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1. Introduction

Symmetric Grothendieck polynomials and their duals, weak symmetric Grothen-
dieck polynomials, are families of nonhomogeneous symmetric polynomials indexed
by Grassmaninian permutations, or equivalently, by partitions. The former are spe-
cial cases of the Grothendieck polynomials of Lascoux and Schützenberger [LS82,
LS83]. Moreover, the stable Grothendieck polynomials of Fomin and Kirillov [FK94,
FK96] expand with positive integer coefficients in terms of symmetric Grothendieck
polynomials [MPS18], and weak stable Grothendieck polynomials expand with
positive integer coefficients in terms of weak symmetric Grothendieck polynomi-
als [HS19]. For these reasons symmetric and weak symmetric Grothendieck polyno-
mials are fundamental building blocks in the subject of nonhomogeneous symmetric
functions of type A. Moreover, they are what we call natural nonhomogeneous gen-
eralizations of Schur polynomials by which we mean:

Definition 1.1. We say that a family B of polynomials indexed by partitions is a
natural nonhomogeneous generalization of family of homogeneous polynomials A
if:

• For any µ, there is an algebraically defined polynomial Cµ(x, t) such that
Aµ(x) = Cµ(x,0) and Bµ(x) = Cµ(x,1).
• Bµ(x) =

∑
cµλAλ(x) for some nonnegative integer coefficients cµλ.

The theory of Schubert polynomials of type C is also well developed [Lam95]:
Whereas stable limits of Schubert polynomials of type A (Stanley symmetric func-
tions [Sta84]) are known to expand in terms of Schur polynomials, stable limits of
Schubert polynomials of type C are known to expand in terms of P -Schur poly-
nomials [HPS17]. Our goal is to find a natural nonhomogeneous generalization of
P -Schur polynomials, Pµ(x) to better understand the theory of nonhomogeneous
symmetric functions of type C. These polynomials will play the role that weak
symmetric Grothendieck polynomials, Jµ(x) play in type A. We also introduce a
multiparameter t = t1, . . . , t` deformation of both these polynomials, Pµ(x, t) and
Jµ(x, t), respectively, which clarifies the relation between the algebraic and com-
binatorial definitions of these polynomials, makes the proofs easier to follow, and
explains the definition of natural nonhomogeneous generalization.

We carry out a complete construction and analysis of both Jµ(x, t) and Pµ(x, t),
even though the former are already well understood at t = (1 . . . , 1) (e.g., [HS19])
for the following reasons: First, the arguments and constructions used in the Pµ

are almost always generalizations or alterations of those used in the Jµ case and
the former is much easier to comprehend once the latter (generally simpler) case
is understood. Secondly, it is instructive to be able to compare the two situations
side by side.

We give algebraic and combinatorial definitions of both Jµ(x, t) and Pµ(x, t).
The main theorems of the paper are showing that they are equivalent. The underly-
ing combinatorial objects in the first case are multiset tableaux and the underlying
combinatorial objects in the second case a new type of tableaux which we call shifted
multiset tableaux even though, as will be seen, they are a mix of the notions of
multiset and set tableaux.

We note that similar nonhomogeneous, or K-theoretic, generalizations of P -
Schur polynomials such as in [IN13] and [HKP+17] have been made, but differ
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from ours in that they do not satisfy the second bullet point in our definition of
natural nonhomogeneous generalization, i.e., are not themselves P -Schur positive.

2. Lemma

We begin with a basic lemma about how to multiply symmetric polynomials by
a sequence of homogeneous symmetric polynomials in a weakly increasing number
of variables. The case when n = c` = · · · = c1 can be found in most books on
symmetric functions, such as [Sta99].

Let µ = (µ1, . . . , µn) be a partition with distinct parts and fix integers n ≥
c` ≥ · · · ≥ c1. Then for any list of ` nonnegative integers, T = T`, . . . , T1 define a
T-extension of µ to be a sequence of compositions, λ = λ` ⊇ · · · ⊇ λ1 ⊇ λ0 = µ
such that |λh| − |λh−1| = Th and λhk = λh−1

k for k > ci for all 1 ≤ h ≤ `. A

T-extension of µ is called good if λhk < λh−1
k−1 for 2 ≤ k ≤ ch for all 1 ≤ h ≤ `. A

T-extension which is not good is called bad. In particular, every composition in a
good T-extension is a partition.

Lemma 2.1.∑
σ∈Sn

sgn(σ)hT`(xσ1
, . . . , xσc` ) · · ·hT1

(xσ1
, . . . , xσc1 )xµ1

σ1
· · ·xµnσn

=
∑

λ=λ`⊇···⊇λ1⊇λ0=µ

(∑
σ∈Sn

sgn(σ)xλ1
σ1
· · ·xλnσn

)

where the sum is over all good T-extensions.

Proof. It suffices to show that∑
λ=λ`⊇···⊇λ1⊇λ0=µ

(∑
σ∈Sn

sgn(σ)xλ1
σ1
· · ·xλnσn

)
= 0

where the sum is over all bad T-extensions. It suffices to find a sign changing
involution, ι on the set of pairs of the form (σ,Λ) where σ ∈ Sn, Λ is a bad T-
extension and the sign of the pair is the sign of the permutation σ, such that ι has
the following property: If ι(σ,Λ) = (σ̄, Λ̄) where λ is the largest composition of Λ
and λ̄ is the largest composition of Λ̄ then λ̄(σ̄−1(p)) = λ(σ−1(p)) for all 1 ≤ p ≤ n.

Define ι(σ,Λ) as follows: Suppose Λ is the bad T-extension λ = λ` ⊇ · · · ⊇
λ1 ⊇ λ0 = µ. Choose i minimal such that there exists some 2 ≤ k ≤ ci such that
λik ≥ λi−1

k−1. Choose the minimal such k, and then choose the minimal 1 ≤ j < k

such that λik ≥ λi−1
j . Define σ̄(m) = σ(m) for m /∈ {j, k}, σ̄(j) = σ(k), and

σ̄(k) = σ(j). Next, for h < i define λ̄h = λh. For h ≥ i define λ̄hm = λhm for
m /∈ {j, k}, λ̄hj = λhk , and λ̄hk = λhj . Set ι(σ,Λ) = (σ̄, Λ̄) where Λ̄ is the bad T-

extension λ̄ = λ̄` ⊇ · · · ⊇ λ̄1 ⊇ λ̄0 = µ. (That the ⊇ are correct, and that Λ̄ is a
bad T-extension is proven below).

Note the following properties of ι.

(1) ι(σ,Λ) has the opposite sign as (σ,Λ).
(2) λ̄(σ̄−1(p)) = λ(σ−1(p)) for all 1 ≤ p ≤ n.

(3) Λ̄ is a T-extension.
• That |λ̄h| − |λ̄h−1| = Th is immediate.
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• Suppose that m > ch, we wish to check that λ̄hm = λ̄h−1
m . Now if

m ∈ {j, k} and h ≥ i we have j, k ≤ ci ≤ ch so the condition m > ch
is impossible to attain. Thus we may assume that m /∈ {j, k} or h < i
in which case we have λhm = λ̄hm and λh−1

m = λ̄h−1
m so that the equality

λhm = λh−1
m implies the equality λ̄hm = λ̄h−1

m .
• Next, it is clear that λ̄h ⊇ λ̄h−1 if h 6= i and also that λ̄hm > λ̄h−1

m

for m /∈ {j, k}. We need only check that λ̄ij ≥ λ̄i−1
j and λ̄ik ≥ λ̄i−1

k .

The first is equivalent to saying that λik ≥ λi−1
j which is true by the

choice of j and k. The second is equivalent to saying that λij ≥ λi−1
k

but λij ≥ λ
i−1
j since λi ⊇ λi−1 and λi−1

j ≥ λi−1
k by minimality of i.

(4) Λ̄ is a bad T-extension. Indeed, λ̄ik = λij ≥ λ
i−1
j = λ̄i−1

j .

(5) ι2(σ,Λ) = (σ,Λ). It is clear from the definitions that this is true as long as
the values of i, k, j chosen when applying ι to (σ,Λ) are the same as those
(say ī, k̄, j̄) chosen when applying ι to (σ̄, Λ̄). Clearly ī ≥ i, and, by the
step above, ī ≤ i, so ī = i. If j 6= k̄ < k then λi

k̄
= λ̄i

k̄
≥ λ̄i−1

k̄−1
= λi−1

k̄−1
,

contradicting the minimality of k. If k̄ = j then λik = λ̄ij ≥ λ̄i−1
j−1 = λi−1

j−1,

contradicting the minimality of j. Since the step above implies k̄ ≤ k this
means k̄ = k. Finally, if j̄ < j then λij = λ̄ik ≥ λ̄i−1

j̄
= λi−1

j̄
, contradicting

the minimality of k. Again, the step above means j̄ ≤ j so together we get
j̄ = j.

This shows that ι is a well defined sign changing involution with the desired
property, proving the lemma. �

3. Jµ(x, t) and multiset tableaux

3.1. Algebraic Definition of Jµ(x, t). We will always work in n variables and
will set V =

∏
i<j

(xi − xj). In general we will define a symmetric polynomial f by

defining the value of the skew-symmetric polynomial V ∗ f .
For a partition µ of n parts, the weak symmetric Grothendieck polynomial in n

variables is defined by:

V ∗ Jµ(x1, . . . , xn) =
∑
σ∈Sn

sgn(σ)
∏
i

((
xσi

1− xσi

)µi
xn−iσi

)
We define a slight generalization of this polynomial. Suppose µ has longest part

` = µ1. Let the weak symmetric Grothendieck polynomial in n + ` variables be
defined by:

V ∗ Jµ(x1, . . . , xn, t1, . . . , t`) =
∑
σ∈Sn

sgn(σ)
∏
i

((
xσi

1− t`xσi

)
· · ·
(

xσi
1− t`−µi+1xσi

)
xn−iσi

)

Clearly Jµ(x1, . . . , xn, 1, . . . , 1) = Jµ(x1, . . . , xn) whereas Jµ(x1, . . . , xn, 0, . . . , 0) =

sµ(x1, . . . , xn). Note that the coefficient of tT1
1 · · · t

T`
` in V ∗Jµ(x1, . . . , xn, t1, . . . , t`)

is given by:
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∑
σ∈Sn

sgn(σ)hT`(xσ1
, . . . , xσc` ) · · ·hT1

(xσ1
, . . . , xσc1 )xµ1+n−1

σ1
· · ·xµn+0

σn

where (c`, . . . , c1) = µ′. Since n ≥ c` ≥ · · · ≥ c1 Lemma 2.1 implies that this
coefficient is:

∑
λ=λ`⊇···⊇λ1⊇λ0=µ+δ

(∑
σ∈Sn

sgn(σ)xλ1
σ1
· · ·xλnσn

)
where the sum is over all good T-extensions and δ = (n − 1, . . . , 0). Interpreting
each λi \ λi−1 as a strip filled with is and then shifting the result to the left by δ
one can deduce that this coefficient is the same as:

V ∗
∑
λ⊇µ

(MT
λ/µ)sλ

where MT
λ/µ is the number of semistandard Young tableaux of shape λ/µ and weight

T1, . . . , T` such that every entry i occurs on or above row ci.

Definition 3.1. Let µ be a partition with n parts and conjugate µ′ = (c`, . . . , c1).
We define a restricted tableau of shape λ/µ, or element of RT (λ/µ), to be a
semistandard Young tableau of shape λ/µ in the alphabet {1, . . . , `} such that each
entry i occurs on or above row ci. If R ∈ RT (λ/µ) then the weight of R, denoted
wt(R) is the vector (w1, . . . , w`) where wi is the number of is which appear in R.

Example 3.2. Let λ = (7, 6, 5, 4) and µ = (4, 3, 3, 2) so that c4 = 4, c3 = 4, c2 = 3,
c1 = 1.

· · · · 1 2 3

· · · 2 2 4

· · · 3 3

· · 3 4

Since all 1s lie in the green all 2s lie in the green or yellow and all 3s and all 4s lie
in the red, yellow, or green, this is an element of RT (λ/µ). It has weight (1, 3, 4, 2).

With this definition, the computation before the definition shows:

Theorem 3.3. Let t = t1, . . . , t`, x = (x1, . . . , xn) then

Jλ(x1, . . . , xn, t1, . . . , t`) =
∑
λ⊇µ

∑
R∈RT (λ/µ)

twt(R)sλ(x)

3.2. Straight-shape multiset tableaux.

Definition 3.4 ([LP07]). Given a partition µ, with conjugate (c`, . . . , c1) = µ′ a
multiset tableau of shape µ, or an element of MT (µ) is a collection of boxes with
µi boxes in each row and the rows left-justified, along with a filling of said boxes
with the following properties.
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(1) Each box contains a nonempty multiset of the numbers {1, 2, . . .}.
(2) The maximum value of each box is strictly less than the minimum value of

the box below it (if it exists) and weakly less than the minimum value of
the box to its right (if it exists).

The weight, denoted wt, of a multiset tableaux is the vector (w1, w2, . . .) where
wi is the total number of is appearing in the tableau. We label the columns from
left to right by `, `−1, . . . , 1. That is, by box bij we refer to the box which is in the
ith row from the top row and the `−j+1st column from the leftmost column. Define
the column weight of a multiset tableau, cw, to be the vector (T1, . . . , T`) where Ti
is the difference between the number of entries in column i and the height of that
column (ci). By |bij | we simply mean the total number of entries in box bij and
|bij(x)| refers more specifically to box the number of entries in box bij in tableau
x. By the nonemptiness property |bij | ≥ 1 if box bij exists and, by convention is 0
otherwise.

Example 3.5. Let µ = (3, 3, 2). Then

11 12 333

2 3 445

34 4

is an element P ∈MT (µ) with wt(T ) = (3, 2, 5, 4, 1) and cw(P ) = (4, 1, 2).

Definition 3.6. A maximal multiset tableau of shape µ, or element of MT (µ),
is a multiset tableau of shape µ with the following properties:

(1) Each box bij may only contain is.
(2) For each i ≥ 1 and k ≥ 0 we have

∑
1≤j≤k

|b(i+1)j | − |bi(j−1)| ≤ 1

where by convention |bi0| = 0.

Example 3.7. Let µ = (4, 3, 3, 1). Then

1 11 11 11

22 2 222

3 333 3

44 44

is an element P ∈MT (µ) with wt(T ) = (7, 6, 5, 4) and cw(P ) = (1, 3, 4, 2).

Proposition 3.8. There is a bijection from the subset of MT (µ) with weight λ
and column weight T to the subset of RT (λ/µ) with weight T.

Proof. Let X be the subset of MT (µ) with weight λ and column weight T that
satisfy property (1) above. Let Y be the set of weakly increasing by row fillings
of shape λ/µ and weight T such that every entry i occurs on or above row ci
(equivalently: row i only contains entries greater than ` − µi). The map x → y
where y is defined by the property that for each (i, j), row i of y contains exactly
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|bij(x)|−1 copies of j is a bijection from X to Y . Moreover if x→ y then x satisfies
property (2) above if and only if the columns of y are strictly decreasing down rows:
Indeed, if there is some i and some k such that

∑
1≤j≤k

b(i+1)j−bi(j−1) > 1 then for the

minimal such k, row i+1 of y will have an entry k that lies above an entry k′ of row
i with k′ ≥ k. On the other hand, if row i+1 of y contains a k which lies above some
k′ in row i with k′ ≥ k then we are guaranteed to have

∑
1≤j≤k

b(i+1)j − bi(j−1) > 1.

Since the elements of Y that are strictly decreasing down columns are exactly the
elements of RT (λ/µ) with weight T, the map restricted to the elements of X that
satisfy property (2) gives the desired bijection. �

Example 3.9. The tableaux of examples 3.2 and 3.7 correspond under this bijec-
tion.

Corollary 3.10. Set t = t1, . . . , t`, x = (x1, . . . , xn) then

Jµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈MT
λ
µ

tcw(P )swt(P )(x)

3.3. Combinatorial Definition of Jµ(x, t). In this section we will give an equiv-
alent combinatorial definition of Jµ. We will need to use the dual RSK column
insertion algorithm (see, for instance [Sta99]). We refer to dual RSK insertion of
an element into a column, and the reverse insertion of an element under dual RSK
as insert and reverse insert. These maps are reviewed below.

Let K be a valid column (each box of K contains exactly one number and the
numbers strictly decrease from top to bottom). One inserts a into K, denoted
a → K as follows: Let â denote the uppermost entry in K such that a ≤ â. If â
exists, replace â with a and bump out â. Otherwise, append a to the bottom of K.
The result is recorded as the pair (K ′, â) if the second of this pair exists and just
K ′ otherwise. On the other hand if z ≤ a for some a ∈ K then we define reverse
insertion of z into K or K ← a as follows: Let ẑ denote the bottommost entry in
K such that z ≥ ẑ. Replace ẑ with z and bump out ẑ. The result is recorded as
the pair (ẑ, K ′).

Notice the basic properties:

(1) If a→ K = K ′ then K ′ is a valid column.
(2) if a→ K = (K ′, â) then K ′ is a valid column.
(3) If K ← z = (ẑ, K ′) then K ′ is a valid column.
(4) If a ≤ z then either

• z → K = K ′ and a→ K ′ = (K ′′, â) for some â.
• z → K = (K ′, ẑ) and a→ K ′ = (K ′′, â) where â ≤ ẑ.

(5) If a ≤ z and K ← a = (â,K ′) and K ′ ← z = (ẑ, K ′′) then â ≤ ẑ.
Fix µ a partition with conjugate µ′ = (c`, . . . , c1).

Proposition 3.11. There is a bijection Ψ : MT (µ) →
⋃
λ⊇µ

SSY T (λ) × RT (λ/µ),

such that if P → (Q,R) then:

(1) wt(P ) = wt(Q).
(2) cw(P ) = wt(R).

First some reductions. Define the set MTk(λ) to be the subset of MT (λ) which
have only single entries in columns k−1, . . . , 1, 0,−1, . . .. Define the set RTk(λ/µ) to
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be the subset of RT (λ/µ) which have only entries from {1, 2, . . . , k−1}. Given a pair
(Q,R) ∈ MTk(λ)× RTk(λ/µ) define the weight and column weight of this pair as
wt(Q,R) = wt(Q) and cw(Q,R) = cw(Q)+wt(R). To achieve our goal it suffices to
find a weight and column weight preserving bijection for each k (and then compose:
Ψ = Ψ` ◦ · · · ◦Ψ1) from

⋃
λ⊇µ

MTk(λ)×RTk(λ/µ) to
⋃
λ⊇µ

MTk+1(λ)×RTk+1(λ/µ).

To do the latter, it is enough to find a weight preserving bijection Ψk : MTk(λ)→⋃
ν⊇λ

MTk+1(ν) where the union is over all ν such that ν/λ is a horizontal strip with

no box below row ck (equivalently, below the lowest box in column k of λ: in the
previous map the only λ ⊇ µ appearing have length of column k equal to ck (equal
to the length of column k of µ)).

Ψk will be defined by repetitively applying the following map: Let T ∈MTk(λ).
Define out(T ) as follows: First, in each box of column k circle (one of) the minimum
entry(s) from that box. Now find (one of) the largest noncircled entry(s) in column
k and remove it and insert it into the column to the right of the column from which
it was removed. After this, each time an element is bumped, insert it into the next
column to the right until some entry is eventually appended to a (possibly empty)
column. 1© Note the following properties of out.

(1) The path of positions where an element is bumped/appended moves weakly
down as we move to the right.

(2) The result of out is a multiset tableau.
(3) If out(T ) and out(out(T )) are both defined then the box which out appends

to out(T ) lies strictly to the right of the box that out appends to T .

Example 3.12. Suppose that k = 2. Each −→ represents an application of out.

1 1©2 2 2

2 2©33 4

34 4©

−→
1 1©2 2 2

2 2©3 3 4

34 4©

−→

1 1©2 2 2 4

2 2© 3 3

34 4©

−→
1 1© 2 2 2 4

2 2© 3 3

34 4©

Uncircled numbers being removed are shown in red, and the boxes being added
appear in green.

We will also need a map called inb. Let T ∈ MTk(ν) for some ν such that ν/λ
is a horizontal strip with no box below row ck and suppose b is some corner box of
this strip. First, in each box of column k circle (one of) the minimum entry(s) from
that box. Define inb(T ) as follows: Remove the entry from box b and reverse insert
it into the column to the left. After this, each time an element is bumped reverse
insert it into the column to the left until an element is removed from column k−1.
Then add this element to the lowest box of column k such that the resulting column
satisfies the column strict requirement in (2) of the definition of multiset tableau.
Note the following properties of inb.
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(1) The path of positions where an element is bumped/added moves weakly up
as we move to the left.

(2) The result of inb is a multiset tableau.
(3) If b′ lies to the left of b and if inb(T ) and inb′(inb(T )) are both defined then

the element that inb′ adds to column k of inb(T ) is greater than or equal
to the element inb adds to column k of T .

Moreover, out and inb are related as follows:

(1) If out appends box b when applied to T , then inb(out(T )) = T .
(2) If the element that inb adds to column k when applied to T is the largest

or tied for the largest uncircled element on column k then out(inb(T )) = T
.

Example 3.13. Let k = 2. Then inred(inyellow(ingreen(T ))) = T ′ where:

T =
1 1© 2 2 2 4

2 2© 3 3

34 4©

−→
1 1©2 2 2

2 2©33 4

34 4©

= T ′

Note that T is the last tableau in example 3.13 and T ′ is the first tableau in example
3.13.

Proof. We prove there exists a bijection Ψk : MTk(λ) →
⋃
ν⊇λ

MTk+1(ν). If T ∈

MTk(λ) we define Ψk(T ) simply by applying out until column k only contains single
entries. This is an element of

⋃
ν⊇λ

MTk+1(ν) because of the properties (1), (2), and

(3) of out. If T ∈
⋃
ν⊇λ

MTk+1(ν) we define Ψ−1
k (T ) by successively applying inb to

the rightmost box b which lies outside of the shape of λ, until the result has shape
λ. This is an element of MTk(λ) because of the property (2) of inb. If T ∈MTk(λ)
then Ψ−1

k (Ψk(T )) = T because of property (3) of out and property (1) of how out

and inb are related. If T ∈
⋃
ν⊇λ

MTk+1(ν) then Ψk(Ψ−1
k (T )) = T by property (3)

of inb and property (2) of how out and inb are related.
�

Theorem 3.14. Set t = t1, . . . , t`, x = (x1, . . . , xn)

Jµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈MT (µ)

tcw(P )xwt(P )
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Proof.

Jµ(x1, . . . , xn, t1, . . . , t`)

=
∑
λ⊇µ

∑
R∈RT (λ/µ)

twt(R)sλ(x) Theorem 3.3

=
∑
λ⊇µ

∑
R∈RT (λ/µ)

∑
Q∈SSY T (λ)

twt(R)xwt(Q) Def. of sλ

=
∑

P∈MT (µ)

tcw(P )xwt(P ) Prop. 3.11

�

Remark 3.15. There is a natural crystal structure on the set of semistandard
Young tableaux [BS17]. Moreover, it is not difficult to see that the bijection Ψ
has the property that whenever Ψ(P ) = (Q,R) then P ∈ MT (µ) if and only if Q
is highest weight. Thus Ψ−1 induces a natural crystal structure on MT (µ) where
the highest weight elements are precisely those that lie in MT (µ). This crystal
structure is interpreted algebraically by comparing Corollary 3.10 (where the sum
is over highest weight elements) with Theorem 3.14 (where the sum is over all
elements). This crystal structure coincides with that given in [HS19].

4. Jµ(x, t) and shifted multiset tableaux

4.1. Algebraic Definition of Jµ(x, t). For a strict partition µ of m nonzero parts,
we define the weak symmetric P -Grothendieck polynomial in n ≥ m variables by:

V ∗Pµ(x1, . . . , xn) =∑
σ∈Sn/Sn−m

sgn(σ)

(∏
i

(
xσi

1−xσi

)µi)( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)

where Sn/Sn−m refers to the set of permutations of n with no descents after position
m. We define a slight generalization of this polynomial. Suppose µ has longest part
` = µ1. Let the weak symmetric P -Grothendieck polynomial in n+ ` variables be
defined by:

V ∗Pµ(x1, . . . , xn, t1, . . . , t`) =∑
σ∈Sn/Sn−m

sgn(σ)

(∏
i

(
xσi

1−t`xσi

)
· · ·
(

xσi
1−t`−µi+1xσi

))( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)

Clearly Pµ(x1, . . . , xn, 1, . . . , 1) = Pµ(x1, . . . , xn) whereas Pµ(x1, . . . , xn, 0, . . . , 0) =

Pµ(x1, . . . , xn), the P -Schur polynomial. Note that the coefficient of tT1
1 · · · t

T`
` in

V ∗Pµ(x1, . . . , xn, t1, . . . , t`) is given by:
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∑
σ∈Sn/Sn−m

sgn(σ)hT`(xσ1
, . . . , xσc` ) · · ·hT1

(xσ1
, . . . , xσc1 )

∗xµ1
σ1
· · ·xµmσm

 ∏
i<j,i≤m

xσi + xσj

 ∏
m<i<j

xσi − xσj


where (c`, . . . , c1) = µ′. We can create each permutation in Sn/Sn−m by first
selecting m variables and then permuting them. This yields:∑
τ∈Sn/(Sn−m×Sm)

sgn(τ)
∑

σ∈Sm(τ1,...,τm)

sgn(σ)hT`(xσ(τ1), . . . , xσ(τc` )
) · · ·hT1

(xσ(τ1), . . . , xσ(τc1 ))

∗xµ1

σ(τ1) · · ·x
µm
σ(τm)

 ∏
i<j≤m

xσ(τi) + xσ(τj)

 ∏
i≤m,j>m

xσ(τi) + xτj

 ∏
m<i<j

xτi − xτj


The last three products are constant over the choice of σ so we may apply Lemma
2.1 since again n ≥ c` ≥ · · · ≥ c1. We are left with:∑
τ∈Sn/(Sn−m×Sm)

sgn(τ)
∑

λ=λ`⊇···⊇λ1⊇λ0=µ

∑
σ∈Sm(τ1,...,τm)

sgn(σ)xλ1

σ(τ1) · · ·x
λm
σ(τm)

∗

 ∏
i<j≤m

xσ(τi) + xσ(τj)

 ∏
i≤m,j>m

xσ(τi) + xτj

 ∏
m<i<j

xτi − xτj


where the sum is over all good T-extensions. Reverting to a sum over a single set
of permutations this becomes:

∑
λ=λ`⊇···⊇λ1⊇λ0=µ

∑
σ∈Sn/Sn−m

sgn(σ)xλ1
σ1
· · ·xλmσm

 ∏
i<j,i≤m

xσi + xσj

 ∏
m<i<j

xσi − xσj


Interpreting each λi \ λi−1 as a strip filled with is and then shifting the result to
the left by δ = (m− 1, . . . , 0) one can deduce that this coefficient is the same as:∑

λ⊇(µ−δ)

(NT
λ/µ)Pλ+δ(x1, . . . , xn)

where NT
λ/µ is the number of semistandard Young tableaux of shape λ/(µ− δ) and

weight T1, . . . , T` such that every entry i occurs on or above row ci.

Definition 4.1. Let µ be a partition with m distinct, nonzero parts and conjugate
µ′ = (c`, . . . , c1) and set δ = (m − 1, . . . , 0). If λ ⊇ µ is a partition of m distinct
parts then a shifted restricted tableau of shape (λ−δ)/(µ−δ) is a semistandard
Young tableau of this shape using entries in the alphabet {1, . . . , `} such that each
entry i occurs on or above row ci. We denote the set of all such tableaux by
SRT (λ/µ). If R ∈ SRT (λ/µ) then the weight of R, denoted wt(R) is the vector
(w1, . . . , w`) where wi is the number of is which appear in R.
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Example 4.2. Let λ = (10, 8, 6, 4) and µ = (7, 5, 4, 2) so that c7 = 4, c6 = 4,
c5 = 3, c4 = 3, c3 = 2, c2 = 1, c1 = 1.

· · · · · · · 2 3 5

· · · · · 3 3 6

· · · · 4 7

· · 6 7

Since all 1s and 2s lie in the green all 3s lie in the green or yellow, all 4s and all 5s
lie in the orange, yellow, or green, and all 6s and 7s lie in the red, orange, yellow,
or green, this is an element of SRT (λ/µ). It has weight (0, 1, 3, 1, 1, 2, 2).

The statement before the definition now becomes:

Theorem 4.3. Set t = t1, . . . , t`, x = (x1, . . . , xn) then:

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

twt(R)Pλ+δ(x)

Remark 4.4. Note that RTλ/µ is not the same as SRT(λ+δ)/(µ+δ) since in the first
case we use the constants (c`, . . . , c1) = µ′ and the alphabet {1, . . . , `} and in the
second we would use the constants (d`+m−1, . . . , d1) = (µ + δ)′ and the alphabet
{1, . . . , `+m− 1}.

4.2. Shifted shape multiset tableaux. In this section we will use the following
ordered entries to fill tableaux: S′ = {1′ < 1 < 2′ < 2 < 3′ < · · · }. We use the
following notation. Let a, z ∈ S′

• a <u z means a < z or else a = z and they are unprimed.
• a <p z means a < z or else a = z and they are primed.
• a >u z means a > z or else a = z and they are unprimed.
• a >p z means a > z or else a = z and they are primed.

Definition 4.5. Given a partition with distinct parts, µ = (µ1, . . . , µ`), a signed
shifted multiset tableau of shape µ, or element of SMT±(µ), is an arrangement
of boxes with µi adjacent boxes in row i for each i and where the rows are situated
such that the leftmost box of row i lies one column to the left of the leftmost box
of row i+ 1, along with a filling of said boxes with the following properties.

(1) Each box contains a nonempty multiset of the numbers {1′, 1, 2′, 2, 3′, . . .}
such that the multiplicity of each primed number is 0 or 1.

(2) Suppose entry z lies in a box directly to the right of box b. Then for all
a ∈ b we have a <u z.

(3) Suppose entry z lies in a box directly below box b. Then for some a ∈ b we
have a <p z.

If, in addition the smallest entry in each row is not primed we call such a tableau
simply a shifted multiset tableau of shape µ or an element of SMT (µ).1

1Compare to the definitions of weak set-valued shifted tableaux in [HKP+17] and set-valued
shifted tableaux in [IN13].
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The weight of a (signed) shifted multiset tableau is the vector (w1, w2, . . .) where
wi is the total number of is or i′s appearing in the tableau. We label the \ direction
diagonals from left to right by {`, `− 1, . . . , 2, 1} where ` = µ1. By box dij we refer
to the box that is in the ith row (from top to bottom) of diagonal j. Define the
diagonal weight of a shifted multiset tableau, dw, to be the vector (T1, . . . , T`) where
Tj is the difference between the number of entries in diagonal j and the number
of boxes in diagonal j. Let, |dij | mean the total number of entries in box dij and
|dij(x)| refer, more specifically, to the number of entries in box dij in tableau x.
The convention is |dij | = 0 if dij describes a position not in the tableau.

Example 4.6. Let µ = (5, 4, 2). Then

1 1113 3 4′45 7′7

22 4′4 5′6′ 7′

45′ 55

is an element P ∈ SMT (µ) with wt(T ) = (4, 2, 2, 5, 5, 1, 3) and dw(P ) = (1, 2, 1, 5, 2).

Definition 4.7. An element of SMT±(µ) with diagonal weight (0, . . . , 0) is called
a signed shifted semistandard tableau of shape µ, or element of SST±(µ). An
element of SMT (µ) with diagonal weight (0, . . . , 0) is called a shifted semistan-
dard tableau of shape µ, or element of SST (µ).

Remark 4.8. Note that SST (µ), which is the subset of SST±(µ) with no primes
in the leftmost \ direction diagonal, agrees with the classical definition of shifted
semistandard tableau (e.g., [Ser09]) and is therefore the generating set for the P -
Schur function Pµ. Moreover, if m is the number of parts of µ, it is not difficult to
see that SST±(µ) differs from SST (µ) and SMT±(µ) differs from SMT (µ) only
by a power of 2m.

Definition 4.9. A maximal shifted multiset tableau of shape µ, or element of
SMT (µ) is an element of SMT (µ) with the following properties:

(1) Each box dij may only contain is.
(2) For each i ≥ 1 and k ≥ 0 we have

∑
1≤j≤k

|d(i+1)j | − |di(j−1)| ≤ 0

Example 4.10. Let µ = (4, 3, 3, 1). Then

1 1 11 1 11 11 1

2 22 2 2 222

33 3 3 33

44 44

is an element P ∈MT (µ) with wt(P ) = (7, 6, 5, 4) and cw(P ) = (1, 3, 4, 2).

Proposition 4.11. There is a bijection from the subset of SMT (µ) with weight λ
and diagonal weight T to the subset of SRT (λ/µ) with weight T.
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Proof. Let X be the subset of SMT (µ) with weight λ and diagonal weight T that
satisfy property (1) above. Let Y be the set of weakly increasing by row fillings of
shape (λ− δ)/(µ− δ) and weight T such that every entry i occurs on or above row
ci (equivalently: row i only contains entries greater than `− µi). The map x → y
where y is defined by the property that for each (i, j), row i of y contains exactly
|dij(x)|−1 copies of j is a bijection from X to Y . Moreover if x→ y then x satisfies
property (2) above if and only if the columns of y are strictly decreasing down rows:
Indeed, if there is some i and some k such that

∑
1≤j≤k

d(i+1)j − di(j−1) > 0 then

for the minimal such k, row i + 1 of y will have an entry k that lies above an
entry k′ of row i with k′ ≥ k. On the other hand, if row i + 1 of y contains a
k which lies above some k′ in row i with k′ ≥ k then we are guaranteed to have∑
1≤j≤k

d(i+1)j−di(j−1) > 0. Since the elements of Y that are strictly decreasing down

columns are exactly the elements of SRT (λ/µ) with weight T, the map restricted
to the elements of X that satisfy property (2) gives the desired bijection. �

Example 4.12. The tableaux of examples 4.2 and 4.10 correspond under this
bijection.

Corollary 4.13. Let µ be a partition with m distinct, nonzero parts and set t =
t1, . . . , t`, x = (x1, . . . , xn) then

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

Q∈SMT (µ)

tdw(Q)Pwt(Q)(x)

4.3. Combinatorial Definition of Pµ(x, t). In this section we will give an equiv-
alent combinatorial definition of Pµ. We will need a certain column insertion al-
gorithm. In the below, we describe how to insert and reverse insert an element
into a column.

Let K be a valid column (each box of K contains exactly one element from S′

and whenever a lies above z in K we have a <p z). Now let a ∈ S′. We insert a
into K, denoted a ↪→ K as follows: Let â denote the uppermost entry in K such
that a <u â. If â exists, replace â with a and bump out â. Otherwise, append a to
the bottom of K. The result is recorded as the pair (K ′, â) if the second of this pair
exists and just K ′ otherwise. On the other hand if z ∈ S′ is any element such that
z >u a for some a ∈ K then we define reverse insertion of z into K as follows:
Let ẑ denote the bottommost entry in K such that z >u ẑ. Replace ẑ with z and
bump out ẑ. The result is recorded as the pair (ẑ, K ′).

Notice the basic properties:

(1) If a ↪→ K = K ′ then K ′ is a valid column.
(2) if a ↪→ K = (K ′, â) then K ′ is a valid column.
(3) If K ←↩ z = (ẑ, K ′) then K ′ is a valid column.
(4) If a <u z then either

• z ↪→ K = K ′ and a ↪→ K ′ = (K ′′, â).
• z ↪→ K = (K ′, ẑ) and a ↪→ K ′ = (K ′′, â) where â <u ẑ.

(5) If a <u z and K ←↩ a = (â,K ′) and K ′ ←↩ z = (ẑ, K ′′) then â <u ẑ.

Now, fix a partition µ with m distinct nontrivial parts and with conjugate µ′ =
(c`, . . . , c1). We will refer to both columns and diagonals. Both are labeled in
decreasing order from left to right starting on `.
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Proposition 4.14. There is a bijection SMT±(µ)→
⋃
λ⊇µ

SST±(λ)× SRT (λ/µ),

such that if P → (Q,R) then:

(1) wt(P ) = wt(Q).
(2) dw(P ) = wt(R).

First some reductions. Define the set SMTk(λ) to be the subset of SMT±(λ)
which have only single entries in diagonals k − 1, . . . , 1, 0,−1, . . .. Define the set
SRTk(λ/µ) to be the subset of SRT (λ/µ) which have only entries from {1, 2, . . . , k−
1}. Given a pair (Q,R) ∈ SMTk(λ) × SRTk(λ/µ) define the weight and diagonal
weight of this pair as wt(Q,R) = wt(Q) and dw(Q,R) = dw(Q)+wt(R). To achieve
oar goal it suffices to find a weight and diagonal weight preserving bijection for
each k (and then compose) from

⋃
λ⊇µ

SMTk(λ)× SRTk(λ/µ) to
⋃
λ⊇µ

SMTk+1(λ)×

SRTk+1(λ/µ). To do the latter, it is enough to find a weight preserving bijection
Φk : SMTk(λ) →

⋃
ν⊇λ

SMTk+1(ν) where the union is over all ν such ν/λ is a

horizontal strip with no box below row ck. (equivalently, below the lowest box of
diagonal k of λ: in the previous map the only λ ⊇ µ appearing have length of
diagonal k equal to ck (equal to the length of diagonal k of µ)).

Φk will be defined by repetitively applying the following map: Let T ∈ SMTk(λ).
Define out(T ) as follows: First, in each box of diagonal k circle (one of) the mini-
mum entry(s) from that box. Now find (one of) the largest noncircled entry(s) in
diagonal k and remove it and insert it into the undercolumn to the right of the
column from which it was removed (where the undercolumn denotes the part of
the column that lies below a circled entry, or, if there is no circled entry in the
column, the entire column). After this, each time an element is bumped, insert it
into the next undercolumn to the right until some entry is eventually appended to
an undercolumn. Note the following properties of out.

(1) The path of positions where an element is bumped/appended moves weakly
down as we move to the right.

(2) Properties (1), (2), and (3) in the definition of shifted multiset tableaux are
preserved under out.

(3) If out(T ) and out(out(T )) are both defined then the box which out ap-
pends to out(T ) lies strictly to the right of the box that out appends to
T .
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Example 4.15. Suppose that k = 2. Each −→ represents an application of out.

11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′5

−→
11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′ 5

−→

11 2©′2 2 2 4 5′

2 3©′3 4′ 5′ 5

34′ 4© 5′

−→
11 2©′2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

−→

11 2©′ 2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

Uncircled numbers being removed are shown in red, and the boxes being added
appear in green.

We will also need a map called inb. Let T ∈ SMTk(ν) for some ν such that ν/λ
is a horizontal strip with no box below row ck and suppose b is some corner box
of T that lies on or above row ck. Define inb(T ) as follows: First, in each box of
diagonal k circle (one of) the minimum entry(s) from that box. Now remove the
entry from box b. If this entry less than the circled entry in the column to the left or
both are equal and primed, reverse insert it into the undercolumn of the column
to the left. After this, each time an element is bumped that is less than the circled
entry in the column to its left or equal to it and primed, reverse insert it into the
undercolumn of the column to the left. When an element is bumped that is greater
than the circled entry in the column to its left or equal to it and unprimed, add it
to the box containing this circled element. Note the following properties of inb.

(1) The path of positions where an element is bumped/added moves weakly up
as we move to the left.

(2) Properties (2), and (3) in the definition of shifted multiset tableaux are
preserved under inb. Property (1) is satisfied unless inb adds a primed
entry to a box already containing a the same noncircled primed entry.

(3) If b′ lies to the left of b and if inb(T ) and inb′(inb(T )) are both defined then
the element that inb′ adds to diagonal k of inb(T ) is greater than, or equal
to and unprimed, the element inb adds to diagonal k of T .

Moreover, out and inb are related as follows:

(1) If out appends box b when applied to T , then inb(out(T )) = T .
(2) If the element that inb adds to diagonal k when applied to T is the largest,

or tied for the largest and unprimed, uncircled element on diagonal k then
inb(T ) satisfies property (1) in the definition of shifted multiset tableaux
(and hence is a shifted multiset tableau), and out(inb(T )) = T .
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Example 4.16. Set k = 2. Then inred(inorange(inyellow(ingreen(T )))) = T ′ where:

T =
11 2©′ 2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

−→
11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′5

= T ′

Note that T is the last tableau of example 4.15 and T ′ is the first tableau of 4.15.

Proof. We define Φk simply by applying out until diagonal k only contains single
entries.

(1) Φk is well defined. For any tableau T denote the shape of T by T s. If
T ∈ SMTk(λ) then Property (3) of out implies Φk(T )s/T s is a horizontal
strip and Property (1) of out implies all of its boxes lie on or above row
ck. On the other hand Property (2) of out implies that Φk(T ) is a valid
shifted multiset tableau, and, by construction Φk(T ) has only single entries
in diagonals k, k − 1, . . . , 0,−1, . . ..

(2) Φk is injective. Suppose T 6= T ′ ∈ SMTk(λ) with Φk(T ) = Φk(T ′) then
by Property (3) of out and construction of Φk there is some ν and some
S 6= S′ ∈ SMTk(ν) with out(S) = out(S′). But then if b is the box that
out adds to S or equivalently to S′, property (1) of how out and inb are
related says S = inb(out(S)) = inb(out(S′)) = S′).

(3) Φk is surjective. Let T ∈
⋃
ν⊇λ

SMTk+1(ν) where the union is over all ν such

ν/λ is a horizontal strip with no box below row ck. Let b1, . . . , br denote
the boxes labeled from left to right of T s/λ. Set S = inb1(· · · (inbr (T ) · · · ).
Property (3) of inb implies that for each i we have that inbi adds a an el-
ement to diagonal k when applied to inbi+1(· · · (inbr (T ) · · · ) that is the
largest, or tied for largest and unprimed, noncircled element in diago-
nal k. This along with property (2) of inb implies inbi(· · · (inbr (T ) · · · )
is a valid shifted multiset tableau. Moreover, property (2) of how out
and inb are related says that in this case out(inbi(· · · (inbr (T ) · · · )) =
inbi+1

(· · · (inbr (T ) · · · ). All together, this implies that S is a valid shifted
multiset tableau and that Φk(S) = T . By construction, S has shape λ and
has only single entries in diagonals k− 1, . . . , 0,−1, . . ., i.e., S ∈ SMTk(λ).

�

Theorem 4.17. Let t = t1, . . . , t`, x = (x1, . . . , xn) then:

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈SMT (µ)

tdw(P )xwt(P )
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Proof. Let m denote the number of parts of µ.

Pµ(x1, . . . , xn, t1, . . . , t`)

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

twt(R)Pλ+δ(x) Theorem 4.3

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

∑
Q∈SST (λ+δ)

twt(R)xwt(Q) Def. of Pλ+δ

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

∑
Q∈SST±(λ+δ)

(2−m)twt(R)xwt(Q) Def. of SST±

=
∑

P∈SMT±(µ)

(2−m)tdw(P )xwt(P ) Prop. 4.14

=
∑

P∈SMT (µ)

tdw(P )xwt(P ) Def. of SMT±

�

Example 4.18. Let us consider P2,1(x1, x2, t1, t2). We will compute the degree 4
part in x (which is the degree 1 part in t). We have the following tableaux:

11 1

2

1 11

2

11 2′

2

1 1

22

1 12′

2

1 12

2

1 2′

22

1 2′2

2

Which yields x3
1x2t1 + x3

1x2t2 + 2x2
1x

2
2t1 + 2x2

1x
2
2t2 + x1x

3
2t1 + x1x

3
2t2, which can

be expressed in terms of P -Schur polynomials as t1P3,1(x1, x2) + t2P3,1(x1, x2).
Compare with example 3.3 of [HKP+17].

Remark 4.19. There exists a q-crystal structure on the set of semistandard shifted
tableaux [Hir18]. Under this structure, the highest weight elements are precisely
those for which every entry on row i is an (unprimed) i. Moreover, the bijection
Φ fixes the minimum entry on each row. Thus restricting Φ gives a bijection from
SMT (µ) →

⋃
λ⊇µ

SST (λ) × SRT (λ/µ). Moreover, it is not difficult so see that

this restriction of Φ has the property that whenever Φ(P ) = (Q,R) then P ∈
SMT (µ) if and only if Q is highest weight. Thus Φ−1 induces a queer crystal
structure on SMT (µ) where the highest weight elements are precisely those that
lie in SMT (µ). This crystal structure is interpreted algebraically by comparing
Corollary 4.13 (where the sum is over highest weight elements) with Theorem 4.17
(where the sum is over all elements).
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