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Introduction

In this article we lay out a framework for some formulations of differential invariants
for certain 4—manifolds and then calculate an example for the product manifold 82 x 82 .
To be more precise, let X be a smooth compact simply—connected oriented 4—manifold
with b';(x) = 1. For integers k > 0, denote 8;‘( the set of connected components of

the positive cone fly in Hz(X;IR) after dividing by the system of walls 1<g<kW£ ,

where
W, =U 1 2y, - . 2y.
g =U{<e>" CH(X;R)[ere=~L ;e € HY(X;I)} .
Write simply €y for ‘3)1( . In [D3] Donaldson introduces a differential invariant

I'y: ¢

x: Ex— HZ(X;H)

using Yang—Mills moduli spaces associated to an SU(2)-bundle P — X with
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co(P) = 1. Here we work with a larger second Chern class ¢(P) =k 2 2 and define

assignments

r¥: X — sym¥*S@t(x;m)

in the same spirit. This will be explained in § 1. We then apply this framework to the

manifold $2 x §2 and determine I‘22 o in § 2. In order to state the result, observe first
S“x§

15{2(52 x Sz,IR) = {a;h; + ajh, | 2,3, €R}

2

is spanned by two (integral) generators h;,h, over R while #°,
- §%x%§

o i8 a set consisting

of regions

C+={a1>a2>0}, C_={a,>2a, >0}

g

together with —-C 4 —C_ as elements.

Theorem The assignment

2 2 5:q2/a2 2
r 1 & — Sym”(H“(S® x §%,Z
52x52 " 52xs? )
is given by
2 9 4 3.2
%) (2C4) =B —5(b] by) + 103 ) ana

2 .5 4 2.3
rszxsz(c _) =h3 —5(h; hy) + 10(h{ b))



g, L )
where (b,! h,?) denotes the symmetrization of b h,2 in (BZ(s? x §%1))®

for positive integers £, £, .

This will be proved by arguments in algebraic geometry. I should emphasis the
polynomials 1‘22,‘82(0 +) , I‘22*82(C_) as described above are not Donaldson

polynomials and quite on the contrary they reflect the construction of such polynomials
depends upon the metrics as b';(S2 x Sz) = 1. Moreover, in contrast to a result of
[FMM], these two polynomials are not polynomials on the intersection form and the

canonical class of a quadric surface Q realizing % x §%.

In [K] one can find similar discussion for differential invariants concerning
SO(3)—bundles. Other useful information relevant to our work can also be found in

[FM1], [FM2].
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§ 1. The definition of I‘X

In this section we explain the construction of the polynomial TX(C) in
Sym4k_3(H2(X;ﬂ)) associated to a chamber C € ¢ )]E in general. To begin with, let P
be an SU(2)—bundle over X with ¢5(P) =k and .6 be the space of connections on P .
The gauge group § = Aut P actson € preserving anti~self—dual (ASD) connections

and we denote by
My(m)={A€ 4 |* F(A)=-F(A)}/ ¥

the moduli space of ASD connections on P relative to a Riemannian metric m on X .In
general M, (m) is a smooth oriented manifold of (real) dimension 8k—6 assuming
b';(X) = 1. Associated to any given metric m on X, there is an L,—normalized
self—dual humoMc 2—form W which i8 unique up to a sign. A choice of w n determines
a standard orientation of M, (m) and we write M () for M, (m) with such an
assigned orientation understood. In this convention M, (—w ) has the opposite orientation
compared with M, (v _) .

Given any smooth oriented real surface ¥ C X we can define a line bundle over £

by assigning to each connection A € .6 the complex line

Z5(A) = A" (ker ;( |z)* ® AM¥(coker /( |z)

where //A |E denotes the Dirac operator coupled with AlE . If the metric m on X is
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sufficiently general, such assignments factor through the gauge group action and descend to
the manifold M, (m) defining a line bundle #y,—— M, (m) provided the surfaces %
are suitably chosen. In this situation we consider the zero sets Vy N Mk(m) for certain
transversal sections of .y, and by working with 4k—3 such surfaces as a whole we obtain

transversal intersections Vy N..N Vg N M, (m) consisting of points as elements.
1 4k—3

Apart from the (special) case k = 1, one can arrange such intersections to be compact
assuming b'g(x) =1 (cf. [D5] lemma (3.1)). Indeed, this is the case should one work
with sufficiently general metrics m on X 80 that all moduli spaces Ml(m)""’Mk—l(m)

in addition to M (m) are smooth manifolds of formal dimension containing no

U(1)-reduction. For thig purpose one is to assume [w_] lies in some chamber C € ¢ ;

in order that it does not meet the system of walls <U< WE, . In such cases, we can define
1<2<k

a symmetric multi-linear map

qk,X(wm) PHQ(XT) x ... x Ho(XT) —— 1

(- J
Y

4k—3 times

using assignments

( [El] veer [ Dy _3] ) Y the algebraic sum of a transversal intersection

Ve N...NV nNM (o ).
}31 E4k-3 k\“m

Should we write p([X]) for c¢,( .ZE) , these intersection numbers are given by the natural

pairings

<DV U u([Zgy 1), [My(w)]>



and if we consider
4k—3
qk,X(wm) = <p :[Mk("’m)] >
. 4k-3, .2 . . . . .
an element in Sym (H*(X;Z)) this construction gives an assignment

k k 4k-3,.2
I'y: 5 — Sym (HA(X;X))

Cr—— qk,X(wm)
assuming [wm] € C . In this way we obtain the definition of the assignment I‘; .

This discussion provides a way of defining differential invariants for X but for a
complete definition one is to describe the (universal) difference between I‘;(Cl), P§(02)
for two different chambers Cl’ 02 € B’)IE . Despite not knowing of such comparison
formulas in general, we should point out it is still possible to derive as a special case the

difference

2 2 5
\ c,)-T (C_) = (h,—h,)

directly from Yang—Mills theory. We shall discuss this elsewhere.
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§ 2. The calculation of T
§2xg2

In this section we determine the invariant I‘:z 52 for the standard 82 x S2 . For
X

simplicity we write

— 12 _ 2
q = r82XS2(0+) and q_= I‘szxsz(C_) :

To find q + and q_ we are to use some arguments in algebraic geometry. It is a
well—known fact that S2 x $2 can be realized as a complex quadric surface Q = IP1 x IP’1

in the complex projective 3—space E’s and all the ample line bundles H. _ on Q are of
12

* *
the form 0(r;,1,) = pr; 0|P1(r1) ® pr, 0“,1(1'2) where 1,1, are strictly positive integers

and pr; denotes the projection map from Q & IP1 x P, to the i—th factor for i =1,2.

For each ample line bundle Hr ,let M r be the moduli space of H LT —stable

) 12 172
9-bundles E over Q with A%E 0 aud cy(E) =2 (In this setting, E is

H —stableif & - H < 0 for every holomorphic line bundle . — Q
Tpfo 172

admitting a non—zero bundle map % — E .) The moduli spaces M_ | aresmooth
172

and if r; # 1, they are naturally identified with Yang—Mills moduli spaces My(m) for
compatible Kdhler metrics m on Q by a theorem of Uhlenbeck and Yau. It follows from
the general theory to determine q + and q_ it suffices to pick two moduli spaces

Mrl,r2 , one for r, > 1, and one for 1 <Iy. (The case T, =1, is special.) As we shall
see however, the moduli spaces themselves are in fact divided into three kinds, according to

the comparison between Iy and 1, . This can be summarized as follows.



(2.1) Proposition. Associated to a quadric surface there are three spaces M oM 4 M_
such that

In addition, we have

- + - -
M, =M, ||P}, M_=M,||P,

where IP';, IPE are two (distinct) copies of the complex projective plane parametrizing

respectively non—trivial extensions of the following exact sequences:

0— ¢(1,-1) — E— 0(-1,1) — 0 and
0— 0(-11) — E— 0(1,-1)— 0 .

This proposition is a special case of the discussions in [M] and therefore we omit the
proof here. Now let L = pr;]'( ) P, be the fibres of the projection map pr; on
Q~ IP1 x lPl for i =1,2. Toobtain q 4L it suffices to establish the following table of

evaluations for ,u5 .



(22) Table
) Number of
L,—lines L,—lines # <p5, [M+] g <“5’ M_1>
1o 5 1 0
4 -1 0
2 3 1 0
3 2 0 1
A 4 1 0 -1
5 0 0 1

We ghall only check the column for <p5, M +] > as the evaluation for < #5, [M_]> is
similar. Note that q, = <4°,[M_]> in Sym*(E(X;T)).

Our calculation for q + hinges on the fact that a line Li on the quadric Q isa
copy of P, and so one can adapt an argument in [D1] to show that the zero sets

vy, nM + used to define q 4 can be taken to have the following concrete form:
1
(2.3) {[E] € M, | ElL. is not trivial} .
i

(It is well-known that holomorphic 2—bundles on a projective line IP1 N Li always split

and so we have
1 1 1

for some integer a 2> 0 . The condition E|[; is not trivial in (2.3) means a#0 in the
i
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splitting of E|; . In this case we say L. is a jumping line of the bundle E .) Suggested
& Li i

by this, it is natural to investigate the splitting behaviour of an element [E] € M + when
restricted to a line L on the quadric Q . We first observe its splitting type is rather

confined.

(2.4) Lemma. For a stable 2—bundle E over Q with ¢,(E)=0, c2(E) = 2, we have

either

E|l 20, @01 (trivial) or

E| 20.(1)®0;(1) (jumping)
for all lines L on Q.

Proof. The argument is a direct consequence of the Riemann—Roch formular. Associated

to each L,—line there is an exact sequence

(2.5) 0 — E(-1,0) —E—E|; —0 .
1

The stability of E gives hO(E) = 0 and therefore the corresponding long exact sequence
of (2.5) reads

0 — HYE|, ) — HY(E(-1,0)) — HY(E) — ... .

E|
L
One checks readily by the Riemann—Roch formula

X(E(ry,15)) = 2(r; +1)(ry+1)-2
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that hl(E) =0 and hl(E(—-l,O)) = 2. It follows then

W(Bl, ) =1(0y, (3)@ 0y, (-8) =2

which can possibly happen only when a = 0,1 . The argument for Lo—lines is similar and

this proves the lemma.

Now we come to count the number of jumping lines a stable bundle E — Q can
possibly have. We denote for instance Hr >t the ample line bundle H on Q if
1=72 Tpto
I > I,>0.

(2.6) Lemma. An H__—stable bundle E can have at most two jumping lines in the
1-°2

line system L, = prIl( -) . Similarly, an H (, —stable bundle E can have at most two
1-°2

jumping lines in the line system L, = prgl( ).

As the moduli space M0 is contained in M, and M_ by proposition (2.1), the

+
following corollary is immediate.

(2.7) Corollary. A bundle E —— Q can have at most two jumping lines in each line
system of Q if [E] € M, .

To prove lemma (2.6), we show first for [E] € M 4 thesplitting type E |y, i8
1

generically trivial. Suppose not, one finds by lemma (2.4)
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E|l, ~0, (1)® 0, (-1)
L1 L1 Ll
holds uniformly for all L, and consequently that

E(0,-1)|; 20, © 0, (-2)
L7 'L

on all such lines. Thus (pr,)« E(0,~1) defines a line bundle, say, Jp (&) over the base
1 :

curve IP1 . It follows then

pr, ((pr))« E(0,-1)) & 0(£,0)
defines a line subbundle of E(0,—1) fitting into an exact sequence

0 — 2(£,0) =X— E(0,-1) — 0(—2,—2) — 0

via the natural evaluation map ev. As ¢,(E(0,—1)) = 2, one finds

o(2,0) » O(—2,~2) =—20 = 2
which gives that £ = —1 . We conclude therefore E comes from an extension
(2.8) 0— 0(-1,1) — E— 2(1,-1) — 0 .

This however contradicts the H —stability of E since

1,21,
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Hrlzrz s 0(-11) =1-15 20 .
Thus for those [E] €M 4 therestrictions E |1, i8 generically trivial.
1

To determine the number of L,—jumping lines an H_  ~stable bundle can possibly
1="2

have, it is easiest to consider E as a family of holomorphic bundles over a projective line
IP1 ®Ly.In this interpretation, the number of Ll-—jumping lines for E is exactly the num-

ber of elements in the zero set Vi N L, described in (2.3). As V; N L, represents the
1

1
zero set of a (non—trivial) section of %} — L, with
1

11, ) = &y(E)/ [1y] = 2by

(cf. [D2]), we conclude Vi N L, contains at most two points and therefore E|  is
1 1

non—trivial for at most two Ll—lines. The argument for H —stable bundle E is similar
1="2

and this proves the lemma.

One infers easily from this lemma that in table (2.2)
5 4 3.2
(2'9) Q+(L]_) = q+(L1 L2) = Q+(L1 L2) =0

by using this kind of zero sets V|, (z) O M, associated to three (distinct) lines
1Y%

+
Ll(zi) , 1=1,2,3. Indeed, in these situations the number of Ll—lines we are working with

is no less than three and so (2.9) follows if one can show
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VLI( )nle(%)nvL( )M, =¢.

This is however a trivial consequence of lemma (2.6) as no H_ y —stable bundle E can

"jump" on three distinct L, lines.

To find remaining evaluations for q + Ve apply the same argument to three

distinct) L,—lines. This time we get & non—empty (set) intersection
9 g

3
(2.10) [igl VL2(Wi)] nM,

3 3

i=1 =1
; PT  (byl
=NV n y lemma (2.6
D VE(w) NP2 ( (2.6))
_pt
._[P2 .

We shall briefly explain in a moment the intersection (2.10) is transversal in general.
Assuming this, we can proceed to determine q + in the remaining cases by studying the

universal bundle & 4 over the product space [P'; xQ:

(211)  0—P 0 +(1)@? 0(1,-1) — &, — P, Q11 —0
Py Py

where PIP + and PQ are the obvious projection maps (cf. [R] lemma 2.3).
2
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To show q +(L§ Lg) =1, we consider the intersection between [P;' and two (more)
zero sets VL (z,)° i = 1,2 . These zero sets on [P';' represent the determinant bundle
1M1
.z’Ll with

cl(-i’Ll) =co(8)/[L]=h_,

where h_ denotes the standard generator of H2([P+;H) . It follows up to a sign
2.3y . .
q +(L1 Ly) is given by

<co( %)/ [L(z,)] Ucy( %)/ [Ll(z2)],[u>42'] >=h_-h, =1.

As the algebraic sum associated to an intersection of five zero sets on M + defined by
holomorphic sections must be non—negative, we conclude IP; has its usual complex orien-

tation and therefore q +(Li‘1) Lg) =1, as stated in (2.2). Similarly, using

¢ (# L2) =cy( &)/ [Ly] = by
and one derives

Q+(L1Lg) = h+ ' (_h+) =-1,
Q+(Lg) = (_h+) ' (_h+) =1

as wished.

3
. . oot :
To see the intersection {12 . sz(wi)] nM + 2 [P2 is transversal in general, we
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observe first the restriction map

r, :HYEnd E) — HY{(Ed E)|; )~ BY(0; (-2))2¢
Ly Ly Ly
is surjective and fits into the following commutative diagram.

(2.12) Diagram.

0 —s HY(E(1,-1)) — H(End E) —— HEY(B(-1,1)) —— 0
L
2

0 —— HI((End E)|L2)_'H1(E(_lll)|L2)—”°

0

Thus, for an element [E] in the zero set Vi NM_ weare working with, one finds the

9 +

tangent space T [E] (Vi NM_) identifies with Kerr; in diagram (2.12). Now by
2 2

N
tracing diagrams we can show three such tangent spaces meet transversely in Hl(End E)
for three general L,—lines and this will prove the transversality for the intersection (2.10).
We leave the detail of this argument to the reader.

Now we wish to explain why q 4+ are not polynomials of the intersection form

and the canonical class

kQ = —2h1 - 2112
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on a quadric surface Q 52 x 82 . Supposing on the contrary q + 2 537, admits such an
expression, the coefficient a, of kg would then be detected by the evaluation g +(L?)
or q +(Lg) as the intersection form is zero in either case. A contradiction is immediate

: 5 . 5 .
since we have a; #0 by q, (Ly) =1 while q,(Ly) =0 gives ay=0.

Obviously the failure of q 4 admitting such expressions lies in the fact that the
construction of these polynomials depends upon the choice of metrics on Q . However we
can get around this dependence just by averaging, or taking the sum of q + and q_.
Thus, as Q is a complete intersection, we can apply [FMM] theorem 5 to conclude
q, +q_ is a polynomial on aQq and kQ . Indeed, one can find by a direct calculation

a + =gk + § (B ag) -1 (kg ad)

where the brackets ( ) denote symmetrizations of kQ and qQq -
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