Max-Planck-Institut fir Mathematik
Bonn

A type theory for strictly unital «o-categories

by

Eric Finster
David Reutter
Jamie Vicary

Max-Planck-Institut fir Mathematik
Preprint Series 2020 (60)

Date of submission: November 1, 2020

A type theory for strictly unital o-categories

by

Eric Finster
David Reutter
Jamie Vicary

Max-Planck-Institut fir Mathematik Computer Laboratory

Vivatsgasse 7 University of Cambridge

53111 Bonn J. J. Thomson Aveneu

Germany Cambridge, CB3 OFD
UK

MPIM 20-60

A Type Theory for Strictly Unital co-Categories

Eric Finster*, David Reutter’ and Jamie Vicary*

July 17, 2020

Abstract
We present a type theory for strictly unital co-categories, in which
a term computes to its strictly unital normal form. Using this as a toy
model, we argue that it illustrates important unresolved questions in the
foundations of type theory, which we explore. Furthermore, our type
theory leads to a new definition of strictly unital co-category, which we
claim is stronger than any previously described in the literature.

1 Introduction
1.1 Overview

Motivation Standard categorical models of type theory have a curious and
well-known feature. When we regard the A-calculus as a presentation of a carte-
sian closed category, we must identify all S-equivalent terms, such as the fol-
lowing,

(Az.p)g = plg/x]

by quotienting the set of raw syntactic terms by definitional equality, writ-
ten “=".

However, since any semantic model is required to respect definitional equal-
ity, it then becomes impossible for the semantics to represent the dynamics
of computation in a nontrivial way. We call this the Identification Paradozx.
Like most good paradoxes, it does not represent a logical absurdity; after all,
our standard models of type theory continue to serve us well for many purposes.
Rather, it serves to challenge us, as we seek new perspectives on the foundations
of computation.

In dependent type theories, the Identification Paradox gains greater weight,
since it leads directly to a number well-known meta-theoretic difficulties. The
conversion rule

I'Fa:A A=A
I'kFa:A

CONV

allows us to silently coerce terms between two types which are equal up to
definitional equality, but records no witness of this conversion in the syntax of

*University of Cambridge, UK, ericfinster@gmail.com
TMax Planck Institute for Mathematics, Germany, reutter@mpim-bonn.mpg.de
fUniversity of Cambridge, UK, jamie.vicary@cl.cam.ac.uk

the term a. For typing purposes, definitionally equal types have been identified.
Such silent conversions can cause serious problems when we attempt to treat
the meta-theory of type theory in type theory. For example, one extremely
natural approach to modeling the syntax of type theory is as a sequence of
inductive families: types dependent on contexts, terms dependent on types and
so on [10, [T1]. However, in this case the “silent” conversion rule is not even type-
correct: if we have two syntactically distinct type expressions, say A and A’,
then our meta-theory forbids the same term expression a to have two distinct
types, whatever our notion of definitional equality may be. Indeed, some kind
of explicit coercion becomes necessary because of the proof-relevance of type
theory itself. Various partial solutions are possible: working always with raw
syntax, using setoids [9], or more recently, using higher inductive types [I]. But
it is fair to say that the meta-theory of type theory in a proof-relevant setting
hides many subtleties which are not yet fully understood [23]. We regard this
situation as symptomatic of the Identification Paradox.

It was suggested already in the 1980s [22] that ideas from higher category the-
ory could be relevant to these questions. Put simply, while 1-categorical struc-
tures require that we identify computationally-equivalent terms in the model,
higher categorical structures allow us to retain the information of why these
terms are equal by modelling them as higher dimensional equalities. While var-
ious authors have followed this kind of approach in low dimensions [21] [15], many
basic foundational questions and difficulties still remain, and the Identification
Paradox remains substantially unresolved.

A New Paradigm We now describe a novel approach to resolving the Iden-
tification Paradox, illustrated in Figures [1] and We begin by supposing a
traditional type theory S as above, and we seek to construct an auxiliary type
theory S’, with a projection function 7 : tm(S’) — tm(S) on valid syntactic terms
that preserves definitional equality, but does not reflect it, for all u,v € tm(S’):

eu=gv = n(u)=sm(v)
e u=gv # w(u) =smr(v)

This says intuitively that the auxiliary theory S’ is more fine-grained, with a
weaker notion of definitional equality, conveyed in Figure[I]by the small triangles

(a) The set tm(S’) with small (b) The set tm(S) with large
definitional equality classes definitional equality classes

Figure 1: Definitional equality classes of S and S’

in part (a), compared to the large hexagons in part (b). In particular, we may
find some u,v € tm(S') with u #g v, but m(u) =g 7(v), indicated in Figure
by the points u,v in different triangles in part (a), and their images 7(u), 7(v)
in the same hexagon in part (b). Since definitional equality is finer in S’ it may
therefore have semantics in which w,v are distinct, even thought their images
in S are definitionally equivalent. Depending on the theory S, this structure
(S’,m) could perhaps be obtained trivially, possibly by letting the theories have
the same terms (with 7 = id), but restricting the notion of definitional equality
in S’; that is the idea conveyed in Figure [l with the triangles and hexagons of
parts (a) and (b) tiling the same space, and u, v drawn at the same positions as
m(u), 7(v) respectively.

The crux of the idea is then the following. We may also seek a function
p :tm(S) = tm(S’) which preserves and reflects definitional equality, and which
is cancelled by 7 up to definitional equality, for all p,q € tm(S):

ep=sq < plp)=s plq)

e m(p(p)) =s p

This says intuitively that p encodes terms of S as terms of S’ in a way which
is faithful to their computational interpretation, in such a way that the original
definitional equality class can be recovered. It may be surprising that this is
possible, since we argued above that S’ had a strictly weaker notion of defini-
tional equality than S. The conclusion is that the encoding p must be nontrivial,
allowing the ‘broad’ definitional equality classes of S to embed in the ‘narrow’
definitional equality classes of S'.

If we can equip a type theory S with this structure (S', 7, p), it gives us a way
to alleviate the Identification Paradox as follows, which we illustrate in Figure[2}
Suppose S is a dependent type theory with types U, V, W, T, with V fibred over
T; then for any ¢ : T, we have that V[t] is a type. Now suppose we have function
types f: U — V[t] and g : V[t'] — W in the theory S, with ¢t =g ¢’. Then the
type checker will admit that V[t] = V[t/] definitionally, and hence that their
composite f - g is a valid term in S by “silent coercion”, illustrated in part (a)
of the figure; while the target of f does not agree with the source of g, since
these points are in the same definitional equality class, the type checker for S
will certify the composite as well-typed. We may embed f - g into S’ to obtain
the valid term p(f - g), illustrated in part (b), where we may inspect it with

(a) Theterm f-gin S (b) The term p(f-g) inS" (c) The term w(p(f - g)) in' S
Figure 2: Embedding and projecting terms between S and S’
3

the finer-grained semantics of S’ to see in detail the mechanics of the coercion
between V[t] and V[t'], previously invisible in S, but now manifested as a green
arrow ¢. We may then project it back into S as w(p(f - g)), obtaining a term
which is not syntactically identical to the original term f - g, but guaranteed to
be definitionally equal to it.

One might then ask, if the fine-grained type theory S’ is so much more
expressive, why should we bother with S at all? The simple answer is that
S’ may be much harder to work with in practice. The smaller definitional
equality classes mean that type coercions may not be admitted automatically
by the type checker, and must be added ‘by hand’ when needed. We see this
illustrated clearly in Figure |2l In part (a) the terms f, g are composable, since
the head of f is in the same definitional equivalence class as the tail of g. But in
part (b) they are not directly composable, since the head of p(f) is in a different
definitional equality class to the source of p(g); we require the insertion of the
explicit coercion ¢ to allow the composite to be formed. While in this instance
we constructed p algorithmically through the encoding procedure p, if we only
had access to the fine-grained theory S, we would need to construct it explicitly.
The best scenario is to allow ourselves access to both S and S’, so we can work in
S for convenience, then pass to S’ when we need more detail about the explicit
coercions at play.

Our contribution. We give a comprehensive analysis of a solution to the Iden-
tification Paradox along the lines just described, from the perspective of a “toy
model”, a type theory for weak oco-categories. At the same time, our results are
of independent interest for the theory of weak oo-categories itself, leading to a
new stronger definition of strictly unital oo—categoryﬂ than any previously given,
and showing the potential impact of type-theoretical approaches to this area of
pure mathematics. We summarize our specific contributions as follows.

e For our fine-grained theory S’ we choose Catt, a dependent type theory

recently introduced [I3] to describe weak co-categories. Set-theoretic mod-
elsEI of Catt correspond to particular weak co-categories, and a valid typing
judgement I' F ¢ : A can be interpreted as the assertion “in the free weak
oo-category generated by I', the term ¢ represents a morphism in the hom-
set A”.
The “programs” of this type theory have the curious feature of always
being in normal form: they don’t “compute” anything at all, and hence
the theory has no notion of definitional equality, beyond syntactic equal-
ity. The theory is in this sense maximally fine-grained. Nonetheless, the
theory describes something highly nontrivial: the mathematics of weak
oo-categories.

LA theory of weak co-categories (also see Section 1.2) is a mathematical formalism for the
homotopy theory of composite structures in arbitrary dimensions. A strictly unital theory
neglects issues related to composing with unit structures; for example, if f is some nontrivial
n-dimensional structure, and 1 is some n-dimensional unit structure of the appropriate type,
then the composite f o 1 would evaluate to f on-the-nose.

2For the type theories we work with in this paper, a model is defined to be a functor
CoP — Set satisfying a certain gluing condition (see Section 2.3), where C is the category
that has contexts I' of the theory as objects, and definitional equality classes of substitutions
o :I' - A as morphisms.

e For our coarse-grained theory S we choose Cattg,, a dependent type theory
for strictly unital oco-categories, presented here for the first time. As a
type theory, it has the interesting property of being identical to Catt,
except for the introduction of a nontrivial notion of definitional equality.
This type theory yields a new definition of strictly unital co-category, as
a set-theoretic model of Cattg,. In this theory, definitional equality of
terms ¢t = t' can be interpreted as the assertion that the higher-categorical
composites represented by ¢ and ¢’ differ only in their unit structure.

e We give a detailed analysis of definitional equality in Catty,, exhibiting a
reduction strategy which produces for every term ¢ a normal form N (¢).
We show that our reduction strategy generates definitional equality, mean-
ing t = t' if and only if N(¢) and N(t') are syntactically identical up to
a-equivalence. Definitional equality is hence decidable, and the type the-
ory can be implementedﬂ

e We show that valid Catts, terms over disc contexts trivialize, yielding
strong evidence that our definition of strictly unital co-category is directly
comparable, and likely stricter, than previous work (see Related Work
section below.)

e The raw syntax of Catt and Catty, is identical, and the type checker of
Cattg, is strictly more permissive than that of Catt, so the identity function
serves as the projection 7 : tm(Catt) — tm(Catts,), which preserves but
does not reflect definitional equality, as required.

e By showing in Catts, that every term ¢ is equivalent to its normaliza-
tion N(t), we construct an encoding function p : tm(Catts,) — tm(Catt),
satisfying the axioms given on page |3| above. This encoding function al-
gorithmically inserts explicit coercions, which we can inspect directly in
Catt, providing a full solution to the Identification Paradox for this toy
model.

1.2 Related work

Homotopy Type Theory While our work is not directly concerned with Homo-
topy Type Theory [24], it is nonetheless heavily inspired by some of the devel-
opments that these ideas have provoked in the type theory community. Indeed,
the definition of co-category presented in [I3], and developed in the present
work, was based on a similar definition of co-groupoid [§]. And this definition
in turn can be seen as a distillation of exactly that part of Martin-Lof’s iden-
tity elimination principle which causes types to behave as higher-dimensional
groupoids.

A second point of contact between our work and Homotopy Type Theory is
with respect to the problem of defining algebraic structures in a proof-relevant
setting. The subtleties of this question are well known to mathematicians [17, [7].
They arise from the observation that, when equality is rendered proof-relevant,
the axioms of an algebraic theory may no longer be regarded as properties but

3The theory has been implemented in OCaml, and the implementation provides additional
features not described here, such as implicit arguments for notational convenience. It is
available online at https://github.com/ericfinster/catt.io.

https://github.com/ericfinster/catt.io

rather themselves constitute additional structure. And in order to arrive at
theories which are well behaved, we must then impose axioms on the azioms (so-
called coherence conditions). The end result is that the proof-relevant versions
of even the most common algebraic structures (e.g. monoids, groups, rings)
become infinite dimensional. As an illustration of the difficulties this poses, it
remains an open question in Homotopy Type Theory how to define even the
correct proof-relevant notion of category. While we do not attack this problem
directly in this paper, this work may be regarded as a kind of study in the
presentation of higher dimensional structures, and we hope that some of the
techniques and ideas may prove useful in the future.

Finally, while importing ideas from homotopy theory has proven fruitful for
our understanding of the proof-relevant equality of type theory, we feel that,
conversely, ideas from logic and computer science may also lead to progress
in thinking about higher dimensional structures, along the lines of the unifica-
tion of physics, topology and logic envisioned in [3]. Indeed, while mathemati-
cians typically treat higher categorical structures starting from combinatorial
descriptions of their underlying data (for example, using simplices, as in [I§]),
the emerging connections with logic suggest a possible way of thinking of these
structures syntactically, an approach closer to that of universal algebra. This
paper is an example of this line of thought, where we apply type theoretic ideas
to the study of a particular structure, that of co-categories themselves.

Higher Category Theory Higher category theory is today a significant part of
the landscape of modern mathematics. Definitions of higher categories have a
long history and, roughly speaking, come in two flavours: ‘homotopical’, where
composition operations are not explicitly specified and compositions are only
required to exist up to a contractible space of choices, and ‘algebraic’, where
all composition operations and higher coherences between these are explicitly
specified and given as part of the data of a higher category. A prominent rep-
resentative of this algebraic style is Leinster’s variant [I7] of Batanin’s original
definition [4] of a weak co-category as an algebra over a certain globular operad.

Our work builds directly on, and extends, the type theory Catt [I3], the
models of which yield an algebraic notion of weak co-category which agrees with
a definition due to Maltsiniotis [19], which itself is a close cousin of Batanin’s
and Leinster’s definitions (see [2] for a direct comparison.)

The type theory Catts, considered in this paper is a quotient of the type
theory Catt by a definitional equality relation, yielding a new notion of strictly
unital weak oo-category. A related definition of strictly unital weak oo-category
in the setting of Leinster’s contractible globular operads has been given by
Batanin, Cisinski and Weber [5]. We expect our notion of strict unitality to be
stricter than this previous definition, for the following reason. Their theory in-
cludes a notion of reduction, corresponding directly to our Theorem [40} and also
a notion of unit compatibility, corresponding directly to our PRUNE generator
for definitional equality. However, one of our generators of definitional equality,
which we call ENDO, has no obvious counterpart in their work, and we give on
page [18] an example of a pair of terms which are definitionally equal in Catts,,
but we believe would not be identified in BCW’s theory.

A prominent difficulty with traditional algebraic definitions of higher cate-
gory arises from their complexity, with nontrivial computations requiring one to
keep track of an abundance of higher-dimensional coherence data. However, a

major open conjecture in the field is that much of this data is in fact redundant,
leading to a search for “semi-strict” replacement theories, in which as much as
possible of this coherence data is removedﬁ Low-dimensional examples of such
semi-strict theories are well known, with the theory of strict 2-categories (which
are equivalent to weak 2-categories) and the theory of Gray-categories [14]
(which are equivalent to weak 3-categories) thoroughly understood. A recent
framework for a combinatorial theory of semi-strict higher categories, suitable
for computer implementation, is described in [12] [20]; however, a disadvantage
of that work is that its formal foundations are far from the standard algebraic
definitions of Batanin, Leinster, Maltsiniotis and others. Our work seeks ul-
timately to bridge the gap between traditional algebraic definitions and these
more modern combinatorial theories that are more useful in practice, and shows
for the first time that type theory can be a powerful tool in this quest.

1.3 Outline

The paper is structured as follows. In Section 2, we set up our type theory
for oo-categories, starting with a presentation along the lines of [I3], and then
introducing a non-trivial definitional equality. Section 3 analyzes the result-
ing reduction relation and describes an algorithm for producing normal forms,
proving these decide definitional equality. Section 4 describes a certain meta-
theoretic property of the resulting system which shows its compatibility with
other notions of strictly unital higher category. Finally, in Section 5 we describe
our process of “rehydration”: starting from a term in our strictly unital theory,
we lift this term to a term in the fully weak theory which normalizes to it.

Proofs All proofs are given in the anonymous supplementary materials for the
results we present.

2 The Type Theories Catt and Catty,

It will be convenient to construct our theory in three layers. We begin with the
raw syntax and basic rules for contexts, types and substitutions, leaving out the
term forming rules. Most of this material is standard, and we make sure to point
out any idiosyncracies of notation as we proceed. After introducing the notion
of pasting context we then present the term forming structure of Catt. Finally,
we introduce some combinatorial material necessary to describe our equality
relation on terms, culminating in the definition of the theory Catts,.

2.1 The Base Theory Catt

Raw Syntax We fix an infinite set V of variables, and use lowercase Roman
(z,y,...) and Greek («, f3,...) letters to refer to its elements. The raw syntax
of Catt consists of four syntactic classes: contexts, types, terms and substitutions
(denoted Ctx, Type, Term and Sub, respectively). These classes are defined by

41t is known that strict higher categories, where this coherence data is completely removed,
are not sufficiently expressive to model arbitrary phenomena in higher category theory. The
challenge is therefore to strictify as far as possible without losing expressivity, but no further;
hence the concept of semi-strictness.

the rules in Figure [3] Observe that both contexts and substitutions appear in
the raw syntax of terms.

We write = for syntactic equality of the various syntactic classes up to
a-equivalence.

Free Variables The free variables of elements of each syntactic class are defined
by induction on the structure as

FV(0) =0 FV(x) =0
FV(T,z: A) = FV(T') U {z} FV(s =4 t) = FV(A) UFV(s) UFV(t)
FV(z) = {x} forz eV FV(()) =0
FV(coh (T : A)[o]) = FV(0o) FV((c,x — t)) = FV(o) UFV(?)

Dimension We define the dimension of a type by induction:

dim* = —1 dim(s 54 t) =dimA+1

We extend this notion to contexts by asserting that the dimension of a context
is one more than the maximum of the dimension of the types occurring in that
context.

dimf = -1 dim(T'yz : A) = max(dimI',dim A + 1)

Identity Substitutions For a context I', we write idp for the identity substitu-

tion on I' defined by
id@ = <> idF,x:A = <idr,l‘ — 33>

Term Substitutions and Compositions Although the terms of Catt are always
in normal form, we will need to perform actual substitutions on terms during
type-checking. We therefore also define a semantic form of substitution which
calculates by induction on the structure of terms. We denote this operations by

I': Ctx A : Type
0 : Ctx I, A: Ctx

A Type s: Term t: Term

*: Type s —at:Type
v:V I': Ctx A : Type o : Sub
v : Term coh (I': A)[o] : Term

o :Sub t: Term
() : Sub (o,t) : Sub

Figure 3: Raw syntax

[-] in order to distinguish if from the [—] appearing in coherence terms, which
is part of the syntactic structure. This operation is defined as follows:

x[o] = *
(s =a t)[o] = s[o] = a[s) tlo]
coh (T': s = ¢)[7][o] = coh (T : s — t)[T 0 7]
zfo] =t ifr—teo

(Joo=10 (r,t) 00 = (T 00, t[o])

With the previous material in place, our basic typing judgements for con-
texts, types and substitutions are given in Figure The rules are standard
for a dependent type theory. Note that our types consist of just a single base
type denoted * and a formation rule analogous to the formation rule for identity
types in Martin Lof Type Theory. The fact that this rule captures faithfully
the notion of globular set is at the heart of the connection between type the-
ory and higher category theory, and is the basis of this syntactic description of
oo-categories.

Support Given a term ¢ : Term and a type A : Type, we can define the support
of t and A to be the union of their free variables. That is

supp(t, A) = FV(t) UFV(A)

In practice, we will only use this definition when we are given a context I" and
we have I' - ¢t : A. When I' and A are clear from the context, we will often
simply write supp(t) and refer to this as the support of ¢.

Pasting Contexts The terms of Catt are derived from isolating a distinguished
subset of contexts which we call pasting contexts. A set of rules for exhibiting
evidence that a given context is a pasting context was the key innovation of [13].
These rules are presented in Figure

Boundary Variables For each pasting context I' -, we will define two distin-
guished subsets of the variables, denoted 9~ (I') and 91 (T"). First, for a variable
x: A €T, define its dimension to be dimA + 1. Furthermore, let us say that a

T+ T'FA: Type

0F T,o: AF

'+ I'F A: Type T'ta:A 'Fb: A
I'F%: Type I'Fa—ab: Type

I+ F'Fo:A AF A: Type I'+t: Alo]
TE(O:0 PE{o,z—t): Ajz: A

Figure 4: Basic typing rules

variable is target-free if it does not occur as the target of any other variables in
T". Similarly, we have the notion of source-free. We now define:

O~ () :={z el |dmz <dimI'—1, or, dmz =dimI' — land « is target-free}
Ot () :={x € T'|dimz <dim[— 1, or, dimz = dimT — 1and z is source-free}

Terms With these notions in place, the typing rules for terms of Catt are shown
in Figure [} Note that when writing the substitution in a coherence term, we
typically omit the angled brackets, writing coh (T : s — 4 t)[a,b,c,...] instead
of coh (T': s =4 t)[{a,b,c,...)].

Examples We record here some basic examples of well-typed terms. In terms
of the structure of an oco-category, these terms represent, respectively: unary
composition, binary composition, ternary composition, identities of objects, the
right unit law, and a “padding” composition we will describe below. Note that
we use parentheses for delineating our contexts here as it improves readability.

compy := coh ((z : %) (y : %) (f 1 @ =4 y) 1 @ =4 y)[z, ¥, f]
compy = coh ((z : %) (y : %) (f 1 @ =4 Y)(z 1 %) (9 1y =4 2) 1 2 =4 2)[2,Y, f, 2, 9]
comps := coh ((z : %) (y : %) (f : @ =« y)(z 1 %)(g 1 y =4 2)
(w:x)(h:z = w) = w)z,y, f,29,0,h]
Tp :=coh ((z: %) : & =, x)[x]
unit-r := coh ((z : %)(y : })(f : & =« y) : compz[z,y, f,y, Lo[yl] —as.y f)lz,y, f]
compz, :=coh ((z : %) (y : %)(f 1@ = Y)(z: %) (g 1y —=w 2)(h 1y —u 2) (@1 g —ys,2 D)

I'bpaz:x

* — v
Tixbpx ik 'k,
FFpz: A 2 I‘pr::c—myu
Dy:Af:x—aybp fiz—ay FHpy: A

Figure 5: Pasting contexts

I (z:A)el
I'Fxz: A

Ik, 'ks—at AtFo:T supp(s) =9 (') supp(t) = 8T (D)
A coh(T': s —=at)o]:s[o] =ap tlo]

I'kp 'ks—at Ato:T supp(s) = supp(t) = FV(T")
At coh (T : s —at)o]: s[o] =ap tlo]

Figure 6: Terms

10

(w:*)(k:z—,w)
: comp3|[z,y,f,z,g,w,k]] %(x—)*w) comp3|[x,y, fazvhaw7k]l)[z7y7fvzaga h7a7w7k]

From the perspective of the theory of oco-categories, these all correspond to
operations from low-dimensional higher category theory, such as the theory
of bicategories. In that more familiar language, given objects x,y, z,w and
l-morphisms f:z — vy, g:y — z, h : z — w, we have the following, where we
write - for forward composition of 1-morphisms:

e comp,y|x, f,y, 2, g] corresponds to the binary composite f - g;

e comps|x,y, f, 2,9, w, h] corresponds to the unbiased ternary composite
f-g-h, which is not directly defined in the traditional notion of bicat-

egory;

e compy|x,comps|z, f,y, 2, 9], z,w, h] corresponds to the repeated binary
composite (f - g) - h;

e 1y[z] corresponds to the 1-morphism id,;
e unit-r[f] corresponds to the invertible 2-morphism f -id, = f.

We could similarly write down operations for other familiar operations in the
theory of weak oo-categories, such as associators, interchangers, and so on, in
principle in all dimensions. It is in this sense that Catt gives a formal language
for weak oo-categories. More examples are given in [13].

This last example comp, (, is part of a family of coherences compyq k for k < d,
which will play a role in Section [b} While we will not give a formal definition,
these compositions can be described intuitively as follows: they consist of the
“unbiased” composite of a d-dimensional disc D with two (k 4 1)-dimensional
discs S and T glued to the k-dimensional source and target of D, respectively.
We might write this composite intuitively, as follows:

SOkDOkT

Identity Terms Generalizing the 0-dimensional case above, we can define an
identity on cells of arbitrary dimension. To do so, we assume that the set V' of
variables contains elements d; and d; for ¢ € N. Now define the k-disc context
and the (k — 1)-sphere type by mutal induction on k as follows:

DY:=0,dy:S! S7hi=x
D= D¥, (d : S*71), (diyr : S) S* = dp =g d

Finally, for £ € N, we define the identity on the k-disc, written 1j as
1f := coh (Dk sdy —7 gk—1 dk)[ide]

One easily checks that this is a valid term in the context D¥.

11

2.2 The type theory Catt,,

As described in the introduction, the type theory Catt of the previous section
contains no non-trivial definitional equalities: while calculation happens during
type-checking, all terms themselves are in normal form. In this section, we
introduce our equality relation. Its definition will require some combinatorial
preparation which we turn to now.

Labeled Dyck Words Observe that each of the rules for pasting contexts in
Figure [5| has at most one hypothesis, and consequently, derivations made with
these rules are necessarily linear. In fact, complete derivations of the fact that
a context is a pasting context can be identified with Dyck words [16]. While
strictly speaking, a pasting context is defined as a pair of a syntactic context and
a derivation of the fact that it is well-formed, this representation contains quite
a bit redundancy and can be somewhat awkward to manipulate in practice. For
the purposes of presentation, therefore, it is convenient to introduce a somewhat
simplified representation of pasting diagrams which we call labeled Dyck words.

Labeled Dyck words may be pictured as a set of up and down moves, with
each up move labeled by a pair of elements of some arbitrary labeling set L.
Concretely, given L, the set LDyck L n of labeled Dyck words of excess n is defined
by the rules given in Figure|8| (in practice, we often omit L from the notation as
it will be clear from context). The parameter n records the difference between
the number of up moves and down moves. Note that the definition ensures that
the excess is always non-negative, so that we always have at least as many up
moves as down moves, leading to the “mountain” diagram shown in Figure [7]

When using labeled Dyck words to represent contexts, we take L = V| the
set of variables. We hope the reader will notice how the rules for labeled Dyck
words mirror exactly the derivation rules for pasting contexts of Figure 5} (The
additional v rule for pasting contexts forces a complete derivation I' I, to be
of excess 0). As an example, consider the context

(k) (y:#)(f o= y)(z:%)(g:y =4 2)

Figure 7: An element of LDyck L 1
G Q@ Gz)y £)gu)vQ))) ho)

12

It is proven to be a pasting context via the derivation

@ %) Fp (@:%)
(@:x)(y:x)(frz=ey) by (f o —uy)
(@ x)(y:x)(frx = y) by (Y %)
(:x)(y:x)(f e y)(@:x)(g:y = 2) Fp (g1 y =4 2)
(@:x)y:*)(fx=ey)@:x)(g:y =% 2) Fp (%)

and its labeled Dyck word representation is

P @M a)yf))zg)): LDyck V0

Notice that the only difference between these two representations is that the
pasting context, together with its derivation, remembers all the typing infor-
mation of the all variables, while the Dyck word representation remembers just
the variable names. Since the types can be recovered from the structure of the
Dyck word itself, this represents no loss of information. In order to fix notation,
if I" b, is a pasting context, we write [I'] : LDyck 0 for the corresponding labeled
Dyck word and, conversely, for a Dyck word d : LDyck 0, we write [d] for the
corresponding pasting context.

zeL n:N d:LDyck Ln y: L f:L
*x: LDyck LO 1+ dy f: LDyck L (Sn)

n: N d : LDyck L (Sn)
U d:LDyckLn

Figure 8: Labeled Dyck words

A nice advantage of this representation is that we can write programs on
pasting contexts using pattern matching style (for which we will use an Agda-
style syntax). As an example, consider the function

flatten : {n : N}(d : LDyckn) — List L

n:N d : LDyckn y: L f:L
Por d: Peak (I (1 dy f))

n:N d : LDyckn y: L f:L p : Peakd
frok dy fp: Peak (Tt dy f)

n: N d : LDyck (Sn) p : Peakd
Uk dp : Peak (| d)

Figure 9: Peaks

13

extracting the list of labels. This function can be defined as

flatten (xz) = [z]
flatten (ft dy f) = [flattend, y, f]
flatten ({} d) = flattend

We will make use of this function below.

Peaks A special role will be played in what follows by the positions in a label
Dyck word where we change direction from moving up to moving down. We call
these the peaks. It is not hard to give an induction characterization of peaks,
and we do so in Figure[J]

We can use the definition of peaks to manipulate our Dyck word in various
ways. Two operations which will be useful in what follows are excising a peak,
and replacing the labels which occur at a given peak. The first operation has

type
excise : {n : N}(d : LDyckn)(p : Peakd) — LDyckn

and can be defined as
excise - (Ipr dy f) =d

excise _ (pr dy fp) =1 (excisep) y f
excise _ ({pr dp) =| (excisep)

The second operation is similar taking as arguments the new labels for the
specified peak:

replace : {n : N}(d : LDyckn)(p : Peakd)(g : L)(c : L) — LDyckn
It is defined as
replace_ (px dy fl)ga =4 (f} dga)

replace (ftpr dy fp) ga =1 (replacepga)y f
replace - (Upx dp) g = (replacep ga)

A pictorial representation of the excision operation is given in Figure

Locally Mazimal Variables IfI' k-, is a pasting context, we say that a variable
which occurs as the label of a peak in the Dyck word representation of I' is
locally maximal. Intuitively speaking, such variables represent those cells which
are of highest dimension “in their neighborhood.” We write LM(T") for the set of
locally maximal variables and for o € LM(T') we write p,, for the corresponding
peak. Observe that if & € LM(T), we may speak of the dimension dim«a since

g h/pB ~ h/pB

y/f z/k y/f z/k
x

Figure 10: Excising a peak

14

« is assigned a type by I'. Moreover, since all locally maximal variables are
positive dimensional, any locally maximal variable &« € LM(T") must be assigned
an arrow type a : s —4 t for some type A. In such a situation, we refer to s as
the source of a and to t as its target, denoted src(«) and tgt(«) respectively.

Given a pasting context I' -, and a locally maximal variable a : LM(T'), we
write I'//a for the pasting context obtained by excising the peak where a occurs
in the Dyck word representation of T'.

'/ := [excise |T'] pa |

There is a natural substitution I' /o F 7, : T which may be described as follows:
regard |T'] as a Dyck word labeled by terms as opposed to merely variables.
Then we can extract a substitution by replacing the label at the peak p, with
an identity term as follows:

7o := [flatten (replace |T'| po (src(@)) Ldima)|

Finally, if A is another context, and we are given a substitution A - ¢ : ', then
we have a substitution A F o //a : T'//a obtained by merely dropping the terms
assigned to the variables o and tgt(a),which are necessarily adjacent, from o

o:=[...,src(a), tgt(a),a,...] = offa:=]...,src(a),...]

In this case, the elements ¢, o are removed from the list to obtain the quotient
substitution.

Unfolding Types Given a type T, we obtain a list of terms {T'} as follows:
{x}:=1 {u—=av}:=[{A},u,0

This is useful to define our endo-coherence removal relation below. We now
prove a small lemma regarding type unfolding.

Lemma 1. Substitution is compatible with type unfolding:
{Tlol} ={T} oo

Proof. If T = % then the lemma is vacuously true, since {x} is the empty list.
If T =u —4 v, then we reason by induction on subtypes as follows:

{Tlol} = {(u = av)[ol} = [{Alo]}, ulo], vlo]] = [{A}, u,v] 00 ={u ma v} oo

This completes the proof. O

'k, A : Type o :Sub 7 : Sub a: LM(T) alo] = Laima—1[7]
coh (I': A)[o] = coh (T'//a : Alma])[o /)]

n: N o : Sub
n+1 mn D
coh (D" : S™)[o] = dnt1]o]

1SC

I': Ctx A : Type t: Term u : Term t=wu o :Sub
coh (T': t =4 w)[o] = Laima+1[{A[c]}, t[o]]

ENDO

Figure 11: Generating equality judgements on terms

15

PRUNE

Equality in Catts, With these definitions in place, we can now define our
equality relation on terms in Figure There are three generating equalities,
which we summarize as follows.

e Pruning scans the locally maximal arguments of a substitution looking
for identity terms. When such an argument appears, it may be removed
while at the same time removing the corresponding locally maximal cell
from the pasting diagram defining the coherence.

e Disc Removal asserts that unary composites may be removed from the
head of a term.

e Endomorphism Coherence Remouval asserts that coherences associated to
a repeated term may be replaced with identities on that term.

From here, we extend this equality relation to contexts, types and substitu-
tions by structural induction on the formations rules, and close these relations
under reflexivity, symmetry and transitivity. As an example, the equality re-
lation on types are shown in Figure Contexts, terms and substitutions are
similar and we omit the details.

A : Type A : Type A" Type A=A
A=A A=A

A : Type A" : Type A" : Type A=A A =4A"
A — A//

A : Type A" Type A=A s: Term t: Term
S—at=5—at

A : Type s: Term s : Term s=s t: Term

S*)AtZS,%At

A : Type s : Term t: Term t': Term t=t
s—at=s—at

Figure 12: Equality relation on types

Finally, to integrate our new equality with the type system, we require all
typing judgements to be equipped with conversion rules. These rules are listed

in Figure [I3]

Ezxample Reductions We record here examples of our three generating reduc-
tions, in order to give the reader a flavour of how they operate.

e Pruning The pruning relation is the workhorse of the theory, leading in
practice to the richest algebraic phenomena. This relation says the following: if
a coherence term has a substitution which sends a locally-maximal variable « to
an identity, then a can be removed completely from the corresponding pasting
context. Let us examine the behavior of this relation on the following term

compa[z, y, f,y, Lo[yl] := coh ((z : x)(y :)(f : & =+ y)

16

(z:%)(g:y = 2) 1 0 = 2)[2,y, f,y, Lo[y]]

Observe that g occurs in a locally maximal position in the head context:

Pi=(z:x)(y:%x)(f:z2=9)(z:%)(9:y = 2)

Moreover, the argument supplied in this position is 1g[y]. Hence the pruning
relation applies. We have

L/fg = (x:%)(y:x)(f:2—=sy)
Tg = [.’E, Y, fa Y, ILOI[yM
[y, [y, Lol /9 := [z, 9, f]

so that this term is definitionally equal to the following:

coh((z:x)(y: %) (f 2 =4 y) iz =y y)x,y, f]

e Disc Removal This relation can be summarized as follows: when the head
of a coherence term has a certain form, the entire term is definitionally equal to
the last argument of its substitution.

The result of the previous example may have been somewhat surprising:
it would have been natural to expect that composing the arrow f with an
identity reduced to f itself, whereas we have instead been left with a non-trivial
coherence term. Upon closer inspection, we see that the resulting term can be
considered the “unary composite” of f. The existence of these composites arise
from the fact that our definition of co-category is unbiased: it allows (vertical)
n-ary composites of cells for all n, including n = 1. Our second definitional
equality exactly removes these superfluous unary composites. In the case at
hand, application of the Disc rule now yields:

coh((x: %) (y:%)(f:x—=ey) i x = ylw,y, fl=f

I : Cix I’ : Ctx r=r’ '+
I

T': Cix I': Ctx r=r A : Type A" Type A=A T'HA
A

I': Ctx I': Ctx r=r'
A : Type A’ Type A=A t: Term t': Term t=t THt: A
It A

I': Cix I : Citx r=r’
A 1 Ctx A Ctx A=A o : Sub o’ : Sub c=o I'to: A
I'kFo A

Figure 13: Conversion rules

17

Note that this replaces the coherence term with the final argument, f, of its
substitution [z,y, f]. As f is now a variable, the term is now in normal form
(see Section 3).

e Endomorphism Coherence Removal Another curious redundancy of the fully
weak definition of oco-category is the existence of “fake identities”: cells which
are “morally” the identity on some composite cell, but do not have an identity
coherence at their head. As an example, consider the term:

coh((z:x)(y:%x)(f:x = y)(z:%)(g:y =+ 2)
: Comp2[$ay7f’z7g]l o,z COmpzlx,y,f,z,g]l)[z,y,f,Z,g}

This term is “trying” to be the identity on compy[z,y, f,z,¢] (it is, in fact,
provably equivalent to it in Catt), but is not actually a syntactic identity. Such
terms are recognizable by the fact that they are coherences for which the type
expression has a source and target which are equal. Henceforth we refer to them
as endomorphism coherences, and our third rule ENDO sets them equal to the
identities they duplicate, in the case at hand

11|[£L’, Zacomp2[[xa Y, fazag”

We point out that this third type of reduction has no apparent analog in the
strictly unital theory of [5], which is otherwise closely related.

Properties of Definitional Equality We record here some basic facts about the
definitional equality relation of Cattg, introduced above.

Lemma 2. Composition of substitutions is compatible with taking quotients:

(noo)ffa=(ujja)oa

Lemma 3. Let 0,0’ : Sub such that 0 = o’. For A : Type and t : Term, we
have:

Proof. Since substitution on types is given by structural induction (and the base
case A = x is trivial), the first equation follows from the second.

Now, if ¢ is a variable, then the result is clear by the definition of equality on
substitutions, which is just equality of the comprising terms. On the other hand,
t = coh (I : A)[7], then we are reduced to showing that 7 0o = 700’ and this
is clear by expanding the definition and applying the induction hypothesis. [

Lemma 4. Let 7 : Sub, A, A’ : Type and t,t' : Term. If A= A’ and t = 1/,
then:

Alr] = A'[7] tir] =¢'[7]

Proof. As in the previous Lemma, the first statement follows from the second
by just inducting on the structure of the equality relation on types.

For the second, we argue by induction on the structure of the proof that
t = t'. It suffices to check the generating cases, as the rest will follow by
structural induction and the reflexivity, symmetry and transitivity of =.

18

Hence, suppose we have
t =coh (T': A)[o] = coh (T)/ : A[ma])[o)z] =t

Then we are reduced to showing that (o o7)//a = (¢//«) o7 which is Lemma[2]
Next, if we have

t = coh (D" : S™)[o] = dpyi1[o] =1
we argue as follows:

coh (D" : §™)[o][7] = coh (D" *! : §™)[o o 7]
= dnyafooT]
= dn1[o][7]

Finally, in the case that

t=coh(T:t—at)o] = Lamari[{Alo]}, t[o]] =¥

we obtain
coh(T':t =4 t)[o][r] =coh (T : ¢ =4 t)[o o 7]
=]ldimA+1|[{A|[O' o T]I}, tI[O' o T]”I
= Laimat1[{A[o]}, t[o]]]7]
where the last step follows from Lemma [T} O

Proposition 5. If At coh (I': U)[o] : A in Catty,, then A = Ulo].

Proof. We induction on the structure of the derivation of A F coh (T : U)[o] :
A. Since the term in question is not a variable, there are only two cases. If
the derivation is simply the introduction rule for coherences, then the result is
immediate, as U[o] is the assigned type.

Otherwise, the proof must be by the use of the conversion rule for terms.
In this case, we obtain some A’, A’, IV, U’ and ¢’ together with the obvious
equalities between them. By the induction hypothesis, we have that A’ = U’[0”].
And now, applying Lemmas [] and [3] we have

A=A =U'[¢"] =U'[o] = Ulo]
which completes the proof. O

Inferred Types We note that Proposition [5| guarantees that if A = coh (T :
u —7 v)[o] : Ais valid, then A = (u[o] =[5 v[o]). So the type of a valid
coherence term can be extracted from the syntax of the term itself up to defini-
tional equality. We use this to define the inferred type of a coherence term, as
follows:

ty(coh (T': U)][o]) := Ulo]

19

Furthermore, we define the inferred source and inferred target as follows:

src(coh (T : uw —7 v)[o]) := u[o]
tgt(coh (T : u =7 v)[o]) := v]o]

We note that a term of the form coh (T :)[...] is never valid, so src,tgt are
defined for every valid coherence term. Note that this notation is consistent
with that introduced above for variables in a pasting context.

We also write src¥, tgt® for the iterated k-fold inferred source or target, and
srcg, tgt;, for the k-dimensional inferred source or target; so for a coherence term
t of dimension n, we have src,(t) := src™ (1), tgt,,(t) := tgt" % (¢).

2.3 Models of Catt and Catt,,

The type theories Catt and Cattg, generate syntactic categories via a standard
construction: objects are contexts, and morphisms are substitutions, up to def-
initional equality. Composition is given is via composition of substitutions. We
abuse notation slightly and write Catt and Catts, for the corresponding cat-
egories. Furthermore, we write CattP® and Catt?? for the full subcategories
consisting of only the pasting contexts.

As we have seen, this category contains a collection of objects D* corre-
sponding to the k-dimensional disc context. Taken together, these contexts,
and their source and target substitutions constitute a globular object.

g g g g
— — —
. Dk Dk . Do
—_ —_ S 4 —_
T T T T

Definition 6. A category C containing a globular object is said to admit glob-
ular limits if every diagram of the form

Do Di2 Din
Di1 o Din,,l oln

admits a limit. Dually, a category C containing a co-globular object is said to
admit globular sums if the category C°P admits globular limits.

Theorem 7. The categories Catt and Catts, admit globular limits.

The proof that Catt admits globular limits is to some extent folklore, and has
recently been written out [6]. The proof for Catts, would be precisely the same,
as it only depends on the variable structure of pasting contexts, which is the
same in both theories.

With this in hand, we are ready to give our notion of model.

Definition 8. An co-category is a presheaf on the category CattP which sends
globular limits in Catt®® to globular sums in Set. A strictly unital co-category
is a presheaf on Catt_ﬁ,’f,j which sends globular limits to globular sums.

In this notion of model of strictly unital co-category, algebraic operations are
represented by morphisms of Catt‘s’f, and strict unitality of those algebraic oper-
ations is then ensured in any model, since any definitionally-equal substitutions

are identified in the category.

20

3 Reduction

Overview In this section we introduce a reduction relation ~» on types, terms
and substitutions, and show that its reflexive, transitive and symmetric closure
agrees with definitional equality. We then define a subrelation called standard
reduction, written ~», and show it is a partial function which terminates after
finitely many steps, giving us a notion of normal form. Finally, we show that
two terms have the same normal form just when they are definitionally equal,
meaning that standard reduction gives an algorithm for deciding definitional
equality.

Convention on Contexts For this section, and the remainder of the paper, we
restrict our attention to contexts I which are pasting contexts; that is, for which
I' -, is valid. When we speak of a valid type U, we mean a type for which there
exists a pasting context I' such that I' - U is valid; and when we speak of a
valid term ¢, we mean a term for which there is a pasting context I" and type U
such that I' - ¢ : U is valid. The reason for this restriction is that it simplifies
our analysis—in particular, contexts do not reduce—and it is sufficient for our
application to strictly unital co-categories. For valid coherence terms, we freely
use Proposition [b| to infer information about its structure.

Reflexive, Transitive, Symmetric Closures Given a relation ~», we write ~»,
for its reflexive closure, ~+ for its transitive closure, and ~+ for its symmetric
closure. When we use multiple such subscripts, we mean this simultaneously; for
instance, we write ~» s for its simultaneous reflexive, transitive and symmetric
closure.

3.1 General reduction

We define a reduction relation on types, terms and substitutions, and show that
the equivalence relation generated by these relations agrees with definitional
equality.

We first define a simple syntactic property on terms, that of being an identity.

Definition 9. A term is an identity if it is of the form 1,[o] for some n € N;
that is, when its head is an identity coherence.

We emphasise that as a syntactic property, this is not compatible with defini-
tional equality. For example, if ¢ = 1,,[o], then ¢ is an identity; but if we merely
have ¢ = 1,,[o], then ¢ is not necessarily an identity.

We now give the reduction relation. The following definitions are given by
simultaneous induction. A key point to observe is that determining whether a
given type, term or substitution is a redex is a purely syntactic condition, which
can be mechanically checked, and does not refer to definitional equality.

Definition 10 (Reduction of types). The basic type * does not reduce. An
arrow type U = (u —7 v) reduces as follows:

(T1) if u ~ v, then:
(u =7 v) M (0 =7)

(T2) if v ~ v/, then:
(u =7 v) B (v =7)

21

(T3) if T~ T, then:
(u =7 v) X2 (u =7 v)

Definition 11 (Reduction of substitutions). A substitution o = [sq,..., sy]
reduces as follows, given a reduction s; ~ s, of some argument:

[$1,. vy 8iyenvs8n] & [51,...,80, ..., 8]

Definition 12 (Reduction of terms). Variable terms do not reduce. A coherence
term ¢ = coh (I" : T')[o] reduces as follows:

(A) if 0 ~ o', then:
coh (T': T)[o] & coh (I': T)[o”]

(B) if t is not an identity, and x € var(T') is a locally-maximal variable for
which z[o] is an identity, then we define:

coh (T : T)[o] B coh (T)/ : T[r.])[o//x]

(C) if T~ T, then:

coh (' : T')[o] % coh (I : T")[o]

(D) the disc removal relation:

coh (D" 1. S, 1] Bt

(E) if ¢ is not an identity, the endomorphism coherence removal relation (recall
the notation {T'} from Section of the unfolding of a type T):

coh (T : u =7 u)[o] B Lgmri1 [{T[e]}, u[o]]

If we can reduce u ~ u via some reduction stage (X) above, we say that u is
a general X-reder, or just an X-redex, and we write u 5 u/. A given term can
be a general X-redex for multiple stages (X). For example, if u ~ u’, then the
term coh (I' : w —7 u)[o] is a C-redex in at least 2 ways, and also an E-redex,
as follows:

coh (I' : u =7 w)[o] B coh (T': v’ —p u)[o]
coh (I : u —p w)[o] B coh (T': u =1 u/)[0]
coh (T : u =7 w)[o] B Laimpt1[{T[o]}, ulo]]

A term could also have no reductions at all. So reduction is partially defined,
and multivalued in general.

We now show that this equivalence relation generated by this reduction
relation agrees with definitional equality constructed in Section [2} This is not
trivial, because there are some key differences between how these relations are

22

defined. Definitional equality allows pruning with respect to any argument
alo] = 1, [7] which is an identity up to definitional equality, but the reduction
relation & only allows pruning with respect to an argument afo] = 1,,[r] which
is a syntactic identity. Definitional equality also allows endo-coherence removal
for any coh (T : w —¢ v)[o] with u = v, while E-reduction requires u = v.
Furthermore, the reduction relation explicitly proscribes identities as B- or E-
redexes, but definitional equality has no such proscription.

Proposition 13. On wvalid terms, types and substitutions, the equality relation
= agrees with ~ps.

Proof. Clearly p ~» q implies p = g, since reduction is by definition a subrelation
of equality, so we focus on the converse direction. Also, since the statement for
types and substitutions immediately reduces to the statement for terms, we
focus on terms here.

We say that a term p is conservative if for all terms g, we have that p = ¢
implies p ~s q. To prove the lemma, we must therefore show that all terms are
conservative. Our proof operates by induction on subterms of p, and by case
analysis on the equality p = ¢q. Almost all such cases are immediate; here we
explicitly handle the only nontrivial cases.

For the first nontrivial case, suppose p = ¢ is the following equality, obtained
by pruning an identity term:

]ln[[.- aUQaU15U17 ﬂn—l[- .- 7“’37”27”1]‘]‘
— (COh Dn_l : I].nfl _>(dn—1—>sn—2dn—1) lnfl)[. .., V2, ’Ul]
By induction on subterms of p we conclude that the terms w;, v{, v; are conser-
vative. By validity we must have u; = v; = v] and wu; v;, and hence we conclude
Uy s V] s U] and u; ~rs v;. We do not have p peS q, since p is an identity
term, which are explicitly proscribed as B-redexes. However, ¢ admits an E-re-
duction, and then a further series of A-reductions obtained by conservativity of
the subterms of p, as follows:
g B 1,[.. vs, 02, 01,01, Lo [, v, 02, 01]]
'&rts]]-nl[.., U3, V2,0, UIl,]]-n—ll[~ .., U3, U2, ul”
=P
Hence ¢ ~ns p as required.

For the second nontrivial case, suppose p = ¢ is the following equality, by
the endo-coherence removal rule:

p=coh (D" :d, = gn-1 dp)[...,ug,u1] = L[dn]. .. 7’11,2,’11/1]]7{5"_1[. g, ur]}

We do not have p & ¢, since p is an identity term, which is proscribed as an
E-redex. However, we note that

g=1, |[dn|[. g, ur], ST ,ug,ul]l}] =1,[..,u2, 1] =p

So in fact p = ¢, and hence p ~s ¢ as required.
For the third nontrivial case, we suppose p = ¢ is the following equality, with
a = 1,[r] an argument in locally-maximal position:

p=coh(T:U)[...,s,t,a,...] =coh (T//x: Ulr])].-.,8,...] =¢

23

By inductive hypothesis « is conservative, and since a = 1,,[7] that yields the
following:

p By coh T:[(...,st,1,[7],...)] B q

Hence p ~s q as required.
For the fourth nontrivial case, we suppose p = q is the following equality,
where u = u':

p=coh(I':u—rp u)[o] = Lamr+1 [{T[o]}, ulo]] = ¢

We do not necessarily have u = u’/, so cannot necessarily conclude p & ¢. But
by induction on subterms we know u’ is conservative, and thus from u = '
we conclude u' ~ys u. If coh (I : w —7 w) is the head of an identity term, we
proceed as for the second case above. Otherwise we argue as follows:

p=coh (T :u—r 1u)[o] G coh (T : u =7 u)o] B Lgimr1 [{T]o]}, ulo]]
This completes the proof. O

Lemma 14. Reduction of types, terms and substitutions preserves validity of
Jjudgements:

e if '+ A is valid and A ~ A’, then T' = A’ is valid;

o ifT'Ht:Aiswvalid andt ~t', then T -t : A is valid;

o ifT'Ht:Aiswvalid and A~ A, then T'+t: A’ is valid;
e ifI'Fo: A iswvalid and 0 ~ o', then T+ o’ : A is valid.

Proof. Immediate since reduction is a subrelation of definitional equality, and
validity can be transported across definitional equality (see Figure [L3]) O

3.2 Standard reduction

We now define standard reduction, denoted with a bold arrow ~+, a subrelation of
general reduction ~. Standard reduction has the property of being a reduction
strategy, in the following sense.

Definition 15. A reduction strategy is a relation — on terms with the property
that, if a — b and a — b, then b=V'.

Put another way, a relation is a reduction strategy just when it is a partial
function.

Standard reduction works in a similar way to reduction, but the reductions
now have a preference order, so that higher-priority redexes, listed earlier in the
following list, block lower-priority redexes listed later. Standard reduction is
hence a reduction strategy by construction.

Definition 16 (Standard reduction of types). The standard reduction of a type
U = (u = v) is given by the first matching reduction in the following list, if
any:

24

(TO) if T ~» T then:
(u =4 v) Y (u =5 v)

(=}

(T1) if uw~ @, then:
(u =7 v) ¥ (4 —1 v)

—

(T2) if v~ v, then:
(u =1 v) ¥ (v =T 0)

Definition 17 (Standard reduction of substitutions). Given a substitution o =
(S1y...,8n), then if s; ~ §; is the leftmost argument with a standard reduction,
we have the following:

S -
[S1yevySiyeeesSn) P [S1,.0vy8iyen,Sn
Definition 18 (Standard reduction of terms). A coherence term ¢ = coh (I" :

U)lo] has a standard reduction given by the first relation in the following list
which is defined, if any:

(A) if 0 ~ &, then:
coh (T': U)[o] % coh (T : U)[5]

(B) if ¢ is not an identity, and = € var(I') is the leftmost locally-maximal
variable for which z[o] is an identity, then we define:

coh (T : U)]o] A coh (T'/z - Ulrz]) o/ x]

(C) if T~ T, then:

coh (T : T)[0] ~ coh (T : T)]o]

(D) the disc removal relation:

coh (D1 §™)[... t] St

(E) if t is not an identity, the endo-coherence removal relation:
coh (I : w — 4 u)[0] % Lgimat1[{A[o]}, u[o]]

If we can reduce s ~» ¢ via some reduction label (X) above, we say that u is a
standard X-redex. It is an immediate consequence of the definition of standard
reduction that it is a reduction strategy; that is, if a term, type or substitution
has a standard reduction, it has exactly one standard reduction. This is quite
unlike general reduction as defined as above. For example, suppose u ~ ,
and consider the term ¢ = coh (' : uw —4 u)[o]. It is possible that ¢ is a
standard A-redex; failing that, it could be a standard B-redex; failing that, it
will certainly be a standard C-redex. Although ¢ is an E-redex (that is, there
exists t' with ¢ & #'), it is not a standard E-redex, since standard C-reductions
are higher-priority than standard E-reductions.

Since standard reduction is unique when it exists, it is useful to introduce
the following notation.

25

Definition 19. If s has a standard reduction, we write it as §, and hence s ~» §.
We call § the standard reduct of s.

We now record some results that show a term is reducible just when it is
standard reducible.

Lemma 20 (Standard reductions are reductions). If s ~ §, then s ~ §.

Proof. By definition, standard reduction is a subrelation of general reduction.
O

Proposition 21 (Reducible terms are standard reducible). If s ~ t, then there
erists a unique S with s ~» 5.

Proof. Since standard reduction is a reduction strategy, uniqueness is clear.
What we must establish is existence. The intuition is straightforward: in
essence, we define standard reduction by giving a priority order to the redexes
for general reduction, and allowing only the highest-priority redex. The result
is then immediate, because if s has at least one reduction, then there must be
a highest-priority such reduction.

We prove the result formally as follows, by simultaneous induction on the
structure of terms, types, and substitutions. For the base cases, given by the
type % or a variable term, there is no reduction, so the claim is vacuously true.

For a compound type U = (a —7 b) is a type, then the statement follows
immediately by induction on a, b or T

For a substitution o = (s1,...,s,), suppose we have some reduction o ~ 7
arising from some choice of index i and some reduction s; ~ t. Since o
has a reducible argument, it must have a leftmost reducible argument, which
we can write as s;, with j < 4. By induction on subterms s; ~ 5;, and
[. <y S5—1,85, 5541, -] ~ [cey Si—1, §j7 Sj41y-- } is the required standard reduc-
tion.

For a coherence term s = coh (T : T')[o] with a reduction s ~ ¢, we argue by
case analysis as follows.

e Ifuis an A-redex, there must exist some o’ such that o ~ ¢’. By induction
o ~ &, and hence coh (T : T)[o] 4 coh (T : T)[5].

e If u is not an A-redex, but u is a B-redex, then there must be some leftmost
locally-maximal argument of I' with respect to which it is a standard
B-redex.

e If u is not an A- or B-redex, but it is a C-redex, then there must exist
some 7" such that 7'~ T". Hence by induction 7'~ T', and so u % coh (T:
T)[o].

e If u is not an A-, B- or C-redex, but it is a D-redex, then the D-reduction
will be standard.

e If w is not an A-, B-, C- or D-redex, but it is an E-redex, then the E-re-
duction will be standard.

e If w is not an A-, B-, C-, D- or E-redex, then u cannot be reduced, con-
tradicting the hypothesis of the theorem.

This completes the argument. O

26

.
A B C EJJJ}F :;15;
o Ann} @ .

rt rt rt W

r

Figure 14: Standard reduction pathways to normal form

3.3 Termination of standard reduction
Standard reduction gives us a notion of normal form, as follows.

Definition 22. We define a term, type or substitution to be in normal form
when it has no reduction, either by standard or general reduction (by Lemmas
and [21] these conditions are equivalent.)

In this section we show that standard reduction terminates after finite time on
every term, type and substitution. This means that for every term ¢ we can
obtain a term N (¢) in normal form, by repeatedly applying standard reduction
until a normal form is reached.

To work towards our termination result, we consider what happens when we
start with a given term and repeatedly perform standard reduction. What we
find is a specific pattern of standard reductions, illustrated in Figure We
first perform some family of standard A-reductions. If these terminate, they will
be followed by some family of standard B-reductions. If these terminate, they
will be followed by some family of standard C-reductions. If these terminate,
and they are not yet sufficient to yield a normal form, they will be followed
either by a single standard D-reduction, giving a term in normal form; or by
a single standard E-reduction and a family of standard A-reductions, which if
they terminate will yield a normal form. We prove this claim as follows.

Proposition 23. The reflexive transitive closure of the standard reduction re-
lation is obtained as the following composite:

A B C D E A
M = A A | A U AR ARy

Proof. We establish the claim by showing that the following composite reduction
pairs and triples are impossible (that is, they are empty as relations).

D 3 q 5 r. For p to be a standard B-redex, it is required that it is not
an A-redex, and so the arguments of p must be in normal form. But the
arguments of ¢ are a subset of the arguments of p, contradicting the claim
that ¢ is a standard A-redex.

ep 5 q 4 r. For p to be a standard C-redex, it is required that it is not
an A-redex, and so the arguments of p must be in normal form. But
C-reductions do not change the arguments of a term, so the arguments
of g are the same as the arguments p, contradicting the claim that ¢ is a
standard A-redex.

ep 5 q 3 7. For p to be a standard C-redex, it is required that it is not
a B-redex, a condition that depends on the context and arguments of the
term. But C-reductions do not change the context or arguments, so it is
impossible that ¢ is a B-redex.

27

D 3 q ~ r. For a term to be a standard D-redex, it is required that
it is not an A-redex, and so the arguments of p must not be reducible.
By the action of D-reduction, the term ¢ is one of the arguments of p,
contradicting the claim that ¢ is reducible.

ep 5 q 3 r. The standard E-reduct q is an identity term, but identity
terms are never B-redexes, by definition.

D 5 q &3 r. The standard E-reduct q is an identity term, but identity
terms are never C-redexes, since the cell part is in normal form.

oD 5 q &3 r. The standard E-reduct q is an identity term, but identity
terms are never D-redexes, as the head has the wrong syntactic form.

D 3 q A3 r. The standard E-reduct q is an identity term, but identity
terms are never E-redexes, by definition.

D 5 q 'é’),t r % s. The standard E-reduct q is an identity term. A-reduc-
tions do not change the head, and so r will also be an identity term. But
identity terms are never B-redexes, giving a contradiction.

ep 5 q ,f‘:,rt r % s. The standard E-reduct q is an identity term. A-reduc-
tions do not change the head, and so r will also be an identity term. But
identity terms are never C-redexes, giving a contradiction.

e 5 q fé‘)rt r 4 s. The standard E-reduct q is an identity term. A-reduc-
tions do not change the head, and so r will also be an identity term. But
identity terms are never D-redexes, giving a contradiction.

D 5 q 'é’)rt r % s. The standard E-reduct q is an identity term. A-reduc-
tions do not change the head, and so r will also be an identity term. But
identity terms are never E-redexes, by definition.

The result is then established as follows, by imagining a standard reduction
sequence for some given coherence term. Here we refer to composite relations

) BA - . "o
by concatenation; so for example, ¢t A% t' just when there exists some t" with
t B¢ St

e Standard A-reductions have the highest priority, so these will be performed
first.

e If the above step terminates, standard B-reductior&s have the second-
highest priority, so we now perform these. Since 34 s empty, this will
not trigger any additional standard A-reductions.

e If the above step terminates, standard C-reductions have the third-highest
. . CA CB
priority, so we now perform these. Since ~»+ and ~++ are both empty,
these standard C-reductions will not trigger further standard A- or B-
reductions.

e If the above step terminates, standard D-reductions have the fourth-
highest priority. If we can perform a D-reduction, the result will be in
normal form, since ~~ is empty.

28

e If we cannot perform a D-reduction, we consider applying a standard
E-reduction, as the standard reduction with fifth-highest priority. If the
standard E-reduction cannot be applied, then the term is in normal form,
as the standard E-reduction is the last reduction in the list.

e If the standard E-reduction was successfully applied, it cannot be followed
by a standard B-, C-, D-, or E- reduction, since ~#%, ~3, 448 and 44
are all shown above to be empty. The only remaining possibility is for
the standard E-reduction to be followed by some sequence of standard
A-reductions. These A-reductions cannot themselves be followedAby a
standard B-, C-; D- or E-reduction, since we show above that E)Mrgg,
EA C EA EA E
PR, AP~ and Abar~d are all empty.

This completes the proof. O

We next show that standard reduction is terminating.

Proposition 24. Standard reduction is terminating on valid types, terms and
substitutions.

Proof. Standard reduction on types and substitutions is given in terms of stan-
dard reduction of a finite family of terms, so we need only check that standard
reduction of terms has no infinite sequences. The variable case is trivial, so we
consider reduction of some coherence term ¢ = coh (I : T)[o].

We proceed by simultaneous induction, on the dimension of ¢, and on sub-
terms of ¢. Since a subterm of a valid term can never have a higher dimension,
this is well-defined. The dimension is not defined for variables, but since vari-
ables are in normal form, this does not affect the argument.

Thanks to Proposition 23] we know that the standard reduction of a given
term can be separated into finitely many distinct phases of standard A-, B-,
C-, D- and E-reduction, with each phase involving standard reductions of a
single fixed type. So we need only show that each standard reduction phase will
terminate.

e Standard A-reduction. By induction on subterms, since a substitution
is of finite length, a given term will have only finitely many standard
A-reductions.

e Standard B-reduction. Since the context has a finite number of variables,
a given term will have only finitely many standard B-reductions.

e Standard C-reduction. Since the cell part of a valid term is formed from
terms of strictly lower dimension, it follows by induction on dimension
that a term will have only finitely many standard C-reductions.

Standard D- and E-reductions are single-step operations, so no termination
argument is necessary for those. O

Having now established that standard reduction has no infinite sequences,
it is clear every term has a unique normal form with respect to it.

Definition 25. For any term ¢, its normal form N (t) is the unique term with
t ~» N(t) such that there is no term u with N(t) ~ w.

Definition 26. For any term ¢, its distance is the length, possibly zero, of the
unique standard reduction sequence t ~» t1 ~» - - - ~» t,, ~» t’ to its normal form.

29

3.4 Technical results on reduction

Here we collect further results on reduction, mostly of a technical nature, which
will be used in the next subsection for our main proof.

Lemma 27. Term substitution is compatible with substitution reduction:

o~o = ulo] v ulo]
Proof. We induct on the structure of u. If u is a variable, then either u[o] =
o'[r] or uo] ~ u[o’]; in either case, we have u[o] ~, u[o’] as required.
Otherwise, we have u = coh (T" : U)[p], and we argue as follows:

u[o] = coh (T : U)[p o o]
= coh (T': U)[p1lo], p2lol, - - -, pulol]
 coh (I': U)[p1[0’], p2lo], pulol]
(C:U)lp1lo"], p2[o’], - ., pulol]

e coh (T': U)[p1[0”], pa[o’], - -, pulo]]

Hence u[o] ~ ufo’] as required. O

Proof. If u is a variable, no reduction is possible, in contradiction with hy-
pothesis. We therefore assume u = coh (I" : T)[u] is a coherence term, writing
= [u1,...,], and proceed by case analysis on the structure of the reduction
u ~ o', and by induction on subterms of w.

If u & o' via some m; ~» m}, then we argue as follows:

ufo] = coh (I : U)[p 0 o]
= coh (I': U)ol - .., wilol, - k[0l
'&COh(F U)[#ﬂ[]Iv"”ﬂgl[a]lv"”/‘kl[o—]”
= ulo]

Alternatively, we suppose u B u is the B-reduction coh (T : U)[u] & coh (T')/z :
Uln]) i/ =], eliminating some locally-maximal variable x; of I" for which z;[u] =
u; is an identity. Then p;[c] is also an identity, and hence using Lemma 2| we
have:

ufo] = coh (T': U)[p o 0]
=coh(I': U)[po o]
& coh (T ffa: Ulr.])[(u o 0) /]

(T = Ulme) [/) 0 0]

= coh

u'[o]
If u S o/ via some T % T", then we argue as follows:

u[o] = coh (T': T)[p o 0] & coh (T : T') [0 0] = u/[0]

30

If u B v as coh (D™ : S*~H)[...,u'] B v/, then we argue as follows:

u[o] = coh (D™ : " N)[...,u/[0]] B u/[0]

Finally, if u & v as coh (I' : w —¢ w)[pu] B Lgimu1 [{U[]}, ulp]], then we
argue as follows, using Lemma

u[o] = coh (T : u =y u)[po o]
B Lgimu 11 [{U[p 0 01}, ulp 0 0]]

= Laimo 1 [{U e}, u[p]] [0]
= /[o]

This completes the proof. O

Lemma 28. Term substitution is compatible with term reduction:
u~u = ufo] ~u[o]

Lemma 29 (Identities reduce to identities). If u is an identity, and u ~ u’,
then u' is an identity.

Proof. We recognize an identity term by looking at the head. We prove the
result by case analysis on the reduction u ~ u’. If u & u’ the result is immediate,
since A-reductions do not change the head. If u 8 « we have a contradiction,
since identity terms cannot be B-redexes by definition. If u % u’ we again have
a contradiction, since a C-reduction acts on the head of the term, but the head
of an identity term is in normal form. If u 8 u/ we again have a contradiction,
since identity terms have the wrong form to be D-redexes. If u £ u/ we again
have a contradiction, since identity terms cannot be E-redexes by definition. [

Lemma 30. If 0 ~ G, then oz~ ¢ //z.

Proof. This is immediate, since o//z is a sublist of o. If the first reducible
argument of ¢ is not in the sublist o//z, then o//x = &//x. Otherwise, it will
still be the first reducible argument of the sublist, and o//z ~ 5 //x. O

Lemma 31. Given a context I' and distinct locally-mazimal variables x,y, and
a substitution A F o : T with z[o],y[o] both identities, the following contexts
and substitutions are identical:

Tx)y=T)y))z mpomy=myome (o/fx)/ly=(a//y)]=

Proof. The first statement is clear from example, in this case showing (I'//Q) /¢ =
(T'//0) [/, since the excision operations are independent:

9/ \h
/v
T
%
g/K
v /v
W ~Moox
g/K
f/y

The other claims follows similarly. O

Lemma 32. For a valid substitution A+ o : D™, we have for all i < n:
di[o] = src" " (dn[o]) di[o] = tgt" " (dn[o])

Proof. Extending the substitution construction rule along definitional equality
we must have src(d,, [0]) = src(d,,)[o], and similarly for tgt. The result follows.
O

Lemma 33. For a valid substitution o that sends a locally-mazximal variable x
to an identity, we have ;o (0//x) = 0.

Proof. Suppose z[o] = L1,[10, Ty -+ Tho1s Th—15Tn), a0 identity, and suppose
src(z) = v and tgt(z) = w as variables. Then by the substitution construc-
tion rule transported along definitional equality, src(1,[7]) = tgt(1,[7]) = 7a.
So o =1[...,TnTn, 1n]7],...], and furthermore o//z = [...,7,...], and 7, =
[...,v,0, 1,[src™(v), tgt™(v),. .., src(v), tgt(v), v],...]. Composing, we obtain:

7z o (offx) = [...,v[o//x],v][o)],
1, [src™ (v), tgt" (v), ..., src(v), tgt(v), v][e//z], . .]
oy Ty Ty Lo [sre™ (1), tgt™ (1) - . ., src(Tn), tet(mh), Tu], - -]

[..
=[ee s Tn, Tos LalT0s s -+ s Tty Toe 15 T« -)
=0
The penultimate step here uses Lemma This completes the proof. O

3.5 Standard reduction generates definitional equality

We show that the symmetric, transitive and reflexive closure of standard reduc-
tion generates definitional equality. Since we have already shown that standard
reduction is a terminating reduction strategy, this gives an algorithm to de-
termine whether two given terms are definitionally equal, by computing their
standard normal forms and checking if they are syntactically equal.

Lemma 34. If a ~.s b, there exists ¢ with a ~» ¢ and b~ c.
Proof. This is immediate, since ~ is a reduction strategy. O
Proposition 35. We have the following, for any valid term s:

(i) If s ~ t, we can find terms a,b which admit a reduction a ~, b and
standard reductions s ~» a, t ~ys b, illustrated as follows:

5 t
tg irts
a b

ANAAS

PV VIV VS
r

(ii) If s =t, then s ~pus t.

Proof. Since by Proposition every term reaches normal form after a finite
number of standard reductions, and since by Lemma reduction generates
equality, it is clear that statement (i) implies statement (ii). We therefore focus
here on the proof of (i).

We can neglect the case of s being a variable, since variables do not reduce.
It follows that s is a coherence term, and since the dimension of a valid coherence
term is well-defined, we will make use of that throughout. The proof of (i) is
by simultaneous induction on the dimension of s, and on subterms of s. Since
no subterm of s has a greater dimension than s itself, this is consistent.

One possibility, which arises several times in the case analysis below, is that
the reduction s ~ t is itself standard (that is, ¢ = §.) We can handle this case

once-and-for-all as follows:
A~y

(1)

VIR 7Y,V VRV

5

We refer to this argument below where it is needed.

We now begin the main proof of property (i), by case analysis on the reduc-
tion s ~ t.
First case s © t. We suppose s = coh (I' : T')[o], and that s 4 t by reducing
an argument of o via s; ~ s;. Then s must be a standard A-redex, because if
some argument is not in normal form, there must exist a leftmost argument not
in normal form; so we have s 4.

Suppose s 4 t and s 55 act by reducing the same argument of s; of o, via
s; ~ s and s; ~ §; respectively. If s; = 3, then we are done by the argument
above expression above. Otherwise the result holds by induction on the
subterm s;, as follows:

coh (T T)[...,85,...] ~ron coh (T T)..., ..]

Aé rtsgA Z,

coh(F:T)[...,éi,...]W\A\m»coh(F:T)[...,q,...]

Alternatively, suppose they act by reducing different arguments of . Then the
redexes are independent, and we argue as follows:

coh(F:T)[...,si,...,sj,...]M/Am»coh(F:T)[...,& e8]

77

A $A

coh(I‘:T)[...,El-,...,sj,...]M/Am»coh(T:T)[...,§4 ey 8]

79 195

Second case s £ t. For this case, we suppose s & t as follows:
s =coh(T': T)[o] B coh (I')/z : T[r,])[o//z] =t

We proceed by case analysis on the standard reduction s ~ s.

33

o Standard A-reduction. In this case, we argue as follows:

coh (T : T)[o] ~Bmn coh (T'ff : T[m])[o 2]

Af $A

coh (I : T)[5] e coh (T)/x : T[r,])[6//x]

Since the upper B-reduction is valid, we know that z[o] is an identity; then by
Lemma |29 we also have that x[&] is an identity, and so the lower B-reduction
is valid. Validity of the standard A-reduction on the right of the square follows
from Lemma B0l

o Standard B-reduction. We suppose s is a standard B-redex with respect to
some locally-maximal variable y. If x = y, then the reductions are the same, and
this case is handled by the general argument above expression . Otherwise,
we argue as follows, using Lemma

B coh (T)/ : T[ma]) 0 //2]

$B

B coh ((T/f)//y : Tma]lmy]) (o)) //y]

coh (T : T)[o]

coh (T'f/y : Tmy]) o/ y] ~rgorrs coh (T fy)ffz : Tlryllma]) (o)))/ x]

Third case s % t. Suppose s = coh (I : T) [0], and s & t acts via some type
reduction 7"~ U. Then we argue by case analysis on the reduction s ~ s.

e Standard A-reduction. In this case we have the following:

coh (' : T)[o] ~mnSrnnms coh (T : U)[o]

A $A

coh (T : T)[5] Wa,vwv, coh (I': U)|5]

e Standard B-reduction. If s is a standard B-redex, we have the following,
employing Lemma [28}

C

coh (' : T)[o] ~mnnnnsiinnnanaans coh (T2 U)|o]

Bg $B

coh (T)/z : T[r,])[o//x] mxvvv\févwww coh (T')/z : Ulrz])|o /=]

e Standard C-reduction. Suppose s is a standard C-redex via a standard type
reduction T~ T. If T = U, we are done by the argument above expression

34

Otherwise, since T' ~ U, by induction on subterms we know that U ~.s T', and
we argue as follows:

coh (T : T)[o] ~mnSrnnms coh (T : U)[o]

rts$C

Cit coh (T : T)[7]
e

coh (T': T)[r] === coh (I : T)[7]

Fourth case s 2 t. We suppose § Bt as follows:
s=coh (D" . SM[...,] Bt

Then we consider the standard reduction for s.

o Standard A-reduction. Supposing t ~» £ is the leftmost reducible argument of
s, then we have the following:

coh (D1 S™)[... ¢

Ad ~

D
ANANNANNNNNNNANY
coh (D1 5 §7)[...., 1] ey

~+ N

Otherwise, let p be the leftmost reducible argument of s. Then we argue as
follows:

Coh (D12 S p. ... 4]~ Prnnns
ad |
Coh (D" S, 1] raenrtonncs P

e Standard B-reduction. In this case we must have ¢ = 1,][...,q2,q1], and
hence s = coh (D™ : S™)[... py, py, P4, Ll -+, g2, 1]]- Since s is valid we
deduce ¢; = p; = p} and ¢; = p;. It follows by induction on subterms that
@i ~is Pi- We put this together as follows:

D
coh (D" : S™)[... pe, 01,01, Ll - - @2, qu]] ~vrns 1oy g2, ¢1]

B§ ts§A

coh (D" 1 dp, = gn-1 dp)[. .., p2,p1] === 1n[...,p2,p1]

e Standard C-reduction. The term s cannot be C-redex, since the type S™ is in
normal form, being constructed entirely from variables.

e Standard D-reduction. In this case, the result follows from the argument
around around expression (1) above.

Fifth case s Bt We suppose s Bt as follows, for n = dimT + 1:

s=coh (T :u—r u)o] ~ 1,[{T[o]}, ulo]] = ¢

35

We now consider the structure of the standard reduction s ~ 5.

e Standard A-reduction. If o ~» & then by Lemma [27 we have u[o] ~ u[5] and
T[o] ~ T[0]. We conclude by induction on dimension that 1,,[{T[o]}, u[o]] B
1,[{T[5]},u][o]]. Altogether, we have the following as required:

coh (T : u =7 w)[o] b 1, [{T[o]}, ufo]]

A§ s§ A

coh (I" : u =7 u)[5] St an 1,[{T[5]}, u[5]]

e Standard B-reduction. In this case we have the following:

coh (T : u =7 u)|o] s 1, [{T[o]}, ulo]]

Bé rtsgA

coh (T//x : ulma] —1ir,) ulmal)[o)/ 2] 5 Lo [{T[ra]lo 21}, ulme]lo f/=]]

We obtain the right-hand standard A-reduction as follows. From Lemma [33] we
know o = 7, o (0//x), and hence u[o] = u[n,][o//x] and T[c] = T[r.]lo//x].

By induction we conclude ufo] ~ns u[m;][o/x] and T[o] ~ns Tmz][o/)/]

e Standard C-reduction. Since u[o] = «'[o] and T[o] = T"[o], it follows by in-
duction that u[o] ~s v’ [0] and T'[o] ~ns T'[0], and hence that 1,[{T[o]}, u]o]] B
1,[{T"[o]}, w'[c]]. We then have the following:

coh (T : 1 =7 1)[0] ~mmmnnannnnns 1 [{T]o]}, ulo]]

[o]
Cgt rtséA

coh (I': N(u) =y (1) N(u))[o] et In[{N(D) o]} N(w)lel]

e Standard D-reduction. The term s cannot be a D-redex, as the term s has
an incompatible structure.

e Standard E-reduction. In this case we are done, with the result following from
the argument around around expression .

This completes the argument. O

Corollary 36. We have s =t if and only if N(s) = N(¢).

3.6 Examples

Now that we can decide definitional equality, we can investigate some examples.
These will illustrate the theory, and in particular allow us to show it is non-
trivial (that is, there is not a single definitional equality class of terms.) To
begin with, consider the context describing the three composable 1-morphisms:

F=(@:%)(y:%)(f:zoy)(z:x)(g:y =% 2)(w:%)(h:z =, w)
Then the following three terms are all in normal form, but distinct, demonstrat-

ing the non-triviality of the theory:

36

e comps|z,y, f, z, g, w, h], which represents f - g-h, the unbiased 3-fold com-
posite;

e compy|z, z,compy|z, vy, f, 2, g], w, k], which represents (f - g) - h, a biased
binary composite;

e compa[z,y, f, w,compyly, z, g, w, h]], which represents f - (g - h), another
biased binary composite.

To see the reductions of the theory working, let us first normalize the following
term, showing that f -1, normalizes to f:

B D
comp2|[x, Y, f’ Y,]lol[y” ~ ComP1|[37,y7 f]l ~ f

This is one of the examples we considered in Section 2; here we see that our
standard reduction relation can algorithmically extract the normal form. For
our second example, we show that A¢: f -1, = f normalizes to idy:

unit-r = coh ((z : %) (y : %) (f : @ =, y) : compa[z, y, f,y, Lo[yl]l =2,y)z, f]
¢
~ coh ((z: %) (y : %) (f 1 @ = y) : compi[z, y, f] —as,y fl2,y, f]
¢
~coh((x:x)(y:%)(f:ax =y f —=osy Nz, y,
=]ll I[xv Y, f]‘
These examples illustrate the way that standard reduction lets us find the

strictly unital normal form for any oo-categorical operation, expressed as a
Cattg, term.

):
):

4 Disc trivialization

In the following section, we prove a structure theorem that says in a disc con-
text D™, up to definitional equality, every term is either a variable, or an iterated
identity on a variable. So if we restrict to terms that use all variables of D™
(that is, the terms which do not factor through a smaller context), then there is
exactly one definitional equivalence class of term in each dimension k& > n, the
normal form of which is the locally-maximal variable d,, or an iterated identity
on this. In this sense, Catts, trivializes disc contexts.

This provides an interesting point of comparison with work of Batanin, Cisin-
ski and Weber [5], discussed further in Section where strictly unital weak
oo-categories are defined as algebras over a certain operad, defined to be the
universal one which trivializes the operations over discs, and which satisfies a
unit compatibility property. By showing our theory also trivializes operations
over discs, we claim that in this respect, our theory is at least as strict.

Preparatory Lemmas Before we can prove the main theorem of this section,
we need to establish some technical results about pasting contexts.

We say that a substitution A+ o : I is a variable-to-variable substitution if
for all z € var(T"), we have that z[o] is again a variable.

Lemma 37. Let D" F o : T’ be a valid substitution which is in normal form,
and which sends locally-mazimal variables of T to variables of D™. Then o is a
variable-to-variable substitution.

37

Proof. Let v be a variable of I". Then there is some locally-maximal variable w
of T such that v = src¥(w) for some k € N. It follows from the formation rules
for substitution that src*(w[o]) = src®(w)[o] = v[o]. Since we are given that
wlo] is a variable, it follows that v[o] is a variable up to definitional equivalence.
But since o is normalized, v[o] must be precisely a variable. O

For every k < n, there are two variable-to-variable substitutions D™ F 8;511 : DF,
which map the k-disc context into the appropriate source or target context
of D™. We also have D™ I~ idp» : D™, the identity substitution. We call these
subdisc inclusions. We now show that every valid variable-to-variable substitu-
tion D™ I ¢ : I is of this form.

Lemma 38. Let D" o : I' be a valid variable-to-variable substitution. Then
we have T = D¥ for some k < n, and o is a subdisc inclusion.

Proof. The variables of a pasting context I" form a globular set g(I") in an obvi-
ous way, and the substitution well-typedness condition means that a variable-to-
variable substitution D™ F ¢ : T" induces a function of globular sets o : g(I') —
g(D™). Suppose for a contradiction T' is not a disc: then it must contain some
sub—Dyck word (ff (4 (ff (---)yf)---)zg---), and we have tgt(f) = src(g).
Then also tgt(c(f)) = src(o(g)); but now we have a contradiction, since the
globular set of a disc does not have any pair of elements related in this way.
We conclude that T' = D¥ for some k < n. It remains to show that o is
a subdisc inclusion. For this, suppose £ = n. Then since o preserves variable
dimension, we must have d,[o] = d,, and this extends uniquely to the other
variables, since ¢ is a function of globular sets, and we conclude o0 = idpn.
Otherwise, suppose k < n. Then we can choose di[o] = di or di[o] = d},, and
once again, both extend uniquely, yielding o = 8,; ,and o = 8,;",n respectively.
O

Given a valid term t in some context I', its canonical identity is 1(t) :=
Laime) [{ty(t)},]. Canonical identities can be distinguished from ordinary iden-
tities 1,[o] because we do not need to give the dimension subscript, as it can be
inferred from the term and the supplied context; because we use round brack-
ets; and because we supply a term as an argument, rather than a substitution.
A term is an iterated canonical identity if it is of the form 1%(¢), by applying
this construction k times for £k > 0. We now show that if a term is definition-
ally equal to an ordinary identity 1,[c], it is definitionally equal to a canonical
identity.

Lemma 39. Ift is a valid term of T with t = 1,[...,p], then t = 1(p).

Proof. We define o := [...,py,p5,p1,01,p]. Because I' - o : D™ is a valid
substitution, it must satisfy the substitution typing conditions up to definitional
equality, so we conclude for each 0 < k < n the following:

—_

i = dn_i[o] = srcf(dy)[o] = src®(d,[o]) = src® (p)
P = dy_i o] = tet*(d,)[o] = tet*(du[o

—_—
~
Il
(g
o
[d
o
—
S
~

We now reason as follows:

t= :H-nl[.. ap23p/21p17p/17p]l

38

= 1,[...,src*(p), tgt>(p), src(p), tat(p), p]
= 1(p)

This completes the proof. O

Structure Theorem We are now prepared to prove our structure theorem char-
acterizing definitional equality for valid terms over discs, which says that any
term of D™ in normal form must be syntactically equal to 1*(d) for some k € N
and some variable d of D™.

Theorem 40 (Disc trivialization). Suppose t is valid in D™. Then t is defini-
tionally equal to a variable, or to the iterated canonical identity on a variable.

Proof. If t is a variable, we are done. Otherwise, ¢ is a coherence term, and we
have that ¢ = coh (I' : U)[o]. By Corollary we may assume without loss of
generality that ¢ is in normal form.

If ¢ is an identity, then by Lemma [39| we know ¢t = 1(u). By induction on
dimension, u is therefore either a variable or a iterated identity on a variable,
and we are done.

It remains to consider the case that ¢ = coh (I : U)[o] is not an identity.
We will see that we are now guaranteed to obtain a contradiction. Since ¢ is in
normal form, we know that ¢ is not an A-, B-, C-, D- or E-redex, and we use
these facts freely below.

First, note that D™ ¢ : I' maps locally maximal variables of I" to non-
identity terms of D™ (or else t would be a B-redex), and these terms are in normal
form (or else ¢ would be an A-redex). Hence, by induction on subterms, we may
assume that o maps locally-maximal variables to variables. By Lemma [37} it
follows that o is a variable-to-variable substitution, and then from Lemma
we conclude that T is a disc context D* with k < n, and o is a subdisc inclusion.
We therefore conclude that t = coh (D* : v —7 v)[o].

Suppose dim(¢) = k. Then u,v must each use all the variables of the re-
spective boundary context, so by induction on subterms, the only possibility is
u = dg—1 and v = dj,_,. Since t is not a C-redex, we conclude that u is in
normal form (hence u = dj_1), v is in normal form (hence v = dj_,), and T is
in normal form (hence T'= S*~2), and so t = coh (D¥ : dj_1 —gr—2 d}_,)[o].
But then ¢t would be a D-redex, which is a contradiction.

So we must have dim(t) > k. Then u,v must each use all the variables of
D, so by induction on subterms, the only possibility is u = v = 1"~*(d},). But
this would mean that ¢ is an E-redex, again giving a contradiction. O

5 Rehydration

Overview The results of Section 3 tell us that normal forms decide definitional
equality, in the following sense:

u=v = N(u)=N()

39

Since normalization contracts definitional equivalence classes, and since Catt
has a trivial notion of definitional equality, we might imagine this is sufficient to
produce our encoding function p into Catt terms. However, a normalized valid
Catts, term t is not necessarily a valid Catt term. To see why, we note that the
property above does not extend to boundaries of terms:

tgt(u) =src(v) # tgt(NV(u)) = src(N(v))

As a result, if a pair of normalized terms of Catts, are composable, implicit
coercion may still be required by the type checker to verify that the composite
itself type checks.

The solution is to introduce a new notion called rehydrated normal form,
written R(N(¢)). Since it is a function of the normal form, it of course also
decides definitional equality:

u=v = R(N(u))=R(N())

However, it also recursively composes the boundaries of all subterms with coher-
ences, which has the effect of putting those boundaries themselves in rehydrated
normal form. These coherences can be regarded as “explicit coercions”, giving a
direct structural witness to the change in type. As a result, we gain the following
desirable feature:

tgt(u) =src(v) = tgt(R(N(u)) = src(R(N(v))

Since it also acts recursively on the term structure, we are therefore guaranteed
that any composable subterms of R(N(¢)) will be composable on-the-nose. As
a result, for any valid Cattg, term ¢, the term R(N(¢)) will be a valid Catt term,
all necessary coercions having been explicitly inserted.

Finally, since the coercions we insert all normalize to the identity, we are
guaranteed that R(N(t)) = t in Cattg,, meaning that the definitional equivalence
classes are preserved. If we define p(t) := R(N(t)), we therefore obtain the
encoding function discussed in the introduction, providing a solution to the
Identification Paradox for this “toy model” theory.

Rehydrated Normal Form We introduce the following operations on a term ¢
simultaneously by mutual recursion:

e the rehydration R(t), which rehydrates all subterms, and then pads the
resulting term,;

e the padding P(t), which composes a term at its boundaries to ensure all
of its sources and targets are in rehydrated normal form:;

e the normalizer ¢(t), a coherence term which provides an explicit equiva-
lence between t and its rehydrated normal form R(N(¢)).

We first give the definition of rehydration, in terms of the padding operation.

Definition 41. For a valid term ¢ of Catty,, its rehydration R(t) is defined as
follows:

e R(z) ==z

40

e R(coh (T': U)[o]) := P(coh (I': R(U))[R(0)])

On valid types and substitution, rehydration is defined by applying term rehy-
dration to all subterms and subtypes.

We note that supp(t) = supp(R(t)) for all terms ¢; this follows since padding is
the only non-recursive part of the rehydration operation, which composes the
term with normalizers, which cannot change the support, as we discuss below
underneath Definition

We next give the definition of padding, in terms of the normalizers of its
inferred sources and targets. Since these sources and targets have strictly
smaller dimension than the term itself, the mutual recursion between rehydra-
tion, padding and normalizers is well-founded. We use the notation compy x for
the coherence introduced on page [[I and encoding the “unbiased” composite of
a n-dimensional disc D with two (k + 1)-dimensional discs S and T glued along
the k-dimensional source and target of D, respectively. This coherence is valid
in a context with exactly three locally maximal cells corresponding to D, S and
T. It will be convenient for the presentation in this section, therefore, to write
this coherence by providing just these three arguments, i.e. comp,k(a,b,c),
regarding the non-locally maximal arguments as implicit.

Definition 42. For a valid Cattg, term I' - ¢ : A, its padding P(t) is obtained
by composing at the boundaries to put them into rehydrated normal form. We
define P(t) := Pgyima+1(t), and then:

L] Po(t) =1
o Pii1(t) := compgim(a)+1,k (¢(srer(t)), Pr(t), ¢ (tgty (1))

The constructors Py each “fix up” the corresponding inferred source and targets
of their arguments, so P(t) is guaranteed to have src;(Py(t)) and tgt; (P (t)) in
rehydrated normal form for all j < k.

Finally we give the definition of the normalizer, in terms of rehydration.

Definition 43. For a term t of Cattg,, valid over some pasting context I" with
supp(t) = FV(T), its normalizer ¢(t) is the following coherence:

¢(t) := coh (T : R(N(t)) —ty(u) t)[idr]
Its inverse ¢~ 1(t) is defined with the reversed type, as follows:

¢~ (t) == coh (T 1 t =) R(N(t)))[idr]

By the formation rules for coherences, we note that supp(src(é(t))) = supp(tgt(o(t))) =
FV(T'). For this reason, composing a term with a normalizer does not change
the support of that term.

Properties of Rehydrated Normal Forms We now verify that terms in rehy-
drated normal form have the required properties.

Lemma 44. The inferred sources and targets of a term in rehydrated normal
form are also in rehydrated normal form.

41

Proof. We demonstrate this as follows:

sre(R(N (1)) = sre (comp a1, (6(srci (1)), Pa(t). 6 (gt (1))
src(@(srex(t)))

= src(coh (T : R(N (src(t))) — srcg(¢))[idr])
R(N((srci(t)))

This completes the proof. O

Corollary 45. If tgt*(R(N(u))) = src/ (R(N(v))) are valid definitionally-equal
terms, then they are syntactically equal.

Proof. This is immediate, since we showed above that these boundaries are
in rehydrated normal form, and if two terms in rehydrated normal form are
definitionally equal, they must be syntactically equal. O

We now show that a rehydrated normal form R(N(t)) a valid Catt term. A
valid Cattg, term ¢ will be valid over a number of contexts I'; for simplicity, we
suppose for the purposes of this theorem that we have chosen such a context
with supp(t) = FV(T'), that is, for which I has no extraneous variables. Such a
choice can always be made, although we do not prove that formally here.

Theorem 46. Ift is a valid term of Catts,, over some pasting context I' with
supp(t) = FV(T'"), then R(N(t)) is a valid term of Catt.

Proof. We argue by induction on subterms, and by dimension on terms, which
is consistent in this case, since a valid term cannot have a subterm of greater
dimension. For variables, the claim is immediate, and we therefore focus on
coherence terms ¢ = coh (I' : U)[o]. Supposing such a term is in normal form,
its rehydration is as follows:

R(t) = P(coh (I': R(U))[R(0)))

The subterms of R(U) and R(c) will be individually in rehydrated normal form,
and hence by induction valid in Catt. Since R does not change the support of
the term, R(U) will satisfy the free variable condition for coh term formation,
as required.

We next argue that the subterm ' := coh (I' : R(U))[R(0)] is valid in Catt.
Validity of a Cattg, term is generated inductively by typing inferences, as de-
scribed in Section 2. In every case, the hypotheses for these inferences are that
certain typing assertions for subterms are valid. From Proposition [5| we know
that T' - ¢ : A just when A = ty(t); and so these typing hypotheses can be
reduced to hypotheses that certain inferred boundary terms are definitionally
equal to others. But for the term t’, all subterms are in rehydrated normal form,
and we show above in Corollary [45| that inferred boundaries of such terms are
definitionally equal just when they are syntactically equal. Validity of the term
therefore holds in Catt, which differs from Cattg, only in having a restricted
notion of definitional equality. Since t’ is valid in Catt, its inferred sources and
targets will also be valid in Catt.

We now argue that P(¢') is valid in Catt. We prove this by induction on the
parameter k of the padding construction:

Proq1(t) = compgim(a)y+1.k (O(srer(t)), Pi(t), ¢ (tgty (1))

42

The composition operations compq are certainly valid Catt terms, as elemen-
tary syntactic constructions. By induction, the subterm Py (t) is valid in Catt.
The normalizers in this expression are being computed for terms srcy (¢),tgt (¢).
While these terms are not themselves in rehydrated normal form, their inferred
types ty(srck(t)), ty(tgt,(t)) will be in rehydrated normal form, thanks to the
remark following Definition

To complete the proof, we must therefore show that if u is some valid term
with ty(u) in rehydrated normal form, then ¢(u) and ¢~1(u) are valid in Catt.
We consider the definition of ¢(u):

¢(u) := coh (I' : R(N(u)) —rty(w)) [idr]

Since dim(u) < dim(t), we know by induction on dimension that R(N(u)) is
valid in Catt. We know wu arises as an inferred source or target of t', and hence
is valid in Catt. We also know ty(u) is already in rehydrated normal form, and
hence ty(u) = ty(R(N(u))). So ¢(u) is valid in Catt, as is ¢~ (u). O

Finally, we show that the rehydrated normal form is in the same definitional
equivalence class of Cattg, of the original term.

Proposition 47. Ift is a valid term of Catts, over some pasting context, then:
R(N(t)) =t

Proof. For a variable, this is immediate, and we therefore focus on coherence
terms. We may assume that the result holds on all terms u of strictly smaller
dimension than ¢. This allows us to show that such terms have normalizers
which are definitionally equal to identities:

P(u) = coh (I' : u —rey(y R(N(w)))[idr]
Syt coh (T : N (1) = N(ry(uy) N(w)[idr]
B Lgim [{ N (ty(u))}, N(2)]

Note that we use the equation N(R(N(u))) = N(u) in the first step, this being
a consequence of the conclusion of the theorem applied to u, which is of smaller
dimension than t.

Now, since paddings are constructed from the normalizers of terms of strictly
smaller dimension (namely the sources and targets of t), we may use the previous
result to show that paddings are definitionally equal to the term being padded.
This we prove by induction on the parameter k in the definition of the padding
composite Pj:

Py y1(t) = compy k(@(srex(t)), Pr(t), d(tgty(t)))
A, compn k(Lk[7], ¢, Lk [7])
B, coh (D" : d,, —gn1 dy)|[t]
B¢

Here, n := dim(t). As a consequence, we prove by induction on subterms that
N(R(t)) = N(t):

R(t) = R(coh (' : U)[o])

43

= P(coh (I': R(U))[R(0)])
=coh (I': R(U))[R(0)]
=coh (T": U)[O’]

This completes the proof. O

References

1]

2]

Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using
quotient inductive types. ACM SIGPLAN Notices, 51(1):18-29, 2016.

Dimitri Ara. Sur les co-groupoides de Grothendieck et une variante co-
catégorique. 2010. Ph.D. dissertation, Université Paris Diderot.

John Baez and Mike Stay. Physics, topology, logic and computation: a
rosetta stone. In New Structures for Physics, pages 95-172. Springer, 2010.

Michael Batanin. Monoidal globular categories as a natural environment
for the theory of weak n-categories. Adv. Math., 136(1):39-103, 1998.

Michael Batanin, Denis-Charles Cisinski, and Mark Weber. Multitensor
lifting and strictly unital higher category theory. Theory and Applications
of Categories, 28:804-856, 2013.

Thibaut Benjamin. Type theory for weak w-categories. 2020. Ph.D. dis-
sertation.

John Michael Boardman and Rainer M Vogt. Homotopy invariant algebraic
structures on topological spaces, volume 347. Springer, 2006.

Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory. arXiv preprint arXiv:1606.05916, 2016.

Alexandre Buisse and Peter Dybjer. Towards formalizing categorical mod-
els of type theory in type theory. Electronic Notes in Theoretical Computer
Science, 196:137-151, 2008.

James Chapman. Type theory should eat itself. Electronic Notes in Theo-
retical Computer Science, 228:21-36, 2009.

Nils Anders Danielsson. A formalisation of a dependently typed language
as an inductive-recursive family. In International Workshop on Types for
Proofs and Programs, pages 93-109. Springer, 2006.

Christoph Dorn. Associative n-categories. 2018. Ph.D. dissertation.
arXiv:1812.10586.

Eric Finster and Samuel Mimram. A type-theoretical definition of weak
w-categories. In Proceedings of LICS 2017, 2017. |arXiv:1706.02866.

R. Gordon, A. J. Power, and Ross Street. Coherence for tricategories. Mem.
Amer. Math. Soc., 117(558):vi+81, 1995.

44

http://arxiv.org/abs/1812.10586
http://arxiv.org/abs/1706.02866

[15]

[16]

[17]

[18]
[19]

[20]

Barnaby P Hilken. Towards a proof theory of rewriting: the simply typed
2X-calculus. Theoretical Computer Science, 170(1-2):407-444, 1996.

Dexter C Kozen. Automata and computability. Springer Science & Business
Media, 2012.

Tom Leinster. Higher operads, higher categories, volume 298. Cambridge
University Press, 2004.

Jacob Lurie. Higher topos theory. Princeton University Press, 2009.

Georges Maltsiniotis. Grothendieck co-groupoids, and still another defini-
tion of oco-categories. 2010. arXiv preprint arXiv:1009.2331.

David Reutter and Jamie Vicary. High-level methods for homotopy con-
struction in associative n-categories. In Proceedings of LICS 2019, 2019.
arXiv:1902.03831.

Philip Saville. Cartesian closed bicategories: type theory and coherence.
PhD thesis, Ph. D. thesis, University of Cambridge (Submitted), 2019.

Robert AG Seely. Modelling computations: a 2-categorical framework. In
LICS, pages 65—71, 1987.

Michael Shulman. Homotopy type theory should eat itself (but so far, it’s
too big to swallow). Homotopy type theory blog post, 2014. |.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

45

https://arxiv.org/abs/1902.03831
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
https://homotopytypetheory.org/book

	60_Finster_cover

