) = O(1).

We then call the tuple (2, X,Y,g) an SG-manifold with boundary. The existence of a
good shrinking in (SG2) means that Q also is the union of sets 2 C Q;, and there is an
€ > 0 such that B(z, e (z)) C x;(Q;) for every z € Q.

This is a typical condition for SG-manifolds. More generally, for open subsets U, U’ of
R" we shall say that U is a conic neighorhood of U’, if there is an ¢ > 0 such that
B(z,e{z)) C U for every z € U".

S(Q)) and §(X) denote the spaces of all smooth functions on € and X, respectively, that
satisfy the estimates for rapidly decreasing functions in all local coordinates. H*(Q) is
the space of all distributions on @ that belong to H*(R") in local coordinates; H*(X) =
{ulx : v € H*(Q)},HY(X) = {u € H(Q) : suppu C X}. All notions are justified by
(5G3).



1.6 Remark. A metric with (SG5) always exists: Simply patch together the metrics
induced from the Euclidean metric via the coordinate charts, using a partition of unity of
the type in Theorem 1.7(a). Here, I just want to fix such a metric in order to fix normal
coordinates near the boundary.

Any choice of such a metric, however, will make the manifold  asymptotically flat: the
Christoffel symbols satisfy D*T'(z) = O({z)~'~%). It does not, however, imply finiteness
of the Betti numbers. Examples for SG'—manifolds include the infinite-holed torus. More
examples for SG—manifolds with boundary were given in [13].

1.7 Theorem. (Schrohe [40]) (a) Given an SG-compatible manifold Q and a finite
cover {Qy,...,Q;} as in (SG1), there always is a partition of unity {¢,...,¢s} and a
set of cut-off functions {¢y,...,¥s} such that

(i) supp é;, supp¥; C £,
(i) ¢;9; = 4,

(iii) D2¢;(z) = O((z)™°), Dy;(z) = O((z)™!.

(b) The symbol classes SG™(R)" are invariant under changes of coordinates that satisfy
conditions {SG2) and (SG3).

Hence SG-pseudodifferential operators may be defined on §), using a partition of unity
{¢;} and cut-off functions {;} as in (a) and asking that the nonlocal terms be integral
operators with rapidly decreasing kernels and that the local terms be defined by an SG-
symbol. More precisely: For A: S§(2) —» §(Q) write

J J
A=) ¢iAY;+ 3 6 AL - ).
=1 i=1
The operators ¢;At; induce operators Aj on R™ by A; f(z) = [¢;A%;(f o £;)](x5 ' (2)).
We shall say that A belongs to SG™(R), if each A; has a symbol in SG™(R™), and each
of the operators ¢; A(1 — ;) is an integral operator with a kernel density in S(2 x Q).

1.8 Theorem. (Erkip & Schrohe [13]). If (R, X, Y, ¢) is SG-compatible, then one can
switch to normal coordinates near the boundary within the calculus: One can introduce
additional coordinate neighborhoods {(};} covering Y such that for suitable § > 0

2 ={{p,t):yeQnY, t| <y}

the changes of coordinates are of the form (y,t) — (X(¥),t) with a function ¥ satisfying
(5G3) on R™1.

The normal derivative (which is defined in a neighborhood of the boundary as the generator
of the flow induced by the geodesics starting at the boundary with unit inward normal speed)
then is an operator with a symbol in SG1.0),



2 The Algebra of Green Operators on SG-manifolds

2.1 (Standard Notation). Let (2, X, Y, g) be SG-compatible with boundary.

(a) By rt denote restriction of functions or distributions on Q to X; e* denotes extension
(by zero) from X to , provided it makes sense.

(b) Given a pseudodifferential operator P on (1, define P, by P, = r* Pet.

(c) The weighted Sobolev spaces on X are defined by restriction: H*(X) =rtH*(Q).
(d) Asin [37},let H = H'&® H* & Hy, where H' is the space of all polynomials on R,
and

H* = {(e"f)": fe SRy}, Hy ={(e7f) " : f € S(R)}

with e~ denoting extension by zero from R_ to R.

Let H- = Hy UH',Hy = {f € H™: f(§) =0((&)*")},d € No, Hy = Hin H~.

We endow H* and Hy with the Fréchet topology induced from S(R.) and S(R_), resp.;
H} carries the trivial finite dimensional vector space topology. This makes H,, H; and
H; nuclear Fréchet spaces.

The operators II*, 115,117, and Iy are defined as the canonical projections mapping H
to H* Hy,H™, and Hy, respectively. We have [I* = Frt F-L;1I; = Fr-F~L

(e) For a sufficiently smooth function f on R, let

i f = lime.o+ 8 f(1).
(f) Define I : H — C by II' = (2r)~ 7y, F .

For the definition of the symbol classes let us first assume that (2, X, Y, ¢) = (R*, R}, R,
Euclidean metric). Write R} = {(z/, z,) : zn > 0}. The presentation in definitions 2.2 and
2.4 follows the classical route. A new approach using operator-valued symbols on spaces
with group actions is contained in Schrohe & Schulze [50]; cf. also [54] for earlier work
in this direction and [21], [47], [48] for additional characterizations of the transmission
property and the singular Green operators.

2.2 Definition. A symbol p € SG™ has the transmission property, if for every k € Ny,

8% p(z', Ty €, (€Y €n)lonm0 € SGT "M@, Hyp,.. (1)

Here, d = max{entier(m,) + 1,0}; the indices z’,¢{’, £, refer to the arguments of the
functions.
For a ’double’ symbol p(z,y,£) we ask that for all £,/ € Ny

aﬁnalllnp(z,7 mﬂ, y") yﬂ, E,, (6,) €ﬂ)|?«'n=yn=0 E SG(mI-mQ-klm:’-l)@,er'{n. (2)

Write p € A™. Together with the Fréchet topology on SG™, (1) or (2) yield a Fréchet
topology for A™.
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2.3 Lemma. It is no restriction to ask that the symbol p be defined on R* x R and not
only on R} x R™: Let p = p(z,{) € C°(R} x R") be a function satisfying the estimates

D¢ D2p(z,€)| < Cap (6)™ 71 ()m2~1Al
for all (z,€) € R} x R". Then there is an extension p of p to R* x R™ satisfying
D2 D2 5(z,€)| < Dag ()™ 1! ()™~

for all (z,£) € R* x R™. The constants Doy differ from the Cop only by universal factors
independent of p. :

Proof. Use Seeley’s extension procedure, cf. [55]. There is a sequence {ax} such that (i)
Y jax2kt < oo for n =0,1,..., (i) TF a(=2")* =1 forn =0,1,....
Now choose 8 € C*(R) such that § =1 on (—00,1],8 =0 on {2,00) . On {z, < 0} let

o0 k
Bz, 6) = 3 arb(~ 222 )p(e, ~2* 2, €).

k=0 ()

For each z, the sum is finite, and p(z,€) = 0 whenever z, < —2 ().

2.4 Definition. (a) A function g € C®(R"! x R*! x R x R) is called a singular
Green symbol of order m and type d, written g € B™¢, provided

9(=', €, (€) v (€)n) € SGT ¢ &x HJ D Hy. ()
(b) t€ C®(R"!x R*! x R)is a trace symbol of order m and type d, written t € 7™,
if
t(z', &, (€) v) € SGT 0@ H,. (2)
(c) ke C®(R"! x R"! x R) is a potential symbol of order m , written k € K™, if

k(2§ (¢) v) € SGT o ®H. (3)

Relations (1), (2), and (3) define Fréchet topologies on B™¢ 7™ and K™.
In all cases, one could also use SG double symbols, i.e. have g(z',y', &, (&) v, (&) n) €
SGm®1rHj®1er_,na t(mla y'>€'s (6') V) € SGm®1er—lys and k(ﬂ'}’,y’, 6’7 (EI) V) € SGm®1rH;I-

2.5 Definition. The various symbols induce boundary symbol operators (acting in the
normal direction only) in the standard way: Let f € S(R,),c € C. For fixed z/,¢’ define

Pr(a,€, Du)f(zn) = r*p(e, 2, Da)et M)

9(@,€, Da)f(2a) = @m)F [ oo, ¢ b ) 1) () (2)

U €, D)f = We{t(a', ) 1) (En); ®)
[k(@',¢', Da)el(sa) = (2m)7F [ e™bnk(a, €)den - (
(



The full operators are defined from the boundary symbol operators by pseudodifferential
action in the (2, ¢')-variables, denoted here by Op”:

pseudodifferential operators: Op, p = (Opp); = rtOppe* = Op’ py(z, ¢, Dv),

singular Green operators: Opeg = Op' g{(z', &', Dn),

trace operators: Opst = Op't(', €', D,),

potential operators: Opgk = Op'k(=', ¢, D).
Similarly for double symbols. The resulting spaces of operators are the same: this is
a consequence of the corresponding result for SG'—pseudodifferential opertors, cf. the
remark after 1.1.

2.6 Lemma. Let m € R?. Instead of the symbols one can also use the notion of symbol
kernels, cf. [18]. We have the following equivalent characterizations

(a) g € B™® iff for all f € S(R4)

[9(2",€, Da)f)(@n) = [ (€, n, 0a) ()
with a function § € C°(R*! x R*! x Ry x Ry) satisfying the estimates
“xﬁy;Dﬁ:‘ D;:‘ D?;Df:g(ml, 6', T, yn)”L?(IL.,xR_I,) — 0((xl)mz-lﬁl({I)m1+l'|0l-k+k'_r+r!) (1)

for all multi-indices o, and all k, k' ,r,r' € Ny.
(bt € T™°, iff for all f € S(R)

o', €, Da)f = [, €, ) f(5a)dy
with a function { € C°(R*! x R"™! x R,) satisfying the estimates

”y;D;; D?;Dfri(l", E’yyn)lle(m) — O((xl)m’.'-lﬁl(£l)m|+%—|.0[“r+rr) (2)

for all multi-indices o, 8 and all r,v' € N.
(c) ke K™ iff forallce C

k(z', €', Dy)c = jo P k(<€ 2n)dan c

with a function k € C®(R™! x R™! x R,) satisfying the estimates (2).
All these estimates are immediate from the definitions in 2.4 in connection with the fact
that pxw(f) = l|zE D% fi12 is a defining semi-norm system for the topology of S(R.).
2.7 Theorem. Let m € R* p € A™. Then
Op.4p: S(X) - S(X)
is continuous. In particular, for all (z',¢') € R*™! x R*™!,
p+(2',€,D,) : S(Ry) — S(Ry)

is continuous. The symbol topology is stronger than the operator topology.
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Proof: Step 1. Choose ¢,% € C§°(R), equal to 1 in a neighborhood of zero, ¢y = .
Write

Py = Py(l = () 4 ¢ o) Prop( ) + (1 = (o ))P+¢(;—",))- (1)

z') z') (') ()

Clearly, the first and the third term on the right hand side have the desired mapping
property. Let us analyze the second.

Step 2. We start with a Taylor expansion for p:

M-1 J .
p(:E f) J—Tai (5’7056) +$:!PM($,§)-

j=0

Since p € A™ we have (2}’ _p(z’, 0, &) = d;j(,€) + e;(2',€) with a differential symbol
d; with coefficients in SG™~ (ko)( ), and

e;(z', €', (€'):) € SG™(Y)®x Ho. (2)

Step 3. Consider first Op 4 [¢(z,/(z")) (z/ (z'})’ d;(2’,€)]. Since ¢(t)t? has compact sup-
port, this is a differential SG operator and clearly maps S(X) to S(X).

Step 4. In order to treat the operators involving e;, (2) allows us to confine ourselves to
the case

ej(z',€) = (=, é)h((f,))

with ¢(z,¢') € SG™(Y) and h € Hy. Since S(X) = S(R*"1)®,S(R.), we even may
restrict the attention to the operator Op +h(—{—y) and show that, given v € §(X), for all
a’ﬂ’

Dk D3 (&) [[ = EHm O Ru)u(e!, (€)0) (€) do | N
// e e HE T L[(€)w]*e h(v) DE[H(E, (€)v) (€]} dv dE’

is finite. We do not have to worry about powers of z,, since we will eventually multiply

with ¢(z,./(z}).
In order to estimate (3), first note that Df.v(ﬁ', (€')v) is a linear combination of terms of
the form

(DY DEDYE (€YW) el £)
with |y| + ¢ < 18], epyu € SG® (R™!), and universal coefficients.
Let us show that all H*-semi-norms for II1*{...} in (3) can be estimated by an arbi-
trarily negative power of {¢'). Since H is an algebra with continuous multiplication, and
It : H — H? is continuous, it suffices to show the corresponding estimate for the H-
semi-norms of (D§ DL6)(E', (¢')v). Now, an H—semi-norm for (D7, Di0)(¢, (€')v) differs
from the corresponding semi-norm for (D7, D49)(£',v) by a power of (¢'), the exponent
depending only on the semi-norm. Since Dg D/¢ decays arbitrarily fast with respect to
¢, so do all its H-semi-norms.
Therefore the inner integral in (3) furnishes (}',,__,z" Im+{.. }) (zn(€')) , which is O((¢)™™)
for arbitrary N. Altogether expression (3) is finite; the bound depends only on the semi-
norms for h in Hy and for v in S(X).
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Step 5. It remains to analyze

M
In
Op 181 252wt = ) (=17 (] )op (Dhpm(a,) . (0
Now z* maps e*S(X) to H(*9(R") continuously, and ¢a(z—ﬂ—)D’ par € SGmi—ima=M)(Rn)
Therefore, the operator in (4) yields a continuous map from S(X) to H(MAM-m(R7),
Since M could be chosen arbitrarily, the proof is complete.

2.8 Theorem. Let m € R* d € No,k € K™, t € T™% g € B™®. Then the following
mappings are continuous.

(a) Op g : S(X) = S(X);  g(a",€,Da) : S(Ry) — S(Ry), #/,¢' € R™™ fized,

(b) Op ik S(V) = S(X); Kz €, Du): C = S(Ry), 26 € R fed

(c) Opt: S(X) = S(Y);  t(z',€,Da) : S(Ry) — C, o/, € R*™ fized.

In all cases, the symbol topology is stronger than the operator topology.

Proof. Let us first show (b). For f € S(Y),
(Op kk) f(z) = (2m)"F" [ =€k’ ', 20) f(€)de!,

where k is the symbol kernel for k. The semi-norm system {Paper 1 @, 3 € N§~' 7,1 €
No} given by

Pagrer(f) = sup, ||z D%, (=) D2 fl| o r
1s defining for the topology of S(X). Using integration by parts, estimating pagr. (Op xk f)
reduces to applying the estimates in 2.6 for k£ and the S(Y)-estimates for f.
(c) First decompose t = o + t4, where to € 7™ and tqa(z’, €', v) = ):d__o a;(z', &)y’ with
a; € SG™-UO(R""!). The existence of this decomposition is a consequence of 2.4(2) and
the definition of Hy. Oprts : S(X) — S(Y) certainly is continuous. Using the symbol
kernel #, write

(Oprta] /) = (207 [ [ fola', €, 4u) (Fymin €' v’

With Cauchy-Schwarz’ estimate for the interior integral we are again reduced to applying
the symbol kernel estimates for ¢, and the S{X)-estimates for v.
The proof of (a) now is a combination of the methods in (b) and (c): First write ¢ = go+g4
with go € B™® and g4(z',€',v,0) = L k;(z',&,v)?, k; € K™= Then Opggs =
Op kkj o (~i)v; : S(X) — S(X) is clearly continuous in view of (b), while the analysis
of

[OPGQO]f // et E xmyn)(fy’—'f f)(é‘ yn)dyndf

with the symbol kernel §, of go is similar as before.

2.9 Definition. A Green operator of order m and type d is a matrix A of operators

Op,p+ Opgg Opgk S(RL)™ S(R})™
A= : &) — @ (1)
Opyt Ops S(R"-1)ms S(R-1)m
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where p € A™, g € B™~(104 | ¢ Km-(L0) ¢ ¢ T™d 5 ¢ SG™(R™'). Write A € g™
The boundary symbol operator associated with A is the operator

p+(2,&, D) +9(z',¢', Dn) k(z',¢,Dn) | S(Ry)™ S(R4)™
a(c, €', D,) = e — 8
t(I', EI’ Dn) S(:B,, {l) Cﬂ.3 Cfu

For fixed (z',¢'),a(z’, €', D,) still is an z,-dependent operator. The entries are assumed to
be matrix-valued with the obvious sizes, i.e. p and g are ny X nj-matrices, k is ny X na, t is
14 X Ny, and 8 is nq X n3. In order to save notation, call this an (ny, n4) X (ny, n3)-matrix.

2.10 Theorem. (a) The regularizing Green operators of type zero ( those in N,G™P°) are
precisely the integral operators with rapidly decreasing kernel functions over the respective
spaces: A regularizing singular Green operator of type zero has a kernel in S(X x X), a
reqularizing trace operator of type zero has a kernel in S(Y x X)), a regularizing potential
operator a kernel in S(X x Y), and finally a regularizing pseudodifferential operator on
the boundary has a kernel in S(Y x Y); as before X = R}, Y = R

In particular: If G is a regqularizing singular Green operator of type zero, then there is a
regularizing pseudodifferential operator P such that G = P,.

(b) A regularizing singular Green operator G of type d € N has the form

d—1
G =3 K;v;+ Go,

1=0

where the K; are regularizing potential operators, Go is a regularizing singular Green
operator of type zero, and =y; is the trace operator in 2.1.
A regularizing trace operator T of type d can be written

d-1

3=0

with reqularizing pseudodifferential operators S; on'Y and a regularizing trace operator T
of type zero.

(c) Let ¢ € CP(R),¢ = 1 near zero, and let G,T,K be singular Green, potential
and lrace operators of order m and type d. By ® denote for the moment the operator
of multiplication by the function 1 — ¢(z,/(z'}). Then ®K is a regularizing potential
operator, G® and T® are regularizing singular Green and trace operators, respectively, of
type zero, and ®G is a reqularizing singular Green operator of type d.

Proof. (a) This is a consequence of the symbol kernel estimates in 2.6 in connection with

the fact that the regularizing SG pseudodifferential operators on R™*~! are precisely the

integral operators with kernel functions in S(R"~! x R*"!), cf. Theorem 1.2.

(b) For the symbols g and t of G and T, resp., write ¢ = g4 + go, t = t4 + to, where

go, to are regularizing of type zero, and g4(z',€',v,7) = Zf;é ki(z', & v, ta(2', €' v) =
‘o a;(z, &), with k; € K=,a; € SG=°(R"™"); this is possible by Definition 2.4.

Now (a) yields the assertion.

(c) Write 1 = ¢(za/(z")) = [[1 = ¢(zn/{="))] (zn/(z"))™"] (z2/(=))V , N € N.If K has

the symbol k € K™, then (z,/(z"))" K has the symbol (z')™" DYk € K™~N:N)_ Since
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(1 — ¢)(t)t~N € C°(R), (a) shows the assertion. The argument for trace and singular
Green operators is similar. Note that if the multiplication is from the right and N is
sufficiently large, then the evaluations «;(z¥ f) yield zero, hence only the type zero parts
of the symbols will contribute.

2.11 Theorem. Let A € G™¢ A’ ¢ G™' ¥ with matriz sizes so that the composition
makes sense. Then AA’ € G™%"| where m" = m 4+ m’, and d" = max{m' + d,d'}. If
m <0 and d = 0, then the adjoint A* of A also belongs to G™°.

For the various compositions of operators, the classical asymptotic expansion formulas
(¢f. sections 2.6, 2.7 in [18]) hold with respect to the SG-calculus.

In particular, G®° is a *-algebra, if the mairiz size is (ny,n;) X (n1,ny).

Proof. Clearly, the analysis has to take into account the behavior of the r-derivatives
and therefore is somewhat more subtle than in the standard case. The modifications that
have to be made, however, are essentially the same for all 13 compositions involved. For
this reason | will give the details for one of these compositions and refer to the detailed
analysis in [44] for the others.

Claim. Let p € A™, k € K™ ~(19, Then for fixed z',¢’, the operator (with respect to the
zn—variable)

k’($l7f’s Dn) = p+($afl, Dn) On k(x’a£’1 Dn)

is an operator with a potential symbol ¥'(z’,{) and

K, ~ 3 SR (0, (0,002, 0,0K', 0

i=0

Here o,, denotes composition with respect to the action in the z,-variable.
Proof of the claim. Write

Mo ;
Z: 6‘; ‘I )Oi5)+$2fpﬁ'f($a£)
3=0

with par(z,€) = const. [y 8Mp(z’, 72, €)(1 — 7)M~1dr, so that for large M
D§ Dpm(z,€) = O (O™ (o)™ ~7=) (1)
For v € §(Y),
P+(z, €, D) 04 k(2',€', Dy )v(z)
= r+f6*’""‘ > %7'!—:3;1)(95’,0,6)16(:6',6) + 2. Mpu (2, €)k(2,€)) - vk,

i<M

S i Feh e (=D 105, 0,0, k(2" £))) - v 4+ 1 [ ¥ ang(,E)dn - v
jem J:

with apm(z,€) = (=De )M {pam(z, E)k(z',€)}. We have used that rtF~! = F-'T+. The

terms under the summation give the right start of the asymptotic expansion in the

claim. In order to justify the expansion we will show that the operator Op gaps : v —

[ e [emnbnap(z,€)dE,5(E)dE (a slight modification of the standard definition to z,-

dependent symbols) can be written as an integral operator with an integral kernel that
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will satisfy any fized number of the estimates required for a function in S(X x Y), provided
M is sufficiently large.
Choose a function ¢ € C°(R), ¢ =1 near zero. Write
Tn In
t

pm(z,§) = w(m)pu(%f) +(1- @(E))PM(J:,Q-

Now let
Tn

(z')

bat(z,€) = o) (=De.)™ (pm(z, E)k(2',€)). (2)

The H,-estimates for k imply that
”DngfE;’;DE,k(fa E',En)”[%“ =0 (($J)m§—|ﬂ| (gr)m1‘|a|+‘!—.-'+j—r)
for j < r; the estimate || fllsup < || fll22]10:f|| L2, valid for functions in H*(R), implies that
|Dg DLELD k(z',€',€)] = O (=)™ (g)™im1"7). 3)
Applying Leibniz’ rule to (2), and noting that ¢(z./(z'))D; py € SG™= M) we con-
clude from (3) that any fixed S-semi-norm for bas will be bounded provided M is large.
Therefore Op gbas is an integral operator whose kernel functions will satisfy any fixed

S(X x Y) semi-norm for large M. In order to analyze cp = apr — bpg, we first observe
that for arbitrary fixed L > 0

o _ Ln Tn L
D:{(l (P((I’)))((I’)) } SCG?
independent of z = (¢, z,). Then
r+fe‘z"5"cM($,£)d€n
= @)= ) T )

(z') (=)
(2 [ (- A ) (= Do) (pas (2, )R(, ) .

The last integral converges and is bounded, independent of z, whenever M is large. The

same argument applies to derivatives. The corresponding kernel function for Op gcpr will

then also satisfy any fixed estimate for a rapidly decreasing function on X x Y. This
concludes the proof of the claim.

2.12 Theorem. Let A € G™? be an (ny,ng) x (n1,n3)-matriz. Then

Hs(R:)nl Ha—m(R:)ng
A= [ P+'_;- G 1; ] : D e &b
H:-(%,O)(Rn-l)na Hs-m—(%,o)(Rn-l)m )

is bounded, provided s; > d — 1. If d = 0, then we may eztend the result to the case
s1 < —3 by using HY(R}) on the left hand side and replacing H*~™(R7}) on the right
hand side by H3~™(R™"') whenever s, — m; < -—%.

The topologies on the symbol spaces are stronger than the corresponding topologies of
bounded operators.

15



For the proof of Theorem 2.12 we need the following lemma; it is essentially well-known,
cf. [19], [37]).

2.13 Lemma. Let x € S(R) be a function with suppF~'xy C R_. Forke Z, u € R,
and a > 0 define

k
k _ £n ! _
’\ (E’ ﬂ') - (X(a ((f', #) ) (£ 3#) 161!) .
Then, for sufficiently large a,
A e ARI(RE x Ry),

and A"( ) :=Op 4 X¥(p) : H*(R%) —» H*~(*9(R?Y) is an isomorphism for all s € R? with
sy > —3 and large |p|. In general a and p will not be mentioned.

Due to :ts particular form, A*(u) is independent of the choice of the eztension H*(R%) —
H*(R™). By defining A¥(u)4 with the help an arbitrary extension, we obtain an operator
which (i) agrees with the preceding one for sy > —1, and (ii) furnishes an isomorphism
for all s € R

Proof of Theorem 2.12. Let us consider the various entries of A separately, starting with
the potential operator K.

Step 1.
K : H=GOR™Y - H™(R}) (1)

is bounded: By interpolation we may assume s; — m; € Z. K in (1) is bounded, if and
only if

K' = (z)™™ A=K (D)™ (@)™ HEO(R™Y) - HO(RY)

is bounded. K’ is a potential operator; it has a symbol £'(z',§) € K° which we may
convert into a symbol k(y',£). Applying 2.4(3),

k(y',¢) = E_:Ad(yﬁ (é")

with {);} € £!,{d;} a null sequence in SG°, and {k;} a null sequence in H*. Hence

)

Op xk =5 X;0p kh; Op'd;.
Now the assertion follows from the facts that Op’d; : HEO(R™!') — HAOY(R1) is

bounded and that Op gh; (ZLS) : HGO(R™') - H°(R?) is bounded. The latter is a
consequence of the identity

1Op h'hj(%)v”m(lt = | :(( )) lzagrmy = [lhsll 2ol 3 ey

Step 2. If T is a trace operator with a symbol in 7™ and s, > d — 1, then

T: H*(R}) — H*~m~(O(R1) (2)
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is bounded: We decompose the symbol ¢ of T : t = to + t4, where o € 7™° and Optg =

= Pjv; with P; € SG™~U9(R"~!). With an argument like that before, it is easily seen
that Op7to has the mapping property (2) even without the restriction s; > d — 1. For
Op 7t4 we obtain the assertion from the standard trace theorem and the properties of the
SG—operators.

Step 3. Let G be a singular Green operator with a symbol g in B™~(104 We have to
show the continuity of
G: H'(R%) — H*™(RY) 3)

for sy > d — 1. According to 2.4(1) we may write
¢ v, T)= E k(2! € vl (€, T)

with {A;} € I',k; a null sequence in K™~(19) and t; a null sequence in 7%%. Letting
T; = Oprt;, K; = Op gkj, G = 1524 A;K;T;. The assertion follows from the continuity
of T; : H*(R}) — H=GO(R™") and K; : H-GO(R1) - H*™(RY).

Step 4. Suppose P is a pseudodifferential operator in Op A™. Let us show the boundedness

of
Py H*(RY) — H*"™(R]). (4)

Extension by zero e* is defined for s, > —5, it is continuous for —1 7 <81 <3 1 Restrlctlon
H*(R") — H°(R1) is bounded for all s. So there is nothing to show for -1 < s < 3
Using interpolation we may assume that s; € N. Clearly, P, has property (4) if and only
if
Py = PLA™ (z)™" : H°(R}) » H* ™(R])

is bounded. From the calculus we know that PLA™ (z)7" = R + G with R a pseu-
dodifferential operator of order m — s and G a singular Green operator with a symbol in
B™-2=(19)0 I view of step 3 this yields the assertion.

For the case of s; < —3 and the H§ Sobolev spaces one works with another reduction of

the order, namely that given by Op +Xk which is an isomorphism H§(R%) — HS""’(R;‘_).

We can now start to define Green operators on an arbitrary SG-manifold (2, X, Y, g).

2.14 Definition.
(a) Call a vector bundle over 2 an SG-(vector) bundle, if it is trivial over the coordinate
charts ©; and the transition matrices (a;;) satisfy the estimates

82a;;(z) = O({z) ™), (aij(z))™" = O(1).

SG-bundles over X are simply the restrictions of SG-bundles over €.

(b) It is straightforward to introduce rapidly decreasing sections into a bundle £ and
weighted Sobolev spaces of distribution sections. The notation is ${Q2, E), §(X, E), and
H*(Q, E),H*(X, E),s € R?, respectively. Identify H°(-) and L?(-).

(¢) If ¢ is a C*-function on 2, then simply write ¢A for [ (g ¢(|) ] A.
Y
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2.15 Coordinate Charts. By 1.8 there is a conic neighborhood of the boundary
Y with normal coordinates. Given any coordinate neighborhood, we may assume that
either it does not intersect a conic neighborhood of Y or else it is one of those with normal
coordinates.

In order to fix the notation, suppose that the above neighborhood of Y is the set Y;
defined as the union of the sets {(y,t) : y € Q; NY,|t] < (y)},7 = 1,...,J. Call these
coordinate neighborhoods boundary charts. Furthermore suppose that the charts for the
interior ("interior charts”) do not intersect the sets {(y,¢) : y € ;NY,|t] < 1 (y)}, where
(y) is to be understood as a suitable globalization of the corresponding local notion. For
convenience we will assume that also the homeomorphic images of the charts in Euclidean
space have these properties. Choose the enumeration so that the boundary charts are
Qp,...,0;, for some 1 < jo < J.

Now choose a partition of unity {¢;...¢,} and cut-off functions {;...9;} with the
properties (i) - (iii) in 1.7.

2.16 Definition. Let E), E;, and F, F; be SG-bundles over X and Y, respectively. A
Green operator of order m and type d is a matrix of operators

S(Xv El) S(Xa E2)
® - ®

4o [ P, +G I(] .
S(Ya Fl) S(Ya F2)

T S

with the following properties

(i) P is a pseudodifferential operator of order m on Q, P, =rtPe™*,

(ii) S is a pseudodifferential operator of order m on Y/,

(iii) writing G = T, ¢;G¥; + T2y ¢;,6(1 — ¥3) + (1 = T, 6;)G = T2, G; +
R+ R
— each Gj is - in local coordinates — a singular Green operator of order m — (1, 0)
and type d,

— each R; is an integral operator with a kernel density in S(X x X), and

— R’ can be written R' = Y4 Ky, + R"; K; and R’ are integral operators with

rapidly decreasing kernel densities on X X Y and X x X, respectively.
(iv) Writing K = L1 ¢;K #; + Tty ;K1 = 9) + (1 = T ¢)K = T K +
e L+ L

— each Kj; is — in local coordinates — a potential operator of order m — (1,0) and
type zero,
— L; and L' are integral operators with kernel densities in S{(X x Y)
(v) Wl:iting T = ;‘;1 é;T; + Ei?_—l 6T — ;) + (1 - 3w=1 $;)T =: j°=1 T; +
Jo '
j=1 QJ + Q
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— each Tj is — in local coordinates — a trace operator of order m and type d,
— each of the operators Q;,Q’ can be written ‘,‘;01 Sy with §; € SG=(Y).

2.17 Theorem. The above definitions are invariant under changes of coordinates sat-
isfying (SG3) and (SG4). The R} results of 2.11, 2.12 eztend to general SG-manifolds
and bundles with one restriction: The boundary symbol operators are only defined in the
above neighborhood of Y with normal coordinates.

2.18 Definition. Let A € ¢™9,d < max{m,,0}.

(a) A parametriz to A is an operator B € G™™¢, d' < max{—m,0}, such that AB — T
and BA — I are both regularizing.

(b) Call A elliptic of order m, if the following holds:

(i) The pseudodifferential operator P is elliptic on X, i.e. in all local coordinates

p(z, €)™ = 0((&)™™ (z)™™) (1)
for large |z| + |€],z € X,

(ii) Near the boundary, the boundary symbol operator of A is locally invertible by
boundary symbols of order —m and type d < max{—m,,0}. This means the fol-
lowing. In addition to the functions @,,; of 2.15 choose functions 8; supported in
Q;, satisfying D%8;(z) = O({z)™°) and 0;1; = ;. Denote the boundary symbol of
1¥;A0; by a;. Then ask that there are boundary symbol operators b; with

a;bid; — d; = g1; and ;bja; — ¢; = ga; (2)

are regularizing boundary symbols. Here the composition is with respect to the
action in the normal direction. In view of the composition rules, the types of the
¢1; are < max{—my,0}; those of the g,; are < max{m,,0}.

It would have been equivalent to ask that the orders of the operators g;; and ¢2; be
(—e, —¢) for some € > 0.

2.19 Theorem. Let A € g™¢ d < max{m,,0}.
(a) There is a parametriz B to A if and only if A is elliptic.
(b) For s, >d— 1, ellipticity of A implies the Fredholm property of

A: H'(X,E) @ H=BO(Y, F)) — H™(X, Ey) @ H~ (Y, Fy). (1)

Proof. (a) A parametrix construction just like in the standard case — cf. {37], [18] — shows
that ellipticity is sufficient for the existence of a parametrix. Vice versa, suppose we have
found a parametrix B € G=™% d' = max{—m,,0}. Then 1;A0;B¢; — ¢; and ¢; B1p; A0,
are regularizing for the functions ¢;,1;, and 0; of 2.18. Let a; and b; denote boundary
symbols for 1; A0; and 0; B1;, respectively. Then the composition rules imply that

a;b;¢; — ¢; and @;b;a; — ¢;
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are of order (—1,—1).

It is not so straightforward to check the estimates for the pseudodifferential part. Write
p, q for (arbitrary) symbols for the pseudodifferential part of A and B. Using the partition
of unity and cut-off functions, we may assume that X = R . The pseudodifferential parts
of AB—1TI and BA—1I can be taken to be zero. On the other hand, this pseudodifferential
part equals pg—1 and gp—1, respectively, modulo SG symbols of order (-1, —1). Applying
Theorem 3.19, below, we see that for (z,£) € X x R® with |z| + |¢| large, |p(=z, £)q(z, €) —
1| < 1 and |g(z,€)p(z,€) — 1| < 3. This shows that p(z,) is invertible with bounded
inverse.

(b) This is immediate from the fact that regularizing operators map into S(X, E;) ®
S(Y,F;),7 = 1,2, which is compact in H*(X, E;) @ H*-3O(Y, F}) and H*™(X, E;) &
H*=m=(30)(Y,, F), respectively.

2.20 Remark. In the half-space case, the boundary symbol operators are globally
defined. It turns out that then the existence of a parametrix B to A is equivalent to the
existence of a boundary symbol operator b that inverts the boundary symbol operator a
of A modulo regularizing singular Green boundary symbol operators gy, g3, i.e.

a(xf! flaDﬂ) o b(I’1 ‘5’, Dn) -1= gl(:l:’)f') Dﬂ)

and
b(z',¢&', Dp)oa(z', €', Dn) — 1 = go(2', €', Dn)

are regularizing boundary symbol operators.
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3 Spectrél Invariance

Denote by G = G°9 the algebra of Green operators of order and type zero. By 2.12 and
2.17, G — L(H) for a natural Hilbert space H. It is the aim of this section to show

3.1 Theorem. G is a unital, symmetric continuously embedded Fréchet subalgebra of
L(H) with the spectral invariance property:

GNLH)'=¢71.
In other words, G is a W*—subalgebra of L(H) in the sense of Gramsch [14].

Again, we shall consider first the case of the half-space X = R} with boundary X =
Y = R"}; the manifold case will be an easy consequence.

Suppose that the operators in G are of matrix size (ny,n2) X (ny,n3). They define bounded
maps on the Hilbert space

H=L¥X)™ @ H GO(Y)™.

Clearly, the actual choice of n; and n; does not matter, so assume that n; =n,; =1. It is
our first goal to give G a Fréchet topology. We need some preparations.

3.2 Lemma. G is symmetric with respect to the inner product in H.

Proof. For P € Op A° we have (P,)* = (P*)4, and the L?(R™)-adjoint P* belongs to
Op A°.

If G is a singular Green operator with symbol kernel g(z',y', €, Tn,yn), then G* has the
symbol kernel §(y', ', &, Yn, To). By 2.6, G* € Op gB{-10)0,

If T is a trace operator in Op 77 %° with the symbol kernel t(z',y", £, y.), then the operator
L with the symbol kernel I(z',y', &', z,) = (v, ', €', z,) belongs to Op xK° and satisfies

(Tf,9)r@mn-1y = (f, Lg)r2(ry)-

Letting L' = L(D')™" € Op xK(=19), we obtain the adjoint with respect to the duality in
H.

Similarly for potential operators: If K € Op xK{~1% has the symbol kernel k(z’', ', €', zn),
then its adjoint R with respect to the corresponding L? inner products is given by the
symbol kernel 7(z',y', &', y,) = é(y’,x’,{’,yn), so its adjoint with respect to the inner
product in H is (D'} R € Op rT°°.

Finally the H(-#%—adjoint of S is S* = (D) S’ (D')™" with the L*—adjoint $’, and
S* € Op SG°(R™1).

3.3 Proposition. (a) For a € A% the mapping a — Opa € L(L*(R™)) is injective. Let
o be a right inverse. Then

#:Ax A > A% p#q=0(OppOpg)
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defines a continuous multiplication.

(b) Forg € B(-100 the mapping g — Opcg € L(L*(RZ)) is injective. Let og be a right
inverse. Then the following mappings are continuous:

my: A x BEMOO o BELOO my(pg) = o6(Op*pOpay)

my: B0 A o BN my(g,p) = 06(OpegOp*p)

ms: BE1O0  B=10)0 _, B(=100, (g h) = oc(OpcgOpch)

my: A° x A — BEYI% my(p,q) = o06(L(Opp,Opyg))

Proof. (a) The symbol of a pseudodifferential operator is uniquely determined, cf. [27],
chapter 2. The continuity of the multiplication follows from the fact that A% is a Fréchet
space and separate continuity.

(b) Opgg = Op'g(z’, ¢, D) may be considered as a pseudodifferential operator with an
operator-valued symbol, and Opgg = 0 iff g(z',€',D,) = 0 iff g = 0. For details see
Remark 3.11.

Since A° and B{-1990 are Fréchet spaces, the continuity of m, through my is implied
by separate continuity. This in turn follows from the fact that the symbol topology is
stronger than the operator topology.

3.4 Corollary. By defining

(p,9)(q, k) = (p#q,m1(p, k) + ma(g, ) + malg, ) + ma(p, q))
we can make A° x B(=19)10 3 Fréchet algebra with a continuous associative multiplication.

The following lemma is simple.

3.5 Lemma. Let A be a Fréchet algebra with a closed two-sided ideal J. Then A/J also

is a Fréchet algebra.

We reach the first goal:

3.6 Proposition. G is a symmetric unital Fréchet subalgebra of L(H) with a stronger
topology.

Proof. G is symmetric by 3.2. In order to see that it is a Fréchet algebra let us confine
ourselves to the case where n; = 0. Then G is canonically isomorphic to A° x B(-1.90/ 7
where A4° x B(-192 carries the multiplication introduced in 3.4, and

J ={(p,q9) : Op+p+ Opgg = 0}.
Since J is a closed two-sided ideal we obtain the assertion from 3.4 and 3.5.
The rather delicate problem now is to establish the spectral invariance. First note the

corresponding result for SG-manifolds without boundary.

3.7 Theorem. (Schrohe [41}) Let Q be SG—compatible without boundary. The algebra
of pseudodifferential operators with symbols in SG°(R)) is a ¥ *-subalgebra of L{H*())
for every s € R.
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The lemma, below shows that it suffices to consider a neighborhood of the identity:

3.8 Lemma. cf. [14], 5.7. Let (C,||-||) be a unital C *-algebra, and let A be a symmetric
subalgebra with the same unit e. If there is an € > 0 such that

(e—z)' € A for all z € A with ||z|| < ¢, (1)
then A is spectrally tnvariant in C.

Proof. A is dense in its C*-closure B := C*(.A). Suppose a € A is invertible with inverse
b. Then b € B. Choose a sequence {;} in A with b; — b. Then ¢; = e — ab; tends to
zero in B. Thus (e — ¢;)™! € A for sufficiently large 7 by (1), and ¢™! € A.

3.9 Lemma. [t is sufficient to show that there is an € > 0 such that I — (Py + G) is
invertible within the calculus for all Py 4+ G in a neighborhood of zero in L(L*(X)).

Proof. Write a matrix A€ G as A = [ z“ §12 ] Assuming that g;; is invertible,
21 922

A = [ ][911 I[I 911!]12].
921911 0 g22— 921911 g2

For g;; and gi; close to the identity I and g;2,¢2; close to zero in the corresponding
operator norms, Theorem 3.7 shows that A is invertible within the calculus whenever this
is true for gy;.

3.10 The Problem. We have therefore reduced the proof of 3.1 to showing the spectral
invariance of the algebra

C={Opsp+Opgg:pe A gc B-1O0

in £L(L*(X)); in view of Lemma 3.8 it is even sufficient to show that (I + Op4p +
Opgg)™ = I + Op 4p + Opg§ for suitable 5 € A° G € B0 whenever ||Op 4+p +
Op Gg"[,(L’(X}) is small.

We can even simplify somewhat more. Suppose that both P = Op ;p and G = Op gg are
small in £(L*(X)). The identity
I+P+G=(I+P)I+(I+P)'G)

then shows that we may consider the invertibility of the singular Green and the pseudod-
ifferential part separately. It will turn out that this assumption is justified; this is why I
shall start with an analysis of the singular Green operators.

3.11 Remark. (a) The estimates in 2.6(1) imply that for g € B™?°

(=',€) = g(=',€', D) € SG™ IR, L(L}(R4)))-
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In fact,

Dz D2 9t Do) gy < |
= |Dg D29 ("€ nrn)

o nd r gt
DE‘ Dz g(z', &', Dy) HS(L?(R4))

nmy+i=lal ;_ nma-|8|
sy < con (€Y ()77,

Here, HS indicates the Hilbert-Schmidt norm, and § denotes the symbol kernel of g.

(b) As an operator-valued symbol, g(z’,¢’, D,)) is uniquely determined: If g € B=(1.0)°
and Op g = 0 then g(', €', D,) = 0 for all z’,¢’. This follows from the well-known corre-
sponding result for the scalar-valued case, cf. Kumano-go [27], Chapter 2, Proposition 1.2:
Simply choose fi1, f; € S(R"™!), v, v € E = L*(Ry); then fv; € S(R*1E), j =1,2,
and 0 = (Op G9 (flvl) ’ fQUQ)LQ(Rn-llg) = (Op’ (g(I’, frv Dn)vla v2)E fla f2)L7(R"—1) .

(c) Consequently, the symbol of a singular Green operator is uniquely determined. If
g(z', €, Dy) =0 for all =/, ¢, then the symbol kernel § (z', €', zn,y,) vanishes everywhere,

and so does ¢ (z',£',ény M) = Frnmtn Frnmnad (2,6 Ty ¥n).

An important observation is the following

3.12 Theorem. Let a € SG°(R",L(E)), E a Hilbert space, and let A = Opea :
L*(R", E) — L*(R™ E). Given € > 0 there is a compact set K = K(e) C R* x R" such
that

la(z, lggy < (1+€)l|Allcezmn.py

for all (z,€) ¢ K.

Proof. The proof uses techniques developed by Hormander for a similar question in the
scalar-valued case. He showed the following {26}, Theorem 3.3: If p € S0 (R" x R"),
p > 6, is a pseudodifferential symbol with support in a set C x R™ with C € R"™ bounded,
then

limsup sup Ip(z, &) < ||OppllcLzmny)-

R
Here, I will show that

!i?SUP sup la(z, ey < Al (1)
and

lim sup sup lla(z,ElleEy < NIAll- (2)

Together (1) and (2) imply the assertion. In order to see (1), let & = limsup,_,, sup,. |la(z, )| (k)
Choose a sequence {(z”,£") : v =1,2,...} with £ — oo and [ja (z*,£")||;g) — @, a se-
quence {e,} C E with ||e,||z =1 and

”(L (mu,gu) e"llE - a,

and pick a function u € C° (R") with |ju||f2 = 1. In this set-up we may essentially copy
Hérmander’s proof. The idea is to consider the sequence {u, : v =1,2,..} C S(R", E)
defined by

v vk izgv
u(z) = [¢]F u ((z - 2*) |¢*[7) €=,
and to show that
liminf | Awy || f2gn gy 2 @
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In view of the fact that {|u,||j2g~ g = 1, this proves (1).

The proof of (2) is similar after the following change. Define the operator B on L? (R", F)
by

Bu(c) = (2r)% [ ea(a, u(e) ds,
i.e. B= Ao F~'. Since the Fourier transform is an isometric isomorphism, ||B|| = || 4]|.
Let § = limsup,_, ., sup; [la(x, )|l (). Now pick a function u € Cg° (R") with ||u||f2mn) =

1; then choose a sequence {(z*,£") : v =1,2,..} in R" x R™ and a sequence {e,} in E
such that ||la(z¥,£") e, ||z — B while |le, ||z = 1. Define the functions u, by

u,(§) = e EO 2y (€ - )" ) e

and copy the proof of part (a) with the roles of z* and £” reversed. This leads to the
inequality

B < liminf | Bu,||2gn gy »
so that ||A|| = || B|| > 8.

The next result we will need concerns invertibility at the boundary symbol level.

3.13 Theorem. Let g € B&100 and suppose that for all (z',¢') € R*! x R™"!

"g(xlaf'a D")I1C(L2(R+)) <0.1.
Then the operator
1 “g(m’,f’g Dn) . L2 (R+) - Lz (R+)
is invertible for all 2’ ¢', and there is a symbol k € B(=1000 with

(1 —g(z, €, Do) =1—k(z',¢, Dy).

Here I am writing 1 for the identity boundary symbol operator. Clearly, the constant
0.1 is not optimal. Although the objective is different, the proof uses techniques of [18],
Proposition 3.2.1 and Theorem 3.2.3.

Proof. Step 1. The symbol g may be written

o0

g(z',& &nmn) = 30 cm(@',€) Gk (6, (€)) P (1, (€))

k,m=0

with a sequence {cn } which is rapidly decreasing in SG° (R"!) with respect to k + m
("Laguerre function expansion”). This is an immediate generalization of the correspond-
ing fact for the standard singular Green symbols, where the sequence {ci,} is rapidly
decreasing in 57, cf. [18], section 2.2. The modified Laguerre functions @k(-, o) and their

Fourier transforms ¢(t,0) = (%)5 éi—::f&r, k € Z, form complete orthonormal systems:
{er: k=0,1,...} for L*(Ry), {¢s : k= —1,-2,...} for L?(R_). Consequently, there is
an M € N such that

( 2 |Ckm(ﬂv',f’)|2)2 <0.1

k4+m>M
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Step 2. Let g1 = YpymoM ChmPrPr- Since the By are orthonormal, ||lg; (', &, Dol cram, )y <
llg1 (', €', &n, Wn)“m(m; < 0.1, and 1 — g,(z", &, D,) is invertible on L?(R.) for all z',¢'.

Step 3. There is a symbol h € B(-190 with
(1 - 91 (:B'sgly Dn))—-l = 1 + h(xf,f’, Dn) :

Clearly, b = Y2, 0:1(=',¢, D). Let us check that the series converges not only in
L(L?*(R.)) but also in the space of boundary symbol operators. Given the integral kernel
a1z, €,-,-) of g1(2, €', D,), the integral kernel for g;(z', ¢, D,)* is

fi (@€ myn) = [ o [0 w) B (w0, wa) G (i, i) do. i,
+

where I have omitted the arguments z’, ' under the integrals.
In order to prove the assertion, it suffices to show that for all fixed a, 3, m,m'r, r’

< dj (¢y Il Ay =iAl

e D yn Dl DE D fi (2,8, T, yn) R xRy S

with a sequence di = di(e, B,m,m’,r,7") € £'.
This however, is an immediate consequence of the following facts:

(i) For arbitrary functions h; € L*(Ry x Ry)

”]/h, (2,101) ha (11, W3) - . by (10,1, dwy...dwyy

< lillgg,, e Wbl

Wrel.W

2
L1,

i1) For a derivation é on a Banach algebra, 6 (a,...a,) = ¥_; a;...6 (a;) ...a,; in particular,
3 g P

16 (@)l < llelI™=" 16(a)ll-

Step 4. Let gg =g —¢1. Then (1 —g)(1 —g1)"'=1—g2(1 — g,)"'=:1 — ¢', omitting the
arguments (', &', D,).

The image of ¢'(z',¢’, D,,) is contained in that of g2(z’,¢, D,). This in turn is a sub-
space of the span of o (-, (€)),...,0m (-, (£')), since go(z', &', Dy) has the integral kernel
Ek-}-mSM ckm(2',€") @k (T, (€7)) Om (Yn,y (€7)) -

Now write, similarly as before,

g’ (Ii, E” {ny 7]:;) = i dkm(I's 6’)?3&' ({na (é’)) _(agm (’Tm (6,”

k,m=0

= Y ..+ S =g (& E b)) + 91 (2, 6y mn),

k4+m<L k+m>L

where L is chosen such that (E,H_mﬂ, |dkm(m’,{')|2)§ < 0.1.
Notice that di, = 0 for £ > M in view of the above consideration on the range. Moreover,

(1-g)'(1-g)=1-(1-¢g)) 'gh=21—g"
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with arguments (z',¢’, D,,) omitted and ¢g” € B{-1%0 by the argument in Step 3. We have

rangeg"(:r',{',D,,) g range (ng(l",&’:Dn)g’(I'agaDn))

k=0
C rangegi(2’, ¢, D,) + range g'(2, €', D,)

contained in the span of g (-, {¢')),...,om (, (€')). On the other hand, g;(’, ¢, D,) van-
ishes on the span of {¢;(:,(¢') : j > L}, hence so does ¢"(z',¢', D,).

Step 5. Let M’ = max(L, M), and let U be the linear space spanned by {¢o (-, (¢'}) , ..., om (-, (€')) }-
We may represent the operator ¢”(z’,¢’, D,) as a matrix with respect to this basis

g”(I’af!: Dﬂ) ~ ((ekm(m’v‘fl)))
with entries exm € SG° (R*!), 0 < k,m < M'. The identity
1-g"=(1-g})" (1-9)(1 —g1)"" (1)

implies that 1—g"(z’,¢’, D,) is invertible on L? (R.) and that |lg"(z’, &', Da)l|c(z2(ry)) < 3
for all z/,¢'. Since ¢"(z/,¢', D,,) vanishes on U*, (1 — ¢"(2', €', D,,))™! will also map U to
itself; it can be given as the operator associated with the inverse matrix to

((6em — €xm(2',€))) (2)

on U and the identity on U*. Moreover, the £L(L?(R4)) norm of this inverse is bounded
on U, independent of z',£’. Hence all entries in the inverse matrix to (2) will be bounded
functions, and so will be its determinant. By Cramer’s rule the inverse matrix has entries

in SG°. Hence (1—g¢"(z',¢', D,))™" has the form 1 —g3(z', &', D,,) with some g3 € B{-100,
Together with identity (1) this yields the assertion.

Theorem 3.13 is a crucial step towards the proof of the following theorem.

3.14 Theorem. Let G = Op gy for some g € B-19° and suppose that

|IG”£(L7(X)) < 0.1.

Then the operator I — G is invertible on L*(X), and there is a symbol h € B(-190 such
that (1 - G)™' =1—Opgh.

The constant 0.1 is not optimal; once this theorem is proven, it follows from Lemma 3.8
that the same is true for ||G||zz2(xy) < 1.

As a preparation for the proof of Theorem 3.14 we need the following observations.

3.15 Lemma. The following assertions are equivalent
(a) be B0
(b) Opchb is an integral operator with a kernel in S(X x X).
(c) Opgbh: §'(X) = §(X) is continuous.
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Lemma 3.15 follows essentially from Theorem 2.10.

3.16 Lemma. Theset {A[ +S: A€ C, S € OpgB~>?} is a U*—subalgebra of L(L(X)).

Proof. It follows from Theorem 2.11 that these operators form a unital symmetric algebra
in £(L*(X)). The representation A/ + S is unique, and the symbol of S is uniquely
determined by Remark 3.11(c). So we can give the above set the topology induced from
the symbol space which is stronger than the operator topology and Fréchet. Finally, the
spectral invariance in £(L?(X)) follows from the identity

(1- .5')'l =1+ S+S(I—S)‘15
in connection with 3.15.

The following lemma is a consequence of the asymptotic expansion formulae for the com-
positions.

3.17 Lemma. Let ¢, g, € BE1O0 and suppose that
(1 = g2(=, €, D)) (1 — (2, €', D)) = 1.

Then
(I - Opcgz)(I - OPGQI) =1—-0pgys

for some g3 € B(=%2-1.0,

3.18 Remark. Recall the following facts from the operator theory. For a proof see
Taylor, [60], Theorems 5.41-G, 5.5-E, 5.8-A. If A € L(F), E a Banach space, is of the
form A = I+ S, S compact, then there is an r € Ny such that

N(A) = N(a™), R(A)=R(a+), (1)
E = NA)®R(A), (2)
A : R(A") > R(A") bijective. (3)

The spectrum of A is discrete with only accumulation point A = 1. Let I be a small circle
about A = —1 and

1 e
P=§}?/rw_5) dX; (4)

then
N (A7) = R(P), R(A") = N(P). (5)

The range R (P) is finite-dimensional, since S is compact.

Let us now start with the proof of Theorem 3.14.

Step 1. By Theorem 3.12 in connection with Remark 3.11 there is a compact set K in
R ! x R*! such that

"g‘(&:', £’a Dn)”C(L’(R_._)) < 0.1
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for (z',¢') ¢ K. Choose a function ¢ = ¢(z',¢') in C° (R x R*!), equal to 1 on
) =

K and with 0 < o < 1. Let go(2', &, &, 1m) = (2, €)9(2', €', €ns )y 91(2', €&y ) =
(1 — (2, &) g(z", &, €n,n). Then g, € B(-100 g, € B=°° Moreover, for all (z', &),

lg:(z', &, Di)lleqreqmyyy < 11— (2", €N lg(2", €', Dadllczaqmy)) < 0.1.
Step 2. By Theorem 3.13 there is a symbol g, € B(~19:0 with

(l - 92(3,’ 'fvan)) (1 - gl(mlv E,’D")) =1
so that
(I —OpcGgs) (I —Opcgr) =1+ Opags

with a symbol g3 € B(-%~1° ysing Lemma 3.17. The usual parametrix construction
yields a symbol k € B(-2~1.0 with

(I-Opgh)(I-Opgg) (I —Opgg) — I € OpgB™>°.

Since g — g1 € B~>9, the relation remains true if we replace ¢; by g, i.e. there is a
k € B(-190 with
(I -0pek)(I-G)=1+S

for an § € Op gB~>9,

Step 3. Write B = I — Opgk, C = I — G. Then apply the construction in Remark
3.18 to A = BC. In view of the integral representation 3.18(4) in connection with 3.16,
P = A\l 4+ S’ for some S’ € OpsB~. Since the range of P is finite-dimensional, A = 0;
in particular R(P) C S(X).

Step 4. Let us show that there is a relative inverse F to CP in OpsB~>° i.e., there is an
operator F' € OpsB~>° with FCPF = F and CPFCP = CP:

Choose an orthonormal basis {ey,...,ex} of R(P). Define f; = CP e; = Ce;, j = 1,...,k.
Since C = I — G: §(X) — S§(X) is continuous, f; € S(X). Moreover, they are linearly
independent, for C is bijective. So we can define F': LX) — L*(X) by

F(f;) =¢€; onspan{fi,...fi}
F =0 onspan {fl,...,fk}L.

It is easy to check that F has the desired properties.

Step 5. Let F' = PF. Then F' also is a relative inverse to C P. Moreover, for the number
r of 3.18

((BCY'B+ F)C=1+T, (1)
where T € OpB8->? and I + T is invertible on L*(X):
Clearly, the fact that BC € I+ OpgB~>° and F’ € Op B~ implies that T also belongs
to this class. Therefore / + T is a Fredholm operator of index zero. In order to check
its invertibility, assume that there is an h € L*(X) with (/ + T)h = 0. Decomposing
h=h,+ h, with h, € N(P), h, € R(P), one concludes from 3.18(3), (5) that A = 0.

Step 6. Conclusion: Since I — T is invertible, identity (1) and Lemma 3.16 give the
assertion.

The next theorem is similar to Theorem 3.12. The difference is that we control the
operator norm only on the half-space X x R".
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3.19 Theorem. Let P = Opp € Op A%, G € OpsB-190 q4nd ||Py +Gllgraxy = 1-
Then

limsup [p(z,£)] < 1. (1)
zeX.(z,£)—o00

The proof is rather lengthy, and I only give a sketch. The idea is the following. Let
d = limsup(; ¢).o [P(2,€)| on X x R". We consider two possible cases.

(i) There is a sequence (z*,£*) with ¥ — oo and |p(z¥,£Y)| — d; without loss of
generality we may assume that p(z*,£) — o with |a| = d.

(i1) There is a sequence (z*,£”) with ¢” bounded, ¥ — oo and p(z*,£%) — « with
|| = d. Without loss of generality we may assume ¥ — £° € R™.

In view of (1) we may assume that d > 0. More is true. Let € > 0 be arbitrary. Settling for
a sequence (z",£") with p(z¥,£€*) — B and |B| 2 d — ¢, we may assume that =¥ > ¢, (z*)
for some ¢, > 0. This follows from the fact, that

0:,p(2,€) = O ((2)7").

In case (i), the assertion follows from a more elaborate version of the proof of 3.12: Choose
a function 0 # u € CP(X), consider the sequence u* = |¢*|+u((z — z*)[€¥|#)e™¢" and
show that |a| < lim||Pyu¥||2(x). For large v, u* = 0 on {:c i T < 1C (a:)} So we can
choose a function ¢ € C°(R), ¢ = 1 near zero with

Tn
(z')
Now u* converges weakly to zero, and G(1 —<p)(z§95) € OpgB~>=" is compact, so Gu* — 0.
This allows us to conclude, similarly as before, that d — & < ||Py + G|l £(12(x))-

Gu® = G(1 - ¢(

Nu”.

In case (ii) one may apply an idea of Grushin [23], proof of Theorem 3.3: Choose a
function ¢ € CP(R?), 0 < ¢ < 1, with #(£°%) = 1. By Arzela-Ascoli, there is a
subsequence {z**} of {z"} and a ¢ € C§° (R") such that p(z**,£) ¥(£) — ¢(£) — 0 in
all derivatives. Clearly, ¢ (%) = d. Moreover, there is a u € C§°(X) with |lul|r2x) = 1
and |lo(D)u||2@ny 2 d — € for arbitrary ¢ > 0. The idea then is to show that for
u*(z) = u(z — ") we have || Portp(D)u”|| 2 gy 2 d — 2¢ for all v > 1. Since u” weakly
tends to zero, and since, for large v, the support of u* is contained in {z, > c{z)}, ¢ > 0,
we obtain the assertion just as in (i).

The next theorem shows that the asymptotic behavior of the symbol determines how good
an operator can be approximated by regularizing operators.

3.20 Theorem. Let P, € Op ,SG° (R'_,‘_) be a pseudodifferential operator with a symbol
p defined on X x R", and assume that

limsup |p{z,é)| < 1.
(z,£)—o0,xeX

Then there is

- a universal constant K, independent of p,
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- an extension p € SG®*(R") of p to R* x R, and
- a regularizing operator R on R" such that

||P — R"C(L'Z(Rn)) < K. (1)

In (1), P is the operator with the extended symbol. Obviously, p has the transmission
property whenever p does.

The proof of 3.20 will be prepared by the following lemmata.

3.21 Lemma. (a) There is an N € N and a constant Ceoy such that for all ¢ €
0 R" x Rn)
0.0 (

10p gllcz2@ny < Cov  max ”q((;))(:r,{)

la,I8ISN sup’

Remember the notation q((a) = D¢ DAyq.

(b) Let g € SG° (R™) with |q(z,€)| < 1 for all ||+ |€| > M. Then there is a function
p€CER),0<p<1,and a combinatorial constant Co,,, such that

(1 = )(z) Op 4(1 = )(D)l szs(amy < CeomCov (1)
Proof. (a) is Calderon and Vaillancourt’s theorem.
(b) Choose a function ¢ with ¢ = 1 on a set {|z|] < M'} satisfying |D2p(z)| <

for all |a] < N; N is the number in (a). Applying (a) to the symbol r(z,£) = (1 —
©)(z) q(z,€) (1 — ¢)(€), we can estimate the norm on the left hand side of (1 ) by finitely
many derivatives of r.

Now [¢(z,8)| < 1 for |z| + |¢] = M, and for (e, ) # (0,0), the SG estimates imply

that |q((g)}(z,£)| < 1 for large |z| and |¢]. For large M’, we thus have Eﬁ;( .f)’ < Ceom

for a combinatorial constant arising from the binomial coefficients in Leibniz’ rule for
derivatives of r.

A direct calculation in oscillatory integrals shows the lemma, below.

3.22 Lemma. For p € SG°(R"),
Opp=F"'OpgF +F 'OprF

with ¢(z,¢) = p(—¢€,z) € SG®(R"), and suitable r € SG-1-1(R").

Finally, the following is a result of Hérmander [25], proof of Theorem 3.3.

3.23 Lemma. Let ¢ € S7,(R™ x R"), and suppose that q(z,£) = 0 for all z outside a
compact set. Then for every € > 0 there is a symbol r(z,£) € C§° (R® x R") with

I0Op g — Oprllsp2mny < l*mSUP sup lg(z, Ol +e.
(L*(R™))
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Now the proof of Theorem 3.20 is easy. There is an extension § of p satisfying

limsup |p(z, &)] < Cs,

(z.£}—00

with a universal constant C,, cf. 2.3. Let P = Opj. By Lemma 3.21(b) there is a
compactly supported ¢ with

(1 — @)(=) P(1 — )(D)ll czaqmm)) € CeomCovCi. (1)
Now write
P = olz) Po(D) + (@) P(1 - ¢)(D) +

(1= @)(z) Po(D) + (1 — ¢)(z) P(1 — ¢)(D)
= P+ Ph+P+ P

with the obvious notation. Then the assertion follows from (i) - (iv}, below.
(i) P, is regularizing.

(ii) Pz has the symbol ¢(z)p(z,£)(1 — ¢)(€). By Lemma 3.23, there is a compactly
supported ry with
1Pz — Oprall izammy) < Co

(iii) P3 has the symbol (1 — ¢)(2)5(z, £)e(€). By 3.22, FP3F~! = Op g+ Opr with
9(2,8) = (1 = p)(=8B(=¢, z)p(2),

and r € SGG-1-Y(R"). Applying Lemma 3.23 to ¢, we obtain a compactly sup-
ported symbol r3; with

||Opq - OP 7'31”5([,2(3")) < C,.

By Calderon and Vaillancourt’s theorem 3.21(a) we find a compactly supported
symbol r3zz with

[0pr — Oprazf| £ (r2mny) < 1.

Let r3 = 34732, B3 = F~'Opr3F. Then Rj is regularizing, and || P3 — Rsllgpameny)
C, + 1, since F is an isometry.

(iv) From (1) we know that |[P4||C(L,(R,,)) < CoomCovC,s.
We get the following corollary

3.24 Corollary. There is a universal constant C > 0 such that for all operators P, +
G € C with ||Py + G|l g pamny < 1 we can find P' € OpA°, G’ € Op gB-100 with
Pi+G =P, +G, |IPlgqmny < C, and ||G']l cqmmy < C.

Proof. This is immediate from 3.19, 3.20 and the fact that if R is a regularizing pseu-
dodifferential operator, then R4 also is a regularizing singular Green operator, cf. 2.10.

As a further step towards the proof of the spectral invariance of the algebra C we have
the following lemma.
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3.25 Proposition. Suppose P € Op A® is a pseudodifferential operator with || P|| ¢r2(mny) <
0.01. Then I — Py is invertible in L(L*(X)), and

(I-P) " =1-(P,+G),
where P' € Op A%, G' € Op gB(-10)°,

Proof. I — P is invertible on L?(R"). By Theorem 3.7, there is a Q € Op SG® with
(I - Q) = (- P)'. In particular, I — @ also is a parametrix to I — P, so Q has the
transmission property, and Q € Op A°. Now

I-Q(I-P)=1-1,
where L = L(I — @, — P) is the singular Green left-over term. Clearly,

WLlcezxy £ I1@Neczamny + 1 Pllcczzny) + 1Pl cirzmmpll Qllcerz ey
< 0.1.

By Theorem 3.14, (I — L)™' = (I — H) for some H € Op eB(=19)0 This gives the desired
result, since (/ — L)'(I - Q)+(I — Py) = I.

3.26 Conclusion. Suppose P, +G € C, and || Py + G| is small in £(L%(X)). Find small
representatives P', G’ according to 3.24. Then

I-(Pr+G)=(1-P,) (1—(1—}3;)“@'). (1)

By 3.25, I 4+ P, has an inverse in C. Consequently, (I - P_;_)-l G’ is a singular Green
operator of small norm. By Theorem 3.14, also the second factor in (1) is invertible in C.
Hence C is spectrally invariant.

The Manifold Case: The spectral invariance result also holds for general SG manifolds
with boundary:

3.27 Theorem. Let (N, X,Y,g) be SG-compatible, E,F fized SG-bundles over 1,Y,
respectively. Then the algebra G of Green operators of order and type zero is a ¥*-

subalgebra of L(H), where H = HY(X, E) @ H-YO(Y, F).

Again we shall break up the proof into a series of smaller results.

3.28 Remark. With the definitions in 2.16 and Theorem 2.17 G is a unital symmetric
algebra in L(H). We can introduce a Fréchet topology for G starting from the half-space
situation. Again, this topology is stronger than the operator topology of L(H).

We therefore only have to prove the spectral invariance in £(H). By Lemma 3.8 we may
confine ourselves to showing that for some € > 0

(I-A)'eg,

provided || A]|zm) < €.
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The lemma, below, is a simple consequence of the characterization of the regularizing
Green operators of type zero via rapidly decreasing kernel sections.

3.29 Lemma. A is a reqularizing Green operator in G if and only if A has a continuous
eztension A: S'(X,E)D S'(Y,F) — S(X,E)® S(Y, F). If A is regularizing and [ — A
is invertible in L(H), then (I — A)"' =1+ A+ A(I - A)7'A =1 — A’ for a regularizing
A eg.

3.30 Lemma. Let A€ G, and let ¢,v be SG°-functions supported in a single coordinate
neighborhood. Then ¢ Ay induces a Green operator (¢ Ay). on the half-space by

(8AY).f = [($AY)(f oK) 0 &7, (1)

where & is the coordinate homeomorphism from the manifold to Euclidean space. Suppose
that for the corresponding operator norm on FEuclidean space we have ||(¢A¥).]| < 1.
Then I — @A is invertible, and (I — $A¥)~' € G.

Proof. Write (¢AY). = ¢.A.p. with a Green operator A, on Euclidean space. Since
I + ¢.A.. is invertible; its inverse by 3.26 is a Green operator of order and type zero on
R2. The identity

(I - (¢A¢)')—l =1 + ¢*A1:bt + ¢-A~":{)#(I - (¢A¢)‘)-l¢‘A‘d)-

implies that the inverse is of the form I + ¢, B.®. with a Green operator B, of order and
type zero.

Let ¢Bvy be the corresponding operator in L(H) induced via the coordinate maps. It is
easily checked that I + ¢Bv is the inverse to 1 4+ ¢AY.

This allows us to obtain the spectral invariance also for the manifold case.
3.31 Conclusion in the Manifold Case. Choose an SG-partition of unity {¢y, ..., ¢s}

and cut-off functions {#1,...,%s} subordinate to the cover {Q;,...,Q;} as in 1.7(a).
Then write for sufficiently small A:

I—A=1-$A— A~ ...~ djA= (1= A1 — $A)~" — .. )1 - $, A),

We have I - 1A = (I =1 A ) (T — (I — $1 A1) "1 1 A(I — ;). Both factors are invertible
within the calculus by 3.29 and 3.30 provided || A]|¢(s) 1s small; note that ¢, A(J — 1) is
regularizing. Induction over J gives the assertion.
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4 Applications: Fredholm Criteria, Functional Cal-
culus, and the Case of Compact Manifolds

Throughout this section let E, F be SG—bundles over X and Y, respectively, and let
G be the algebra of Green operators of order and type zero on the Hilbert space H =
H°(X,E)® H(=39(Y, F). The first theorem concerns the existence of reductions of the
order in the calculus.

4.1 Theorem. Let E be an SG-vector bundle over X. For everym € Z x R there is a

family {R™(u) : p € R} of pseudodifferential operators such that for all s € R x R,s; >
1

-4

R™(p)+ - HY(X,E) — H'"™(X,E)
1s invertible for large p.

The proof uses ideas of Shubin [59], Rempel and Schulze [37], [38] and Grubb [19]. Again,
it is split up into several steps.

Step 1. Preparation. Without loss of generality we can assume that the bundle F is trivial
one-dimensional and that m; = 0, m; = m € Z. The former is due to the locality of the
construction, while the latter is a consequence of the fact that multiplication with powers
of (z) - or rather a global version of it — has the desired properties. As we shall see, we
may even confine ourselfves to the construction for m = 1. With this we shall start. So
in the following, m = 1.

Pick coordinates as in 2.15. Fix a function y as in 2.13 and choose a function 7 €
C(R),0 > 7 > 1, equal to 1 on [—%,1] and vanishing outside [—3,3]. Let r(z) =
#(2a/ (27).

Step 2. We now choose symbols in the local coordinate charts on Euclidean space. For a
boundary chart ; pick the symbol

7(z)
aj(z, & 1) = |x(5 é," DE R =it (6n' T, (1)
for an interior chart take
aj(m,f,}l) = (5:!‘) . (2)

Like in 2.13, a > 0 is a parameter to be chosen later on. We then use a partition of
unity{¢;} and cut-off functions {1;} as in 1.7 and define the operator R_(u) on C§°(£2)
by

J
R_(u) = Y [%;0pq;é;l.,

i=1
where the asterisk indicates that the operators are given via the transport by the coordi-
nate functions, cf. 3.30(1).
Step 3. The above symbols are parameter-dependent in a strong sense. They satisfy the
relations

Dg D2 DYaj(x, &, 1) = O((€, ) 11N () ~#), (3)
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so u plays the role of an additional covariable. Consequently, also the local symbols r; of
R_(p) — where we have to take into account the effects of the symbols induced from other
coordinate neighborhoods via the changes of coordinates — will satisfy these relations.
Moreover, by making the parameter a large, we may achieve that r;(z, £, ) is invertible,
and

ri(z,& )™ = O((6, 1) 7). (4)
Step 4. The estimates (4) and (5) allow us to construct a parameter-dependent parametrix
following Seeley [56] — for details cf. e.g. [42], section 2.3. For sufficiently large g,
R_(p) : H*(Q) — H*~(:9(Q) will be invertible, independent of s. Applying 3.7, its inverse
R-'(p) is a pseudodifferential operator with a symbol in SG(~19)(Q), even in A1), since
RZ-'(u) also is a parametrix to R_(u). Moreover, also for RZ'(u) the parameter p plays
the role of an additional covariable.

Step 5. The symbols in (2) belong to H~ as functions of £,. Therefore the local symbols of
R_(y) are H™ functions of £, up to perturbations that are regularizing in z, £, and p. Also
the symbol of RZ!(g) will be given by local symbols that are H~ functions of £,, up to
regularizing perturbations. This follows from the parametrix construction in connection
with the fact that also rJ-'l(a:,f, ) is an H~ function modulo regularizing perturbations.
In view of the calculus, this implies that the singular Green symbol of L(R! (), R*(u))
is regularizing with g in the role of an additional covariable. In particular,

R_(u)+ R (s = I+ O((n)™) = R ()4 B-(k)s-

Thus R (u)y : H*(X) — H**9(X) is invertible for large y, provided s; > —1.
Moreover, [R—_{z)+]* = [R%(#)]+ modulo regularizing operators. By iteration we get the
assertion.

The first application is the theorem, below.

4.2 Theorem. Let A€ G. Then A: H — H is a Fredholm operator iff it is elliptic.

By 2.19, ellipticity implies the Fredholm property, so we only have to prove the converse.
We shall need the following two lemmata.

4.3 Lemma. Suppose B € G, and B: H — H has finite-dimensional range. Then B is
a reqularizing Green operator of type zero.

Proof of 4.3. Let S = S(X,E)® S(Y,F). B: S — S is continuous, and S is dense in H,
so BS is dense in the finite-dimensional space BH. Hence both are equal, im B C S, and

we may write Bf = Y (f, u;)f; for suitable u; € H, and orthonormal f; € §. Considering
B* we conclude that B is an integral operator with a kernel density in & ®qy S.

4.4 Lemma. (c¢f. [14], Bemerkung 5.7) Suppose A € G, and A : H — H 1is Fredholm.
Then there are Ry, R, € G such that
Fl =R1A—I and F2=AR2—I (l)

are operators of finite rank in G.
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Proof of 4.4. Since A : H — H is a Fredholm operator on a Hilbert space, the projections
P, onto its kernel and P; onto the kernel of A* can both be given in terms of resolvent
integrals. The ¥*—property implies that both are elements in G. Then R, = (P +
A*A)1A* and Ry = A*(P2 + AA®)™! are the desired operators.

Now the proof of Theorem 4.2 is simple: Let R, R, F}, F} be the operators as in Lemma
4.4. First consider the pseudodifferential parts of A, R;, and R;. Denote them by P, Py,
and P,, respectively. By 4.3 and 4.4(1)

(PP1)+"'I=G1 and (PQP)+—I=G2

are singular Green operators. Applying3.19to 0 = (PP);—1—-G,and 0 = (PP, —I—
G2, any pseudodifferential symbol of PP, ~ I and P, P—1I is small for large |z|+|£|,z € X.
Hence the symbol p(z,£) of P is invertible for large |z| + |£|, and p(z,£)~! is bounded.
The argument for the boundary symbol operators is even easier. Choose cut-off functions
é,0,v € SG°(N) supported in the usual collar neighborhood of Y, and suppose that

¢ =¢; O =1

Denote by a,r),rs, fi, f2 the boundary symbols for A, R,, Ry, Fy, F3, respectively, defined
in this neighborhood. By 4.4 in connection with the calculus,

dR1YAO — I = SF0+ S,
YAORyp — ¢1 = PFad+ Sy,

where S;, 57 are regularizing of type zero. Let = denote equivalence of boundary symbol

operators of order and type zero modulo symbols of order < (—1,—1) and type zero.
Then

0 orypal — @I, and
0 = Yalryd— ¢l

l

so that af has a left and right inverse modulo lower order terms.

4.5 Theorem. Let A be a Green operator of orderm € Z xR and type d < max{m,,0},
and let E and F be SG—bundles over X and Y, respectively. Suppose

H*(X,E) H*™(X,E)
A: @ — @ (1)
H= (30X F) He-m= 30 x| )
ts invertible for some s € Ng x R, s; > m,.
Then the inverse A~! is again a Green operator. Its order is —m, its type a priori is
max{s, - my, 0}

Proof. Use the pseudodifferential reduction of the order constructed in Theorem 4.1 to
find pseudodifferential isomorphisms

Ry : LX(X,E)o H-$9(X, F) - H*(X,E) ® H~ 39X, F)
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and
R-™: H™™(X,E)® H* ™ GO(X, F) - L}X,E)® H-@9(X, F)

of orders —s and s — m, respectively. Consider B = Ry ™AR;*. B is invertible on
L¥(X, E)@® H~(39(X, F). Moreover, it is an invertible Green operator of order and type
zero. By Theorem 3.27 also its inverse, C, is of order and type zero. Hence A™! =
RT*CR3™ is of order —m and type max{s; —m;,0}.

4.6 Corollary. Let A and s be as in 4.5. Then

H(X, E) HY-™(X,E)
A: ® — @ (1)
HY-G9(X, F) HY =9 X F)

is invertible for all s’ € R? with s} > s;.
In particular: If A is of order and type zero and invertible on H°(X, E) ® H'(%'O)(Y, F)
then A is invertible on H°(X, E) ® H*=(390)(Y, F) for all ¢ € R?, 0y > ~1

Proof. The above inverse yields a bounded operator from H*~™(X, E)@H* -m™=(z.0(Y, F)
to H*'(X, E) @ H*~(39(Y, F) which inverts A on this space.

4.7 Corollary. Let A be of order and type zero. Suppose that for some ¢ € Ng X Z, A
is invertible on H?(X, E) @ H”‘(%'O)(Y, F), and that A is additionally elliptic. Then A is
invertible on H*(X, E) ® H*=(39(Y, F) for all s € R2, s, > -3

By 4.6 it is sufficient to show invertibility on H = H°(X, E) @ H-(29(Y, F). In view of
the ellipticity, A is a Fredholm operator on H. Applying the parametrix, we see that the
kernel of A is a subspace of § = §(X, E) @ S(Y, F). Since it is trivial on H*(X, E) @
H*=GO)(Y, F), it is also trivial on H.

On the other hand suppose that there is an 0 # f € H, which is orthogonal to R(A).
Then f belongs to the kernel of the H—adjoint A* of A, which also is elliptic. Hence
f€S8,s00# f belongs to H*(X,E) &® H"‘(%'O)(Y, F) but not to the range of A which is
impossible.

4.8 Theorem. Let A be a Green operator of order m € Z x R and type d < max{m,, 0},
and let E and F be SG—bundles over X and Y, respectively. Suppose

H*(X,E) H™(X,E)
A: @ - © (1)
H=(GO(X, F) H=m-G9(X F)
is invertible for s € Nog x R, s; = max{m,, 0}.
Then there is a parametriz B of order —m and type max{—m,,0} to A. In particular, A
ts elliptic.

The proof is the same as that of 4.5, except that now we use 4.2 instead of the spectral
invariance.
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4.9 Theorem. There is a holomorphic functional calculus for the elements in G in
several complez variables.

Proof. Given k commuting elements Ay,..., A;x € G, choose A as a maximal commutative
subalgebra of G containing I, Ay,..., Ax. G is a W*-subalgebra of L(H), thus has an open
group of invertible elements. As a closed subalgebra of G, A is Fréchet with an open group
of invertible elements. Hence inversion is continuous, cf. Waelbroeck [66]. Again by [66],
VI, Proposition 4, there is a functional calculus for the holomorphic functions on the joint
spectrum of Ay,..., Ax in A with values in AC G.

4.10 Remark. Using methods of Gramsch [14], [28], it can be shown that also the
holomorphic functional calculus of J.L. Taylor {61] is applicable.

4.11 Corollary. (a) On a compact manifold with boundary, the algebra G coincides
with the algebra of elements of order and type zero in Boutet de Monvel’s algebra for
symbols based on the Hérmander class S7,. The notion of SG-vector bundles reduces to
usual bundles; H*(X, E), H*(Y, F), s € R?, coincide with H* (X, E), H (Y, F).

In this situation, Theorem 4.9 not only gives an extension of G. Grubb’s theorem on
functional calculus [18], Theorem 3.4.4 to several complex variables. Even in the case of
one variable only, one obtains a stronger result, since in Theorem 4.9 we have no restriction
on the choice of the paths, cf. [18], p. 356f.

(b) The classical elements in Boutet de Monvel’s algebra on a compact manifolds are those
where all symbols have asymptotic expansions into homogeneous terms in the respective
classes (’polyhomogeneous’). Denote the corresponding algebra of classical elements of
order and type zero by G¥. It is then a consequence of 3.27 and the calculus that G is a
U*-subalgebra of L(H), too, for details see the proof, below.

This also gives a functional calculus for the elements of G. In the case of one variable,
one recovers G. Grubb’s result [18], Theorem 3.4.4. For G, spectral invariance was shown
earlier by B.-W. Schulze [52] using different methods.

Proof. Clearly, G¢ is unital and symmetric. Following an idea of Guillemin {24], Schulze
[52] showed how G can be endowed with a Fréchet topology. Now suppose that A € G
is invertible. Since G C G there is an inverse B to A in G. In particular, A is elliptic in
the sense of 2.18. On a compact manifold, this notion coincides with the standard notion
of ellipticity for classical operators (see e.g. Rempel and Schulze [37], Section 3.1.1,
Definition 1), for both notions are equivalent to the Fredholm property, cf. Theorem 4.2
here and [37], 3.1.1.1, Theorems 2’ and 7. This implies the existence of a parametrix
in G, cf. [37], Section 3.1.1.1, Theorem 2. On the other hand, this operator also is a
parametrix in &, and two parametrices differ only by an operators which is regularizing
of type zero. Those, however, belong to G. Therefore B € G, and G¢ is spectrally
invariant.
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