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QUATERNIONIC REGULARISATION OF PERTURBED KEPLER MOTION‘

by Wolfram Neutsch

ABSTRACT

It is well-known that the equations of Keplerian motioh suffer from being
singular at collision. Thls is a definite disadvantage when one wants to
integrate the perturbed Kepler problem for orbits which are close to colli-
sion, e. g. those of spacecraft moving from the Earth to the Moon or some
other planet.

In order to overcome this difficulty, Kustaanhelmo [1964] proposed a regu-
larisation method, which was later applied by Kustaanheimo and Stiefel
[1865] and others and is known In celestial mechanics under the (ugly) name
“KS-(=Kustaanheimo-Stlefel-)transformation”.

In this note, we shall show that there 1is an extremelyfelegant description
of this procedure using quaternlons, contrary to earllier bellef (see,
e. g., the monograph by Stiefel and Scheifele [1971], where the possibility
of such an approach is denied). |

This erroneous conclusion which is quite widespread in the literature stems
from an unlucky choice of some slgn in the above-mentlioned book by Stlefel
and Scheifele.

We think it will be worthwhile to demonstrate the power of the quaternio-

nic variant of the method in question.



0. [NTRODUCTION

Levi-Civita (1956] regularised the two-dimensional Kepler problem with the
help of complex coordinates. He showed that & specific transformation of
the time and a quadratic Ansatz in the comﬁlex}coordln;té suffices to re-
duce the equation of planar Kepler motlion to a form whiéh is free of singu-
larities. '

An exact three-dimensional counterpart of this transform, however, does not
exist for topological reasons. Rather, one has to extend the paremeter
space to four dimensions, and introduce an additional resﬁriction. The lat-
ter turns out to be quite natural.

This 1ldea, due to Kustaenhelmo and Stiefel, clearly suggests that it may be
useful to describe the appropriate formulas in quaternlions. It 1s therefore
surprising that several authors, among them Stlefel himsélf. state that
this 1is impossible. The main goal of the present paper 1s to correct this
wrong statement.

We shall succeed in giving completely regular quaternionic equatlions which
are equivalent to those discussed in Stiefel and Scheifele [1971], but are.
much simpler and more transparent. '
Furthermore, we show that there 1s an intimate connection to the famous
Hopf fibration. In conclusion, all of our results . are very natural from a

methematical point of view.



1. ONE-DIMENSIONAL MOTION

In this paper, we shall discuss the motion of a pafticle.n.(henceforth
called the “planet”} in the gravitational field of some other body (the
"sun"). All additlonal perturb&tive forces acting on the planet. are assumed
to be conservative; thus they can be derlved from a suitablé~pdientia1.

The equation of motion thus reads in a coordlnﬁte syéiem éenﬁered at the

Sun:

T o= - E; t + grad V(r) (1)
r

where - as usual - derivatives with respect to the time t are denoted by
dots, while p is the product of Newton's gravltatlpnal constant with the
solar mass. The perturbations are contained in the gradient of the poten-
tial V and will be supposed to depend in a known way on the planet's posi—-
tion vector r, '

In the special case of one~dimensional motion (without restriction along
the positive part of the x-axls of a Cartesian coordinate system), we can

bring this relation to the form
X dx

The last formula can be Integrated once, providing us with the energy equa-
tion

’2‘—2 = L+vix) +E . (3)
where E is an Integration constant, namely the energy per unit mass. This
reduction is possible slnce we restricted ourselves to conservative pertur-
batlions. Most of the forces relevant to celestial meéhanics possess this
property. ]

Moreover, the regularisation procedure depends heavlly on this féct;'a more
general treatment would be much more complicated and less elegant.

If a collision (x — 0) occurs, the potentlal gradient grad V is assumed to



remaln fipite. Under these circumstances, it is possible to regulé.rise the

equations by replacling the spatial coordinate x by somei power u,
x = u . (a)

and the time t by a uniformising variable t via the dlffer‘entit.a.l relation
at = ¥ ar | , ()

Derivatives with respect to 1 (called the parametric time) will be abbrevi-
ated by primes. Here o and B are constants which we bave to determine such
that the singularity for x = 0 disappears.

We first calculate the perturbation in the new coordlinates, getting

dv 4 g dv
—_— = g uTt— : : (8)
dx du
Equally easily the velocity of the planet,
x = uPx = P au™Tuw) = autly (7)
and lts acceleration,
¥ o= uP Py = g {u w’ + (¢ - B -1) (u')z} (8)

follow. The energy equation becomes after substitution .

— o B2 (y)? = put+V+E , (9)
2

We solve for the square of u’ and Insert the result into the equation of
motion. This leads to '

a Wy {2 «l (a-B- 1)+ 1} pou

av
+ 2 a-i (a - B -1) [V(U.) + E] u-a = a-i u"-a — (10)

du



The collision corresponds to x = 0; 1n order to regularise we have to take

o positive, otherwise we would shift the collision to infinity in u-space.

But if o > 0, the p-term in (10) is the most singular, so it must be ellmi-

nated. This forces us to restrict the exponents o and B.by the condition

2l (a-B-1)+1 =0

or

The dynamical equation then simplifies consliderably. We find

~2a+l -1 1-a
u u

o« u - (V+E)u® =. ¢

which may also be written as

. av
o u "

In the absence of perturbations (V = 0), this is

= @ (V+E) o™+ —
du -

(11)

(12)

(13)

(14)

(15)

so0 clearly we have to set a = 2, and consequently also B = 2, fo make the

last differential equation linear in u.

The general equation of perturbed one-dimensional motibn then attains lits

final form,

v 1 2dv
2u” = (V+E)u+ 5 3o

while the energy conservation law reads

2 (u)? = p+ (V+E) W

(18}

(17)



2. THE HoPF FIBRATION

In order to calculate the third homotopy group na(sz) of the two—spﬁere Sz.'
Hopf [1931,1935] attached a certaln integer ¢(f) to each C”-map

(18)

which is a homotopy invariant, i. e., is the same fof: homotoplc maps. He
found that this Hopf invariant ¢(f) attains all integer values. In particu-

lar, he constructed a quadratic map

h: § —S (19)
as follows:
let P = («,8,7,8) be a typlcal point on the (unit) S—Spbere
s = { («,8,7,8) € R* P L S } (20)
which can also be written in complex coordlinates
W= a+Bi N (21)
and
W, = ¥ +381 o - (22)
as
s? = { (w, %) € €° v, 1%+ Jw,|® = 1»} (23)

The pair (wl,wzl # (0,0) can be considered as homogeneous coordinates of a

point h(P) in projective space

PHC) = Cudw & S (24)



via a stereographic projection. The Hopf map simply ffansforms Pes® to
h(P) € S°.

For future applications, we write h in suitable coordinates. Choosing the
centre of the stereographic projection appropriately, we get the explicit

form of Hopf's map,

h(e,B,7,8) = (£,0.%) ? (25)
where
€ = o+ g%+ %+ 50 : 3 (26)
7 = 2 (a8 +87) (27)
§ = 2 (ay - B9) (28)

The last formulas allow us to extend h to all of R‘. We shall denote thils

extension also by h. Thus

h: R — R » | (29)
(aJB’Vla) —> (elﬂvc)

Both descriptions of the Hopf map (with 4 real or with Z'éomplex coordl-
nates} have their merits: . '

The former enables one to immediately carry the coﬁstruction over to maps
from S* to §* and from S'° to S°. We only have to replace the fleld R in
the definitlion by the complex numbers € or by thé skew-field H of quaternl-
ons, respectively, while the latter is more useful for dlrect calculatlons.
Both advantages, however, can be combined, if we represent the three-sphere
53 by a single quaternionic coordinate instead of using.two complex or four
real numbers. This leads to much more compact expressions. |

We write the typical quaternion in the form
g = a+bl+c Jj+dk (30)

with the usual basis {1,1, J,k} for H, obeylng the defining relations

i = J = k = -1 . (31)



Jk = 1 ki = J 1§ = k (32)
kJ = -4 1k = - Ji = -k (33)
The conjugate quaternion to q is
§d = a-bil-cJj-dk ' ‘ (34)
and the real and imaginary parts of q will be denoted by
Re(q) = 5 (q+@) = a ‘ (35)
and
In(@) = 2(q-@ = bl+cj+dk (36)

respectively.

The norm of q is the nonnegative real number
qq = a+b2+c?+d® ' (37)

which does not vanish except if ¢ = 0, and the (Euclidian) scalar product

of two quaternions q and u is
<q,u> = Re(qu) = Re(ug) = Re(qu) = Re(uq) (38)

After these preparations, we may write the (standard) three-sphere as the

set of quaternions with norm 1,
5 _ )
$° = { ueH | uu=1 } (39)

while the two-sphere consists of the quaternlons with norm 1 and vanishing

real part,

s = {uel-l

uT =1 Re(u)=o} (o)



With this conventions, the (standard) Hopf map (29) is glven by the excee-
dingly simple formula

h(u) = uiu o (41)
We conclude this sectlion with the important

Theorem 1 (Hopf):
The fibres of the Hopf map h (= Inverse images of some x e $%) are great

circles on S°.
Proof':
Assume that y and 2z are In the same flbre,
h(y) = h(z) | (42)
Setting
u =y z = yz o (43)
(note that the norm of y is 1 !), we obtaln
vyiy = hiy) = h(z} = h(yu) = yuiuy (44)
Since y and y are invertible, this implies
1 = uiu = uiu | (45)
or
uli = 1u o (46)
which, together with the norm condition, shows that u ié of the form

u = cos ¢ +1 sin ¢ (47)

10



for some angle ¢. Hence the fibre of h(y) is

h'1(h(y)) = { ycos ¢ +y1lsineg } . (48)

which is 1ndeed a great circle. ) '

We shall apply these known facts about the Hopf fibration in the next sec-
tion and demonstrate how to regularise the perturbed Kepler problem. It
will turn out that the use of quaternions is highly advantageous in compa-

rison to the real or complex form of h.

11



3. HOPF REGULARISATION

Levi-Civita [1956] generallsed the ideas described in séction 1 to the two-
dimensional perturbed Kepler problem. Inspired by methods applied earlie?
by Hill [1908] and others, he used one complex coordinaga

s

w = x+1iy , . . 0 (49)

instead of the Cartesian (x,y) € R.

This has the advantage that one can immediately extend the formulas for the
linear motion to this case. Here, however, we shall be interested in the
three-dimensional analogue, which has been solved for the first time by Ku-
staanheimo [1964]). His approach, unfortunately, is obscured by the use of
real (4,4)-matrices instead of the more natural quaternions. This makes his
presentation difficult to reead.

This unplesant custom was followed later in the.monograph by Stiefel and
Scheifele [1971], who even state wrongly that a regularisation of the type
in question could not be achieved with the help of quaternlons. This is the
more surprising as they mentlon the Hopf flbration explicitly in the appen-
dix to the book. The source of the error seems to be an unsulitable cholce
of signs in thelr matrices.

We shall demonstrate in this section that a regularisation can indeed be
carried through with the quaternionic form of the Hopf map.

At the same time it wlll become ampparent that this leads to very simple
equations of motlion, much simpler at least than the matrix version is.
Almost all we have to do 1s to introduce a paraméter space which 1s connec-
ted to the 3-dimensional configuration space R’ via a quadratic map (com-
pare this with the situation in the 1-dimensional case !).

For topological reasons (homotopy theory}, such a map does not exist 1f we
require the parameter space also to be 3-dimensional. Thls may explalin that
the regularisation has not been found earlier.

If we allow the parameter space to be 4-dimensional, the problem totally
disappears.

The foregoling discussion suggests to use the Hopf map h Introduced earller

to replace the position vector

12



x = (§n¢8) : (50)
by a parameter four-vector
u = («,B,7,3) ' (51)
We 1dentify x and u with the assoclated quaternionsf:
x = £1+n3+Ck (52)
and
u = a+Bi+yJ+dk- - (53)
and assume them to be connected by the Hopf map:
x = h(u) : (54)

We can hope that this Ansatz, together with the introduction of the parame-
tric time v instead of the coordinate time t, see section 1, will lead to
regular equations.

There 1s, however, a minor obstacle. Since the parameter space 1s of higher
dimension (4) than the configuration space (3), the auxiliary quaternion u
is not fixed uniquely for given x. This means that we have to introduce an
additional condition to get a closed system of equations.

We saw already that the fibres h™'(x) of the Hopf map are great circles in
R®. Thus a rotation of u along this circle will not_affgct the position x.
The optimal and most natural restriction will be to reqﬁire that the motlon
in u-space is everywhere orthogonal to the h~flbres:

This demand is completely equivalent to the so-called “"bllinear equation
of Stiefel and Scheifele [1971], but here its geometric*interpretation is
obvlous.

By Hopf's Theorem 1, the fibre passing through u # 0 is
h™'(h(u)) = { ucos ¢ + ulising l R } (85)

and (up to a real factor) the tangent vector is u i. The geometric restric-

13



tion hence reads
0 = 2<u,ui> = -uw 1tu+uiv (56)

or the same with dots Instead of the primes. We therefore get the imhortant

relatlion
uiuw = u tu e ' (57)
Next, we have to substitute

X = utu (58)

and
dt = |x| dr = <uu dr : (59)
into the equation of motlion,
X + |“|3 = gradx Vix) - ; (éO)
X

and the energy conservation law,

> = iy + Voo +E “ (61)
where again the Integratlion constant E is the energy per unlt masg of the
planet. ‘
We begin with the transformation of the gradient. Note that x and u have
been written as row vectors, so the gradlent is a column vector. What we
really need, however, 1s the transpose of gradx V, because only this can be
interpreted as a quaternion.
We insert (58) into V(x) and get V as a functlon of the'parameter u. The
connection between the u- and x-gradients is found from the chain rule,

dx

gradu V = 35 gradx vV a J- gradx v (82)

where J is the Jacobi matrix of the Hopf map,

14



( 0 2a 28 2vy \

ax 0] 2B 2y -28
J =2 — = (83)
du 0 =-2¢ 2B 2a

0 28 2o -2B

- P

Though J is singular, formula (62) can be solved for grgdx V with the obvi-

ous relation

t

J:J = 4 <u,uw Diag(0,1,1,1) (64)
We are led to
1 -1t '
grad V = - <uyw J-grad v(u) (85)
4 .

To find the perturbative acceleration, we have to transpose. The reéult is

1
‘grad V = - K <u,w (66)
X
2
with the abbreviation
1 t
K = — "(grad V)-J ' (87)
2 a
or, in components,
K = (a« BaV + B BBV -7 67V -3 BaV) 1+
+(838V+3y8V+BaV+adV)J+ | (68)
« B 'e 3

+ (y 8V-838V+ad8V-88Y)k
[ 8 r 3

This concludes the required transformation of the force term. The remainlng

calculations are even easler. By the chaln rule, we have

x = <uyw ' x (89)

15



and
¥ = <yw {<u,u> X? - 2 <y,u’> x'} (70)

On the other hand, differentiating the Hopf map and applying the geometric
by-condition (57) provides us with h :

x = 2u 1u ; 1 ' (71)
as well as
X = 2u’iu +2vu 1 ‘(72)
We collect the results. The energy condition is in the ﬁarametric form-
2<u ,u’'> = pu+ (V+E) <u,u)‘ | (73)
and the equation of motion itself is

2<u,w u’ 1w +2<q,wu W -4<gu>u tu+puliy =

(74)
1 2
= §K <u,w
A slight rearrangement using the ldentity
2<g,u>u iy = (o +uv Wuwiluw =
_ _ (75)
= <uw,u'>uiu +<ygu>u iu
reduces the last formula to
2 <u,w u” tu - {? <u’,u’> - p} ulu = '% K <u,u>2 (76)
We next insert the energy equation and divide by <u;u5.
2w 18 = (V+E)uii+zK<nw 77

16



Finally, we obtaln after a further simplificatlion the expllclt version of

the quaternlonic equation of motion,
2 4 = (V+E)u—%Ku1 (78)

This is obviously completely regular, as desired.

17
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