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EXHAUSTING FAMILIES OF REPRESENTATIONS AND

SPECTRA OF PSEUDODIFFERENTIAL OPERATORS

VICTOR NISTOR AND NICOLAS PRUDHON

Abstract. A powerful tool in the spectral theory and the study of Fredholm

conditions for (pseudo)differential operators is provided by families of repre-
sentations of a naturally associated algebra of bounded operators. Motivated

by this approach, we define the concept of an exhausting family of represen-

tations of a C∗-algebra A. Let F be an exhausting family of representations
of A. We have then that an abstract differential operator D affiliated to A is

invertible if, and only if, φ(D) is invertible for all φ ∈ F . This property char-

acterizes exhausting families of representations. We provide necessary and
sufficient conditions for a family of representations to be exhausting. If A is a

separable C∗-algebra, we show that a family F of representations is exhaust-

ing if, and only if, every irreducible representation of A is weakly contained
in a representation φ ∈ F . However, this result is not true, in general, for

non-separable C∗-algebras. A typical application of our results is to paramet-
ric families of differential operators arising in the analysis on manifolds with

corners, in which case we recover the fact that a parametric operator P is

invertible if, and only if, its Mellin transform P̂ (τ) is invertible, for all τ ∈ Rn.
The paper is written to be accessible to non-specialists in C∗-algebras.
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Introduction

Let us begin by motivating the present work using spectral theory and the related
Fredholm conditions for pseudodifferential operators. A typical result in spectral
theory of N -body Hamiltonians [7, 12, 13, 16] associates to the Laplacian H a
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2 V. NISTOR AND N. PRUDHON

family of other operators Hφ, φ ∈ F , such that the essential spectrum Specess(H)
of H is obtained in terms of the usual spectra Spec(Hφ) of Hφ as the closure of the
union of the later:

(1) Specess(H) = ∪φ∈F Spec(Hφ) .

It was noticed that sometimes the closure is not necessary, and one of the motiva-
tions of our paper is to clarify this issue. It is well known that the operators Hφ

are obtained as homomorphic images of the operator H, that is Hφ = φ(H), where
the morphisms φ ∈ F are defined on a certain C∗-algebra associated to H. This
justifies the study of families of representations. See for example [13] for results in
this direction.

Another motivation comes from the characterization of Fredholm operators (Fred-
holm conditions) for (pseudo)differential operators [17]. More precisely, for suitable
manifolds M and for differential operators D on M compatible with the geometry,
there was devised a procedure to associate to M the following data:

(i) spaces Zα, α ∈ I;
(ii) groups Gα, α ∈ I; and

(iii) Gα-invariant differential operators Dα acting on Zα ×Gα.

This data can be used to characterize the Fredholm property of D as follows. Let
m be the order of D, then

(2) D : Hs(M)→ Hs−m(M) is Fredholm ⇔ D is elliptic and

Dα is invertible for all α ∈ I .

Moreover, the spaces Zα and the groups Gα are independent of D. If M is compact
(without boundary), then the index I is empty (so there are no Dαs). In general,
for non-compact manifolds, the conditions on the operators Dα are, however, nec-
essary. The non-compact geometries to which this characterization of Fredholm
operators applies include: asymptotically euclidean manifolds, asymptotically hy-
perbolic manifolds, manifolds with poly-cylindrical ends, and many others. Again,
the operators Pα are homomorphic images of the operator P , which motivates the
study of families of representations.

The results in [12, 13, 17] mentioned above are the main motivation for this
work, which is a purely theoretical one on the representation theory of C∗-algebras,
even though the applications are to spectral theory and (pseudo)differential oper-
ators. We thus define the concept of an exhausting family F of representations of
a C∗-algebra A as having the property that for any a ∈ A, there exists φ ∈ F such
that ‖a‖ = ‖φ(a)‖. We have learned from G. Skandalis that he has also considered
this condition (private communication). The family F does not have to consist of
irreducible representations. Let F be an exhausting family of representations of A,
we show then that an abstract differential operator D affiliated to A is invertible if,
and only if, φ(D) is invertible for all φ ∈ F . This property characterizes exhaust-
ing families of representations. We provide a necessary and sufficient conditions
for a family of representations to be exhausting in terms of the topology on the
Jacobson primitive ideal spectrum Â of A. If A is a separable C∗-algebras, we show
that a family F of representations is exhausting if, and only if, every irreducible
representation of A is weakly contained in a representation φ ∈ F .

A typical application is to parametric families of differential operators arising in
the analysis on manifolds with corners (more precisely, in the case of manifolds with
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polycylindrical ends). In that case, we recover the fact that an operator compatible
with the geometry is invertible if, and only if, its Mellin transform is invertible. We
discuss also several other examples. Due to the nature of the main applications to
other areas than the study of C∗-algebras, we write the paper with an eye towards
the non-specialist in C∗-algebras.

We thank V. Georgescu for useful discussions and for providing us copies of his
papers. We also thank M. Dadarlat, S. Baaj, and G. Skandalis and for useful dis-
cussions. The first named author would like to also than the Max Planck Institute
for Mathematics in Bonn, where part of this work was performed, for its hospitality.

1. C∗-algebras and their primitive ideal spectrum

We begin with a review of some needed general C∗-algebra results. We recall
[10] that a C∗-algebra is a complex algebra A together with a conjugate linear
involution ∗ and a complete norm ‖ ‖ such that (ab)∗ = b∗a∗, ‖ab‖ ≤ ‖a‖‖b‖,
and ‖a∗a‖ = ‖a‖2, for all a, b ∈ A. (The fact that ∗ is an involution means
that a∗∗ = a.) In particular, a C∗-algebra is also a Banach algebra. Let H be
a Hilbert space and denote by L(H) the space of linear, bounded operators on
H. One of the main reasons why C∗-algebras are important is that every norm-
closed subalgebra A ⊂ L(H) that is also closed under taking Hilbert space adjoints
is a C∗-algebra. Abstract C∗-algebras have many non-trivial properties that can
then be used to study the concretely given algebra A. Conversely, every abstract
C∗-algebra is isometrically isomorphic to a norm closed subalgebra of L(H) (the
Gelfand-Naimark theorem, see [10, theorem 2.6.1]).

Let A denote a generic C∗-algebra throughout this paper. A representation of A
on the Hilbert space Hπ is a ∗-morphism π : A→ L(Hπ) to the algebra of bounded
operators on Hπ. We shall use the fact that every morphism φ of C∗-algebras (and
hence any representation of a C∗-algebra) has norm ‖φ‖ ≤ 1. Consequently, every
bijective morphism of C∗-algebras is an isometric isomorphism, and, in particular

(3) ‖φ(a)‖ = ‖a+ ker(φ)‖A/ ker(φ) .

A two-sided ideal I ⊂ A is called primitive if it is the kernel of an irreducible
representation. We shall denote by Â the set of primitive ideals of A. For any
two-sided ideal J ⊂ A, we have that its primitive ideal spectrum Ĵ identifies with
the set of all the primitive ideals of A not containing the two-sided ideal J ⊂ A.
It turns out then that the sets of the form Ĵ , where J ranges through the set of
two-sided ideals J ⊂ A, define a topology on Â, called the Jacobson topology on Â.

By φ : A → L(Hφ) we shall denote generic representations of A. For any

representation φ of A, we define its support, supp(φ) ⊂ Â as the complement of

k̂er(φ), that is, supp(φ) := Âr k̂er(φ) is the set of primitive ideals of A containing
ker(φ).

Remark 1.1. The irreducible representations of A do not form a set (there are too
many of them). The unitary equivalence classes of irreducible representations of
A do form a set however, which we shall denote by Irr(A). By π : A → L(Hπ)
we shall denote an arbitrary irreducible representation of A. There exists then by
definition a surjective map

(4) can : Irr(A)→ Â
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that associates to (the class of) each irreducible representation π ∈ Irr(A) its kernel
ker(π). For each a ∈ A and each irreducible representation π of A, the algebraic
properties of π(a) depend only on the kernel of π. That yields a well defined
function

(5) can : Irr(A) 3 π → ‖π(a)‖ ∈ [0, ‖a‖] ,

which descends to a well defined function

(6) na : Â 3 π → ‖π(a)‖ ∈ [0, ‖a‖] , na(ker(π)) = ‖π(a)‖ .

A C∗-algebra is called type I if, and only if, the surjection can : Irr(A) 3 π → Â
of Equation (5) is, in fact, a bijection. Then the discussion of Remark 1.1 becomes
unnecessary and several arguments below will be (slightly) simplified since we will
not have to make distinction between equivalence classes of irreducible represen-
tations and their kernels. Fortunately, many (if not all) of the C∗-algebras that
arise in the study of pseudodifferential operators and of other practical questions
are type I C∗-algebras. In spite of this, it seems unnatural at this time to restrict
our study to type I C∗-algebras. Therefore, we will not assume that A is a type I
C∗-algebra, unless this assumption is really needed.

We shall need the following simple (and well known) lemma.

Lemma 1.2. The map na : Â 3 π → ‖π(a)‖ ∈ [0, ‖a‖] is lower semi-continuous,

that is, the set {π ∈ Â, ‖π(a)‖ > t } is open for any t ∈ R.

We include the simple proof for the benefit of the non-specialist.

Proof. Let us fix t ∈ R. Since na takes on non-negative values, we may assume
t ≥ 0. Let then χ : [0,∞) → [0, 1] be a continuous function that is zero on [0, t2]
but is > 0 on (t2,∞) and let b = χ(a∗a), which is defined using the functional
calculus with continuous functions. If φ : A→ L(Hφ) is a representation of A, then
we have that ‖φ(a)‖2 = ‖φ(a∗a)‖ ≤ t2 if, and only if,

χ(φ(a∗a)) = φ(χ(a∗a)) = φ(b) = 0 .

Let then J be the (closed) two sided ideal generated by b, that is, J := AbA. Then

{π ∈ Â, ‖π(a)‖ ≤ t } = {π ∈ Â, π(b) = 0 } = {π ∈ Â, π(J) = 0 } = Âr Ĵ ,

is hence a closed set. Consequently, {π ∈ Â, ‖π(a)‖ > t } is open, as claimed. �

2. Faithful families

Let F be a set of representations of A. We say that the family F is faithful
if the direct sum representation ρ := ⊕φ∈F φ is injective. We have the following
well known result that will serve us as a model for characterization of “exhausting
families” of representations in the next subsection.

Proposition 2.1. Let F be a family of representations of the C∗-algebra A. The
following are equivalent:

(i) The family F is faithful.

(ii) The union ∪φ∈F supp(φ) is dense in Â.
(iii) ‖a‖ = supφ∈F ‖φ(a)‖ for all a ∈ A.
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Proof. (i)⇒(ii). We proceed by contradiction. Let us assume (i), but that (ii) is

not true. That is, we assume that ∪φ∈F supp(φ) is not dense in Â. Then there

exists a non empty open set Ĵ ⊂ Â that does not intersect ∪φ∈F supp(φ), where
J ⊂ A is a non-trivial two-sided ideal. Then J 6= 0 is contained in the kernel of
⊕φ∈F φ and hence F is not faithful. This is a contradiction, and hence (ii) must be
true if (i) is true.

(ii)⇒(iii). For a given a ∈ A, the map sending the kernel kerπ of an irreducible

representation π to ‖π(a)‖ is a lower semi-continuous function Â → [0,∞), by
Lemma 1.2. Moreover, for any a ∈ A there exists an irreducible representation πa
such that ‖πa(a)‖ = ‖a‖. Hence, for every ε > 0, {π ∈ Â, ‖π(a)‖ > ‖a‖−ε} is a non
empty open set (it contains kerπa) and then it contains some π ∈ ∪φ∈F supp(φ),

since the later set was assumed to be dense in Â. Let φ ∈ F be such that ker(π) ⊃
ker(φ). Then

‖a‖ ≥ ‖φ(a)‖ ≥ ‖π(a)‖ > ‖a‖ − ε ,
where the first inequality is due to the general fact that representations of C∗-
algebras have norm ≤ 1 and the second one is due to the fact that

‖φ(a)‖ = ‖a+ ker(φ)‖A/ ker(φ) ≥ ‖a+ ker(π)‖A/ ker(π) = ‖π(a)‖ ,

by Equation (3). Consequently, ‖a‖ = supφ∈F ‖φ(a)‖, as desired.
(iii)⇒(i). Let ρ := ⊕φ∈F φ : A → ⊕φ∈F L(Hφ). We need to show that ρ

is injective. The norm on ⊕φ∈F L(Hφ) is the sup norm, that is, ‖(Tφ)φ∈F‖ =
supφ∈F ‖Tφ‖. Therefore ‖ρ(a)‖ = supφ∈F ‖φ(a)‖ = ‖a‖, since we are assuming
(iii). Consequently, ρ is isometric, and hence it is injective. �

In the next proposition we shall need to assume that A is unital (that is, that
it has a unit 1 ∈ A). This assumption is not very restrictive since, given any non-
unital C∗-algebra A0, the algebra with adjoint unit A = A+

0 := A0⊕C has a unique
C∗-algebra norm.

For any unital C∗-algebra A and any a ∈ A, we denote by SpecA(a) the spectrum
of a in A, defined by

SpecA(a) := {λ ∈ C, λ− a is not invertible in A } .

It is known classically that SpecA(a) is compact and non-empty, unlike in the case
of unbounded operators [10]. We shall need the following general property of C∗-
algebras.

Lemma 2.2. Let A1 ⊂ B be two C∗-algebras and a ∈ A1 be such that it has an
inverse in B, denoted a−1. Then a−1 ∈ A1. In particular, the spectrum of a is
independent of the C∗-algebra in which we compute it:

(7) SpecA1
(a) = SpecB(a) =: Spec(a) .

If a ∈ A for some non-unital C∗-algebra, then we define Spec(a) := SpecA+(a),
where A+ := A⊕C, so Spec(a) is independent of the C∗-algebra containing a also
in the non-unital case.

Proposition 2.3. Let F be a faithful family of representations of a unital C∗-
algebra A. An element a ∈ A is invertible if, and only if, φ(a) is invertible in
L(Hφ) for all φ ∈ F and the set {‖φ(a)−1‖, φ ∈ F} is bounded.
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Proof. If a is invertible, φ(a) also is invertible and ‖φ(a)−1‖ = ‖φ(a−1)‖ ≤ ‖a−1‖
is hence bounded.

Conversely, let ρ be the direct sum of all the representations φ ∈ F , that is,

(8) ρ := ⊕φ∈F φ : A −→ ⊕φ∈F L(Hφ) .

If ‖φ(a)‖ is invertible for all φ ∈ F and there exists M independent of φ such
that ‖φ(a)−1‖ ≤ M , then b := (φ(a)−1)φ∈F is a well defined element in B :=
⊕φ∈FL(Hφ) and b is an inverse for ρ(a) in B. Let A1 := ρ(A). Then ρ(a) ∈ A1

is invertible in B. By the Lemma 2.2, ρ(a) is invertible in A1. Then observe that
since ρ is continuous, injective, and surjective morphism of C∗-algebras, it defines
an isomorphism of algebras A→ A1. We then conclude that a is invertible in A as
well. �

The following is a converse of the above proposition. Recall that a ∈ A is called
normal if aa∗ = a∗a.

Proposition 2.4. Let F be a family of representations of a unital C∗-algebra A
with the following property:

If a ∈ A is such that φ(a) is invertible in L(Hφ) for all φ ∈ F and
the set { ‖φ(a)−1‖, φ ∈ F } is bounded, then a is invertible in A.

Then the family F is faithful.

Proof. Clearly, the family F is not empty, since otherwise all elements of A would
be invertible, which is not possible. Let us assume, by contradiction, that the family
F is not faithful. Then, by Proposition 2.1(ii), there exists a non-empty open set

V ⊂ Â that does not intersect ∪φ∈F supp(φ). Let J ⊂ A, J 6= 0, be the (closed)

two-sided ideal corresponding to V , that is, V = Ĵ . Since F is non-empty, we have
J 6= Â. Then every φ ∈ F is such that φ = 0 on J . Let a ∈ J , a 6= 0. By replacing
a with a∗a ∈ J , we can assume a ≥ 0. Let λ ∈ Spec(a), λ 6= 0. Such a λ exists since
a 6= 0 and is normal and a 6= 0. Let c := λ− a. Then, for any φ ∈ F , φ(c) = λ ∈ C
is invertible and ‖φ(c)−1‖ = λ−1 is bounded. However, c is not invertible (in any
C∗-algebra containing it) since it belongs to the non-trivial ideal J . �

Recall that C0(X) is the set of continuous functions on X that have vanishing
limit at infinity. Then C0(X) is a commutative C∗-algebra, and all commutative
C∗-algebras are of this form.

Example 2.5. Let µα, α ∈ I, be a family of positive, regular Borel measures on a
locally compact space X. Let φα be the corresponding multiplication representation
of the C∗-algebra C0(X) → L(L2(X,µα)). We have supp(φα) = supp(µα) and the
family F := {φα, α ∈ I} is faithful if, and only if, ∪α∈I supp(µα) is dense in X.
In particular, if each µα is the Dirac measure concentrated at some xα ∈ X, then
φα(f) = f(xα) =: evxα(f) ∈ C and supp(µα) = {xα}. We shall henceforth identify
xα ∈ X with the corresponding evaluation irreducible representation evxα . Then
we have that

F = {evxα , α ∈ I} is faithful ⇔ {xα, α ∈ I} is dense in X .

This example extends right away to C∗algebras of the form C0(X;K) of functions
with values compact operators on some given Hilbert space.

We conclude our discussion of faithful families with the following result. We
denote by ∪Sα := ∪αSα the closure of the union of the family of sets Sα.
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Proposition 2.6. Let F be a family of representations of a unital C∗-algebra A.
Then F is faithful if, and only if,

(9) Spec(a) = ∪φ∈F Spec(φ(a)) .

for any normal a ∈ A.

Proof. Let us assume first that the family F is faithful and that a is normal. Since
we have that Spec(φ0(a)) ⊂ Spec(a) for any representation φ0 of A, it is enough
to show that Spec(a) ⊂ ∪φ∈F Spec(φ(a)). Let us assume the contrary and let
λ ∈ Spec(a) r ∪φ∈F Spec(φ(a)). By replacing a with a − λ, we can assume that
λ = 0. We thus have that φ(a) is invertible for all φ ∈ F , but a is not invertible (in
A). Moreover, ‖φ(a)−1‖ ≤ δ−1, where δ is the distance from λ = 0 to the spectrum
of φ(a), by the properties of the functional calculus for normal operators. This is
however a contradiction by Proposition 2.3, which implies that a must be invertible
in A as well.

To prove the converse, let us assume that Spec(a) ⊂ ∪φ∈F Spec(φ(a)), for all
normal elements a ∈ A. Let J be a non-trivial (closed selfadjoint) two-sided ideal
on which all the representations φ ∈ F vanish. We have to show that J = 0,
which would imply that F is faithful. Let a ∈ J be a normal element. Then
Spec(a) ⊂ ∪φ∈F Spec(φ(a)) = {0}. Since a is normal we deduce a = 0 and hence
J has no normal element other than 0. Then, for any a ∈ J , we can write a =
1/2(a+a∗)+1/2(a−a∗), the sum of two normal elements in J because J is selfajoint.
Therefore 1/2(a+ a∗) = 1/2(a− a∗) = 0, and hence a = 0 and J = 0. �

3. Full and exhausting families

Let us notice that Example 2.5 shows the ‘sup’ in the relation ‖a‖ = supφ∈F ‖φ(a)‖
(Proposition 2.1) may not be attained. It also shows that the closure of the union
in Equation (9) is needed. Sometimes, in applications, one does obtain however
the stronger version of these results (that is, the sup is attained and the closure is
not needed), see [7, 13], for example. Moreover, the condition that the norms of
φ(a)−1 be uniformly bounded (in φ) for any fixed a ∈ A is inconvenient and often
not needed in applications. For this reason, we introduce now a more restrictive
class of families of representations of A.

Recall that supp(φ) is the set of primitive ideals of A that contain ker(φ).

Definition 3.1. Let F be a set of representations of the C∗-algebra A.

(i) We shall say that F is full if Â = ∪φ∈F supp(φ).
(ii) We shall say that F is exhausting if, for any a ∈ A, there exists φ ∈ F such

that ‖φ(a)‖ = ‖a‖.

We see that a family F is exhausting if, and only if, for any a ∈ A,

‖a‖ = max
φ∈F

‖φ(a)‖ .

Example 3.2. By classical results, the set of all irreducible representations of a
C∗-algebra is exhausting. See also Theorem 3.6.

Let us record the following simple facts, for further use.

Proposition 3.3. Let F be a set of representations of the C∗-algebra A. If F is
full, then F is exhausting. If F is exhausting, then it is also faithful.
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Proof. Let us prove first that any full family F is exhausting. Indeed, let a ∈ A.
Then there exists an irreducible representation π of A such that ‖π(a)‖ = ‖a‖. Let
φ ∈ F be such that π ∈ supp(φ), then, as in the proof of (ii)⇒(iii) in Proposition
2.1, we have that ‖a‖ = ‖π(a)‖ ≤ ‖φ(a)‖ ≤ ‖a‖. Hence ‖φ(a)‖ = ‖a‖.

Let us prove first that any exhausting family F is faithful. Indeed, let us con-
sider the representation ρ := ⊕φ∈F φ : A → ⊕φ∈F L(Hφ). By the definition of an
exhausting family of representations, the representation ρ is isometric. Therefore
it is injective and consequently F is faithful. �

We summarize the above Proposition in

F full ⇒ F exhausting ⇒ F faithful.

In the next two examples we will see that there exist faithful families that are
not exhausting and exhausting families that are not full.

Example 3.4. We consider again the framework of Example 2.5 and consider only
families of irreducible representations. Thus A = C0(X), for a locally compact
space X. The irreducible representations of A then identify with the points of X,
since X ' Â. A family F of irreducible representations of A thus identifies with a
subset F ⊂ X. We then have that a family F ⊂ X of irreducible representations of
A = C0(X) is faithful if, and only if, F is dense in X. On the other hand, a family
of irreducible representations of A = C0(X) is full if, and only if, F = X.

The relation between full and exhausting families is not so simple. We begin
with the following remark on the above example.

Remark 3.5. If X is moreover metrisable, then every exhausting family F ⊂ X is
also full, because for any x ∈ X, there exists a compactly supported, continuous
function ψx : X → [0, 1] such that ψx(x) = 1 and ψx(y) < 1 for y 6= x (we can do
that by arranging that ψx(y) = 1 − d(x, y), for d(x, y) small, and use the Tietze
extension theorem.

In general, however, it is not true that any exhausting family is full. Indeed, let
I be an uncountable set and X = [0, 1]I . Let x ∈ X be arbitrary, then the family
F := X r {x} is exhausting but is not full. See also Propositions 4.3.

We now explain how the concepts of full and exhausting sets of representations
are useful for invertibility questions. Let us first notice that if an element a ∈ A is
not invertible, then either a∗a or aa∗ are not invertible. This is seen for example
by assuming that A ⊂ L(H). Assume the contrary. Then there exist y, z such that
ya∗a = 1 and aa∗z = 1. So b := ya∗a = ya∗aa∗z = a∗z satisfies ab = ba = 1, and
hence a is invertible.

Theorem 3.6. Let F be a set of representations of a unital C∗-algebra A. The
following are equivalent:

(i) F is exhausting.
(ii) An element a ∈ A is invertible if, and only if, φ(a) is invertible in L(Hφ) for

all φ ∈ F .

Proof. Let us assume (i) and let a ∈ A be such that φ(a) is invertible for all φ ∈ F .
We want to show that a is invertible as well. Let us assume, by contradiction,
that it is not invertible. Then either a∗a or aa∗ is not invertible. By replacing a
with a∗ (which is also not invertible), we can assume that a∗a is not invertible.
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Then 0 ∈ Spec(a∗a) and hence the element b := ‖a‖2 − a∗a has norm ‖b‖ = ‖a‖2.
Therefore there exists φ ∈ F such that ‖φ(b)‖ = ‖b‖, since we have assumed that F
is exhausting. Therefore ‖a‖2 − φ(a)∗φ(a) = φ(b) has norm ‖b‖ = ‖a‖2, and hence
0 is in the spectrum of φ(a)∗φ(a), which is then not invertible. Therefore φ(a) is
not invertible. We have thus obtained a contradiction.

Conversely, let us assume (ii) and let a ∈ A. We want to show that there exists
φ ∈ F such that ‖φ(a)‖ = ‖a‖. Let us consider again b := ‖a‖2 − a∗a, which is
not invertible in A, by the properties of functional calculus. Therefore, there exists
φ ∈ F such that φ(b) = ‖a‖2−φ(a)∗φ(a) is not invertible. Since ‖φ(a)‖ ≤ ‖a‖, this
is possible only if ‖φ(a)‖ = ‖a‖. �

The following characterisation of Fredholm operators is a consequence of the
above theorem and is sometimes useful in applications.

Corollary 3.7. Let 1 ∈ A ⊂ L(H) be a sub-C∗-algebra of bounded operators on
the Hilbert space H containing the algebra of compact operators on H, K = K(H).
Let F be a faithful family of representations of A/K. We then have the following
characterisation of Fredholm operators a ∈ A:

a ∈ A is Fredholm if, and only if, φ(a) is invertible in for all φ ∈ F .

The following proposition is the analog of Proposition 2.6 in the framework of
exhausting families.

Theorem 3.8. Let F be a family of representations of a unital C∗-algebra A. Then
F is exhausting if, and only if,

(10) Spec(a) = ∪φ∈F Spec(φ(a)) .

for any a ∈ A.

Proof. Let us assume first that the family F is exhausting. We proceed in analogy
with the proof of Proposition 2.6. Since we have that Spec(φ0(a)) ⊂ Spec(a) for
any representation φ0 of A, it is enough to show that Spec(a) ⊂ ∪φ∈F Spec(φ(a)).
Let us assume the contrary and let λ ∈ Spec(a)r∪φ∈F Spec(φ(a)). By replacing a
with a− λ, we can assume that λ = 0. We thus have that φ(a) is invertible for all
φ ∈ F , but a is not invertible (in A). This is however a contradiction by Theorem
3.6, which implies that a must be invertible in A as well.

To prove the converse, let us assume that Spec(a) ⊂ ∪φ∈F Spec(φ(a)) for all a ∈
A. We shall use Theorem 3.6. Let us assume that a ∈ A and that φ(a) is invertible
for all φ ∈ F . Then 0 /∈ ∪φ∈F Spec(φ(a)). Since Spec(a) ⊂ ∪φ∈F Spec(φ(a)), we
have that 0 /∈ Spec(a), and hence a is invertible. Theorem 3.6 then shows that the
family F is exhausting. �

4. Topology on the spectrum and exhausting families

Let us discuss now in more detail the relation between the concept of exhausting
family and the simpler (to check) concept of a full family. The following theorem
describes the class of C∗-algebras for which every exhausting family is also full. It
explains Example 3.4 and Remark 3.5.

Lemma 4.1. Let A be a C∗-algebra, J a two-sided ideal, and π a representation of
A such that π|J is non-degenerate. Also let a ∈ A, 0 ≤ a ≤ 1 such that ‖π(a)‖ = 1
and η > 0. Then there exists c ∈ J , c ≥ 0, ‖c‖ ≤ η such that ‖π(a+ c)‖ ≥ 1 + η/2.
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Proof. For any fixed ε > 0 there exists a unit vector ξ such that 〈π(a)ξ, ξ〉 ≥ 1− ε.
Then the positive form ϕ(b) : = 〈π(b)ξ, ξ〉 has norm ‖ϕ‖ ≤ ‖ξ‖2 = 1. But if (uλ)
is an approximate unit in J , then

‖ϕ‖ ≥ ‖ϕ|J‖ = limϕ(ui) = ‖ξ‖ = 1 .

So ‖ϕ|J‖ = 1 (and ‖ϕ‖ = 1 also). Hence there exists c0 ∈ J , c0 ≥ 0, ‖c0‖ = 1, such
that ϕ(c0) ≥ 1− ε. We then set c = ηc0 and indeed, for ε small enough

‖a+ c‖ ≥ ϕ(a+ c) ≥ 1− ε+ η(1− ε) ≥ 1 + η/2 .

This completes the proof. �

Theorem 4.2. Let A be a C∗-algebra. Let us assume that every π ∈ Â has a
countable base for its system of neighborhoods. Then every exhausting family F of
representations of A is also full.

Conversely, if every exhausting family F of representations of A is also full, then
every π ∈ Â has a countable base for its system of neighborhoods.

Proof. Let us assume that every π ∈ Â has a countable base for its system of
neighborhoods and let F be an exhausting family of representations of A. Let us
assume that F is not full. Then there exists π0 ∈ Âr ∪φ∈F supp(φ). Let

V0 ⊃ . . . ⊃ Vn ⊃ Vn+1 . . . ⊃ {π0} = ∩kVk

be a basis for the system of neighborhoods of π in Â. We may assume that the
Vn consist of open sets, Vn = Ĵn. We shall construct a ∈ A such that ‖a‖ =

‖π0(a)‖ = 1, but ‖π(a)‖ ≤ 1 − 2k for any π ∈ Â r Vk. Assuming that we have

found a ∈ A with this property, then for every φ ∈ F , we have that Âr supp(φ) is

a neighborhood of π0 in Â. Therefore there exists n such that Vn ⊂ Â r supp(φ)
and hence ‖π(a)‖ ≤ 1− 2−n for all π ∈ supp(φ). This gives ‖φ(a)‖ ≤ 1− 2−n < 1,
thus contradicting the fact that F is exhausting.

To construct a ∈ A with the desired properties, let us consider the ideals Jn
defining the sets Vn: Vn = Ĵn. We shall define by induction an ∈ A with the
following properties:

(i) 0 ≤ an ≤ 1;
(ii) ‖π0(an)‖ = 1;

(iii) ‖π0(an)‖ ≤ 1− 2−k on Âr Ĵk for k = 0, 1, . . . , n;
(iv) ‖an − an−1‖ ≤ 22−n for n ≥ 1.

We define a0 as follows. We first choose b0 ∈ J0 such that 0 ≤ bn, and π0(b0) 6= 0.
By rescaling b0 with a positive factor, we can assume that ‖π0(b0)‖ = 1. Let then
χ0 : [0,∞) → [0, 1] be the continuous function defined by χ0(t) = t for t ≤ 1 and
χ0(t) = 1 for t ≥ 1. Then we define a0 = χ0(b0). Conditions (i–iii) are then satisfied

To define an in terms an−1, we first define cn and bn = an−1 + cn as follows. By
lemma 4.1 there exists cn ∈ Jn, cn ≥ 0, ‖cn‖ ≤ 21−n, such that ‖π0(bn)‖ ≥ 1+2−n.
Let then χn : [0,∞) → [0, 1] be the continuous function defined by χn(t) = t for
t ≤ 1 − 21−n, χn linear on [1 − 21−n, 1] and on [1, 1 + 2−n], χ(1) = 1 − 2−n, and
χn(t) = 1 for t ≥ 1 + 2−n. Then we define an = χn(bn).

Let us check that conditions (i–iv) are satisfied by an:
(i) We have that an−1, cn ≥ 0, hence bn := an−1 + cn ≥ 0. Since 0 ≤ χn ≤ 1, we

obtain that 0 ≤ an := χn(bn) ≤ 1.
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(ii) Since ‖π0(bn)‖ ≥ 1 + 2−n and χn(t) = 1 for t ≥ 1 + 2−n, we have that
‖χ(π0(bn))‖ = ‖π0(χ(bn))‖ = ‖π0(an)‖ = 1.

(iii) Let π ∈ Ĵk
c

:= Â r Ĵk, for some k ≤ n. Then π(cn) = 0. Assume k < n.
Then ‖π(an−1)‖ ≤ 1− 2−k ≤ 1− 21−n, by the induction hypothesis and hence

π(an) = π(χn(bn)) = χn(π(bn)) = χn(π(an−1)) = π(an−1) ,

since χ(t) = t for t ≤ 1− 21−n. Consequently, ‖π(an)‖ = ‖π(an−1)‖ ≤ 1− 2−k (for
k < n). If k = n, then, similarly, π(an) = χn(π(an−1)). Since χn(t) ≤ 1− 2−n for
t ≤ 1 and 0 ≤ an−1 ≤ 1, we have that ‖π(an)‖ = ‖χn(π(an−1))‖ ≤ 1− 2−n.

(iv) We have ‖bn‖ ≤ ‖an−1‖ + ‖cn‖ ≤ 1 + 21−n. Since |χ(t) − t| ≤ 21−n for all
t, we have ‖an − bn‖ ≤ 21−n. Hence ‖an − an−1‖ ≤ ‖an − bn‖+ ‖cn‖ ≤ 22−n.

We are ready now to construct our element a ∈. Indeed, condition (iv) satisfied
by the sequence an shows that it is convergent. Let a = lim an. Conditions (i–iii)
are compatible with limits, hence

(i) 0 ≤ a ≤ 1;
(ii) ‖π0(a)‖ = 1;

(iii) ‖π0(a)‖ ≤ 1− 2−k on Âr Ĵk for k = 0, 1, . . ..

Thus a has the desired properties, and hence we obtain the proof of the first part
of the proposition.

The converse is easier. Let π0 ∈ Â. Then F := Â r {π0} is not full. By
our assumption, it is also not exhausting. Hence there exists a ∈ A, such that
‖π(a)‖ < ‖a‖ for all π ∈ Â, π 6= π0. By rescaling, we can assume ‖a‖ = ‖π0(a)‖ = 1.
Then the sets

Vn := {π ∈ Â, ‖π(a)‖ > 1− 2−n }
are open. Let us show that they form a basis for the system of neighborhoods of
π0. Indeed, let G be an arbitrary open subset of Â containing π0. Then there exists
a two-sided ideal J ⊂ A such that G = Ĵ . The set of irreducible representations

of A/J identifies with Ĵc := Â r Ĵ . Hence ‖π(a)‖ < 1 for all π ∈ Â/J := Ĵc, and
consequently ‖a+J‖ < 1 (the norm is in A/J). Let n be such that ‖a+J‖ ≤ 1−2−n.

Then Vn ⊂ Ĵ . The proof is now complete. �

It is easy to show that separable C∗-algebras satisfy the assumptions of the
previous proposition.

Proposition 4.3. Let A be a separable C∗-algebra. Then every irreducible repre-
sentation π ∈ Â has a countable base for its system of neighborhoods. Consequently,
if F is an exhausting set of representations of A, then F is full.

Proof. Let {an} be a dense subset of A and fix π0 ∈ Â. Define

Vn := {π ∈ Â, ‖π(an)‖ > ‖π0(an)‖/2 } .

Then Vn is open by Lemma 1.2. We claim that Vn is a basis of the system of
neighborhoods of π0 in Â. Indeed, let G ⊂ Â be an open set containing π0. Then
G = Ĵ for some two-sided ideal of A and π0 6= 0 on J . Let a ∈ J such that π0(a) 6= 0.
We can find an such that ‖a−an‖ < ‖π0(a)‖/4. Then ‖π′(a)−π′(an)‖ < ‖π0(a)‖/4
for any π′ ∈ Â, and hence

(11) ‖π′(a)‖ − ‖π0(a)‖/4 < ‖π′(an)‖ < ‖π′(a)‖+ ‖π0(a)‖/4 , ∀π′ ∈ Â .
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To show that Vn ⊂ G, it is enough to show that Vn ∩Gc = Vn ∩ Ĵc = ∅. Suppose
the contrary and let π ∈ Vn ∩ Ĵc. Then ‖π(an)‖ > ‖π0(an)‖/2 and π(a) = 0. Let
us show that this is not possible. Indeed, using also Equation (11) for π′ = π0 and
π′ = π, we obtain

3

8
‖π0(a)‖ < 1

2
‖π0(an)‖ < ‖π(an)‖ < 1

4
‖π0(a)‖ ,

which is contradiction. Consequently Vn ⊂ G and {Vn} is a basis for the system of

neighborhoods of π0 in Â, as claimed. �

The next two basic examples illustrate the differences between the notions of
faithful and exhausting families.

Example 4.4. Let A be the C∗-algebra of continuous functions f on [0, 1] with values
in M2(C) such that f(1) is diagonal. Then the maps evt : f 7→ f(t) ∈ M2(C), for
t < 1, together with the maps evi1 : f 7→ f(1)ii (i = 0, 1) provide all the irreducible
representations of A (up to equivalence). The family

F = { evt, , t < 1 } ∪ {ev1
1 }

is a faithful but not full family. In fact the function t 7→
1 0

0 1− t

 is not invertible

in A but π(f) is invertible for all π ∈ F . Of course, in this example, every π ∈ Â
has a countable base for its system of neighborhoods, so every exhausting family
of representations F of A is also full.

Example 4.5. The next example is closely related to the examples we will be dealing
with below. Let T be the Toeplitz algebra. It is the C∗-algebra generated by the
operator defined by the unilateral shift S. (Recall that S acts on the Hilbert space
L2(N) by S : εk 7→ εk+1. As S∗S = 1 and SS∗ − 1 is a rank 1 operator, one gets
the exact sequence

0→ K → T → C(S1)→ 0

where K is the algebra of compact operator. Extend the unique irreducible repre-
sentation π of K to T as in [10]. Also irreducible characters χθ of S1 pull-back to
irreducible characters of T vanishing on K. Then the spectrum of T is

T̂ = {π} ∪ {χθ , θ ∈ S1} ,

with S1 embedded as a closed subset. A subset V ⊂ T̂ will be open if, and only
if, it contains π and its intersection with S1 is open. We thus see that the single

element set {π} defines a full family. In other words T̂ = {π} = supp(π). In this

example again every π ∈ Â has a countable base for its system of neighborhoods, so
every exhausting family of representations F of A is also full. We can see directly
that the family F = {π} (consisting of π alone) is exhausting. Indeed, it suffices to
notice that ‖x‖ = ‖π(x)‖ for all x since π is injective.

Here are two more examples that show that the condition that A be separable
is not necessary for the classes of full families of representations and exhausting
families of representations to coincide.

Example 4.6. Let I be an infinite uncountable set. We endow it with the discrete
topology. Then A0 := C0(I) and A1 := K(`2(I)) (the algebra of compact operators
on `2(I)) are not separable, however, if F is an exhausting family of representations
of Ai, i = 0, 1, then F is also a full family of representations of Ai.
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5. Unbounded operators

The results of the previous sections are of interest mainly in applications to
unbounded operators, so we now extend Theorem 3.6 to (possibly) unbounded
operators affiliated to C∗-algebras. We begin with an abstract setting.

5.1. Abstract affiliated operators. The notion of affiliated self-adjoint operator
has been extensively and successfully studied, see [4, 7, 12, 28, 29] for example. In
the sequel we will closely follow the definitions in [12], beginning with an abstract
version of this notion. See [14, 24] for results on unbounded operators on Hilbert
modules [5, 15, 20].

Definition 5.1. Let A be a C∗-algebra. An observable T affiliated to A is a
morphism θT : C0(R) → A of C∗-algebras. The observable T is said to be strictly
affiliated to A if the space generated by elements of the form θT (h)a (a ∈ A,
h ∈ C0(R)), is dense in A.

As in the classical case, we now introduce the Cayley transform. To this end, let
us notice that an observable affiliated to A extends to a morphism θ+T : C0(R)+ →
A+ (the algebra obtained from A by adjunction of a unit). If moreover T is strictly
affiliated to A, then θT extends to a morphism from Cb(R) to the multiplier algebra
of A, but we shall not need this fact.

Definition 5.2. Let T be an observable affiliated to A. The Cayley transform
uT ∈ A+ of T is

(12) uT := θ+T (h0) , h0(z) := (z + ı)(z − ı)−1 .

The Cayley transform allows us to reduce questions about the spectrum of an
observable to questions about the spectrum of its Cayley transform. Let us first
introduce, however, the spectrum of an affiliated observable. Let thus θT : C0(R)→
A be a self-adjoint operator affiliated to a C∗-algebra A. The kernel of θT is then
of the form C0(U), for some open subset of R. We define the spectrum SpecA(T )
as the complement of U in R. Explicitly,

(13) SpecA(T ) = {λ ∈ R, h(λ) = 0, ∀h ∈ C0(R) such that θT (h) = 0 } .

We allow the case SpecA(T ) = ∅, which corresponds to the case T =∞ or uT = 1.
If σ : A→ B is a morphism of C∗-algebras, then σ◦θT : C0(R)→ A is an observable
σ(T ) affiliated to the C∗-algebra B and

SpecB(σ(T )) ⊂ SpecA(T ) .

If σ is injective, then SpecB(σ(T )) = SpecA(T ), which shows that the spectrum is
preserved by increasing the C∗-algebra A. Note that

(14) σ(uT ) = uσ(T ) .

By classical results, if (uT − 1) is injective, then we can define a true self-adjoint
operator T := ı(uT + 1)(uT − 1)−1 ∈ A such that θT (h) = h(T ), h ∈ C0(R) [9].
This is the case, for instance, if If Spec(T ) is a bounded subset of R, in which case
we shall say that T is bounded. In any case, bounded or unbounded, our definition
of Spec(T ) in terms of θT coincides with the classical spectrum of T defined using
the resolvent. Let h0(z) := (z + ı)(z − ı)−1, as before.
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Lemma 5.3. The spectrum Spec(T ) of the an observable θT : C0(R)→ A affiliated
to the C∗-algebra A and the spectrum Spec(uT ) of its Cayley transform are related
by

Spec(T ) = h−10 (Spec(uT )) .

Proof. This follows from the fact that h0 is a homeomorphism of R onto its image
in S1 := {|z| = 1} and from the properties of the functional calculus. �

Let us notice that the above lemma is valid also in the case when

T =∞ ⇔ θT = 0 ⇔ Spec(T ) = ∅ ⇔ uT = 1 ⇔ σ(uT ) = {1} .

One can make the relation in the above lemma more precise by saying that for
bounded T we have h0(Spec(T )) = Spec(uT ) whereas for unbounded T we have

(15) h0(Spec(T )) = h0(Spec(T )) ∪ {1} = Spec(uT ) ,

where h0(z) := (z + ı)(z − ı)−1, as before.
Here is our main result on (possibly unbounded) self-adjoint operators affiliated

to C∗-algebras.

Theorem 5.4. Let A be a unital C∗-algebra and T an observable affiliated to A.
Let F be a set of representations of A.

(1) If F is exhausting, then

Spec(T ) = ∪φ∈F Spec(φ(T )) .

(2) If F is faithful, then

Spec(T ) = ∪φ∈F Spec(φ(T )) .

Proof. The proofs of (i) and (ii) are similar, starting with the relation Spec(T ) =
h−10 (Spec(uT )) of Lemma 5.3. We begin with (i), which is slightly easier. Since F
is exhausting, we can then apply theorem 3.8 to uT ∈ A+ and the family σ ∈ F .
We obtain

Spec(T ) = h−10 [Spec(uT )] = h−10 [∪σ∈F Spec(σ(uT ))]

= h−10

[
∪σ∈F Spec(uσ(T ))

]
= ∪σ∈F h−10

[
Spec(uσ(T ))

]
= ∪σ∈F Spec(σ(T )) .

If, on the other hand, F is faithful, we apply proposition 2.6 after noting that
h0 is a homeomorphism of R onto its image in S1 := {|z| = 1} and hence h−10 (S) =

h−10 (S) for any S ⊂ S1. The same argument then gives

Spec(T ) = h−10 [Spec(uT )] = h−10 [∪σ∈F Spec(σ(uT ))]

= h−10

[
∪σ∈F Spec(uσ(T ))

]
= ∪σ∈F h−10

[
Spec(uσ(T ))

]
= ∪σ∈F Spec(σ(T )) .

The proof is now complete. �

Remark 5.5. In view of the remarks preceeding it, Theorem 5.4 remains valid for
true self-adjoint operators T .
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5.2. The case of true operators. We now look at concrete (true) operators.

Definition 5.6. Let A ⊂ L(H) be a sub-C∗-algebra of L(H). A (possibly un-
bounded) self-adjoint operator T : D(T ) ⊂ H → H is said to be affiliated to A if,
for every continuous functions h on the spectrum of T vanishing at infinity, we have
h(T ) ∈ A.

Remark 5.7. We have that T is affiliated to A if, and only if, (T − λ)−1 ∈ A for
one λ /∈ Spec(T ) (equivalently for all such λ) [7]. We thus see that a self-adjoint
operator T affiliated to A defines a morphism θT : C0(R)→ A, θT (h) := h(T ) such
that Spec(T ) = Spec(θT ). Thus T defines an observable affiliated to A.

When A ⊂ L(H) is non degenerate, the correspondence between self-adjoint
operators affiliated to A and observables affiliated to A given by T 7→ θT is actually
bijective. This can be seen by using the unbounded functional calculus of normal
operators.

Since in our paper we shall consider only the case when A ⊂ L(H) is non degen-
erate, we shall not make a difference between operators and observables affiliated
to A.

Recall that an unbounded operator T is invertible if, and only if, it is bijective
and T−1 is bounded. This is also equivalent to 0 /∈ Spec(θT ). We have the following
analog of Proposition 2.3 and Theorem 3.6

Theorem 5.8. Let A ⊂ L(H) be a unital C∗-algebra and T a self-adjoint operator
affiliated to A. Let F be a set of representations of A.

(1) Let F be exhausting. Then T is invertible if, and only if φ(T ) is invertible
for all φ ∈ F .

(2) Let F be faithful. Then T is invertible if, and only if φ(T ) is invertible for
all φ ∈ F and the set {‖φ(T )−1‖, φ ∈ F} is bounded.

Proof. This follows from Theorem 5.4 as follows. First of all, we have that T is
invertible if, and only if, 0 /∈ Spec(T ). Now, if F is exhausting, we have

0 /∈ Spec(T ) ⇔ 0 /∈ ∪φ∈F Spec(φ(T )) ⇔ 0 /∈ Spec(φ(T )) for all φ ∈ F .

This proves (i).
To prove (ii), we proceed similarly, noticing also that the distance from 0 to

Spec(T ) is exactly ‖T−1‖. �

We have already remarked (Remark 5.5) that Theorem 5.4 extends to the frame-
work of this subsection, that is, that of (possibly unbounded) self-adjoint operators
on a Hilbert space.

6. Parametric pseudodifferential operators

Let M be a compact smooth Riemannian manifold and G be a Lie group (finite
dimensional) with Lie algebra g := Lie(G). We let G act by left translations on M×
G. We denote by Ψ0(M×G)G the algebra of order 0, G-invariant pseudodifferential

operators on M × G and Ψ0(M ×G)G be its norm closure acting on L2(M × G).
For any vector bundle E, we denote by S∗E the set of directions in its dual E∗. If
E is endowed with a metric, then S∗E can be identified with the set of unit vectors
in E∗. We shall be interested the the quotient

S∗(T (M ×G))/G = S∗(TM × TG)/G = S∗(TM × g) .
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We have that Ψ0(M ×G)G ' C∗r (G)⊗K and then obtain the exact sequence

(16) 0 → C∗r (G)⊗K → Ψ0(M ×G)G → C(S∗(M × g)) → 0 ,

[17, 18, 21, 28]. Note that the kernel of the symbol map will now have irreducible

representations parametrised by Ĝr the temperate unitary irreducible representa-
tions of G. Let T ∈ Ψm(M × G)G and denote by T ] ∈ Ψm(M × G)G its formal
adjoint (defined using the calculus of pseudodifferential operators). All operators
considered below are closed with minimal domain (the closure of the operators de-
fined on C∞c (M × G)). We denote by T ∗ the Hilbert space adjoint of a (possibly
unbouded) densely defined operator.

Lemma 6.1. Let T ∈ Ψm(M × G)G be elliptic. Then T ∗ = T ]. Thus, if also
T = T ], then T is self-adjoint and (T + ı)−1 ∈ C∗r (G), and hence it is affiliated to
C∗r (G).

Proof. This is a consequence of the fact that Ψ∞(M ×G)G is closed under multi-
plication and formal adjoints. See [17, 18, 28] for details. �

In other words, any elliptic, formally self-adjoint T ∈ Ψm(M × G)G, m > 0, is
actually self-adjoint.

Let us assume G = Rn, regarded as an abelian Lie group. Then our exact
sequence (16) becomes

(17) 0→ C0(Rn)⊗K → Ψ0(M × Rn)Rn → C(S∗(TM × Rn))→ 0 .

This shows that A := Ψ0(M × Rn)Rn is a type I C∗-algebra, and hence we can
identify Irr(A) and Prim(A). Then we use that, to each λ ∈ Rn, there corresponds
an irreducible representation φλ of C0(Rn) ⊗ K. Recalling that every irreducible
(bounded, *) representation of an ideal I in a C∗-algebra A extends uniquely to
a representation of A, we obtain that φλ extends uniquely to an irreducible rep-

resentation of Ψ0(M × Rn)Rn denoted with the same letter. It is customary to

denote by T̂ (λ) := φλ(T ) for T a pseudodifferential operator in Ψm(M × Rn)R
n

,

m ≥ 0. To define T̂ (λ) for m > 0, we can either use the Fourier transform or,
notice that ∆ is affiliated to the closure of Ψ0(M ×Rn)R

n

. This allows us to define

∆̂(λ). In general, we write T = (1 − ∆)kS, with S ∈ Ψ0(M × Rn)R
n

and define

T̂ (λ)q = ̂(1−∆)(λ)kŜ(λ). (We consider the “analyst’s” Laplacian, so ∆ ≤ 0.)

Lemma 6.2. Let A := Ψ0(M × Rn)Rn . Then the primitive ideal spectrum of A,
Prim(A), is in a canonical bijection with the disjoint union Rn ∪ S∗(TM × Rn),
where the copy of Rn corresponds to the open subset {φλ, λ ∈ Rn} and the copy
of S∗(TM × Rn) corresponds to the closed subset {ep, p ∈ S∗(TM × Rn)}. The
induced topologies on Rn and S∗(TM × Rn) are the standard ones. Let S∗M :=
S∗(TM) ⊂ S∗(TM × Rn) correspond to T ∗M ⊂ T ∗M × Rn. Then the closure of
{φλ} in Prim(A) is {φλ} ∪ S∗M .

Proof. By standard properties of C∗-algebras (the definition of the Jacobson topol-
ogy), the ideal C0(Rn)⊗K ⊂ A defines an open subset of Prim(A) with complement
Prim(A/I) with the induced topologies. This proves the first part of the statement.

In order to determine the closure of {φλ} in Prim(A), let us notice that the

principal symbol of T̂ (λ) can be calculated in local coordinate carts on M (more
precisely, on sets of the form U ×Rn, with U a coordinate chart in M). This gives
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that the principal symbol of T̂ (λ) is given by the restriction of the principal symbol
of T to S∗M .

Indeed, let U = Rk. A translation invariant pseudodifferential P operator on
U × Rn = Rk+n is of the form P = a(x, y,Dx, Dy) with a independent of y:

a(x, y, ξ, η) = ã(x, ξ, η). With this notation, we have P̂ (λ) = ã(x,Dx, λ). The

principals symbol of P̂ (λ) is then the principal symbols of the (global) symbol
Rk 3 (x, ξ) → ã(x, ξ, λ), and is seen to be independent of the (finite) value of
λ ∈ Rn and is the restriction of the principal symbol of ã from S∗(TU × Rn) to
S∗(TU × {0}).

Comming back to the general case, the same reasoning gives that the image of φλ
is Ψ0(M). The primitive ideal spectrum of this algebra is canonically homeomorphic
to the closure of {φλ}, and this is enough to comple the proof. �

By the exact sequence (16), in addition to the irreducible representations φλ,
λ ∈ Rn (or, more precisely, their kernels), Prim(A) contains also (the kernels of)
the irreducible representations ep(T ) = σ0(T )(p), p ∈ S∗(TM × Rn).

Proposition 6.3. Let F := {φλ, λ ∈ Rn} ∪ {ep, p ∈ S∗(TM × Rn) r S∗M}.
(i) The family F is an exhausting family of representations of Ψ0(M × Rn)Rn .

(ii) Let P ∈ Ψm(M×Rn)R
n

, then P : Hs(M×Rn)→ Hs−m(M×Rn) is invertible

if, and only if P̂ (λ) : Hs(M) → Hs−m(M) is invertible for all λ ∈ Rn and
the principal symbol of P is non-zero on all rays not intersecting S∗M .

(iii) If T ∈ Ψm(M × Rn)R
n

, m > 0, is formally self-adjoint and elliptic, then
Spec(ep(T )) = ∅, and hence

Spec(T ) = ∪λ∈Rn Spec(T̂ (λ)) .

Proof. (i) follows from Lemma 6.2.
To prove (ii), let us denote by ∆M ≤ 0 the (non-positive) Laplace operator on M .

Then the Laplace operator ∆ on M×Rn is ∆ = ∆Rn +∆M . Note that (1−∆)m/2 :
Hs(M × Rn) → Hs−m(M × Rn) and (c −∆M )m/2 : Hs(M) → Hs−m(M), c > 0,
are isomorphisms. By [18], we have that

P1 := (1−∆)(s−m)/2P (1−∆)−s/2 ∈ A := Ψ0(M × Rn)Rn .

It is then enough to prove that P1 is invertible on L2(M × Rn). Moreover from
part (i) we have just proved and Theorem 3.6 we know that P1 is invertible on

L2(M × Rn) if, and only if, P̂1(λ) := φλ(P1) is invertible on L2(M) for all λ ∈ Rn
and the principal symbol of P1 is non-zero on all rays not intersecting S∗M . But,

using also 1̂−∆(λ) = (1 + |λ|2 −∆M ), we have

P̂1(λ) = (1 + |λ|2 −∆M )(s−m)/2P̂ (λ)(1 + |λ|2 −∆M )−s/2 ,

which is invertible by assumption
To prove (iii), we recall that T is affiliated to A, by Lemma 6.1. The result then

follows from Theorem 5.4(1) (See also Remark 5.5). �

Operators of the kind considered in this subsection were used also in [1, 6, 8, 19,
22, 26, 27]. They turn out to be useful also for general topological index theorems
[11, 23]. A more class of operators than the ones considered in this subsection were
introduced in [2, 3]. The above result has turned out to be useful for the study of
layer potentials [25].
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les C∗-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math., 296(21):875–878, 1983.

[5] A. Connes. Noncommutative geometry. Academic Press, San Diego, 1994.
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