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QUATERNIONIC REGULARISATION CF PERTURBED KEPLER MOTION

by Wolfram NeUtsch
..'

ABSTRACT .

It is well-known that the equations of Keplerian motion suffer from being

singular at collision. This i8 adefinite disadvantage when one wants to

integrate the perturbed Kepler problem for orbits which are close to colli­

sion, e. g. those of spacecraft moving fram the Earth te the Moon er some

other planet .
....

-I In order to overcome this difflculty, Kustaanheimo [1~64] proposed a regu-

larisation method, which was later applled by Kusta.anheimo and Stiefel

[1965] and others and is known In celestlal mechanies under the (ugly) name

lIKS-(=Kustaanheimo-Stiefel-)transformatlonQ.

In thls note, we sha!l show that there 18 an extremely:elegant description

of this procedure using quaternions, contrary to earller belIef (see,

e. g., the monograph by Stiefel and Scheifele [1971], where the posslbllity

of such an approach is denled).

!his erroneous conclusion which Is quite wldespread In the literature stems

from an unlucky choice of some sign in the above-mentioned book by Stiefel

and Schelfeie.

We think it will be worthwhile to demonstrate the power of the quaternio­

nie variant of the method in quest ion.
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O. MRODUCTION

Levi-Civitä [1956] regularised the two-dimensional Kepler problem with the

help of complex coordinates. He showed that ~ specific transformation of

the time and a quadratic Ansatz in the complex, coordl~te sufflces to re­

duce the equatlon of planar Kepler motion to a form wh19h iS,free of slngu­

larlties.

An exact three-dimenslonal counterpart of thls transform, however. does not

exist for topologlcal reasons. Rather, one has to erlend the parameter

space to four dimensions, and introduce an additional restriction. The lat­

ter turns out to be qui te natural.

This idea, due to Kustaanheimo and Stiefel, clearly suggests that it may be

useful to describe the appropriate formulas in quaternions. 1t 15 therefore

surprising that several authors, among them Stiefel himself, state tOOt

this is impossible. The main goal of the present paper' i8 to correct this

wrong statement.

We shall succeed In givlng completely regular quaternlonic equatlons whlch

are eeiuivalent to those dlscussed in Stiefel and Scheifele [1971] •. but- are·

much simpler and more transparent.

Furthermore, we show that there 18 an Intimate connectlon to the famous

Hopf fibratlon. In conclusion, all of our results.are very natural from a

mathematical point of vlew.
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1. ONE-OIMENSIONAL MOTION

In this paper, we shall discuss the motion of a partielet. (henceforth
. .

called the II p l ane t ") In the gravi tatlonal field of some other body (tbe
, .

II sunll). All additional perturbatlve forces actlng on the. planet. are assumed

to be conservative; thus they can be derlved from a sUliable·Potentlal.
. ~. ,.

The equation of motion thus reads in a coordlnate syStem centered at the

sun:

..
r = ~ r + grad Ver)

3
r

(1)

where - as usual - derivatives with respect to the time t are denoted by

dots, whi le Il is the product of Newton' s gravl tational constant wl th the

solar mass. The perturbations are contained In the gradient cf the po·ten­

tial V and will be supposed to depend In a known way on the planet's posi­

tion vector r.

In the special case of one-dimensional motion (without restrietion along

the pos1 t1 ve part of the x-axis of a Carteslan coordinate system), 'we can

bring thts relation to the form

x + ~ =
2

X

dV

dx
(2)

The last formula can be integrated ance, prov1ding us wlth the energy equa­

tion

2

~ = ~ + V(x) + E (3)

where E is an integration constant, namely the energy per unlt mass ..This

reduction Is possible since we restricted ourselves to conservative pertur­

bations. Most cf the forces relevant ta celestlal mechanies possess this

property.

Moreover, the regularisatlon procedure depends heavily on thls fact; ·a more

general treatment would be much more compllcated and less elegant.

Ir a colliston (x ~ 0) occurs, the potential gradient grad V 19 assumed to
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remain finite. Under these circumstances, it i5 possible to regularise the

equations by replaclng the spatial coordinate x by some power u,

«
X = U (4)

and the time t by a uniformising variable T via the dif~erential relation

dt = (5)

Derivatives with respect to T (calied the parametrie time) will be abbrevi­

ated by primes. Here a and ß are constants whlch w~. have to determlne such

that the singularity for x = 0 disappears.

We first calculate the perturbation in the new coordinates, getting

dV dV
-1 l-a.= a u

dx

Equally easily the velocity of the planet,

du
(6)

x = = -13 «-Iu (au u') =
«-"-1a u I'" ,u' (7)

and its acceleration,

..
x = = «-2ß-2 { 2}a u u u" + (a - ß -' 1) (u') (8)

follow. The energy equation becomes after substitution.

1
- (1.2 u2«-2ß-2 (u,)2 = 1.1 U-a. + V + E
2

(9)

We salve for the square of u' and insert the result Into the equation of

motion. This leads to

a:-2ß-1 {-I } . -2«a u u" + 2 0: (0: - ß - 1) + 1 J.1 U

5

-1 1-«
IX U

dV

du
(10)



The collision corresponds to x = 0; in order to regularlse we have to take

a positive, otherwise we would shift the cellision to i~inity in u-space.

But if a > O. the ~-term in (10) i8 the most singular, so it must be ellml­

nated. This forces us to restriet the exponents a and ß.by the cond1tlon

or

2 a-
1

(a - ß - 1) + 1 = 0 (11)

ß c
3- a - 12

(12)

The dynamical equation then simplifies conslderably. We find

-2«+1 -«a u u" - (V + E) u

whlch mayaiso be wrltten as

dV,'
1-4

U

du
(13)

2a u" a (V + E)
«-1 er:

U + U

dV

du .
(14)

In the absence ef perturbations (V =0). this 1s

a. u" =
«-I

E u (15)

so clearly we have to set a c 2, and consequently also ß CI 2.' to make the

last differential equatlon linear in u.

The general equation of perturbed one-dimensional motion then attains its

final form,

2 u" =
1 2 dV

(V + E) u + 2 u du (16)

while the energy conservation law reads

2Il + (V + E) u

6
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2. THE HoPF FI8RAT10N

2" 2
In order to calculate the th1rd homotopy group 1t (S ) of the two-sphere S ,.

3 ", "
, 0)

Hopf [1931,1935] attached a certain integer t(f) to e~h C -map

"( 18)

wh1ch is a homotopy 1nvariant, 1. e., 1s the same for homotoplc maps. He

found that this Hopf invariant ~(f) attalns all integer~values. In partIeu­

lar, he constructed a quadratlc map

h (19)

as foliows:

Let P = (a,ß,7.ß) be a typlcal point on the (unit) 3-sphere

(20)

wh1ch can also be written in complex coordinates

w = «+ßl
1

and

w = 'l+öl
2

as

(21)

(22)

S3 = {(W, W ) E C
2

1 2
(23)

The pair (w • w ) ~ (0,0) can be considered es homogeneous coordinates of a
1 2

point h(P) in proJective space

(24)
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via a stereographlc proJectlon. The Hopf map simply transforms P E S3 to

h(P) E 52.

For future appllcatlons, we wrlte h in sultable coordinates. Chooslng the

centre of the stereographie proJection approprlately, We get ·the expllclt

form of Hopf's map,

(25)

where

~ = 2 (<< a + ß r)

< = 2 (<< r - ß ß)

(26)"

(27)

(28)

The last formulas allow us to extend h to all of R'. We'shall denote this

extension also by h. Thus

h: R4
--) lR

3

(<<,ß,r,ß) --) (E,~,<)

(29)

80th descrlptlons of the Hopf map (wlth 4 real or with 2'complex coordi­

nates) have their merlts:

The former enables one to Immedlately carry the construction over to maps
7 4 16 8from S to S and from 5 to S. We only have to replace the fleld R In

the definition by the complex numbers C or by the ske~fleld H of quaterni­

ans, respectively, whlle the latter is more useful for dlrect calculatlons.

Both advantages, however, can be combined, if we represent the three-sphere
3 .

5 by a single quaternionie coordlnate Instead of uslng ..two complex or four

real numbers. Thls leads to much more compact express Ions.

We write the typlcal quaternion in the form

q = a + b 1 + C J + d k

with the usual basis {l,i,j,k} for ~, obeying the deflning relations

8
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J k = 1

k J = - 1

k 1 c J

1 k = - J

1 J = k

J 1 C2 - k

(32)

(33)

The conjugate quaternion to q 19

-q = a - b 1 - c J - d k

and the real and ima.glnary parts of q will be denoted by

(34)

and

Re(q)
1 -= 2" (q + q) = a· (35)

Im(q) 1= 2 (q - q) = b 1 + c J + d k (36)

respectlvely.

The norm of q 1s the nonnegatlve real number

- 222 2
qq = a +b +c +d (37)

which does not vanlsh except If q = 0,· and the (Euclldian) scalar product

of two quaternions q and u 19

<q, u> = Re(qÜ) = Re (uq) = Re(Qu) = Re(üq) (38)

After these preparations. we may wrlte the (standard) three-sphere as the

set of quatern10ns wlth norm 1,

u u = 1 } (39)

whlle the two-sphere conslsts of the quaternions with norm 1 and vanlshlng

real part,

u u = 1; Re(u) = 0 }

9
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With this convent ions , the (standard) Hopf map (29) 18 glven by the excee­

dingly simple formula

.., .

-heu) = u 1 u

We conclude this section with the important

. (41)

Theorem l (Hopf):

The fibres of the Hopf map h (= inverse Images of some x E S2) are great

circles on S3.

Proof:

Assume that y and z are In the same flbre,

h(y) CI h(z)

Setting

-1
U = Y z CI Y z

(note that the norm ef y 15 1 !), we obtaln

Y 1 Y ~ h(y) = h(z) = h(yu) a y U l,u y

Slnce y and y are Invertlble, thls implles

(42)

(43)

(44)

er

1 = u 1.u = u 1 u-1

u i = 1 u

(45)

(46)

whlch, tegether wlth the norm condltlon, shows that u 15 of the form

u = cos ~ + 1 sln ~

10
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for some angle ~. Hence the fibre of h(y) 1s

h-1 (h(yll = {y cos ~ + Y 1 sln ~ } (48)

whlch 19 1ndeed a great c1rcle.

We shall apply these known facts about the Hopf flbration in the next sec­

t10n and demonstrate how to regularise the perturbed·:.Kepler problem. It

will turn out that·the use of quatern10ns 15 highly advantageous in compa­

rison to the real or complex form of h.
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3. HOPF REGULARISATION

Levi-Civita [1956) generalised the ideas described in section 1 to.the, two­

dimensional perturbed Kepler problem. Inspired by methods applled earll~

by HilI [1906) and others, he used one eomplex coordlnate

w = x + i y- (49)

instead of the Cartesian (x,y) e ~.

This has the advantage that one can Immedlately extend the f'ormulas for the

linear motion to this ease. Rere, however, we ahall be interested in the

three-dimenslonal analogue, whlch has been solved for the first time by Ku­

staanhelmo [1964]. His approach, uni"ortunately, 18 obscured by the use .of

real (4,4)-matriees instead of the more natural quatern!ons. This·makes his

presentation dlfficult to read.

This unplesant custom was followed later in the monograph by Stiefel and

Scheifele [1971], who even state wrongly that a regularisation-of the type

in question could not be achieved with the.help of quaternlons."This is the

more surprlsing as they mention the Hopf flbration explicltly in the appen­

dix to the book. The souree of the error seems to .00 an unsultable eholee

cf eigns in thelr matrlces.

We ahall demonstrate In thls sectlon that a regularlsation can indeed be

carried through wlth the quaternionie form of the Hopf map.

At the same time it will become apparent that this leads to very" simple

equatlons of motion, much simpler at least than the matrix version is.

Almost all we have to do i5 to introduce a parameter space whlch Is connec-
3ted to the 3-dimensional conflguratlon space R via a quadratic map (com-

pare thls with the situation in the 1-dimensional case I).

For topologlcal reasons' (homotopy theoryl, such a map does not exist if we

requlre the parameter space also to be 3-dlmenslonal. !his may explaln that

the regularlsation has not been found earlier.

If we allow the parameter space to be 4-dlmenslonal. the problem totally

d i sappears .

The Ioregoing discussion suggests to usa the Hopf m~p h Introduced earller

to replace the position vector

12



(50)

by a parameter four-vector

We Identlfy x and u wlth the assoc1ated quaternlons,,,·

x = E 1 + ~ j +.~ k

and

u = oc + ß 1 + 7 j + ö k'

and assume them to be connected by the Hopf map: .

x = heu)

(51)

(52)

(53)

(54)

We can hope that thls Ansatz, together w1th the Introductlen of the parame­

trlc time T instead cf the coordlnate time t, see sectlon 1. will lead to

regular equations.

There 15, however, a mlnor obstacle. Since the parameter space 1s of hlgher

dimension (4) than the ccnfiguration space (3). the aux111ary quaternion u

16 not fixed uniquely for g1ven x. Ihis means that we bave to introduce an

additional condition to get a closed system cf equations.

We saw already that the f1bres h-t(x) of the Hopf map are great eircles in
4R . Thus a rotation of u along this clrcle will not .affect the position x.

The optimal and most natural restrietion will be'to require that the motion

in u-space 15 everywhere orthogonal to the h-fibre8~

Th1s demand 1s completely equivalent to the so-called "bllinear equat1on"

of St 1efel and Scheifele [1911], but here 1ts geometrie -interpretation 18

obvlous.

By Hopf's Theorem 1, the fibre passing through u ~ 0 i8

h-1 (h(u)) = {u cos ~ + u i sin ~ ~ eR} (55)

and (up to areal faetor) the tangent vector is u 1. The geometrie restric-
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tlon hence reads

o = 2 <u',ul> = - u' 1 u + u 1 Ü' (56)

or the same with dots Instead of the primes. We therefore get the Important

relation

u 1 U' = u' 1 U

Next, we have to substitute

x = u 1 U

and

dt = lxi dT = <u,u> dT

into the equation of motion.

(57)

(58)

(59)

and the energy conservation law,

grad V(x)
x

(60)

1 . .
2' <x, x> = g + V(x) + E (61)

where again the integration constant E 18 the energy per unlt mass of the

planet.

We begin wlth the transformation of the gradient. Note that x end u have

been written as row vectors, so the gradient 18 a column vector. What. we

really need, however. i8 the transpose of grad V, because only this can be
x

Interpreted as a quaternion.

We insert (58) tnto V(x) and get V es a function of the parameter u. The

connection between the u- and x-gradients 15 found from'the chaln rule,

grad V c
a

8x- . grad V c
8u x

J . grad V
x

(62)

where J 15 the Jacobl matrIx of the Hopf map,
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J =
8x

8u

o 2« 2~ 2r

o 2ß 2, -2ß

o -27 2ß 2«

o -2ß 2« -2ß

(63)

Though J is singular, formula (62) can be solved for ~ V with the obvl-
'" x "

ous relation

We are led to

lJoJ = 4 <u,u> Dlag(O,l,l,l) (64)

grad V
x

1
-1= - <u, u>

4

t
J-grad Y(u)

u
(65)

To find the perturbative acceleration, we have to t~pose. The result i8

wlth the abbreviation

t grad V =
x

1
-1

- K <u,u>
2

(66)

or, in components,

1
K. = - t(grad V)-J

2 u
(67)

K = (a 8 V + ß 8 V - r a V - a 8 V) 1 +
Cl fJ 7 ß

+ (a 8 V + 7 8 V + ß a V + « 8~V) J +
Cl 13 7 g

(68)

This concludes the required transformation cf the" force "term. The remalning

calculations are even easier. By the cbaln rule, we have

-1
X = <u, u> Xl

15
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and

x = <U.U>-3 {<U.U> XH
- 2 <u.u'> X'} (70)

On the other hand, differentiating the Hopf map and applylng the geometrie

by-condition (57) provldes us wlth

-x' = 2 u' 1 u

as weIl as

x" = 2 u" 1 U + 2 u' 1 U'

(71)

(72)

We collect the result8. The energy condltlon "18 In the Parametrie form"

2 <u' ,u') = ~ + (V + E) <u,u>

and the equat10n of motion Itself 18

2 <u,u> u" 1 Ü' + 2 <u,u> u' 1 Ü' - 4 <u,u'> u' l.ü + ~ u 1 u =

(73)

CI .!. K 22 <u. u>

(74)

A slight rearrangement using the Identity

2 <u,u'> U' i ~ = (u~' + u' ~) u' "1~' =

(75)- -= <u' ,u'> u 1 u + <u,u'> u' i u

reduces the last formula to

-2 <u.u> u" i u - {2 <u' .u'> - ~} u 1u = ·1 22' K <u,u> (76)

We next insert the energy equatlon and dlvlde by <uju>,

2 u" 1 U c (V + E) u 1 u + ~ K <u,u>

16
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Finally, we obtaln after a further simpli~ication the expllclt version o~

the quaternionie equation of motion,

2 u" = 1(V + E) u - 2 K u 1 (78)

This i5 obvlously completely regular, as deslred.
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