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Introduction.
The theme of this paper is the correspondence between c1assical modular forms

and pseudodifferential operators (\}iDO's) which have same kind of automorphic
behaviour. In the simplest case, this correspondence is as folIows. Let f be a
discrete subgroup of PSL2 (R), acting on the complex upper half-plane 1l in thc
usual way, and J(z) a~modular form of even weight k on.f. Then. there.is a

'canonicallifting [rom J to a f -invariant \liDO with leading 'tc~m'J(;) a-k/'i , ';;he're
{) is the differential operator t. This lifting and the fact that the prod uct of two
invariant \lIDO's is again an invariant \liDO imply a non-commutative multiplicative
structure on the space of all modular forms whose components are scalar multiples
of the so-called Rankin-Cohen brackets (canonical bilinear maps on the space of
modular forms on r defined by certain bilinear combinations of derivatives; the
definition will be recalled later). This was already discussed briefly in the earlier
paper [Z), where it was given as one of several "raisons d 'etre" for the Rankin-Cohcn
brackets.

The basic lifting from modular forms to invariant \lJDO's can be interpreted and
dcveloped in many ways. We shall discuss same of them in this paper. The two
main generalizations are as folIows:

(I) Just as one gencralizes thc notion of a modular function to thc notion of
a modular form , one can consider \lIDO's which are not invariant with respect

,to, r ".but.. jnstead..t[apsfo[IIl~\y.ith .•so~e_au_tomor:phy_factor .._Because..oL.the..non-:.. '*.......... ~ .... ."._ ...... «­

commutativity of wBO's; however, \,';e have' new pOSsibilities wl{idi" do ·not· occur in
the classical case: one can consider "conjugate-automorphic" \lIDO's which under
the action of a fractional linear transformation (: ~) E rare multiplied by a

(cz + d)K on the left and by (cz + d) -K on the right for some K, 1 or "automorphic
\lJDO's of mixed weight" which transform by different automorphy factors on the
left and on the right. The first way leads to a whole family of multiplications
on the space of modular forms on f, each of which can be expressed in terms of
the Rankin-Cohen brackets , but with coefficients which turn out to be intricate
combinatorial expressions having beautiful and surprising properties. The second
way gives even more structure on the space of modular forms and provides the
clearest conceptual framework for thc Rankin-Cohen brackets.

(11) The whole theory has a supersymmetrie analogue. This is a natural general­
ization for the following reason. One of the disadvantages of the usual theory is that
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the derivative of the fractional linear transformation z t-+ ~:$~ is (cz + d) -2 and
hence that there is no coupling between modular forms of even and odd weight: not
only is the derivative of a modular form not quite modular (which is why the the­
ory is so complicated)I but its weight is larger than the weight of the original form
by 2 rather than by 1. But in the supersymmetric context, one has available a su­
perdifferentiation operator D with square equal to djdz and super-fractionallinear
transformations whose automorphy factor red uces modulo nilpotents to (cz + d)-1
and hence effectively raises the weight of (super)modular forms by 1. Specifically, in
the supercomplex plane Ctl1 one has one even coordinate z and one odd Olle ( I with
z( = (z, (2 = 0, so a superanalytic function has the form F(z, () = I(z) + g(z)(
with 1 and 9 holomorphic functions of z. The differential operator D = :, +( tz
sends F to g(z) +I'(z)( I so that D 2 = aas claimed; and we get the desired theory
by working with 'ltDO's based on powers of D rather than of a.

The structure of the paper is as folIows. In §1 we define WDO's and give the
basic result about lifting modular forms to invariant wDO's. In §2 we describe
other proofs and interpretations of that result and a generalization to 'l'DO's with
non-integral powers of ß. The next few sections treat topic (I) above: in §§3-5 we
define canonical liftings of modular forms to various kinds of automorphic 'l'DO's

_.-~and, describe~ the.induced, .multiplications. on .the.space ofmodular forms explicitly
in terms of Rankin-Cohen brackets, and in §6 we give a conceptual proof (in terms
of the non-commutative residue map and the duality between modular forms of
weights k and 2 - k) of the surprising symmetries exhibited by the numerical coef­
ficients appearing in these formulas. Topic (11), the supersymmetric generalization
of the theory, is treated in §7. We explain the superanalogues of modular forms
and of wDO's and state and prove the superanalogue of the basic lifting property.

The last section contains some scattered remarks and questions. Whereas in the
main body of the paper we described our eonstruetions in the eontext of c1assical
automorphie forms, here we try to put them in the framework of the theory of eom­
pletely integrable Hamiltonian systems to whieh lrene Dorfman made a signifieant
eontribution (see e. g. [GD]).

§1. Lifting modular forms to pseudodifferential operators.
Let z be a loeal eoordinate for C. We have the associated differential operator

~-l'·'" .,q"'=;:~ddn..~h.i~~...tt~~Si?.r_I1]~~.1.!9!kr."e. ~P..<LI'ii..l1fl&~."s!l"~l}g~ ..~-.~.. "t,~~.JL=:;:~/!.(~L·, ~.::t'L?,.t."" ..,,. " ~; '"' ..d, "" •., ,", ..•• '

R be- a'~ring- of furietioiis' on C "'on\vhiCh ß~ acts , 'so Hiat "th'e' pair (R;-'ar is a' ring
with derivation. By a pseudodifferential operator (wDO) over R we will mean a
formal Laurent series in the formal inverse a- 1 of ß with coeffieients in R, i.e. an
element of the vector spaee

IJiDO (R) = { I: hnan : hn E R, hn = 0 if n ~ 0} . (1.1)
nEZ

The subspaee DO(R) = R[ß] of differential operators over R, eonsisting of sums
as in (1.1) but with n ~ 0, is a ring under composition, and the formula for the
multiplication of differential operators implied by Leibniz's rule, viz"

(I:gn(Z) an) (I: hm (z) am
) = I: I: G) gn ar(hm ) an+m

-
r , (1.2)

n m n,m r2:0

ean be extended to the full space 'lIDO(R) if we remember that for I E Z>o the
binomial eoefficient (~) = w(w -1) ... (w -/+1) / I! is a polynomial in wand-henee
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(1.3)

is defined for any integral (ar even complex) value of w. We have an increasing
filtration of \l1DO(R) by the subspaces

IltDO(R)w = {~/nöw-n, In ER}

with w E Z. It follows from formula (1.2) that this filtration is compatible with
the ring structure in the sense that

(lA)

In particular, the subspace \l1DO(R)o of pure lJIDO's is a subring of \l1DO(R) , and
\l1DO(R) has an (additive) direct sum decomposition as wDO(R)-1 E& DO(R). We
have a short exact sequence

o~ \l1DO(R)w-1 ---7 wDO(R)w ---7 R ---7 0 (1.5)

for every w, where the final map sends l:m>o Imaw-m to /0 (symbol map).
We shall be interested in the behavior of \IJDO's under (grau ps of) transforma­

tions of the coordinate z. Under a coordinate change z 1-7 z the differentiation
operator 8 is transformed to fJ = j-l 8, wherc,.J = dz/dz js ,the Jacobian of the
transformation, and there is a corresponding action on wDO's (cf. [KZ1])

fJw = j-WaW_ (~)/j-w-Iaw-l + [3(wt l )/2 + (~)jjfl]j-w-2aw-2 +... (1.6)

(prave this by ind uction on w for w E Z;::o, and then extend to all w). In particular,
the exact sequence (1.5) is equivariant with respect to coordinate transfarms if we
define the action on the last term by J(z) 1-7 j-WJ(z) .

If the coordinate change is a fractional linear transformation z = g(z) = ~:t~

with 9 = (: ~) E SL(C) , then j = (cz + d)-2, all the terms multiplying fJw-n in
(1.6) become proportional, and the equation simplifies to

00

fJw = [(cz + d)2 ß]W = L n! (~) (W~l) cn(cz +d)2w-n ß w- n . (1.7)
n=O

(Again one proves this by induction for w E Z>o and then extends to other values
Of·IW~.y...·rphe" actioIl'!0n"!'th~lsym bol'llandt.''lhence't'on!"! the~ las~teTm'!i W"the'P'fSequence'~ '~' \.., ,•.,..
(1.5), is the classical action J 1-7 fl-2w9, where /1 k 'is defined for k E Z by
(flk9)(z) := (cz + d)-k f(~:t~). If we have a group r c SL(2, C) 1 acting on R
via its fractional linear action on C, then we will denote by Mk(R, f) or simply
by Mk(r) the space of invariants of Runder the action /1-7 flk of r. If we take
for R the ring :F of all holomorphic functions in the complex upper half-plane 11.
which are bounded by apower of (lzl 2 + l)/8'(z), and f is a discrete subgroup of
SL(2, R) of finite covolume, then Mk(f) is the usual space of holomorphic modular
forms on rand is finite-dimensional for all k E Z and zero for k < 0 l but we can
also take larger rings of functions (like the ring of all holomorphic functions in 1l,
or all those of at most exponential growth at the cusps) to allow modular forms of
negative weight. By taking r -invariants in (1.5) we get (with k = -w) a sequence

t· ..

(1.8)

which is exact except perhaps for the last arrow. The basic fact studied in this
paper is the following proposition, which says that (1.5) has a canonical equivariant
splitting and hence that the sequence (1.8) is exact and splits canonically:
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Proposition 1. For k 2: 1 define an operator !-k : R -+ \l1DO(R)_k by

!-k(/) = ~(_l)n (n + k)! (n + k - I)! j{nla- k- n
~ n! (n + 2k - I)!

and an operator !--k : R -+ DO(R)k by

(I) - ~ (2k - n)! I(n) ak - n
!--k -~n!(k-n)!(k-n-1)! '

and set !-o (J) = f· Then !-k(fI2kg) = !-k(f) 0 9 for all 9 E PSL(2, C) and
all k E Z. In particular, if f E M 2k(r) lor some subgroup r c PSL (2, C) then
[,k(f) E WDO(R)~k'

Proof. Write 9 = (: ~). By induction on n we obtain the formula

dn _ ~ n! (k + n - 1) (_c)n-r (r) az + b
dzn (flk9(Z)) - ~ r! n - r (cz +d)k+n+r f (cz +d) (1.9)

for any k E Z and any n 2: 0, wh~re- I(~) denotes ar f as usu~l. From this and
(1.7) we find that for k> 0 both !-k(fI2kg)(Z) and (!-k(f)og)(z) are equal to

'" (m+r+k)!(m+r+k-1)! (-1r cm j(r)(az+b)8- k- m- r
L. m!r!(2k+r-l)! (cz+d)2k+m cz+d .

r, m?:O

The proof for k < 0, is similar, and the case k = 0 is of course trivial. •

§2. Interpretations and extensions of the basic lifting.
In this section we discuss some further aspects of the proposition just proved. In

particular we describe the relationship between modular forms, invariant WDO's,
and "Jacobi-like forms" (this was the point of view taken in [Z1]), give a different
and more conceptual proof of Proposition 1 in terms of the Casimir operator for
sl{2, q, and describe an extension to generalized wDO's where one allows non­
integral powers of a.
- -'ja~;;r»i:Üke'-"r6rm1t: "One'inte"rpretäÜün·t ör th"itlifffnlg~ from"rrlödulaf"'torm~t wfih~·~ '"""... ~,. - ~.. .
respect to r to r -invariant wDO's is to identify both spaces with the spaee J (r)
of Jacobi-like forms, namcly power series «I-(z, ..,y) E R[[..-Y]] satisfying the transfor-
mation law

«I-(az + b, X ) = ecX/(cz+d) cI>(z, ..-Y)
cz +d (cz + d)2

(2.1)

(Here r is a subgroup of PSL(2, IR) and Rar -invariant ring of functions in 1i,
e.g. the ring F defined in §1.) This space is filtered by the subspaces ...7(f)k =
...7(r) n X kR[[..-Y]]. Clearly, if «I-{z, ..-Y) belongs to ...7(r)k and has leading term
f(z)..-y k , then fl2k'Y = f for all 'Y Er, so we have a sequence

(2.2)

which is exact except possibly at the last place. The following proposition, which
is a sharpening of Prop. 1 for the case of positive weights, says that this sequence
splits and is canonically isomorphie to the split short exaet sequenee (1.8).
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Proposition 2. Lel cPk = cPk(Z) (k = 1,2, ... ) be elements 0/ R. Then the
Jollowing are equivalent:

00

(1) <t-(z, ..Y) := E cPk(Z) ..yk E .J(r);
k=1

00

(2) tjJ(z):~ E (-1)kk!(k-1)!cPk(Z)B-k E 'liDO(R)r j
k=1

k-l 1 C n a b
(3) (4)kI2k1')(z) = E '(--d) 4>k-n(Z) for all k ;::: 1 and l' = (c d) E r;

n=D n. cz +
k-l (2k-2-r)' ()

(4) L: (-Ir , . 4>;_r(z) E M 2k (f) for all k ~ 1;
r=D r.

n-l 1 ( )
(5) 4>n(z) = L: '( )' fn~r(z) tohere Jk E M 2k (r) (Vk;::: 1).

r=D r. 2n - r - 1 .

Proof. One checks that each of the properties in question is equivalent to the trans­
formation law (3). For (1) this is obvious from the definition (2.1), for (2) it follows
directly from (1.7), and for (5) it follows from (1.9). Property (4) can be checked
the same way or else we can note that by a simple binomial coefficient identity it
is equivalent to (5) if we define fk to be. 2k - 1 times the sum in (4). •

We can restate the result of Proposition 2 in the following way. Denote by
M (r)+ = ITn>D M 2n (f) the space of sequences of modular forms of positive
weights, with the trivial filtration by the subspaces M(r)k = ITn>k M 2n (r) , with
successive quotients M (r)k!M (fh-l = M 2k(f). Proposition 2 says that M (rh
is canonically isomorphie as a filtered vector space to both the spacc J(rh of
Jacobi-like forms with no constant term and the space lJIDO(R)f, the correspon­
dence sending the sequence (/t, f2,"') (fk E M2k (r)) to the elements cI> E J(rh
and 1/J E lJIDO(R)f defined by (1) and (2), respectively. Note also that, by linear­
ity, the J acobi-like property of cI> and the r -invariance of tjJ need only be checked
in the case when there is only a single non-zero Ik. In this case, writing I for Ik'
we find that the cI- is simply the Cohen-I(uznetsov lifting

of I whose Jacobi-like property was discovered in [Ku) and [Co), while tjJ is precisely
the lifting .ck (f) of Proposition 1.

The reasan for the name "Jacobi-like," by the way, is that the space J(rh can
be identified via cI-(z,21rimu2) = u2kcP(z, u) with the set of all 4>(z, u) E R[[u2))
satisfying ,J...(~ _U_) = (cz + d)2k e21l"icmu 'l j(cz+d) ,J...(z X) for all (a b) E rand

<.p cz+d' cz+d <.p ," cd'
this is one of the two transformation laws characterizing Jacobi farms of weight k
and index m in the sense af [EZ).

The Casimir operator. The proaf of Proposition 1 by direct computation
as given in §1 is very short l but not particularly enlightening. We now describe
another way to see the existence (and uniqueness) of the equivariant splitting map
.ck which was pointed out to us by Beilinson. Let SL(2, C) act by fractional
linear transformations as usual. The action of its Lie algebra sI (2, C) is then given
by the three vector fields Lj = zj+l D (j = -1, 0, 1), with Lie bracket given by
commutation. There is an induced operation of sl(2, C) on lJIDO's by commutation
(adjoint representation). Explicitly, we have L_ 1 (IBW) = [D,/BW) = f'Dw and
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similarly Lo(fßW) = (zf' -wf)f)w, Lt{ff)W) = (z2 f' -2wzf)aW-w(w+1)zfaW- 1 ,

so a short computation shows that the Casimir operator

which acts triviallyon functions, acts on wDO's by

C(j8W) = w(w + l)fßw +w(w - 1)f'aw- 1 •

In particular, the induced action of C on the quotient \lJDO(R)w/ WDO(R)w-l ~ R
in (1.5) is multiplication by w(w +1) I so if there is any equivariant splitting of this
sequence then the lift 1/J of f E R to 'l'DO(R)w must be an eigenvector of C with
eigenvalue w(w + 1). Writing w = -k and 1jJ(z) = I:~=o fn{z) a-k- n , we find

00

[C - k(k - 1)] 1/J =L [n(n + 2k - 1) In + (n + k)(n +k - 1) f~-d f)-k-n 1

n=1

and equating all coefficients of this to 0 we find by induction that each In is a
multiple of the n th· derivative .j(n) ~ with coefRciehts as given' in ,Proposition 1. (Ta,'
get exactly the lift L k rather than a multiple of it we must normalize by taking

. (2k-1)-1 . (2 Ikl)!.)
fo = Akf wlth Ak = k If k ~ 0 and Ak = IkPllkl-l)! If k < O.

Generalized pseudodifferential operators. Since a wDO is defined as a
formal expression anyway, one can allow symbols f)w with arbitrary cornplex pow­
ers w. Both the transformation property (1.6) of wDO's under changes of variables
and the rule (1.2) for multiplying \lJDO's involve together with each power aw all
lower powers ßw-n with n a positive integer} so we again define wDO(R)w for any
w E C by equation (1.3) and define a generalized \liDO as an element of any such
space or a. finite surn of such elements [KZ1). Because formula (1.2) involves only
binomial coefRcients whose lower index is a nonnegative integer} and hence makes
(formal) sense even for non-integral m and n, the space wDO(R)c of generalized
wDO's is a ring just as before, formula (lA) still holds, and there is a direct SUffi

decomposition

. " -. -, '~ ..~ @'\"' .~ ---,~,- '"::\ "";ro"'~""" .,.,.•• ~. - -. ~..-,., ''J'~''''...--:- ...."'•.,•. "'., "J.~"'•. ." -' "1\" ~ ',' '''V''' ~.... - t,". •T'DO(·R)' '",,:,-. \ r lT'D'0 .R)....' ."'" • I lT'T:\0('R)ll ,~l,':.....;, \; .'T'D0 ('R)" - . . ". f.. ,'i! c.-- _.. ._'i! . w+z·!··.. ·, ... ·· ",'i!lJ . w+Z"'-" - "-':I-' . • w+'k"~'" ... " ~ ...-, • - .'" " ,.
wECjZ kEZ

The summand WDO(R)z is the ring 'l'DO(R) previously considered and each other
summand WDO(R)w+z is a module over this ring and is filtered by the subspaces
wDO(R)w+n (n E Z)} and we again have the exact sequence (1.5).

Formula (1.6) defines the behavior of the generalized \l1DO's under coordinate
changes (again the binomial coefficients make sense even for w non-integral), and
formula (1.7) their behavior under the action of 8L(2, q. Of course there is now
a problem because the quantity j-W or (cz + d)2W is not uniquely defined for
w non-integral. This can be overcome in several ways. In thc case when R is
aspace of functions on the upper half-plane 1i, we replace the group SL(2 , IR)

by its universal covering , consisting of matrices (: ~) E SL(2} R) together with a
choice of logarithm of cz + d in 1i, and take for r a subgroup of this covering
which maps isomorphically onto a discrete co-finite volume subgroup of SL(2 , IR) .
In this case the elements of NI_ 2w (r) are essentially what are classically known
as modular forms with multiplier systems. This does not work for SL(2, C) acting

6



on pl beeause then there is no global logarithm of cz + d. But aetually, as we
eould have pointed out even when looking at the ease of integral weight, there is
no reason that we have to work with a ring R of funetions defined globally on all
of 1i or all of pI: aB of the eonsiderations in §1 were loeal, so in the formulas of
that seetion we eould always have eonsidered \l1DO's 'IjJ(z) = L fn(z)[)w-n defined
for z in some open subset of C, and eoordinate ehanges z I-T z mapping this set to
some possibly different open subset. On a simply eonneeted open set on whieh j or
cz+d has no zeros or poles, we ean ehoose a braneh of j-W or (cZ+d)2w and make
sense of all the formulas we have been writing. The eorreet language to deseribe
all of this is aetually that of sheaves of D-modules over Riemann surfaees with a
projeetive strueture (Le. having an atlas such that the eoordinate transformation
maps between charts are fractional linear), as will be diseussed in §8. For now we
will ignore this issue and use the same terminology as before, with the understanding
that the results have to be interpreted in one of the ways just indieated. Proposition
1 then generalizes to the following result.

Proposition 3. Let w E C, 2w not a nonnegative integer. Then the map

V w : R -+ \l1DO(R)w, (2.4)

satisfies 1Jw (/1-2wg) = 1Jw(/) 0 9 for all 9 E SL(2, q, so 1Jw gives an equivariant
splitting 0/ the exact sequence (1.5). If w is a nonnegative integer, then the same
assertion remains true if the stim in the definition of TJ w is replaced by a stirn
frorn n = 0 to n = w. If w is a positive half-integer, then there is no equivariant
splitting of the sequence (1.5).

Proof. For w E Z this is the same as the statement of Proposition 1, sinee one
easily checks that TJ-k = AkLk for k E Z, with Ak defined as at the end of the last
subseetion. Both the proof by direct computation given in §1 and the proof given
above using the Casimir operator given above apply unehanged for general w (with
the change of notation that we again use w instead of k = -w, which was more
eonvenient before beeause classical modular forms have positive wcight). The proof

.".~~.~~g,;~p.~..9t~~~,!;.,?J?!7:~:Ho~~,~,~8~rt",",~~~,l!~\i9 ~~.~~.I~K..~,l~Jl(~ •.~~:;I "l},;D,~7: ~!~~~j~,~. ~l"O~~.,,~ ~,""'~ _." _,
, existen'ceLin I the ·case 'wnen"l w is ä positive half~iriteger (correSponding to mod ular .

forms of odd negative weight), since the recursive relation n(n - 2w - 1) In =
- (n - w) (n - 10 - 1) f~-I cannot be solved in general for n =2w + 1. In this ease
there is a lifting if and only if f is a polynomial of weight ::; 2w. •

§3. A non-commutative multiplication of modular forms.
Let r be a diserete subgroup of PSL(2, R). As explained in thc last seetion, one

interpretation of Proposition 1 is that \l1DO(R)r is canonically isomorphie to the
space M (r) = TIk»-oo A12k (r) of semi-infinite sequences of modular forms on r
(Le. sequenees fk E M2k (r) with fk = 0 for all but finitely many negative k; in
the first su bsection of §2 we looked only at the subspace M (r)+ of sequences of
forms of positive weight). On the other hand, the product of r -invariant wDO's is
again r -invariant, so there is an indueed non-commutative ring strueture on M (r) .
In this seetion we describe it explicitly in terms of the "Rankin-Cohen brackets."
These are the bilinear maps

(k, I E Z, n E Z~o )
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defined by the formula

n

[f,g]~k,/)(z) = L(-l)mCkn+_n~l)e/+~-l) I(m)(z)g(n-m)(z). (3.1)
m;O

(Here <j>(m) = amt:/; as usual , and we have dropped the r in the notation for spaces
of modular forms; we will also usually omit the superscripts "(k, I)" on the brackets
except when necessary for darity, since we will always apply them with superscripts
equal to half the weights of the arguments.) They were introduced and shown to
be modular in 1974 by H. Cohen [Co), this result being a special case of a general
theorem of Rankin [Ra] describing all multilinear differential operators which send
modular forms to other modular forms. The easiest proof of the modularity of
[I, g]n is to use the Cohen-Kuznetsov lifting (2.3) from modular forms to Jacobi-like

forms: the transformation law (2.1) shows that the product j(z, -.IY) and g(z, X)
is invariant under (z, .IY) I-t (~:tS 1 (cz~dP)' which means that the coefficient of

X k+l+n in this product is modular of weight 2k + 21 + 2n ,and this coefficient is
just a scalar multiple of [I, g]n. It is also easy to see that the combination (3.1)
is the only universal bilinear combination of derivatives of fand gwhich goes

from M 2k 0 M 21 to M2k+2l+2n'

Proposition 4. Par integers n, k, 1 ~ 0 define coefficients tn (k, 1) by

Then the multip1icatian J.L an M (f) defined by

00

J.L(I, g) = L tn (k,l) [I, g]~k,1)
n;O

(I E M2k(f), 9 E M21(f))

is associative and the lifting map 'D = IIw D w : J\It (f) ---+ 'l'DO( R)r IS a ring
hamomorphism with respect to this multiplication.

. Proof-As.already..mentionedj:the~iBomofph,ism",be'&weeJr-oM·(·r~)~nfr"~ \lII>G(~Jl..}f'-per- .. '" ".. ~ ~~...",.. - ........ ",-..
mits us to transfer the non-commutative structure on the latter space to the former
one, i.e., to associate to j E A12k and 9 E M2 / a unique sequence of elements
h n E M 2k+2l+2n (n = 0, 1, ... ) such that V-k(f) 'D-l(g) = L~;o 'D- k - l- n (h n ).

The map (I, g) I-t hn from M2k 0 M21 to M2k+21+2n is expressed by a universal
formula as a linear combination of products of the first n derivatives of fand
g, so by the uniqueness mentioned above it must be a multiple of the Rankin-
Cohen bracket, Le. we have hn = tn [I, g]n for all n ~ 0, where the coefficient tn

depends only On n and on the weights k and I. Substituting the definitions of
the Rankin-Cohen brackets and of V and multiplying everything out, we obtain
a rather complicated identity which overdetermines the coefficients t n : for each
m ~ 0 the comparison of the coefficients of j(n) g(m) D-k-l-n-m on the two sides

of the equation for n = 0, 1,2, ... gives an infinite sequence of equations which
inductively determine the coefficients tn . For m = 0 these equations are
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and this can easily be inverted to yield the formula for tn = tn(k,l) given in the
proposition. •

Computing the first three coefficients t n from (3.2), we find

to = 1,
1

t l =--,
4

and computing a few mOfe eoeffieients we are led to conjecture the formula

t (k I) - (_~) n "'"" (n) (-/) (-l) (}) ( )
n , - 4 fu 2j (-\-!) (-lj t) (n+ktl-~) . 3.4

(Note that the surn on the fight is finite since (;j) vanishes for j > n/2.) The

equivalenee of (3.2) and (3.4) is a special case of the following result, whose fairly
complieated proof will be given in a separate paper [Z2].

IDENTITY. Far an integer n ~ 0 and variables .X, Y, Z satisfying .-Y+Y+Z =
n - 1, we have

(3.5)

A first eorollary of the identity (3.4) is that the coeffieient tn (k, I) is symmetrie
in k and I, a property which is not at a11 obvious from the definition (thc product of
wDO's is neither commutative nor anti-eommutative) and is also not at all obvious
from the closed formula (3.2). But in fact there is an even loss obvious three-fold
symmetry which is seen best in the formulation (3.5): even though the expression
on the left apparently has a slightly different dependence on Y and Z, and a totally
different dependence on X, the identity shows that it is in fact symmetrie in all
three variables. Going back to the special ease (3.4), we can rewrite these properties
as

Vk, I E Z, n E Z~o . (3.6)

(This makes sense because the denominators in (3.4) do not vanish for any integral
values of k and land the sum is finite, so that tn(k,l) is defined for alt k, I E Z.)
''A'n'l'expianaÜon"for these~symmerrtes'in'''terms 'öt"resiCl ües·-,vürb'"e ·grveI1"ii)-§6·.~· ' ....... "-~'~ .. . .--".. ~

§4. Conjugate-automorphic wDO's and new multiplications on M (r) .
In this section we will show how to generalise the above discussion to prod uce a

whole family of new associative multiplications. The starting point for this was an
observation by W. Eholzer, who discovered (and verified for the first few terms of
the expansion) that the anti-eommutative bracket

[f, g]E:= L [11 g]n
n odd

(4.1)

satisfies the Jacobi identity and henee equips M (r) with the structure of a Lie
algebra. Since the n th Rankin-Cohen bracket is (-1) n -symmetrie, the bracket
[I, g]E is just the add part ~ (I *9 - 9*I) of the Ehalzer product

00

I * 9 := L [/, g]n .
n=O

so Eholzer's observation suggested the foUowing result:

9
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Proposition 5. The multiplication * on M (r) defined by (4.2) is associative.

Comparing this statement with Proposition 4, we see that both have the same
form, except that the complicated coefficients tn = tn (k, I) defined by (3.2) or (3.4)
are replaced simply by 1. On the other hand, from the special cases in (3.3) we see
that the coefficients (-4)ntn (where the factor (_4)n of course does not affect the
associativity of the prod uct E t n[I, g]n) are a kind of "small deformation" of 1.
This suggested that there might be a whole family of multiplications of M (I"') of
which both Propositions 4 and 5 are specializations, and after a fair amount of
experimentation a formula which worked empirically was discovered:

Theorem 1. For K. E C define coefficients t~(k, I) (n = 0,1,2, ... ) by

Then the multiplication J-lK on M (r) defined by

(4.3)

00

It K (I, g) = L t~ (k, I) [I, g]~k,l)
n=O

is associative.

The first few coefficients t n = t~") (k, I) are

(4.4)

to = 1,
1

tl = --,
4

1 ( (1 - 2K) (3 - 2K) )
t 2 = 16 1 + (2k +1)(21 +1)(2k +2l +1) .

From these special cases or from the formula (4.3) we again see non-trivial symme­
tries, namely

t~(k,l) = t~(l, k) = t~(k,l- n - k - I)

(generalizing (3.6)) and

(4.5)

(4.6)

(~~.L~~~~t.~~! ~!~~.E:~~.1,~!1?1~~.~\!.~~~ ...!t:... ~E9..",Y,:.~ =.,,~2i.~~:l9.~1-~ ~~,~VLcii~S~~,!>,q,t h_., ""+,' 'v' .~., ~"
of these equations in §6 in terms of the residue map and the duality between auto-
morphic forms of weights K and 2 - K. Vve note that Proposition 4 is the special
case K = 0 (or K. = 2) of Theorem 1 and Proposition 5 (up to a harmless rescaling
of tn by (-4) n) is the special case K = 1/2 or K, = 3/2. Another interesting special
case is given by taking 1), = l/e, multiplying t n by a factor (-4e)n (again, this
does not affect the statement about associativity), and letting e tend to O. The

resulting coefficient t~oo) (k,l) is simpler than the general coefficient t~, since in the
limit all terms in (4.3) except the one (if any) with 2j = n vanish and we have

t~jl1 (k, I) = 0 .

The vanishing of t~oo) (k,l) for n odd means that the corresponding multiplication
J-l(oo) , unlike the multiplications j.tK for K, finite, is commutative.

Problem. Find a natural interpretation for this ring structure /t(oo) on M (r) .
We now turn to the proof of Theorem 1. One can prove it by direct combinatorial

manipulation of the sums of binomial coefficients involved. However, this proof is
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not only very laborious, but also does not explain where the new multiplications
come from. Instead we give a proof using pseudodifferential operators with a new
invariance property. Namely, we can use the non-commutativity of the ring of
wDO's to define a "twisted" action of SL(2, C) by

(4.7)

(4.8)

Note that this makes sense even for non-integral K, since any two determinations of
the factor (cz + d)X differ by a scalar factor and scalars commute with wDO's. If
r C PSL(2, C) is a group acting on thc ring R as usual, then we call an element of
wDO(R) which is r-invariant with respect to the action (4.7), Le., which satisfies

az+ b
1/J (--d) = (cz +d) ~ 1/J (z)(cz + d) - x

cz +
a conjugate.automorphic pseudodifferential operator 0/ weight I'i. with respect to r.
We denote the space of such elements by wDO(r)K and write wDO(r)~ for its
intersection with \l1DO(R)w. (We omit R from the notationj usually we think of
the case when r is a discrete subgrop of PSL(2, IR) and R = :F.) Sincc conjugation
of a 'liDO by a function does not change the leading term (symbol), we see that the
exact sequence (1.5) is equivariant with respect to the action of r on the first two
terms by (4.7) and on the last term by 1-2w, so taking invariants we get a sequence

(4.9)

which is exact except possibly for the final term. We then have the following
generalization of Proposition 3:

Proposition 6. The map V~ : R -+ wDO(R)w defined by

(4.10)

(where the stim must be replaced by L:=o i/ w is a nonnegative integer and is not
definedA'if' W.-F is~a'" positive~Halpinteger)"'satisfies'''''V:J(fl'~i~g}A=·,~·V':vtf'Hrgc:.>ldr' äll~"- tA·,,,,,,· .... '>I ~

9 E SL(2, C). In particular, the sequence (4.9) is exact and splits canonically.

Proof. The proof, either by direct calculation, via Jacobi-like forms, or using the
Casimir operator, is exactly the same as before. •

Now we proceed just as in §3. The lifting VK = IT kV~ gives an isomorphism
from M (r) to wDO(R, r) K, the inverse map being given explicitly by

L gn an H {fk}k>-oo,
n.;(:oo

(k-l) (k-x)
f - ~ r r (r) E At[

k - L.J (2k-2) 9 r -k 2k ,
r~O r

(4.11)

generalizing (4) of Proposition 2, §2. On the other hand, it is clear that the product
of two conjugate-automorphic WDO's of weight I'i. is again conjugate-automorphic
of the same weight, so by transporting the multiplication of wDO's to M (r) by
V'" we get a new ring structure J-1.x on M (r). Again the uniqueness of the Rankin­
Cohen brackets says that we must have VX(f)VX(g) = Ln tn[f, g]n for alt f E
M2k, 9 E M 21 for same universal coefficients tn = t~(k, I), and by substituting

11



(4.13)

all definitions and multiplying out what this says we get an infinite sequenee of
equations for the t n of which the simplest is

(n+~-/() (n+~-I) _ e1+;--I) (n+k~l-/() (n+k~I-I)

(n+2k-l) - L (n+r+2k+21-1) tr .
n r+3=n 3

Inverting this as in the previous case we find the closed formula

/( 1 (-rk) (-k-/+/() (n+k;l-/() (n+k~l-l)

tn(k,l) = (-2/) L (-2k) ('n+2k+21-2) (4.12)
n r+s::;n r ~

That this is equivalent to (4.3) follows from the following generalization of the
identity given in §3, and whose proof again will be postponed to the paper [Z2J:

IDENTITY. For an integer n ~ 0 and v(lriables a, x, y, z satislying x+y+z =
n - 1, we haue

(-4) n (~) (y~'a) (:) (z~a) (n) (-i) (aj!) (-aj-!)

(':) r~n (':) (':) = ~ 2j (Xj~)("j~lCj~)'
(In our ease x = -1, y = -k, z = n + k + I - 1, anel a = 1 - K,.) Again this
identity reveals surprising "hidden symmetries": the left-hand siele is symmetrie
under interchanging y and z and simultaneously replacing a by -a and has no
other evident symmetries, but the identity shows that it is in fact symmetrie in
all three variables x, y, z anel at the same time an even function of a. In terms
of the coefficients t~(k,l), these symmctries become the equations (4.5) anel (4.6)
mentioned above.

As a. final remark, we observe that in the special case '" = 1/2 corresponding to
the Eholzer multiplication (4.2), not only the multiplication but also the formula
for the lifting map VI<, simplifies, since (4.10) becomes simply

00

v1J2 (I) = L 4n eWn-n)j(n) 8w - n .

n=O

(4.14)

§5. Automorphic WDO's of mixed weight.
We can generalize still further by considering the action of r defined by

az +b b
.~ ..:~,rl'·"! ~.,(~I~l:'.~:l:7(,H~)~=;j~! ItlfO ~~~.ljf:e'(cz'+.dlis7h± ~t~~t ...~JJ~:;:;', (:'d,l,~E ..[)t. "!"1Y}~. ':"',," y •. ~ •.~,.. ~ ~IO"., 0, •••••

where "'I and "'2 are complex constants. If "1 and "2 differ by an integer, then
this makes sense independently of the branch of log(cz + d) chosen; if not, then we
either have to pick a lifting from r to the universal eover of SL(2, IR) or else work
with locally defined functions, as discussed at the end of §2. We call the elements
of wDO(R) which are r -invariant with respect to this action, i.e., which satisfy
the transformation law

az+ b
7/J( cz + d) = (cz + d)~l 1jJ(z) (cz + d)-/(2 'i(: ~) Er, (5.1)

automorphic pseudodifferential operators 0Jmixed weight ("1, "'2) wit h respect to r .
We denote the spacc of such operators by WDO(r) /(\ ,/(2 and its intersection with
WDO(R)w by wDO(r)~}·~2. If 'l/;(z) = 2::n >o Jn(z)8w- n belongs to this latter
spaee, then its leading coefficient /0 is r -invariant with respect to the action
1/(1-/(2-2w , so the sequence (4.9) generalizes to

o-+ WDO(r):I,:~2 -+ wDO(r)~}'~2 -+ M~1-~2-2w(r) -+ 0 (5.2)

and the liftings described in the previous sections to the following proposition:

12



Proposition 7. The map 'D:/''''~ : R -+ \l1DO(R)w defined by

('5.3)

where the upper index in the sum must be replaced by L~=o iJ w is a non-negative
integer and values 0/ w Jor which the denominator 0/ any oJ the coefficients vanishes
must be excluded, satisjies

Vg E SL(2, C) . (5.4)

In particular, the sequence (5.2) is exact and splits canonically.

Just as before, we could prove the proposition by direct computations as in §1 or
else by an argument using Jacobi-like forms or the Casimir operator as in §2. Now,
however, there is a new argument which is perhaps the simplest of all. In the special
case when w = n is a non-negative integer, the lifting 'D':nl''''~(/) of an element
/ E M K1 -"'2-2n is a differential rather than a pseudodifferential operator, and hence
acts on functions. Moreover, it is clear from the transformation law (5.1) that if
g E MK~ (f) and 'l/J E DO(r)"'l,K~, then the image 'l/J(z)g (z) belangs to M K1 (r) .
Hence, changing notation from K}, K.2 to 2k = K.l - /\'2 - 2n, 21 = /\'2, we see that
the map /0g t-+ ('D;k+21+2n,21/)(g) goes from M 2k (r) 0M21(r) to M2k+2l+2n(r) ,
and comparing the defin.ition (5.3) with the definition (3.1), we see that this map is,
up to a scalar, not hing else than the Rankin-Cohen bracket (as indeed it must be by
the uniqueness of the latter). Turning this around, the fact that the Rankin-Cohen
bracket is given in terms of derivatives means that, for a fixed / E M 2k (r), the

operator [I, .]~k,l) is a differential operator which sends MZl (r) to MZk+2l+2n (r)
and hence satisfies the transformation law (5.2) (with /';1 = 2k+2/+2n, K2 = 21), so
that the mod ularity property of the bracket im plies the equivariance property of the
lifting (5.3) in this case. Since this equivariance property is at each level equivalent
to a finite number of binomial coefficient identities, and since this argument shows
that these identities (which are polynomial in /\'1 and /\'2) are true for infinitely
many values 1';1, ""2, this special case is enough to prove the proposition .

. . <_ Np.)y..-j:ust, as)nl"th~lprgvjq,ll:s4C;a1?e~~~1'lt.~iK2~::3· ...0,.a:nd.J~1-~:·7· ~2~7.'~ 1'1'thil?proposi.ti9n.':'~.,,~ ..J""'''''''''-' ;.•'.. ~~ . .,

induces an isomorphism between M (r) and WDO(r)"'t,"'~. However, the latter
space is no longer a ring, so this does not directly induce a single multiplication on
the space of modular forms. Instead, we clearly have

(5.5)

(if we restrict this to differential operators rather than \l1DO's then DO(R)"'l''''~ can
be thought of as giving homomorphisms from M,..'J to M K1 as just explained, and
this is just the composition of homomorphisms) and combining this with the lifting
of Proposition 7 we get a corresponding collection of multiplication maps /L"'t''''2''''3
on M (r) which satisfy the evident associativity property (groupoid structure).
These multiplications must again be expressible in terms of Rankin-Cohen brackets,
i.e., we must have

00

'D~~ ,K~ (/) 'D~~,K3 (g) = L t~l ,K2 ,K3 (k, I) 'D~tl~~ -n ([/, g]n) (5.6)
n:;;;O
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for 80me numerical coefficients t~l ,"'2,"'3 (k, I) , where 2k and 21 are the weights of
fand 9 and WI = t (~l - K2) - k, W2 = t(1i2 - K3) - I. These eoefficients can be
evaluated as before to give the formula

where Tn(a}b,c;x}y,z) is defined for a non-negative integer n and variables a} b}
e} x} Y l z with x + Y + z = n - 1 by the formula

whieh reduces to the Ieft-hand side of (4.13) in ease a = b = c.
In §6 we will use the interpretation (5.7) of the numbers Tn Lo prove the following

purely eombinatorial result.

Theorem 2. The coefficient Tn(a} b} c; x} y} z) is symmetrie in the three pairs 0/
variables (a) x), (b) y), and (c, z) and is an even /unction 0/ a, band c.

As examples of the theorem} we found (with effort!) the symmetrie expressions

Ta = 1,

1 (a2
b

2
c

2
)Tl = 1 + - - + - + - (x + y + z =0),

4 yz xz xy

1 (a2
b

2
e

2
) 1T2 1 + - -+-+-

2 yz xz xy (2x - 1)(2y - 1)(2z - 1)

1 (a2 (a2 -2) b2 (b2 -2) e2
(C

2 -2))
+ 4" yz(2y - 1)(2z - 1) + xz(2x - 1)(2z - 1) + xy(2x - 1)(2y - 1)

1 (b2
c

2
a

2
e

2
a

2b2
)+-- --+-- +-- (x+y+z= 1).

4xyz 2x - 1 2y - 1 2z - 1

The expression for Tl clearly simplifies to 1 if a = b = e l but already for n = 2
the verification that T2 reduees to 1 + (4a 2 - 1)/(2x - 1)(2y - 1)(2z - 1) when
a = b = c} as it must by (4.13), requires the non-obvious identities

1 1 1 8 -1 (1 1 1)
zx + xy + yz - (2x - 1) (2y - 1) (2z - 1) = xyz 2x - 1 + 2y - 1 + 2z - 1

1 1 1
= + +-------

zx(2z - 1)(2x - 1) xy(2x - 1)(2y - 1) yz(2y - 1)(2z - 1)

for variables x} y} z with x + y + z = 1. It would be niee to find a direct combi­
natorial proof of Theorem 2 or, even better, a closed formula for Tn(a, b, e; x, y, z)
which

(a) makes the symmetries stated in Theorem 2 evident} and
(b) reduces term-by-term to the right-hand side of (4.13) when a = b = c ,

but so far we could not find a formula having either one of these properties.
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§60 Residues, duality, and symmetryo
In the previous section we found a striking symmetry among the three weights

k, I, and m := 1 - k - I - n in the formulas giving the coefficients of the n th
bracket [I, g]n (I E M2k, 9 E M2z) in the variolls multiplications on M (r). Ta
explain it, we use the non-commutative residue map

m

where S1 1 (R) = Rdz denotes the space offormal differentials I(z) dz (I E R) and
dS10 (R) = dR the subspace of exact differentials f'(z)dz, 1 E R. This residue map
was introduced in [Ma2] and shown to have the properties

Resa(1fJ 0 g) = Rese(1fJ) 09 (6.1)

for any 1/J and any holomarphic map Z H 9(Z) (invariance under holomorphic
change of coordinates) and

(6.2)

for any two WDO's 1fJl and 1/J2 (trace property). The invariance under changes of
variables implies in particular that Rese maps WDO(R)r to H(R)r if r is a group
of fractionallinear transformations acting on R land the conjugacy-invariance prap­
erty (6.2) implies that the same is true for thc space \lJDO(R, r)I'> of conjugate­
automorphic WDO's of arbitrary (camplex) weight IC The space H(R)r is isomor­
phie via l(z)dzH f(z) to the space H(R,r) = M 2 (r)j8(Mo(r)) , and byabuse
of notation we will simply identify these spaces and write Rese for the corrcspond­
ing map 'l'DO(R, r)~ -+ H(R, r). We must choose R large enough that there
are plenty of modular forms of positive and negative weight, so that we can test
an identity in M2k(r) by checking whether its product with an arbitrary element
of M 2 - 2k (R, r) is 0 in H(R, r). For instance, we could take R to be the set of
all functions which are meromorphic in the upper half-plane including the cusps,
or the subspace of those which are holomorphic outside some specified non-cmpty
r -invariant set S.

We also define a projection map P from A1*(r) = EBkM2k(r) to H (R, r) by
. " sendi ng'~4..E.,~M2 k ('~')i',to~O ..if~k4;~1"1and'f'to ..its~natu p?-l,;jmage~i n;t'H+R'jT!!hif~kf=y1 .... ,'" ~·W" ... ~" ~".~. "~ " " ....,

Proposition 80 (i) The map P annihilates all higher Rankin-Cohen bm,ckets, i.e.
P([f, g]n) = 0 for all f, 9 E M* (r) and all n > O.

(ii) The "tripIe brocket" {f,9, h}n := P([f,g]nh ) (f, g, h E M.(r), n ;::: 0) is
invariant under cyclical permutation of its three arguments.

Proof. Suppose f E M 2k (r) and 9 E M21 (r). Ir k + I + n f: 1, then P([f, g]n)
vanishes by definition. Ir k + I +n = 1 then a one-line computation shows that

n[f, g]n = (k - I) 8([f, g]n-d

and hence that [f, g]n vanishes in H (R, r) if n =j:. O. This proves (i). To prove (ii),
let h E M 2m (r) be a third modular form, and suppose that k+l +m + n = 1 (oth­
erwise {f, 9, h}n and {g, h, f}n are zero by definition). Let == denote congruence
mod ulo dR. From f'9 == - f g' we get (-1)P f(p) 9 == g(p) f by ind uction and hence

(-l)P f(p) g(q) h == (g(q)h)(p) f = L (~)g(q+r) h(&) J
r+s=p
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by Leibniz's rule, so

[I, g]n h = L (-l)P (Zk+qn-l) (ZH;-l) f(p) g(q) h
p+q::;n

= L ek+
q
n - l)el~;;l) (r~")g(q+r) h(s) f

q+r+,,::;n
n

= L e1+;-I) { L (2k+
q
n-l) eHn;"-I) } g(n-,,) h(") f .

,,::;0 q+r::;n-"

But the term in braces is given by

{ ... } = ek+21~~~-"-2) = (-2r;:~:-2) = (_l)n-" (2mn+_~-I) ,

so this last expression equals [g, h]nf, proving the claim. We also note that (i) is
a special case of (ii), since P([f, g]n) = {J, g, l}n = {g, I, J}n = 0 if n > O. •

We can now give the promised explanation of the cyclic symmetry property
(3.6) of the coefficients tn (k, I). Let k, I, m, n be integers with n ~ 0 and
k +1 +m+n = 1, and let f, g, and h be modular forms of weight 2k, 21, and 2m,
respectively. (For the application to (3.6) we imagine that k and I are positive and
hence that m is negative, but the signs play no role.) Write T> for the lifting map
from M(r) to '1JDO(R)f (so V(F) =V_K(F) for F modular ofweight [() and {l
for the multiplication on M (r) defined in §3, Proposition 4, so that V(F)V(G) =
V (/-L(F, G)) for any Fand G in M (r). Also Res8(V(F)) = P(P) for any modular
form F, because the coefficient of 8- 1 in V(F) is F if F has weight 2 and is eitller
o or else a higher derivative of F if F has any other weight. Hence for any two
modular forms Fand G we have

Resa(V(F)V(G)) = Resa (V ({l(F, G))) = P(/-L(F,G)) = P(FG) ,

where the last line follows from part (i) of Proposition 8 and thc fact that IL(F, G)
is thc sum of FG plus a linear combination of lligher Rankin-Cohen brackets.
Applying this with F ={l(f, g) and G = h we find

Resa(T>(f)V(g)V(h)) = Resa(V({l(j,g))V(h)) = p(p(f,g)h) = tn(k,l) {f,9,h}n.

The~expression.r:onJ.thedef~!iS1ri nvariantrc:u nd er,~cyclic'~ permutation:;of.ef.r,:fg,~and~~h~ by.t~"'L 't~,'" >" \'''~" .nJ. ". ~ :

the trace property (6.1), and the tripie bracket {f, g, h}n is invariant under cyclic
permutations by part (ii) of Proposition 8, so the coefficient tn(k,l) must have the
same symmetry, i.e., tn(k,l) = tn(l, m) = tn(l, 1- n - k - I).

The same argument works unchanged if we replace \l1DO(R)f by the group
\l1DO(R, r)'" of conjugate-invariant wDO's of weight K, and V by the lifting map
M(r) ~ \l1DO(R, r),o; constructed in §4, so we also get an explanation of the
analogous cyclic symmetry property of the more general coefficients t~ (k, 1) .

Evcrything also goes through in the case of mixed weights introd uced in the last
section. Choose three complex numbers 1'.:1, 1'\,2, and 1'\,3 ,and considcr equation
(5.6). Multiplying this equation on the right by 'D~~''''l (h), where h is a modular
form of weight 2m with k+I+m = 1- n for same integer n ~ 0 and 'Wa is defined
as t(1'.:3 - K,d - m, we find by a second application of the same equation that

V':v~''''2(f) V~;''''3(g) V~~,,o;l (h)

= L t~l ,,0;2,,0;3 (k,l) t: 1,,o;3,,o;l (k + I + r, m) V~II+W2+W3-r-,,([[f, g)r, h] .. ) .
r,,,~O
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Now applying Rese to both sides and arguing as before we find

and this implies just a.s before the invarianee of t~l ,K2.
K

3 (k, l) with respect to si­
multaneous eyclie permutation of ("'-I, "'-z, "'-3) and of (k,l, -k -1- n + 1).

Proolol Theorem 2. Formula (5.7) together with the eyclie symmetry just proved
implies that Tn(a, b, Cj X, Y, z) is invariant with respeet to eyelie permutations of
thc three pairs of variables (a, x), (b, y) ,and (c, z). On the other hand, it is clear
from the defining formula (5.8) that Tn(a, b, c; X, y, z) is an even funetion of band
of c. From the eyclie invarianee it follows that the three v~riables a, b, and C play
equal roles, so it is also an even funetion of a. On the other hand , by interehanging
the roles of rand s in (5.8) we see that Tn is unehanged if we interehange (b, y)
and (c, z) and simultaneously replace a by -a, so we obtain also the invariance of
Tn under odd permutations of (a, x), (b, y), and (c, z). •

[n terms of the coefficients t n of the multiplieations of 'lJDO's of mixed weights,
Theorem 2 says that these coeffieients are invariant not only under cyclic permuta­
tions of the indices, but also under interchange of k and I (and simultaneously of
"'-I and "'-3), a.s weH as under each of the three involutions "'i I-t 2 - K,i. VVe have
given an intrinsic explanation of the first symmetry in terms of the residue map, but
this is only a subgroup of order 3 out of a total symmetry group 6 3 t:< (Z/2Z)3 of
order 48. We now explain where the other symmetries eome from. For this we will
use both a duality and an isomorphism between the (abstract) spaccs of modular
forms of weight K and weight 2 - "'.

We first give an argument whieh shows that

(6.4)

and henee that the eoefficients t n are invariant if we su bject (k,l, m = 1-n - k -I)
to any odd permutation, apply the eorresponding permutation to the K,i 's, and
simultaneously replace each K,i by 2 - "'i.

There is a canonical involution A I-t A* on the ring DO(R) of differential
.op~r,~tqr<s.\o~erj._J:l",~l.efjll~d~bYjt\l~,.P~OP.~.ty~th~t;iA{f)Ii,:g~~,.f.,~·>.4~,(,g.)I,,(mod~dR),..Jor1,r.!>'t'\, -,', ~"., "1,-'·",· ... , , ",

all I, gER. This involution is the identity on functions, sends [) to -0 (formula
for integration by parts!), and satisfies (AB)'" = B* A* , so it must be given by

(6.5)
n n

We ean now use this formula to extend * to aB of 'lJDO(R) , and aB its formal
properties (like being a ring anti-automorphism) must remain true , sinee all such
properties are equivalent to binomial eoeffieient identities which hold identicaBy if
they hold for positive integers. We also find the further property

V1jJ E '!JDO(R) . (6.6)

Indeed, any 1jJ can be decomposed as 1/;1 + 7/;z with 1jJl E DO(R) and 1/;2 =
L:~=1 hn[)-n j then 1/;1 and 1jJi are differential operators and henee map to 0 under
Rese while 1/J2 = h1 a- 1+O([)-Z) and 1/Jz = _[)-1 h1+O([)-Z) = -h1 [)-l +O(O-Z)
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have opposite images under Rese . Finally, one can cheek either from the defining
property of * or else by direct com pu tation that

In particular, if 7/; belongs to WDO (f) K, ,K~ then 7/;* lies in \lIDO(f) 2-K2,2 -K1. We
also have:

(6.7)

Indeed, the map I H l)~-K212-K1 (/)* is an equivariant splitting of (5.2) and hence
by uniqueness is a multiple of l)~} ,K~ (I), and the multiple is (-1)w beeause of
(6.5) and the fact that the leading term of l)7v(/) is I ßW.

Combining (6.3), (6.6) and (6.7) and noting that Wl + W2 + Ws = n -1, we find

t~' ,K~IK3 (k, l) {I, y, h}n = -Rese ((l):;/"K2 (I) l)~,K3 (y) l)::~,Kl (h)) *)
= -Rese(l)~~,K1 (h)* l)~,K3(g)* l)~~,K2(/)*)

= (-1) n Rese(l)~~ K, ,2- K3 (h) l)~~K3,2 -K~ (g) V~~ ~~,2 -~l (f))

= (-1) n t~-~3 ,2-~2,2-Kl (m, l) {h, 9, I}n.

But (-I)n{ h, y, I}n = {I, 9, h}n by Proposition 8 and the (-l)n-symmetry of the
n th Rankin-Cohen bracket, so this equation (after one more eyclic permutation of
its arguments) implies (6.4).

Finally, we have to see why each K,i can be replaced by 2 - K,j this will give the
rest of our symmetry group (so far we have explained only 6 out of a total of 48
symmetries) and in particular show why the original eoefficients tn(k, I) of §3 are
symmetrie in k and l. Consider the ease when the W of V~/ ,K~ is a positive integer,
so that 1J~/ ,~~ (/) is a differential rather than a pseudo-differential operator. Then,
as discussed in §5, it maps the space of modular forms of weight f'i,2 on f to the
space of modular forms of weight fil. Suppose that ~l = 2 - h for some positive
even integer h. (As usual, these restrictions on wand K,l are not important since
in proving formal identities it is enough to prove them for infinitely many special
eases.) A classical identity from the theory of modular forms says that

dh - l dh - 1 .

• •,........ , ..- ".,:.fft" '\l (l:zh''''':l ",(1.12 ,~hY.) ...~~ ..d.z:h'...:'l"(f.) ,[.hY..... ",,/":Y~.Y .. E,jSL (.2.,,~h ...._h.,E ...~;.<..., .,.,. .." "-" I,~"\" -.'l~ ''',' ..t..~-1t ~.,., • I •

(This formula, cl ue to G. Bol, is the basis of EiehIer eohomology and the the­
ory of periods of modular forms.) Hence ßh-l maps M2-h (f) to M h(f), so if
7/; E DO(R,f)2-h'~2 and / E M~2(r) then ßh-l(7/J(f)) E Mh. This says that
the produet in \lIDO(R) of Öh - l and 7/J belongs to WDO(R, f)h,K~. Replae­
ing K,l = 2 - h by an arbitrary value of K,l, we see that we have proved that
\lIDO(R, f) ~1 ,K~ is eanonieally isomorphie to WDO(R, f)2-~1 ,~2 by left multiplica­
tion with ÖI

- K1 . The same argument shows that it is also eanonieally isomorphie to
\lIDO(R, f)Kl,2-K~ by right multiplieation with a~~-I . It follows that the equations

must be true up to sealar faetors, and by looking at the leading term one sees that
these factors equal 1. (As a check, note that the second of these equations implies
that the coeffieient of f(n) 8- n in (5.3) must be invariant under (~I, ~2, 10) H

(~l, 2 - K,z, W +K,2 - 1), and this is indeed true.) These identities let one rcplaee K,

by 2 - K, wherever they oceur as superseripts, which was the observed symmetry.
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§7. Supermodular forms and superpseudodifferential operators.
We work on the supercomplex plane elll with local coordinate (z, (), where

(2 = 0, and with the eanonieal supersymmetrie (SUSY) strueture given by the
maximal non-integrable strueture distribution of rank 011 generated by the veetor
field D = t, +( /; satisfying D 2 = tz. This is, up to isomorphism, the unique such

SUSY strueture extendible to pli!. (For an exposition ofthose aspeets of the theory
of supersymmetry needed for the present paper see [Ma2].) If (z, () is another loeal
coordinate defining the same SUSY strueture, then D = J . fJ where J = D()
is the superanalogue of the usual Jaeobian. We let R be a Z/2-graded ring of
funetions on eilion whieh D acts; these will have the form F(z, () = I(z) +(9(Z)
where the funetions I(z) and g(z) can themselves have coefficients in a superring
(or Z/2-graded ring) of eonstants A. By convention, even coordinates or constants
will always be denoted by Latin letters a, b, c, d . .. and odd coordinates or constants
by Greek letters 0', ß, 1,8 .... Even constants and variables commute with even
and odd constants and variables, while odd constants and variables anti-commute
with odd constants and variables and in particular have square zero.

The superanalogue of the group PSL(2, C) is the group PC(2, Clj1 ) whose ele-

ments are matrices A = (~ ~ }) (7.1)

a ß e

satisfying

ad - bc - aß = 1,
#

e2 + 2,0 = 1, ae = a8 - Cf, ße = b8 - d,

together with the condition that e red uces to 1 mod ulo nilpotent elements. (The
last condition prevents both A and -A from belonging to the group.) The matrix
(7.1) acts on elll by the "fractional linear SUSY-compatible transformation"

• - az +b+,( az + ß+ e(
(z,() f-4 (z, () = (cz+d+8(' cZ+d+8() (7.2)

and on R by sending F(z, () = /(z) + (g(z) .to pA(z, () = /(z) + (g(z). A cal-
... cu lätionsnows-tI13:t"'tnesüferj äCöbi'äri"J(Ä) -;;-D'(er üf'tnit't'ra'nsformaüon ~ (7':2)"'T.P"( .l.Ye " '_1 >". ,.' •

is equal to (cz + d + O()-l. We will use this as the automorphy factor to define
supermodular fonns (noticc that it becomes thc square root of thc classical auto-
morphy factor dz/dz when 8 = 0). For an integer k and a (discrete) subgroup
r C PC(2, eI11 ))1 we denote by SMk(r, R) the space of supermodular forms of
weight k, i.e., elements of R satisfying, für A E r as in (7.1),

F(az+b+,(, aZ+ß+e() = (cz+d+o()kp(z,().
cz +d +8( cz +d +8(

By direct calculation we find that this is equivalent to the two equations

k az +b
(1 - kaß) f(z) - (cz + d)- /(--d) = e (az +ß) g(z) ,

cz+

() ( d) -k-1 (az+b) ( ß)f'() k c(az+ ß)+8e!()e 9 z - cz + 9 --d = az + z + d z .
cz + cz +
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Notice that when 0' = ß = '/ = 8 = 0 and e = 1 the element A corresponds to
an element of PSL(2, C) and these two equations give the separate transformation
laws

f(az + b) = (cz + d)k f(z)
cz +d

g(az +db) = (cz + d)k+l g(Z)
cz+

corresponding to the transformation law for M k and Mk+l respectively, so the new
theory automatically combines the cases of mod ular forms of evcn and odd weight.

We next turn to the definition of superpseudodifferential operators, see also [MR].
We first need the analogue of the Leibniz formula. The usual Leibniz formula
8(fg) = 8(f)9 + f8g is replaced in the supercase by

D(FG) = D(F) G + a(F) D(G), F,GER

where the involution a is the grading automorphism of R, equal to 1 on the even
part and to -1 on the odd part of R (in other words, D is a superderivation).
This formula generalises by induction on m to the graded Leibniz formula

(7.3)

if r is even or m is odd,

{
(
[m/2])

(7)5= [r~2]
if r is add and m is even 1

with [x] as usual denoting the integral part of areal number x, so we can define a
multiplication on the space S 'lTDO(R) of super- 'lTDO's (Laurent series in D- 1 ) by

for all integers m ;::: 0, where the supersymmetrie binomial coefficients C~) s are
defined by

FDm ·GDn = L (';) FDr(am-rG) Dm+n- r

r~O S

(m, n E Z),

and.,with.. respect ...to"this~m ulti plication~.th~subspace..::SDO,(R):..=. ,.R[D];'GtS~'l!DO (;R}, ... < /.,ir.'.~~ , ,~<; .'_; ,~~

of superdifferential operators is a subring. As before, we have a filtration of
S 'lTDO(R) by the subspaces

SIJIDO(R)w = {~FmDw-m, Fm ER}

and this filtration is compatible with the ring structure.
In the supercase, thc group r acts on S 'lTDO(R) via its action on Rand on

D. The element A of r as in (7.1) transforms D into (cz + d + 8()D. The ring
S 'lTDO(R)f denates the r -invariant elements of S 'lTDO(R). VVe have the filtration
S 'lTDO(R)~, k E Z, inherited from the filtration of S wDO(R). The analogue of
(1.8) for the supercase is the sequence, which is split short exact by Theorem 3
below, involving supermodular forms of weight k (for all parities of k)

The analogue of Proposition 1 for supermodular [orms is as follows.
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Theorem 3. For k > 0 define an operator SLk : R --t S\l1DO(R)_k by

00 [!!±!], [n±k-I]1
SC (p) = '""'(_1)[n j 2] 2' 2 • Dn(F) D- k - n

k LJ ['!!]' [n±2k-I],
n=O 2' 2 .

and an operator Sr.- k : R --t SDO(Rh by

k-l [2k-n],
Sr. (F) = '""' 2' D n (F) D k

-
n

-k LJ [!!]' [k-n], [k-n-l], '
n=O 2' 2' 2 .

and set SCo(F) = F. Then SLk(FAJ(A)k) = Sf.k(F)oA for any A E PC(2, eIlt)
and any k E Z. In partieular, if F E SAlk (r) for any k E Z then SLk(F) is a
r -invariant superpseudodifferential operator.

Remark. Just as in §2, if we denote by SDw : R --t S \l1DO(R)w the lifting map
renormalized to have leading coefficient F DW then we can write the formulas for
positive and negative w uniformly using binomial coefficients as

(
[!f] ) ([tu;l])

SVw(F) = L [!!.:}Cl w [~J Dn(F) Dw - n

n>O ( )- [nt l ]

(w E Z) , (7.5)

where the sum goes only up to n = w if w ~ O.

Proof of Theorem S. We imitate the proof of Proposition 1 in §l. The analoglles
of (1.7) and (1.9), both proved by induction, are

00

[(cz+d+8()oD]W = (cz+d+8()W LO'r(W) <I>r(A) Dw
-

r (7.6)
r=O

and

n
.. t ,'tI . .,.. ........IL.J"r .. t~Ir.·~ ......... , ~"'f"'-''''''''''' ~ ""' ...... -~".' .-- ~ . "".. ...... ~ ~1;"J- ~ ~J~'" ~ ....... ·.... ·t "'jr::- ,.~ ", ~~' :~.",. "':r'" '1"""IJ" .~ "":"",l~~~' ",="I~, '-~t.1l" ~:"~""'1'" ". ,,,.. "" • ~

Dn (pA (cz + d + 8()W) = L ßr(w, n) (D n - rF)A <I>r(A) (cz + d + 8()w-n+r
r=O

where <I>r(A) is defined for A as in (7.1) by

(
c ) [~] ( e( - 8 )[~l-[~l

<I>r(A) = ez +d +8( cz +d +8(

and the numerical coefficients O'r(w) and ßr(w, n) are given by

[.!Q]! [W-I]1
0' (w) - 2 2

r - [f]! [w2r]! [w-f-I]1 '
[.!!]! [w _ n-r]!

ß (n w) - 2 2
r 1 - ['!:]' [n-r], [ _ '!!]'

2' 2 . W 2'

(The last two formulas are written for W > 0 j there are similar formula for w =
-k < 0 and again a uniform formllla using binomial coefficients). Now letting
'Yn(w) denote the coefficient of Dn(F) Dw - n in the definition of f._w(F) (ar of
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S'Dw(F)), we find that the desired equality is equivalent to the trivially verified
identity 'Y~(w) Q'r(w - s) = I'n(w) ßr('w, n). •

One can also give proof of Theorem 3 along the lines of the one in §2 using
the superanalogue of the Casimir opera.tor. 1'he other results of this paper can
also all be generalized to the SUSY case, but we will not do this here. We say
a few words about the super-version of the generalized wDO's mentioned in §2.
The obvious idea of taking complex powers of D does not work. Instead, we must
take linear combinations over R of formal symbols DU and DU D with u E C, the
multiplication being defined by D 2 = 8 and by Leibniz's rule and its superextension
(7.3). The transformation behavior under changes of coordinates (7.2) is given by
the same formula (7.6) except that when one replaces DW by Du DP with u E C
and p E {O, I} one must reinterpret the formula

( ) _ [!:±.l] 1 ( [~] ) ([W;l])
O'r W - 2 • [!.:f!] [~]

which was valid for w E Z by replacing [*] and [w;-l] by u a.nd u + p - 1,
respectively, i.e., by the unique expression which is correct when u E Z anel w =
2u + p, and similarly for the lifting formula (7.5). The considerations of §§3­
6 about the multiplications of modular forms induced by the multiplications of
various kinds of automorphic wDO's can be generalized in the more or less obvious
way (thus an automorphic super- wDO of mixed weight is just a super- 'liDO which
is multiplied on the left and on the right by some powers of J(A) under the action
of A Er), and the arguments given in the last section can also be generalized
using the superversion of the non-commutative residue map given in [MR]. Some
of these things may be carried out in more'detail in a later paper.

§8. Concluding remarks.
The study of formal wDO's in the last two decades was primarily motivated by

the needs of the theory of completely integrable systems of non-linear differential
equations like the Korteweg-de Vries equation and the Kadomtsev-Petviashvili hi­
erarchy: see e.g. [KZ2] for some recent developments and extensive references. A
few remarks added here may help the interested reader to put our constructions in
this framework.

JO' ~ A "slieaf~i lieörefic'~'ve'rsion:"" Cet ~ ~y "'De'a~cö nlpiex' 'Rierri"an i-i'iä·il "s'ureäce ," 'iiüt ,r.. . "

necessarily compact. For any open subset U C ~Y let Ox(U) be the ring of holo­
morphic functions in U. If V admits a local coordinate z, put 8z = 8/8z and form
the ring [x,z(U) = {Lm hm8;mlhm E Ox(V)}. A change of local coordinate
induces a canonical isomorphism of the respective rings compatible with restriction
to smaller sets, so that we get a sheaf of rings [x. It is naturally filtered by the
su bsheaves (~-m) , and the associated sheaf of graded algebras is E&mw~m where
Wx is the sheaf of holomorphic differentials. Assume now that X is additionally
endowed with a projective structure p i. e. with a maximal atlas (Va, Za) whose
transition functions Za = fa,ß(zß) are fractional linear. Define the local lifting

maps Am,z~ : w~~~ -t [~-m) by the same formltlas as in §l. They will be au­
tomatically compatible on the intersections and therefore define a sheafified lifting

map Am(p) : w~m -t (~:-m) depending only on the flat structure p. This must
be evident from the Beilinson construction of the lifting using Casimir operators
discussed in §2. In fact, p determines a sheaf of s1(2) -algebras on jY consisting
of projectively flat tangent fields, and the local Casimirs in the relevant sheaf of
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universal enveloping aigebras glue to form a global section C(p). Then Am(p) is a
differential operator (of infinite order for m ~ 1) identifying w~m with a su bsheaf

of (~-m) of operators with the same top symbol eonsisting of the eigenveetors of
C(p) with eigenvalue m(m - 1).

In the eontext of automorphic forms we eonsidered essentially a modular curve
X r =1i/r with a fixed projective structure coming from H. Now we ean vary p
and ask how A(p) =EBAm(p) varios with p. Formally, C(p) varies isospectrally so
that for any pair of flat structures p, p' we have

C(p') =T(P', p)C(P)T(P', p) -1, A(p') = T(p', p)A(p)

for some T(p', p) (acting e.g. upon r(X, [k- 1») for eompact X of genus ~ 2).
Now, all p 's on X form an affine space associated with the veetor space of

quadratic holomorphic differentials on X: Iocally we have p' - p = S:/ (dz)2 where
p (resp. p') eorresponds to a loeal flat coordinate z (resp. Zl), and S{ is the
Schwarz derivative (see e. g. A. Tyu rin 's report [Ty]).

Question. Is it true that T (p', p) depends only on p' - p ?

For exam pIe, a direet ealculation shows that Am (p) = Am (p') for m = 1, 0, -1, - 2,
whereas

where j = {)z' f{)z. This means that A3 (p) - A3 (P' ) is essentially multiplieation by
p' - p, if one writes (dZ)-1 instead of 8z at the last place of the right hand side.

Question. Can T(p', p) be deseribed in terms of derivations and multiplieation
in rcX,[x)?

All of this has a straightforward supersymmetric version.

Complex powers and 'V-modules. The complex powers of {) were treated
in [KZ1] in thc Hamiltonian eontext. If one attempts to sheafify them, then one
has to make some sense of complex powers of holomorphic functions because they
appear already on the level of eoordinate change for principal symbols. A weIl
known way to interpret fW for complex 1.0 is to treat it as a section of a V x-

.. ,mo,d l!1~~ ..J',hi§_9.C~09.~~jn~9JP9I(tt~s J~e .. f9r,rnal Jute.~9f.,deriy!ttioJlf">~hich'l<wc~,used'''''d'''' .' .. -.~~,' "'.' .~.. ",.
to define wDOw • This problem dcserves further investigation. Let us mention in
addition that the complex eigenvalues of the Casimir operator were recently used to
define so-ealled "matrices of complex size" which are infinite-dimensional algebras
U(sI2)/(C - 1.0(1.0 - 1)) where C is the Casimir (cf. [KM].)

wDO as a Lie algebra and its central extension. In the context of the
automorphic forms, we related via liftings the multiplication in wDO with Cohen­
Kuznetsov brackets. We could have looked at the Lie bracket in WDO instead.
The point is that this Lie algebra admits a nontrivial central extension which ean
be suggestively described by introducing the formal expression log {) and thc com­
mutator

[logo, I>mO-m):= LL (-lt+
1

okhmo-m- k

m k~1

which is then used to define a coeycle c(A,B) = tr ([log {) 1 A] 0 B) for an appropriate
trace funetional tr. This construction is important for clarifying the Poisson-Lie
structure of wDO, Does it admit a sensible descent to modular forms?
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