
Max-Planck-Institut für Mathematik
Bonn

Categorification for principal coefficient cluster algebras

by

Matthew Pressland

Max-Planck-Institut für Mathematik
Preprint Series 2017 (13)





Categorification for principal coefficient
cluster algebras

Matthew Pressland

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

MPIM 17-13





CATEGORIFICATION FOR PRINCIPAL COEFFICIENT CLUSTER
ALGEBRAS

MATTHEW PRESSLAND

Abstract. In earlier work, the author introduced a method for constructing a Frobe-
nius categorification of a cluster algebra with frozen variables, requiring as input a
suitable candidate for the endomorphism algebra of a cluster-tilting object in such a
category. In this paper, we construct such candidates in the case of acyclic cluster
algebras with ‘polarised’ principal coefficients, and study the resulting Frobenius cate-
gorifications. Since cluster algebras with principal coefficients are obtained from those
with polarised principal coefficients by setting half of the frozen variables to 1, our
categories also indirectly model cluster algebras with principal coefficients, for which
no Frobenius categorification can exist. Many of the intermediate results remain valid
without the acyclicity assumption, as we will indicate. Along the way, we establish
a Frobenius version of Keller’s result that the Ginzburg dg-algebra of a quiver with
potential is bimodule 3-Calabi–Yau, and extend results of Buan–Iyama–Reiten–Smith
to give conditions under which mutation of cluster-tilting objects is compatible with
mutation of ice quivers with potential.

1. Introduction

Cluster algebras, introduced by Fomin–Zelevinsky [?fomincluster1], are combina-
torially defined algebras with applications to many areas of mathematics, and currently
the subject of intense study; see Keller [?kellercluster] for a survey of connections
between cluster algebras and the representation theory of associative algebras, and the
references therein for applications to other fields.

A key obstruction to studying cluster algebras is their recursive definition—one is
given some initial data (a seed), and constructs the cluster algebra inductively via
sequences of mutations of this seed. Typically one may obtain an infinite number
of seeds in this way, and so the output is not easily controllable. To gain a better
understanding of the cluster algebra, it has been fruitful to construct categorical models,
which allow the combinatorics to be understood in a more global way. In such models
C, the clusters are replaced by cluster-tilting objects T , defined by the property that

addT = {X ∈ C : Ext1
C(T,X) = 0} = {X ∈ C : Ext1

C(X,T ) = 0}.
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When C is 2-Calabi–Yau in a suitable sense, these objects may be mutated via a process
analogous to that of the mutation of seeds [?iyamamutation]. Categorification allows
one to give clean, conceptual proofs of many key statements for any cluster algebra
admitting such a categorical model, such as ‘cluster determines seed’ [?buanclusters],
linear independence of cluster monomials [?cerullilinear], sign coherence of c-vectors
[?speyeracyclic], and so on.

We consider skew-symmetric cluster algebras of geometric type, so that a seed is
given by the data of a collection of cluster variables forming the vertices of some quiver.
One passes to another seed by a process of mutation, which replaces a single cluster
variable of the seed by a new cluster variable, and alters the quiver by Fomin–Zelevinsky
mutation (see for example [?kellercluster, §3.2]). A subset of the variables may be
frozen, indicating that they may not be mutated, and thus occur in every seed. We
use the terminology ‘ice quiver’ to refer to a quiver with a specified ‘frozen’ subquiver;
from the point of view of cluster algebras, the only relevant additional data is the set
of frozen vertices, since arrows between these play no role in the cluster structure, but
we will want to consider such arrows later.

For cluster algebras without frozen variables, categorical models, known as cluster
categories, have been constructed in great generality, beginning with Buan–Marsh–
Reineke–Reiten–Todorov [?buantilting] for the case of acyclic quivers, and later gen-
eralised by Amiot [?amiotcluster] to allow for the existence of cycles. Unfortunately,
most cluster algebras appearing naturally in other contexts, such as the cluster struc-
tures on the coordinate rings of partial flag varieties [?geisspartial] and their double
Bruhat cells [?berensteincluster3], do have frozen variables, which we would like to
capture in a categorical model.

This can be achieved by replacing cluster categories, which are 2-Calabi–Yau trian-
gulated categories, by stably 2-Calabi–Yau Frobenius categories. A Frobenius category
is, by definition, an exact category with enough projective objects and enough injec-
tive objects, such that these two classes of objects coincide. It is the indecomposable
projective-injective objects, which necessarily appear as summands of any cluster-tilting
object, that will model the frozen variables. The fact that setting all frozen variables
to 1 in a cluster algebra produces a new cluster algebra without frozen variables corre-
sponds to the fact that the stable category of a Frobenius category, given by taking the
quotient by the ideal of morphisms factoring through a projective object (‘setting the
projective objects to 0’) produces a triangulated category [?happeltriangulated, §I.2],
which we require to be 2-Calabi–Yau.

Such Frobenius models for cluster algebras with frozen variables have been con-
structed sporadically for families of examples, often geometric in nature. For example,
Geiß–Leclerc–Schröer [?geisspartial] construct cluster structures on coordinate rings
of open cells in partial flag varieties using a Frobenius model. They then combinatori-
ally lift such structures to the homogeneous coordinate ring of the whole flag variety.
Frobenius categorifications of the resulting structures have been obtained in the case of
Grassmannians of planes by Demonet–Luo [?demoneticequivers1], all Grassmannians
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by Jensen–King–Su [?jensencategorification], and in general by Demonet–Iyama
[?demonetlifting]. However, these constructions are all somewhat specialised to the
case at hand, and depend to some extent on using the geometry of the partial flag
varieties to gain some insight into the global structure of the cluster algebra, before
constructing the categorification. Nájera Chávez [?najerachavez2calabiyau] has con-
structed Frobenius models for finite-type cluster algebras with universal coefficients, in
this case using the finiteness to control the global structure.

By contrast, the constructions of cluster categories for cluster algebras without
frozen variables by Buan–Marsh–Reineke–Reiten–Todorov and Amiot did not depend
on such global information, but instead start from the data of a single seed, as in
the original definition of a cluster algebra, possibly enhanced by some additional (but
still local) data, such as a potential on the quiver in Amiot’s case. In earlier work
[?presslandinternally], the author introduced a similar framework for constructing
Frobenius models of a cluster algebra, starting again from the data of an initial seed.
Starting from the quiver Q of this seed (some of the vertices of which are frozen), one
attempts to find a Noetherian algebra A such that the Gabriel quiver of A agrees with Q
up to the addition of arrows between frozen vertices, the quotient of A by paths passing
through these vertices is finite dimensional, and, most importantly, A is bimodule inter-
nally 3-Calabi–Yau with respect to these vertices [?presslandinternally, Defn. 2.4].
Such an algebra A then determines a candidate Frobenius model of the cluster algebra
[?presslandinternally, Thm. 4.1, Thm. 4.10].

Passing fromQ toA requires (mostly necessarily [?presslandinternally, Rem. 4.11])
the choice of a great deal of extra data, satisfying restrictive conditions. Thus it was
not clear from the results of [?presslandinternally] how realistic it would be to apply
this methodology in practice. In this work, we demonstrate that this approach is in fact
workable, by using it to construct a Frobenius model for the cluster algebra with ‘po-
larised principal coefficients’ associated to any acyclic quiver. Fomin–Zelevinsky have
shown that cluster algebras with principal coefficients play a ‘universal’ role in the the-
ory, since their combinatorics can be used to control that of any other cluster algebra
with the same principal part, meaning the cluster algebra obtained upon specialising
all frozen variables to 1 [?fomincluster4]. Cluster algebras with polarised principal
coefficients, which we define in Section 2, differ from those with principal coefficients
only by the addition of frozen variables, and so also have this universality property.
Our main theorem is the following.

Theorem 1. Let Q be an acyclic quiver, and let A be the corresponding cluster algebra
without frozen variables. Then there exists a Frobenius cluster category E such that

(i) the stable category E is equivalent to the cluster category CQ, and
(ii) there is a bijection between cluster-tilting objects of E and seeds of the polarised

principal coefficient cluster algebra with principal part A, commuting with muta-
tion, such that the ice quiver of the endomorphism algebra of each cluster-tilting
object agrees, up to arrows between frozen vertices, with the ice quiver of the
corresponding seed.
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We interpret the quivers of endomorphism algebras in (ii), and indeed throughout
the paper, as ice quivers by declaring the frozen vertices to be those corresponding to
indecomposable projective summands. The definition of a Frobenius cluster category
is stated below (Definition 2.7); such categories always admit a weak cluster structure
in the sense of Buan–Iyama–Reiten–Scott [?buancluster, §II.1], by [?buancluster,
Thm. II.1.10]. By part (ii) of Theorem 1, this weak cluster structure on E is even a
cluster structure, also defined in [?buancluster, §II.1].

As we will indicate, while the acyclicity assumption is needed for all of the ingredients
in the proof of Theorem 1 to be available simultaneously, many of these intermediate
results hold in much wider generality. In particular, we will see that the theorem
remains true when Q is a 3-cycle (replacing CQ in (i) by Amiot’s cluster category CQ,W ,
where W is the potential on Q given by the 3-cycle).

It is then possible to use the category E from Theorem 1 to study the principal
coefficient cluster algebra with principal part A, essentially by ‘ignoring’ the extra
projective-injective objects in the category, as we will illustrate in Section 8.

On the way to proving Theorem 1, we will obtain other results that are of wider
interest, such as the following; here a positive grading of a quiver with potential (Q,W )
is a Z-grading of the Jacobian algebra J (Q,W ) such that all arrows of Q have positive
degree.
Theorem 2 (Corollary 4.12). Let (Q,W ) be a quiver with potential admitting a positive
grading, and let A be the corresponding Jacobian algebra. Then there is a bimodule
internally 3-Calabi–Yau frozen Jacobian algebra A (constructed explicitly in Section 3)
such that A = A/〈e〉 for e the frozen idempotent of A.

We see this statement as analogous to a result of Keller [?kellerdeformed, Thm. 6.3,
Thm. A.12], implying that any finite-dimensional Jacobian algebra may be realised as
the 0-th homology of a bimodule 3-Calabi–Yau dg-algebra constructed by Ginzburg
[?ginzburgcalabiyau], and based on this analogy conjecture that it remains true with-
out the assumption on the grading.

In order to prove part (ii) of Theorem 1, we extend results of Buan–Iyama–Reiten–
Smith [?buanmutation] to the Frobenius setting. The results of [?buanmutation]
explain when, for a cluster-tilting object T of a 2-Calabi–Yau triangulated category
C whose endomorphism algebra is isomorphic to the Jacobian algebra of a quiver
with potential (Q,W ), the endomorphism algebras of mutations of T are the Jaco-
bian algebras of mutations of (Q,W ), in the sense of Derksen–Weyman–Zelevinsky
[?derksenquivers1]. Using similar methods, we give an analogous result (Theorem 6.9)
when (Q,W ) is replaced by an ice quiver with potential (Q,F,W ), and the Jacobian
algebra of (Q,W ) by the frozen Jacobian algebra of (Q,F,W ) (see Definition 2.1). This
result can be applied to the Frobenius cluster categories constructed in this paper, to
those defined fromWeyl group elements by Buan–Iyama–Reiten–Smith [?buancluster],
and to the Grassmannian cluster categories of Jensen–King–Su [?jensencategorification].
In particular, we are able to show that the quiver of the endomorphism algebra of a
cluster-tilting object T in the Grassmannian cluster category coincides, up to arrows
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between frozen vertices, with the quiver of the corresponding seed of the Grassmannian
cluster algebra (at least for T within a specific mutation class, so that it does in fact
correspond to a seed!), a fact which had not been previously established.

The main results of the paper are contained in Sections 2–6. In Section 2 we describe
the cluster algebras with polarised principal coefficients that we will categorify, and
recall the results of [?presslandinternally], which we will use to produce the model.
The algebra needed as input for this construction is defined in Section 3. In Section 4
we explain further results of [?presslandinternally] which allow one to check the
bimodule internally 3-Calabi–Yau property for a frozen Jacobian algebra, and apply
these to AQ,W under the assumption that (Q,W ) admits a positive grading. This
establishes Theorem 2. In Section 5, we show that the algebra A is finite-dimensional
when we start from an acyclic quiver, and so it is in particular Noetherian. This allows
us to conclude most of the statements of Theorem 1. The results on mutations are
found in Section 6, where we use them to complete the proof of Theorem 1, as well
as giving the promised applications to other Frobenius cluster categories, such as the
Grassmannian cluster category.

The Frobenius cluster categories from Theorem 1 are, by definition, categories of
Gorenstein projective modules over some Iwanaga–Gorenstein algebra B, which we
describe explicitly via a quiver with relations in Section 7. In Section 8 we show
that the Frobenius cluster categories from Theorem 1 may be graded, in the sense
of [?grabowskigradedfrobenius], in a way that captures the grading of a principal
coefficient cluster algebra by Fomin–Zelevinsky [?fomincluster4]. This allows us to
recover an identity of Fomin–Zelevinsky, relating g-vectors and c-vectors. We close in
Section 9 with some examples, in particular observing that Theorem 1 remains true
when Q is a 3-cycle.

Throughout, algebras are assumed to be associative and unital. All modules are left
modules, the composition of maps f : X → Y and g : Y → Z is denoted by gf , and
we use the analogous convention for compositions of arrows in quivers. The Jacobsen
radical of a module X is denoted by m(X). If p is a path in a quiver, we denote its
head by hp and its tail by tp.

2. Polarised principal coefficients

Let A be a cluster algebra of geometric type without frozen variables, and let s0 be a
seed of A, with quiver Q and cluster variables (x1, . . . , xn). By definition, the quiver Q
has no loops or 2-cycles. The cluster algebra A •

Q with principal coefficients correspond-
ing to this data is defined by an initial seed as follows. The mutable cluster variables
are again (x1, . . . , xn), and the frozen variables are (y1, . . . , yn), where the indexing re-
veals a preferred bijection between the cluster variables and the frozen variables. The
ice quiver Q• of this seed contains Q as a full subquiver, with mutable vertices, and
for each vertex i ∈ Q0 (corresponding to the variable xi), Q• has a frozen vertex i+

(corresponding to yi) and an arrow i→ i+. While A is isomorphic to the cluster algebra
determined by any quiver mutation equivalent to Q, this is not true of A •

Q.
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By construction, setting all frozen variables of A •
Q to 1, to obtain a cluster algebra

without frozen variables we call the principal part of A •
Q, recovers A, giving a bijection

between the seeds of A •
Q and those of A; we write s• for the seed of A •

Q corresponding
to a seed s of A. Principal coefficients are important, since knowledge of the cluster
algebra A •

Q gives strong information on every cluster algebra A ′ with principal part A,
via the theory of g-vectors and F-polynomials [?fomincluster4].

By choosing some extra data on Q, Amiot [?amiotcluster] is able to construct a
categorical model of A. The construction uses Jacobian algebras, so we recall some
relevant definitions, which we will also need later in the paper.

Definition 2.1. An ice quiver (Q,F ) consists of a finite quiver Q without loops and
a (not necessarily full) subquiver F of Q. Denote by KQ the completion of the path
algebra of Q over K with respect to the arrow ideal. A potential on Q is a linear
combination W of cycles of Q, such that no two cycles with non-zero coefficient are
cyclically equivalent.

A vertex or arrow of Q is called frozen if it is a vertex or arrow of F , and mutable or
unfrozen otherwise. For brevity, we write Qm

0 = Q0 \ F0 and Qm
1 = Q1 \ F1 for the sets

of mutable vertices and unfrozen arrows respectively. For α ∈ Q1 and αn · · ·α1 a cycle
in Q, write

∂ααn · · ·α1 =
∑
αi=α

αi−1 · · ·α1αn · · ·αi+1

and extend linearly. The ideal 〈∂αW : α ∈ Qm
1 〉 of KQ is called the Jacobian ideal, and

we may take its closure 〈∂αW : α ∈ Qm
1 〉 since KQ is a topological algebra. We define

the frozen Jacobian algebra associated to (Q,F,W ) by

J (Q,F,W ) = KQ/〈∂αW : α ∈ Qm
1 〉.

Write A = J (Q,F,W ). The above presentation of A suggests a preferred idempotent
e = ∑

v∈F0 ev, which we call the frozen idempotent. We will call B = eAe the boundary
algebra of A. If F = ∅, then we refer to the pair (Q,W ) as a quiver with potential,
and call

J (Q,W ) = J (Q,∅,W )
the Jacobian algebra of (Q,W ).

Remark 2.2. While KQ usually denotes the uncompleted path algebra of Q, we use
it here as clean notation for the completed version since this is the version we will
always take. Moreover, in much of the paper, we are interested in algebras KQ/〈R〉
which turn out to be finite dimensional, which means that they are isomorphic to the
quotient of the ordinary path algebra of Q by the ideal 〈R〉 and the distinction was
irrelevant. We insist on taking complete path algebras in the general theory since
it makes it more likely that the categories we construct will be Krull–Schmidt (cf.
[?jensencategorification, Rem. 3.3]), and in order to apply results of Buan–Iyama–
Reiten–Smith [?buanmutation] in Section 6.
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Returning to the cluster algebra A, choose a potential W on Q such that J (Q,W )
is finite-dimensional. Then by work of Amiot [?amiotcluster], there is a 2-Calabi–
Yau triangulated category C = C(Q,W ) categorifying A. In particular, the seeds of
A correspond bijectively to additive equivalence classes of cluster-tilting objects of C
related by a finite sequence of mutations from an initial cluster-tilting object T0 with
EndC(T0)op = J (Q,W ); we denote the seed corresponding to a cluster-tilting object T
by sT . A priori, we wish to find a Frobenius category E such that

(i) the stable category of E is triangle equivalent to C (so cluster-tilting objects of
E are in bijection with those of C), and

(ii) for any reachable cluster-tilting object T ∈ E , the quiver of EndE(T )op is, up to
arrows between vertices corresponding to projective-injective summands of T ,
the quiver of the seed s•T of A •

Q.
Considering the case that Q is a Dynkin quiver, so that C is representation-finite, one
sees that there must be n indecomposable projective-injective objects of E , whose corad-
icals are non-projective rigid objects T1, . . . , Tn corresponding to the cluster variables
x1, . . . , xn of the initial seed s0. Unfortunately, one can then check that the radicals τTi
of the indecomposable projective-injectives have no projective cover, as follows. Since
E is 2-Calabi–Yau, τTi is not projective, meaning any map P → τTi with P projective
is non-split, and so factors through the coradical T ′ of P , which lies in add(⊕n

i=1 Ti).
Moreover, if the map P → τTi is a minimal projective cover, the induced map T ′ → τTi
must not factor through a projective object, so it is non-zero in the stable category
E = C. However, since ⊕n

i=1 Ti is cluster-tilting in C, we have

HomC(T ′, τTi) = Ext1
E(T ′, Ti) = 0.

It follows that the objects τTi have no projective cover in E , contradicting the assump-
tion that E is Frobenius.

There are several possible ways of resolving this problem. One option, taken by
Fu–Keller [?fucluster, §6], is to ask for a triangulated category modelling A •

Q. Their
construction yields a category with n ‘too many’ indecomposable objects, although one
can think of these as corresponding to inverses of the frozen variables. More problem-
atic, from our point of view, is that the objects corresponding to the frozen variables
are not characterised intrinsically within the category.

The approach we will adopt here is similar—we simply add more frozen variables to
A •
Q and then categorify the result using a Frobenius category E . While, just as for Fu–

Keller’s construction, E will have too many indecomposable objects to be a ‘strict’ model
for A •

Q, the objects corresponding to frozen variables (of our extended cluster algebra)
will be intrinsically characterised by the property of being indecomposable projective-
injective. Since A •

Q can be obtained from the extended cluster algebra by specialising
some frozen variables to 1, our category will still encode all of the combinatorial infor-
mation about A •

Q. By composing the usual cluster character on E [?fucluster] with
the projection to A •

Q, one can even write down a function which is morally a cluster
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character E → A •
Q, but with the unusual feature that it ‘has kernel’ i.e. some non-zero

objects of E have character 1.
Our chosen extension of A •

Q is the ‘polarised principal coefficient’ cluster algebra
ÃQ, which we now define. Starting from our seed s0 of A, with quiver Q and cluster
variables (x1, . . . , xn), we construct an initial seed s̃0 of ÃQ as follows. The mutable
variables are (x1, . . . , xn), and the frozen variables are (y+

1 , . . . , y
+
n , y

−
1 , . . . , y

−
n ). The

ice quiver Q̃ contains Q as a full subquiver, with mutable vertices, and has two frozen
vertices i+ (corresponding to y+

i ) and i− (corresponding to y−i ) for each mutable vertex
i ∈ Q0, with arrows i → i+ and i− → i for each i. In Section 3 we will also describe
arrows between the frozen vertices of Q̃, but since these play no role in the definition
of the cluster algebra ÃQ we ignore them for now.

We adopt the word ‘polarised’, which refers to the partitioning of the frozen variables
into two ‘flavours’, to differentiate this coefficient system from the system of ‘double
principal coefficients’ studied by Rupel–Stella–Williams [?rupelgeneralized]. Since
one encounters the same issues categorifying cluster algebras with double principal
coefficients as one does in the case of ordinary principal coefficients, namely that the
naïve categorification fails to have enough projective objects, our preference here is for
the polarised version.

Remark 2.3. Like the double principal coefficient cluster algebras of [?rupelgeneralized],
the cluster algebra ÃQ associated to a Dynkin quiver Q may (after inverting frozen
variables) be realised as the coordinate ring of a double Bruhat cell, as we now briefly
explain.

AssumeQ is an orientation of a Dynkin diagram ∆ with vertex set {1, . . . , n}. Quivers
with underlying graph ∆ are in bijection with Coxeter elements of the Weyl group W
of ∆ as follows. Let s1, . . . , sn be the simple reflections generating W , and let i1, . . . , in
be an ordering of Q0 = {1, . . . , n} such that ij < ik whenever there is an arrow from j
to k. Such an ordering is not unique, but any two determine the same Coxeter element

c = si1 · · · sin

of the Weyl group, and every Coxeter element arises in this way.
Let G be a simple connected Lie group of type ∆. After choosing a Borel subgroup

and maximal torus, one may associate the double Bruhat cell Gu,v to any pair u, v ∈ W ,
as in [?fomindouble]. Analogous to the classical Bruhat decomposition, G is then
expressible as the disjoint union

G =
⊔

(u,v)∈W 2

Gu,v.

Berenstein–Fomin–Zelevinsky have shown that each coordinate ring C[Gu,v] has the
structure of an upper cluster algebra [?berensteincluster3, Thm. 2.10] with invertible
coefficients.
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In the case of the double Bruhat cell Gc,c associated to a Coxeter element c of
W , the algebra C[Gc,c] is isomorphic to the cluster algebra (with invertible coeffi-
cients) from the ice quiver Q̃, where Q is the orientation of ∆ determined by c;
i.e. it is the cluster algebra with polarised principal coefficients associated to Q (cf.
[?rupelgeneralized, Thm. 2.13]). Note that we may drop the word ‘upper’ here,
since Q is acyclic [?berensteincluster3, Cor. 2.17]. Our general results can thus be
exploited to construct a Frobenius categorification of this cluster algebra.

As discussed in the introduction, we will construct a categorification E of ÃQ using
methodology introduced by the author in [?presslandinternally]. We now recall
the key definitions and results needed to explain this construction, using the notation
Aε = A ⊗K A

op for the enveloping algebra of A, modules of which are precisely A-
bimodules.

Definition 2.4 ([?presslandinternally, Defn. 2.4]). An algebra A is bimodule inter-
nally 3-Calabi–Yau with respect to an idempotent e ∈ A if

(i) p. dimAε A ≤ 3,
(ii) A ∈ perAε, and
(iii) there exists a triangle

A ΩA[3] C A[1]ψ

in DAε, such that
RHomA(C,M) = 0 = RHomAop(C,N)

for any M ∈ Dfd,A(A) and N ∈ Dfd,Aop(Aop), where A = A/〈e〉.

Remark 2.5. Assume A is bimodule internally 3-Calabi–Yau with respect to e. Then
gl. dimA ≤ 3, and there is a functorial duality

D ExtiA(M,N) = Ext3−i
A (N,M)

for finite-dimensional M ∈ modA and any N ∈ ModA [?presslandinternally,
Cor. 2.9]. Moreover, the same is true of Aop [?presslandinternally, Rem. 2.6]. In the
language of [?presslandinternally, Defn. 2.1], we say that A and Aop are internally
3-Calabi–Yau with respect to e (without the word ‘bimodule’).

To construct a Frobenius category from our frozen Jacobian algebra A and its frozen
idempotent e defined above, we will use the following theorem.

Theorem 2.6 ([?presslandinternally, Thm. 4.1, Thm. 4.10]). Let A be an algebra,
and e ∈ A an idempotent. If A is Noetherian, A is finite-dimensional, and A is bimodule
internally 3-Calabi–Yau with respect to e, then

(i) B is Iwanaga–Gorenstein of injective dimension at most 3, so
GP(B) = {X ∈ modB : ExtiB(X,B) = 0, i > 0}

is a Frobenius category,
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(ii) eA ∈ GP(B) is cluster-tilting,
(iii) there are natural isomorphisms EndB(eA)op ∼→ A and EndB(eA)op ∼→ A, and
(iv) the stable category GP(B) is 2-Calabi–Yau.

Ideally, we would like GP(B) as constructed above to be a Frobenius cluster category,
in the sense of the following definition.

Definition 2.7 ([?presslandinternally, Defn. 3.3]). An exact category E is called
a Frobenius cluster category if it is idempotent complete, stably 2-Calabi–Yau, and
gl. dim EndE(T )op ≤ 3 for any cluster-tilting object T ∈ E , of which there is at least
one.

The category GP(B) constructed in Theorem 2.6 is Frobenius by (i), idempotent
complete for arbitrary B, and stably 2-Calabi–Yau by (iv). Since EndB(eA)op ∼=
A is bimodule internally 3-Calabi–Yau, it has global dimension at most 3, but we
do not know a priori that this is true for endomorphism algebras of other cluster-
tilting objects. However, this does hold whenever such an algebra is Noetherian, by
[?presslandinternally, Prop. 3.7]. In particular, if we additionally assume that the
algebra A in Theorem 2.6 is finite-dimensional, then so is B, and then GP(B) is a
Frobenius cluster category.

A key property of a Frobenius cluster category is the following mutation prop-
erty for cluster-tilting objects, which follows immediately from work of Iyama–Yoshino
[?iyamamutation] since the stable category is 2-Calabi–Yau. This will play a key role
in Section 6.

Proposition 2.8 ([?iyamamutation]). Let E be a Krull–Schmidt Frobenius cluster cat-
egory, let T ∈ E be a cluster-tilting object, and choose an isomorphism Φ: KQ/I ∼→
EndE(T )op for some quiver Q and closed ideal I ⊆ m(KQ). Let k be a vertex such that
Tk = Φ(ek)(T ) is non-projective; since I ⊆ m(KQ), the object Tk is indecomposable in
E. If Q has no 2-cycles incident with k, then there is a unique indecomposable object
T ∗k ∈ E, not isomorphic to Tk, such that µkT := T/Tk ⊕ T ∗k is cluster-tilting. Such an
object is determined by the short exact sequences

0 Tk
⊕
b∈Q1
hb=k

Ttb T ∗k 0,

0 T ∗k
⊕
a∈Q1
ta=k

Tha Tk 0.

Φb

Φa

Returning to the problem of categorifying the cluster algebra ÃQ, our aim now is to
construct an algebra A satisfying the conditions of Theorem 2.6, such that the Gabriel
quiver of A agrees with the quiver Q̃ up to arrows between frozen vertices.
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3. An ice quiver with potential

Consider again our initial seed s0 for A, with quiver Q, and choose a potential W on
Q. In this section, we will construct from (Q,W ) an ice quiver with potential (Q̃, F̃ , W̃ ),
and thus a frozen Jacobian algebra A = J (Q̃, F̃ , W̃ ). It is this algebra A that we intend
to use as the input for the construction of a Frobenius category by Theorem 2.6; for this
we will require that J (Q,W ) is finite-dimensional, but since the results of Section 4 do
not require this assumption, we defer it for now.

Definition 3.1. Let (Q,W ) be a quiver with potential. We define Q̃ to be the quiver
with vertex set given by

Q̃0 = Q0 tQ+
0 tQ−0

where Q+
0 = {i+ : i ∈ Q0} is a set of formal symbols in natural bijection with Q0, and

similarly for Q−0 = {i− : i ∈ Q0}. The set of arrows is given by

Q̃1 = Q1 t {αi : i ∈ Q0} t {βi : i ∈ Q0} t {δi : i ∈ Q0} t {δa : a ∈ Q1}.

The head and tail functions h and t on Q̃1 are extended from those on Q1 by defining
tαi = i, hαi = i+,

tβi = i−, hβi = i,

tδi = i+, hδi = i−,

tδa = (ha)+, hδa = (ta)−.

The frozen subquiver F̃ is defined by
F̃0 = Q+

0 tQ−0 ,
F̃1 = {δi : i ∈ Q0} t {δa : a ∈ Q1}.

Note that the head and tail of any arrow in F̃1 lies in F̃0, so these subsets describe a
valid subquiver of Q̃, that is in fact full. The quiver F̃ is also bipartite, meaning that
every vertex is either a source or a sink, and so it has no paths of length greater than 1;
precisely, vertices of the form i+ are sources, and those of the form i− are sinks. When
viewed as as a subquiver of Q̃, each source i+ of F̃ is incident with a unique incoming
arrow αi and each sink i− is incident with a unique outgoing arrow βi.

Finally, we define a potential W̃ on Q̃ by

(3.1) W̃ = W +
∑
i∈Q0

βiδiαi −
∑
a∈Q1

aβtaδaαha,

and let
AQ,W = J (Q̃, F̃ , W̃ )

be the frozen Jacobian algebra determined by (Q̃, F̃ , W̃ ). We denote the boundary
algebra of AQ,W by BQ,W = eAQ,W e, where e = ∑

i∈Q0(e+
i +e−i ) is the frozen idempotent

of AQ,W .
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Note. To aid legibility, if the vertices i+ or i− appear as subscripts, we will usually
move the + or − sign into a superscript, so that, for example, Xi+ becomes X+

i . When
W = 0 is the zero potential, we will typically drop it from the notation; for example,
we write AQ = AQ,0. The reader is warned that 0̃ is not the zero potential on Q̃.

When Q is the quiver of the initial seed s0 of A (and W is any potential on Q),
the quiver Q̃ ‘is’ by construction the ice quiver of the same name forming part of the
data of our initial seed s̃0 of ÃQ, but with the additional data of arrows between frozen
vertices.

Since W̃ has a straightforward combinatorial description in terms of W , so do the
defining relations of A = AQ,W ; these form the set R consisting of

(3.2)

∂aW̃ = ∂aW − βtaδaαha,

∂αi
W̃ = βiδi −

∑
γ∈Q1
hγ=i

γβtγδγ,

∂βi
W̃ = δiαi −

∑
γ∈Q1
tγ=i

δγαhγγ,

for a ∈ Q1 and i ∈ Q0. Having such an explicit generating set for the relations of A
will prove to be extremely useful later in the paper.

To be able to apply Theorem 2.6, we wish to show that AQ,W is bimodule internally
3-Calabi–Yau with respect to its frozen idempotent e, in the sense of Definition 2.4.
We will do this, under mild assumptions on (Q,W ), in Section 4, but first give some
examples.

Example 3.2. The quiver with potential (Q, 0), for Q an A2 quiver, provides the most
basic example revealing all of the combinatorial features of the construction. In this
case, we have

Q̃ = 1 2

1+

1−

2−

2+

a

α1

β1 α2

β2

δ1 δ2

δa

and F̃ is indicated by the boxed vertices and dashed arrows. The potential on this ice
quiver is given by

W̃ = β1δ1α1 + β2δ2α2 − aβ1δaα2.



CATEGORIFICATION FOR PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 13

One can check that the frozen Jacobian algebra AQ attached to this data is isomorphic
to the endomorphism algebra of a cluster-tilting object in the Frobenius cluster category
SubQ2 of submodules of the injective module Q2 for the preprojective algebra of type
A4 with socle isomorphic to the simple at one of the bivalent vertices of A4. For a
description of this category, and an explanation of why it is a Frobenius cluster category,
see [?presslandinternally, Ex. 3.11].

Now let (Q,W ) be the quiver with potential in which

Q =
31

2

c

a b

and W = cba. The Jacobian algebra of this quiver is a cluster-tilted algebra of type
A3, and has infinite global dimension (as indeed does any non-hereditary cluster-tilted
algebra [?kellerclustertilted, Cor. 2.1]). In this case, we have

Q̃ =

31

2

2−

3+

3−1+

1−

2+

c

a b

β2

α3

β3α1

β1

α2

δc

δ3

δb

δ2

δa

δ1

with F̃ again indicated by boxed vertices and dashed arrows. The potential is
W̃ = cba+ β1δ1α1 + β2δ2α2 + β3δ3α3 − aβ1δaα2 − bβ2δbα3 − cβ3δcα1.

The associated frozen Jacobian algebra AQ,W also arises from a dimer model on a
disk with six marked points on its boundary [?baurdimer], and is isomorphic to the
endomorphism algebra of a cluster-tilting object in Jensen–King–Su’s categorification
of the cluster algebra structure on the Grassmannian G6

2 [?jensencategorification].
This category is again a Frobenius cluster category [?presslandinternally, Ex. 3.12].
Unlike the first example, this algebra is infinite-dimensional. However, it is Noetherian,
so Theorem 2.6 still applies.
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Since in both of these cases the algebra AQ,W is the endomorphism algebra of a
cluster-tilting object in a Frobenius cluster category, it is internally 3-Calabi–Yau with
respect to its frozen idempotent by a result of Keller–Reiten [?kellerclustertilted,
§5.4] (see also [?presslandinternally, Cor. 3.10]). This foreshadows Theorem 4.11
below, in which we prove that the stronger bimodule internal Calabi–Yau property
holds.

Remark 3.3. Combinatorially, the algebra AQ,W seems to have a lot to do with the
dg-algebra ΓQ,W associated to (Q,W ) by Ginzburg [?ginzburgcalabiyau, §4.2]; the
loops in cohomological degree −2 in ΓQ,W are replaced by the cycles i→ i+ → i− → i,
and the degree −1 arrows are replaced by the paths ha → ha+ → ta− → ta. Here
we use Amiot’s sign conventions [?amiotcluster, Defn. 3.1], which are opposite to
Ginzburg’s.

By a result of Keller [?kellerdeformed, Thm. 6.3], the dg-algebra ΓQ,W is always
bimodule 3-Calabi–Yau, and we expect this to be related to the fact (at least under
mild assumptions on (Q,W ); see Theorem 4.11 below) that AQ,W is bimodule inter-
nally 3-Calabi–Yau with respect to the idempotent at the vertices not appearing in
Ginzburg’s construction. We will show in Theorem 5.3 that when Q is acyclic, there is
an equivalence

GP(BQ) ' CQ = per ΓQ
DbΓQ

.

4. Calabi–Yau properties for frozen Jacobian algebras

We now recall from [?presslandinternally, §5] a sufficient condition on an ice
quiver with potential (Q,F,W ) for the associated frozen Jacobian algebra to be bi-
module internally 3-Calabi–Yau with respect to the idempotent e = ∑

v∈F0 ev. We will
show, under mild assumptions on (Q,W ), that the ice quiver with potential (Q̃, F̃ , W̃ )
from Definition 3.1 satisfies this condition, and so AQ,W has the necessary Calabi–Yau
symmetry for us to be able to apply Theorem 2.6.

In [?presslandinternally, §5], it is explained how an ice quiver with potential
(Q,F,W ) determines a complex of projective bimodules for the associated frozen Ja-
cobian algebra A = J (Q,F,W ). We denote this complex by P(A), although strictly it
depends on the presentation of A determined by (Q,F,W ). We now recall its definition
from [?presslandinternally, §5].

Recall that Qm
0 = Q0 \ F0 and Qm

1 = Q1 \ F1 denote the sets of mutable vertices and
unfrozen arrows of Q respectively. For v ∈ Q0, we write out(v) for the set of arrows of
Q with tail v, and in(v) for the set of arrows of Q with head v. Denote the arrow ideal
of A by m(A), and let S = A/m(A). Note that, as a left A-module, S is the direct
sum of the vertex simple left A-modules. For the remainder of this section, we write
⊗ = ⊗S.
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Introduce formal symbols ρα for each α ∈ Q1 and ωv for each v ∈ Q0, and define
S-bimodule structures on the vector spaces

KQ0 =
⊕
v∈Q0

Kev, KQm
0 =

⊕
v∈Qm

0

Kev, KF0 =
⊕
v∈F0

Kev,

KQ1 =
⊕
α∈Q1

Kα, KQm
1 =

⊕
α∈Qm

1

Kα, KF1 =
⊕
α∈F1

Kα,

KQ2 =
⊕
α∈Q1

Kρα, KQm
2 =

⊕
α∈Qm

1

Kρα, KF2 =
⊕
α∈F1

Kρα,

KQ3 =
⊕
v∈Q0

Kωv, KQm
3 =

⊕
v∈Qm

0

Kωv, KF3 =
⊕
v∈F0

Kωv,

via the formulae
ev · ev · ev = ev,

ehα · α · etα = α,

etα · ρα · ehα = ρα,

ev · ωv · ev = ωv.

For each i, the S-bimodule KQi splits as the direct sum
KQi = KQm

i ⊕KFi.
Since KQ0 ∼= S, the A-bimodule A⊗KQ0⊗A is canonically isomorphic to A⊗A, and
we will use the two descriptions interchangeably.

We define maps µ̄i : A ⊗ KQi ⊗ A → A ⊗ KQi−1 ⊗ A for 1 ≤ i ≤ 3. The map µ̄1 is
defined by

µ̄1(x⊗ α⊗ y) = x⊗ ehα ⊗ αy − xα⊗ etα ⊗ y,
or, composing with the natural isomorphism A⊗KQ0 ⊗ A

∼→ A⊗ A, by
µ̄1(x⊗ α⊗ y) = x⊗ αy − xα⊗ y.

For any path p = αm · · ·α1 of KQ, we may define
∆α(p) =

∑
αi=α

αm · · ·αi+1 ⊗ αi ⊗ αi−1 · · ·α1,

and extend by linearity to obtain a map ∆α : KQ→ A⊗KQ1 ⊗ A. We then define
µ̄2(x⊗ ρα ⊗ y) =

∑
β∈Q1

x∆β(∂αW )y.

Finally, let
µ̄3(x⊗ ωv ⊗ y) =

∑
α∈out(v)

x⊗ ρα ⊗ αy −
∑

β∈in(v)
xβ ⊗ ρβ ⊗ y.

Definition 4.1. For an ice quiver with potential (Q,F,W ), with associated frozen
Jacobian algebra A, let P(A) be the complex of A-bimodules with non-zero terms

A⊗KQm
3 ⊗ A A⊗KQm

2 ⊗ A A⊗KQ1 ⊗ A A⊗KQ0 ⊗ A
µ3 µ2 µ1
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and A⊗KQ0⊗A in degree 0, where µ1 = µ̄1, and the maps µ2 and µ3 are obtained by
restricting µ̄2 and µ̄3 to A⊗KQm

2 ⊗A and A⊗KQm
3 ⊗A respectively. As out(v)∪in(v) ⊆

Qm
1 for any v ∈ Qm

0 , the map µ3 takes values in A⊗KQm
2 ⊗ A as claimed.

Let µ0 : A⊗ A→ A denote the multiplication map. The following theorem explains
when a frozen Jacobian algebra is bimodule internally 3-Calabi–Yau with respect to its
frozen idempotent.
Theorem 4.2 ([?presslandinternally, Thm. 5.7]). If A is a frozen Jacobian algebra
such that

0→ P(A) µ0−→ A→ 0
is exact, then A is bimodule internally 3-Calabi–Yau with respect to the frozen idempo-
tent e = ∑

v∈F0 ev.
Remark 4.3. By standard results on presentations of algebras, as in Butler–King
[?butlerminimal], we have kerµ0 = imµ1 and kerµ1 = imµ2. Thus it is sufficient to
check exactness in degrees −2 and −3.

Returning to our main goal, let (Q,W ) be a quiver with potential, let (Q̃, F̃ , W̃ ) be
the ice quiver with potential associated to (Q,W ) in Definition 3.1, and let A = AQ,W
be its frozen Jacobian algebra. We wish to show that 0 → P(A) µ0−→ A → 0 is exact.
To do this, we assume a little more about (Q,W ).
Definition 4.4. Let (Q,W ) be a quiver with potential. A positive grading of (Q,W )
is a a function deg : Q1 → Z>0, such that W is homogeneous of degree d in the induced
Z-grading on KQ.

Any Z-grading of KQ in which W is homogeneous descends to a Z-grading of the
Jacobian algebra J (Q,W ), or of the frozen Jacobian algebra A = J (Q,F,W ) for any
subquiver F of Q. If this grading is induced from a positive grading as in Definition 4.4,
then the degree 0 part of A is isomorphic to S = A/m(A).

If W = 0, then any assignment of a positive integer to each arrow defines a positive
grading. Given a positive grading in which W has degree d, multiplying the degree of
every arrow appearing in W by k gives a new positive grading in which W has degree
kd. This procedure will be useful later, when we wish to extend such positive gradings
KQ̃ in such a way that W̃ becomes homogeneous; this may only be possible after some
rescaling.

Note that a positive grading need not exist for an arbitrary quiver with potential
(Q,W ), for example if W = c + c2 for some cycle c. However, we are really interested
in the structure of the algebra J (Q,W ), which only depends on (Q,W ) up to right
equivalence [?derksenquivers1, Defn. 4.2], and so it is enough that (Q,W ) is right
equivalent to some quiver with potential admitting a positive grading. This can happen
even if (Q,W ) does not itself admit such a grading. For example, the quiver with
potential (Q,W ) from Example 3.2 in which Q is a 3-cycle admits a positive grading
in which every arrow has degree 1, but it is right equivalent to (Q, cba+ cbacba) which
does not admit a positive grading.
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Lemma 4.5. Suppose (Q,W ) admits a positive grading. Then (Q̃, W̃ ) admits a positive
grading.

Proof. If W = 0, then (Q̃, W̃ ) has the positive grading deg with
deg a = 1, degαi = deg βi = deg δa = 1, deg δi = 2

for all i ∈ Q0 and a ∈ Q1. From now on, we assume W 6= 0.
Let deg0 be a positive grading of (Q,W ); sinceW 6= 0, we have deg0(W ) > 0. We first

construct a positive grading deg of (Q,W ) with the property that deg(W )−deg(a) ≥ 3
for all a ∈ Q1.

First, note that if deg0(W ) − deg0(a) ≤ 0 for some a ∈ Q1, then a does not appear
in W , since Q has no loops. Pick K ∈ Z such that K deg0(W ) − deg0(a) ≥ 1 for all
a ∈ Q1 not appearing in W ; then defining

deg1(a) =

K deg0(a), a appears in W,

deg0(a), otherwise,

we see that deg1(W ) = K deg0(W ), and so deg1(W )− deg1(a) ≥ 1 for all a ∈ Q1.
Since deg1(W )−deg1(a) ≥ 1 for all a ∈ Q1, defining deg(a) = 3 deg1(a) for all a ∈ Q1

gives the required potential.
Write d = deg(W ). We now extend deg : Q1 → Z to the arrows of Q̃, by defining

deg(αv) = deg(βv) = 1, deg(δv) = d− 2, and deg(δa) = d− 2− deg(a),
for each v ∈ Q0 and a ∈ Q1. Since d− deg(a) ≥ 3 for all a ∈ Q1, all of these values are
positive integers. It follows immediately from the definition of W̃ that this potential is
homogeneous, again of degree d, with respect to deg, and so this function is a positive
grading for (Q̃, W̃ ). �

When A = AQ,W is graded in such a way that all arrows have positive degree,
Broomhead [?broomheaddimer, Prop. 7.5] shows that the exactness of the complex

0→ P(A) µ0−→ A→ 0
is equivalent to the exactness of

0→ P(A)⊗A S
µ0−→ S → 0.

(The forward implication holds in general, since P(A) µ0−→ A is perfect as a complex of
right A-modules, and so remains exact under −⊗AM for anyM ∈ ModA.) This latter
complex decomposes along with S, so that its exactness is equivalent to the exactness
of

0→ P(A)⊗A Sv
µ0−→ Sv → 0

for each v ∈ Q̃0, where Sv denotes the vertex simple left A-module at v. Thus when
(Q,W ), and hence (Q̃, W̃ ) by Lemma 4.5, admits a positive grading, we are able to
reduce the problem of computing a bimodule resolution of A to the simpler problem of
computing a projective resolution of each vertex simple left A-module.
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The most complicated map in the complex P(A) is µ2, so we wish to spell out µ2⊗ASv
explicitly. We have

A⊗KQ̃m
2 ⊗ A⊗A Sv ∼=

⊕
a∈in(v)∩Q̃m

1

Aeta,

A⊗KQ̃1 ⊗ A⊗A Sv ∼=
⊕

b∈out(v)
Aehb,

and under these isomorphisms we can write

(µ2 ⊗A Sv)(x) =
∑

a∈in(v)∩Q̃m
1

∑
b∈out(v)

xa∂
r
b∂aW,

where ∂rb , called the right derivative with respect to b, is defined on paths by

∂rb (αn · · ·α1) =

αn · · ·α2, α1 = b,

0, α1 6= b

and extended linearly.
We now prove the necessary exactness for the complex P(A) ⊗A Sv. To do this, we

break into two cases depending on whether v is mutable or frozen, and use heavily the
explicit set R of defining relations for A given above (3.2).

Lemma 4.6. Let i ∈ Q0 be a mutable vertex of Q̃. For any x ∈ Aei, if xβi = 0 then
x = 0. For any y ∈ eiA, if αiy = 0 then y = 0.

Proof. Let x̃ be an arbitrary lift of x to KQ̃ei. Now assume xβi = 0, so x̃βv ∈ 〈R〉.
Since every term of x̃βi, when written in the basis of paths of Q̃, ends with the arrow
βi, but no term of any element of R has a term ending with βi, we must be able to
write

x̃βi =
∑
j

zjβi

for zj ∈ 〈R〉ei. Comparing terms, we see that x̃ = ∑
j zj ∈ 〈R〉, and so x = 0 in A. The

second statement is proved analogously. �

Proposition 4.7. For i ∈ Q0, the map µ3 ⊗A Sv : Aev →
⊕

a∈in(v)∩Q̃m
1
Aeta is injective.

Proof. We have
(µ3 ⊗A Si)(x) =

∑
a∈in(v)∩Q̃m

1

(−xa).

Since i is mutable, βi ∈ in(i) ∩ Q̃m
1 by the construction of (Q̃, F̃ ), and moreover it

is the unique arrow in this set with tail at i−. Thus if (µ3 ⊗ Si)(x) = 0, it follows
by multiplying the above formula on the right by e−i that xβi = 0, and so x = 0 by
Lemma 4.6. �



CATEGORIFICATION FOR PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 19

Lemma 4.8. Let i ∈ Q0 be a mutable vertex of Q̃. For each a ∈ in(i) ∩ Q̃m
1 =

(in(i) ∩Q1) ∪ {βi}, pick xa ∈ Aeta. If
xβi
δi =

∑
a∈in(i)∩Q1

xaβtaδa,

then there exists y ∈ Aeha such that xa = ya for each a ∈ in(v) ∩ Q̃m
1 .

Proof. Pick a lift x̃a ∈ KQ̃ of each xa. Writing
F = x̃βi

δi −
∑

a∈in(v)∩Q1

x̃aβtaδa,

our assumption on the xa is equivalent to F ∈ 〈R〉. Since every term of F ends with
either δi or βtaδa for some a ∈ in(i) ∩ Q1, and the only element of R including terms
ending with these arrows is βiδi −

∑
a∈in(i)∩Q1 aβtaδa, we can write

F = ziδi +
∑

a∈in(i)∩Q1

zaβtaδa + y
(
βiδi −

∑
a∈in(i)∩Q1

aβtaδa

)
,

where zi ∈ 〈R〉e−i , za ∈ 〈R〉eta and y ∈ KQ̃e+
i . Comparing terms in our two expressions

for F , we see that
x̃βi

= zi + yβi,

x̃a = za + ya.

Since zi, za ∈ 〈R〉, when we pass to the quotient algebra A = KQ̃/〈R〉 we see that
xβi

= yβi and xa = ya, as required. �

Proposition 4.9. For i ∈ Q0, we have ker(µ2 ⊗A Si) = im(µ3 ⊗A Si).

Proof. Since we already know that P(A) is a complex, it is enough to show that
ker(µ2 ⊗A Si) ⊆ im(µ3 ⊗A Si).

Let x ∈⊕
a∈in(i)∩Q̃m

1
Aeta. Applying µ2 ⊗ Si gives∑
a∈in(i)∩Q̃m

1

∑
b∈out(i)

xa∂
r
b∂aW ∈

⊕
b∈out(i)

Aehb.

Since αi is the unique arrow in out(i) with head i+, multiplying the above expression
on the right by e+

i and using the explicit expressions for the relations ∂aW computed
earlier gives ∑

a∈in(i)∩Q̃m
1

xa∂
r
αi
∂aW = xβi

δi −
∑

a∈in(i)∩Q1

xaβtaδa ∈ Ae+
i .

So if x is in the kernel of µ2 ⊗ Si, then in particular we have
xβi
δi =

∑
a∈in(i)∩Q1

xaβtaδa,

and so by Lemma 4.8 there exists y ∈ A such that xa = ya for each a. It follows that
x = (µ3 ⊗A Si)(y), as required. �
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Proposition 4.10. If v ∈ F̃0 then P(A)⊗A Sv is a projective resolution of Sv.

Proof. Since v ∈ F̃0, the complex P(A) ⊗A Sv is zero in degree −3, so in view of
Remark 4.3, it is only necessary for us to check that µ2 ⊗ Sv is injective. In fact, if
v = i− for some i ∈ Q0, then P(A) ⊗A Sv is also zero in degree −2 since there are no
unfrozen arrows in in(i−), so we need only consider v = i+ for some i ∈ Q0.

Since in(i+) ∩ Q̃m
1 = {αi}, we have µ2 ⊗A S+

i : Aei →
⊕

b∈out(i) Aehb. Let x ∈ Aei.
Then, computing as above, we have

(µ2 ⊗A S+
i )(x) =

∑
b∈out(i+)

x∂rb∂αi
W.

Assume this is 0. The unique arrow of out(i+) with head i− is δi, so multiplying on the
right by e−i gives

0 = x∂rδi
∂αi

W = xβi.

By Lemma 4.6, it follows that x = 0, and µ2 ⊗A S+
i is injective as required. �

Combining these results, we are able to establish the desired internal Calabi–Yau
property for AQ,W whenever (Q,W ) admits a positive grading.

Theorem 4.11. If (Q,W ) admits a positive grading, then A = J (Q̃, F̃ , W̃ ) is bimodule
internally 3-Calabi–Yau with respect to the frozen idempotent e = ∑

i∈Q0(e+
i + e−i ).

Proof. The combination of Propositions 4.7 and 4.9 shows that P(A)⊗A Si is exact for
any i ∈ Q0 = Q̃m

0 , and Proposition 4.10 shows that the same is true for v ∈ F̃0, so the
direct sum P(A) ⊗A S

µ0−→ S of all of these complexes is exact. By Lemma 4.5, we
can grade A so that all arrows have positive degree. As already remarked, this allows
us to apply Broomhead’s result [?broomheaddimer, Prop. 7.5] to deduce exactness of
P(A) µ0−→ A from that of P(A)⊗A S

µ0−→ S. Now the result follows from Theorem 4.2.
�

As a corollary, we obtain the promised result (Theorem 2 in the introduction) that
any quiver with potential admitting a positive grading may be realised as the ‘interior’
of an bimodule internally 3-Calabi–Yau frozen Jacobian algebra.

Corollary 4.12. Let (Q,W ) be a quiver with potential admitting a positive grading,
and let A = J (Q,W ) be the corresponding Jacobian algebra. Then A = AQ,W/〈e〉,
where e is the frozen idempotent of AQ,W , and AQ,W is internally 3-Calabi–Yau with
respect to e. �

We have no evidence that the existence of a positive grading is necessary to ob-
tain the conclusion of Theorem 4.11; rather, this condition was imposed in order to
make the necessary calculations more manageable. By analogy with Keller’s result
[?kellerdeformed, Thm. 6.3, Thm. A.12] that the Jacobian algebra of any quiver with
potential is the 0-th homology of a bimodule 3-Calabi–Yau dg-algebra, we conjecture
that this assumption is not in fact needed.
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Conjecture 4.13. The conclusion of Theorem 4.11, and hence also that of Corol-
lary 4.12, remains valid without the assumption that (Q,W ) admits a positive grading.

In support of this conjecture, we prove injectivity of µ3 directly, without any assump-
tion on the existence of a positive grading.

Proposition 4.14. The map µ3 : A⊗ Q̃m
3 ⊗ A→ A⊗ Q̃m

2 ⊗ A is injective.

Proof. We use the natural isomorphism
A⊗KQ̃m

3 ⊗ A
∼→
⊕
i∈Q0

Aei ⊗K eiA

given by x ⊗ ωi ⊗ y 7→ x ⊗ y. For each i ∈ Q0, let xi = (xji )j∈Ji
and yi = (yji )j∈Ji

be
finite sets of elements of Aei and eiA respectively. These define an element

xi ⊗ yi :=
∑
j∈Ji

xji ⊗ y
j
i

of Aei⊗KeiA, and all elements of Aei⊗KeiA are of this form. Without loss of generality,
i.e. without changing the value of xi⊗yi, we may assume that {yji : j ∈ Ji} is a linearly
independent set.

Now assume ∑i∈Q0 xi ⊗ yi is in the kernel of µ3. We aim to show that, in this case,
xi ⊗ yi = 0 for all i ∈ Q0, and so in particular their sum is zero. Projecting onto the
component A⊗Kρβi

⊗ A = Aei ⊗K e
+
i A of A⊗ Q̃m

2 ⊗ A, we see that
xiβi ⊗ yi =

∑
j∈Ji

xjiβi ⊗ y
j
i = 0.

Since the yji are linearly independent, it follows that xjiβi = 0 for all j. By Lemma 4.6,
it follows that xji = 0 for all j, and so xi ⊗ yi = 0. �

5. The acyclic case

Let (Q,W ) be a quiver with potential such that J (Q,W ) = AQ,W/〈e〉 is finite-
dimensional. Then all of the assumptions of Theorem 2.6 are satisfied for AQ,W , except
possibly Noetherianity. Our goal in this section is to show that if Q is an acyclic quiver,
then the algebra A = AQ = J (Q̃, F̃ , 0̃) is finite-dimensional. In particular, this means
that A is Noetherian, and so we may apply Theorem 2.6 to obtain a categorification of
the polarised principal coefficient cluster algebra ÃQ.

Lemma 5.1. Let Q be any quiver, and let p be a path in Q̃. Assume that p contains
at least one arrow not in Q1, and that hp, tp ∈ Q0. Then p maps to zero under the
projection KQ̃→ A = J (Q̃, F̃ , 0̃). Moreover, if q is a path of length at least 5 containing
no arrows of Q1, then q maps to zero under this projection.

Proof. Let γ be the first arrow of p in Q̃1 \Q1; there is such an arrow by assumption. If
γ has a predecessor in p, then this arrow is in Q1, and so tγ ∈ Q0. On the other hand,
if γ is the first arrow of p, then tγ = tp ∈ Q0 by assumption. By the construction of Q̃,
it follows that γ = αi for some i ∈ Q0.
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Since hp ∈ Q0, the path p cannot terminate with αi, so it has a successor. Looking
again at the combinatorics of Q̃, the only options are δa for some a ∈ Q1 with ha = i,
or δi. We break into two cases.

First assume αi is followed in p by δa for some a ∈ Q0. This again cannot be the
final arrow of p, since hp ∈ Q0. The only arrow leaving hδa = i−ta is βta, so this must be
the next arrow of p. But after projection to A, we have

βtaδaαha = ∂aW = 0
since W = 0, so p projects to zero.

In the second case, αi is followed by δi. As in the previous case, δi must be followed
in p by βi. Again projecting to A, we have

βiδiαi =
( ∑
a∈Q1
ha=i

aβtaδa

)
αi =

∑
a∈Q1
ha=i

aβtaδaαha = 0,

and so again p projects to zero.
For the final statement, we have already shown that the paths βtaδaαha for some

a ∈ Q1 or βiδiαi for some i ∈ Q0 project to zero. Thus if q as in the statement does not
project to zero, it must not contain either of these subpaths. However, the bipartite
property of F̃ means that any path of arrows not in Q1 without either of these subpaths
is itself a subpath of δxαiβiδy for some x, y ∈ Q0 ∪ Q1 and i ∈ Q0 with hx = i = ty,
and so has length at most 4. �

Theorem 5.2. Let Q be an acyclic quiver. Then A = J (Q̃, F̃ , 0̃) is finite-dimensional.

Proof. We show that there are finitely many paths of Q̃ determining non-zero elements
of A. By Lemma 5.1, any path p of Q̃ determining a non-zero element of Amay not have
any subpath with endpoints in Q0 and containing an arrow outside Q1. Thus we must
have p = q2p

′q1, where q1 and q2 feature no arrows of Q1, and p′ is a path in Q. Since Q
is acyclic, there are only finitely many possibilities for p′. By Lemma 5.1 again, q1 and
q2 have length at most 4, and so there are again only finitely many possibilities. �

We have now established everything we need in order to deduce part (i) and most of
part (ii) of Theorem 1 from the introduction; precisely, we may prove:

Theorem 5.3. Let Q be an acyclic quiver, and consider the frozen Jacobian algebra
A = AQ = J (Q̃, F̃ , W̃ ). Let e = ∑

i∈Q0(e+
i + e−i ) be the frozen idempotent of A, let B =

BQ = eAe be the boundary algebra, and let T = eA. Then T is a cluster-tilting object
of the Frobenius cluster category GP(B), with EndB(T )op ∼= A and EndB(T )op ∼= KQ.
It follows that GP(B) ' CQ.

Proof. Since Q is acyclic, Theorem 5.2 shows that A is finite-dimensional (so in par-
ticular it is Noetherian), and so is A = A/〈e〉 = KQ. Moreover, any assignment of
a positive integer to each arrow of Q determines a positive grading on (Q, 0), so A is
bimodule internally 3-Calabi–Yau with respect to e by Theorem 4.11. Now all neces-
sary conclusions follow from Theorem 2.6, except that the endomorphism algebra of
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any cluster-tilting object in GP(B) has global dimension at most 3. This is obtained
from [?presslandinternally, Prop. 3.7], using that B is a finite-dimensional algebra,
meaning that the relevant endomorphism algebras are also finite-dimensional, and so
in particular Noetherian.

We obtain the final conclusion from Keller–Reiten’s ‘recognition’ theorem [?kelleracyclic,
Thm. 2.1]; GP(B) is a 2-Calabi–Yau triangulated category admitting a cluster-tilting
object T with endomorphism algebra KQ, and therefore GP(B) is triangle equivalent
to the cluster category CQ. �

We note that most of the conclusions of Theorem 5.3 may still hold whenQ has cycles,
for example when Q is the 3-cycle and W the obvious potential (see Example 3.2 above
and Example 9.3 below). In this case AQ,W , although not finite-dimensional, is still
Noetherian, as are the endomorphism algebras of all other cluster-tilting objects of
GP(BQ,W ) [?presslandinternally, Exa. 3.12]. Since J (Q,W ) is finite-dimensional
and can be positively graded by giving each arrow of Q degree 1, most of the argument
of Theorem 5.3 goes through essentially unchanged. The main exception is that Keller–
Reiten’s recognition theorem no longer applies, so one must observe directly in this case
that GP(B) ' CQ,W .

6. Mutation

Let Q be an acyclic quiver. In this section we show that if T and µkT are cluster-
tilting objects of E = GP(BQ), mutation equivalent to the initial cluster-tilting object
eAQ, and related by mutation at an indecomposable summand Tk of T (see Proposi-
tion 2.8), the quiver of EndE(µkT )op is given by the Fomin–Zelevinsky mutation of the
quiver of EndE(T )op at the vertex corresponding to Tk, up to arrows between frozen
vertices. This will be used to complete the proof of Theorem 1; see Theorem 6.13 below.

We will in fact prove more than this, and in greater generality, via a mild generalisa-
tion of work of Buan–Iyama–Reiten–Smith [?buanmutation]. Let T be a cluster-tilting
object of a Frobenius category E such that there is an isomorphism Φ: J (Q,F,W ) ∼→
EndE(T )op for some ice quiver with potential (Q,F,W ), and let Tk = Φ(ek)(T ) be
an indecomposable non-projective summand of T . Under certain conditions on E ,
T and Tk, we show that the mutated cluster tilting object µkT = T/Tk ⊕ T ∗k has
EndE(T )op ∼→ J (µk(Q,F,W )), for some appropriately defined mutation operation µk
on ice quivers with potential. The quiver of µk(Q,F,W ) coincides, up to arrows be-
tween frozen vertices and the addition of 2-cycles, with the Fomin–Zelevinsky mutation
of Q at the vertex k corresponding to Tk. All of the necessary assumptions for this gen-
eral result will turn out to hold when E = GP(BQ) for Q acyclic, T is a cluster-tilting
object related to our initial object eAQ by a finite sequence of mutations, and Tk is any
non-projective indecomposable summand of T . Moreover, we may show directly that
the quiver of EndE(T )op has no 2-cycles, and thus obtain our desired result.

We begin by defining mutations of ice quivers with potential, following Derksen–
Weyman–Zelevinsky [?derksenquivers1] in the case F = ∅ (see also [?buanmutation,
§1.2], [?presslandfrobenius, §3.3]).
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Definition 6.1. Let (Q,F,W ) be an ice quiver with potential such that Q has no
loops, and let k ∈ Qm

0 be a mutable vertex such that there are no 2-cycles of Q passing
through k. We define the mutation µk(Q,F,W ) = (Q′, F ′,W ′) as follows. The quiver
Q′ is the output of the following procedure.

(0) Replace the vertex k by a k∗. (This purely notational change is to help distin-
guish the quivers Q and Q′ later on.)

(1) Add an arrow [ab] : i→ j for each pair of arrows b : i→ k and a : k → j in Q.
(2) Replace each arrow a : k → j in Q by an arrow a∗ : j → k∗, and each arrow

b : i→ k in Q by an arrow b∗ : k∗ → i.
Note that this is precisely the operation of Fomin–Zelevinsky mutation at k, excluding
the final step of cancelling 2-cycles, and that Q′ again has no loops, and no 2-cycles
at k∗. The frozen subquiver F ′ of Q′ is given by exactly the vertices and arrows of F ,
none of which were changed in the above procedure. (In particular, this means that
the new arrows a∗, b∗ and [ab] are all unfrozen.) We define

W ′ = [W ] +
∑

a,b∈Q1
ta=k=hb

a∗[ab]b∗,

where [W ] is obtained from W by substituting [ab] for ab each time the latter appears
in a cycle of W .

For later use, we record the right derivatives of the relations defined by W ′; these are
calculated directly from the definition.

Lemma 6.2 (cf. [?buanmutation, Lem. 5.8]). Let (Q,F,W ) be an ice quiver with
potential such that Q has no loops, let k ∈ Qm

0 be a mutable vertex such that no 2-cycles
of Q are incident with k, and write µk(Q,F,W ) = (Q′, F ′,W ′). Let a, b ∈ Q1 have
ta = k = hb, and let c, c′ ∈ Q1 ∩Q′1. Then

(i) ∂rc∂c′W ′ = ∂rc∂c′W ,
(ii) ∂rc∂[ab]W

′ = ∂rc∂[ab][W ] = ∂rc∂
r
a∂bW and ∂r[ab]∂cW ′ = ∂r[ab]∂c[W ] = ∂ra∂

r
b∂cW ,

(iii) ∂r[ab]∂a∗W ′ = b∗,
(iv) ∂rb∗∂[ab]W

′ = a∗,
(v) ∂ra∗∂b∗W ′ = [ab], and
(vi) For any other pair d, d′ ∈ Q′1, we have ∂rd∂dW ′ = 0. �

Remark 6.3. The potentialW ′ above may contain terms of length 2 (but not of length
1, since Q′ has no loops), meaning that some of the defining relations of J (Q′, F ′,W ′)
are non-admissible, and so the Gabriel quiver of J (Q′, F ′,W ′) is Q′′ 6= Q′. Via a
process of reduction from (Q′, F ′,W ′), similar to that of [?derksenquivers1, Thm. 4.6]
for ordinary quivers with potential, we may find a frozen subquiver F ′′ of Q′′ and a
potential W ′′ such that J (Q′, F ′,W ′) ∼= J (Q′′, F ′′,W ′′). On the level of the ice quiver,
this process involves deleting any 2-cycle appearing in W ′ and consisting of unfrozen
arrows, and replaces any 2-cycle of W ′ consisting of one frozen and one unfrozen arrow
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with a single frozen arrow as below.

i j 7→ i j

The interested reader can find more details in [?presslandfrobenius, §3.3]. Since
we only define mutation at vertices not lying on 2-cycles, such reduction steps can be
necessary in order to perform iterated mutation, but they will not be needed for the
arguments that follow.

We now, following [?buanmutation], explain a result linking mutation of ice quivers
with potential to mutation of cluster-tilting objects in Frobenius categories. Given an
additive category C, and objects X, Y ∈ C, let RadC(X, Y ) denote the subspace of
HomC(X, Y ) consisting of maps f such that 1X − gf is invertible for all g : Y → X.
We then define RadmC (X, Y ) to be the subspace of HomE(X, Y ) consisting of maps that
may be written as a composition fm ◦ · · · ◦ f1 with fi ∈ RadC(Xi−1, Xi) for some Xi ∈ C
(so that necessarily X0 = X and Xm = Y ). We extend this notation by

Rad0
C(X, Y ) := HomC(X, Y ).

Note that, for any m, the subspace RadmC (X,X) is an ideal of EndC(X)op. Moreover,
if D ⊆ C is a full subcategory, then RadmD (X, Y ) = RadmC (X, Y ) for m = 0 and m = 1,
but this equality need not hold for m > 2. More information about the radical of a
category may be found in [?assemelements, §A.3].

We will consider K-linear categories C satisfying the conditions
(C1) C is Krull–Schmidt, and
(C2) for any non-zero basic object X ∈ C, we have

(A1) EndC(X)op/RadC(X,X) ∼= Kn for some n > 0, and
(A2) EndC(X)op ∼= lim←−m≥0 EndC(X)op/RadmC (X,X).

For example, if B is a finite-dimensional Iwanaga–Gorenstein algebra, then GP(B) is a
Frobenius category satisfying (C1) and (C2); indeed, (C2) is satisfied by any Hom-finite
K-linear category. The Grassmannian cluster categories introduced by Jensen–King–Su
[?jensencategorification] also satisfy (C1) and (C2) providing one takes completions
in all of the definitions (cf. [?jensencategorification, Rem. 3.3]), since in this case
the endomorphism algebra of any basic object is a finitely generated C[[t]]-module,
meaning (A1) and (A2) hold.

Let C be a category satisfying (C1) and (C2), and let Q be a finite quiver. For
each vertex i ∈ Q0, choose an object Ti ∈ C, and for each arrow a : i → j in Q,
choose a morphism Φa ∈ HomC(Tj, Ti). This data is equivalent to specifying an algebra
homomorphism

Φ: KQ→ EndC(T )op,

where T = ⊕
i∈Q0 Ti [?buanmutation, Lem. 3.5], with Φ(ei) = 1Ti

for each vertex
idempotent ei. Let R be a finite subset of the arrow ideal m(KQ) such that each
r ∈ R is basic, meaning it is a formal linear combination of paths of Q with the same
head and tail, and let I denote the closure of the ideal generated by R. For example,
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the set of cyclic derivatives of a potential on Q is a set of basic elements. Buan–
Iyama–Reiten–Smith [?buanmutation, Prop. 3.6] characterise when the homomorphism
Φ above induces an isomorphism

Φ: KQ/I ∼→ EndC(T )op

in terms of certain complexes in addT , depending on Φ, Q and R, being right 2-almost
split, a definition we now recall.
Definition 6.4 ([?buanmutation, Defn. 4.4]). Let C be a category satisfying (C1) and
(C2), and let T ∈ C be any object. Let

U1 U0 X
f1 f0

be a complex in addT , and consider the induced sequence

HomC(T, U1) HomC(T, U0) RadC(T,X) 0.

We say that f0 is right almost split in addT if this induced sequence is exact at
RadC(T,X), that f1 is a pseudo-kernel of f0 in addT if this induced sequence is exact
at HomC(T, U0), and that the sequence (f1, f0) is right 2-almost split if both of these
conditions hold simultaneously.

We define left almost split maps, pseudo-cokernels and left 2-almost split sequences
in addT dually, and call a complex

Y U1 U0 X
f2 f1 f0

weak 2-almost split in addT if (f1, f0) is a right 2-almost split sequence in addT and
(f2, f1) is a left 2-almost split sequence in addT .

To establish our isomorphisms, we will use [?buanmutation, Prop. 3.3] (see also
[?buanmutation, Prop. 3.6], which is the same result in more categorical language). The
following statement specialises this proposition to the case of frozen Jacobian algebras.
Proposition 6.5 (cf. [?buanmutation, Prop. 3.3]). Let (Q,F,W ) be an ice quiver with
potential, C be an additive category satisfying (C1) and (C2), and Φ: KQ→ EndC(T )op

an algebra homomorphism. Write Ti = Φ(ei)(T ). Then the following are equivalent:
(i) Φ induces an isomorphism J (Q,F,W ) ∼→ EndC(T )op,
(ii) for every i ∈ Q0, the complex

(6.1)
⊕
b∈Qm

1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φ∂r

a∂bW Φa

is right 2-almost split in addT , and
(iii) for every i ∈ Q0, the complex

(6.2) Ti
⊕
b∈Q1
hb=i

Ttb
⊕
a∈Qm

1
ta=i

Tha
Φb Φ∂l

b∂aW
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is left 2-almost split in addT .

Remark 6.6. If i is a mutable vertex, then the sequences (6.1) and (6.2) glue together
into a weak 2-almost split sequence in addT (see [?buanmutation, Lem. 4.1] for the
equality ∂ra∂bW = ∂la∂bW ). Thus in the context of [?buanmutation, §5], which deals
with ordinary Jacobian algebras, it is both possible and convenient to phrase assump-
tions and conclusions in terms of the existence of such weak 2-almost split sequences.
Since this symmetry breaks down at frozen vertices, we must make a choice, and we
choose to use right 2-almost split sequences in these cases.

Under the notation and assumptions of Proposition 6.5, let k ∈ Qm
0 be a mutable

vertex. Let T ∗k ∈ C be an object not in addT , and write µkT = T/Tk⊕T ∗k . We make the
following assumptions, labelled for consistency with the corresponding assumptions of
[?buanmutation, §5.2]. Our assumptions differ from these only by additional conditions
at frozen vertices in (O) and (IV), and conventions on composing maps.

(O) The map Φ induces an isomorphism J (Q,F,W ) ∼→ EndC(T )op. By Proposi-
tion 6.5, this condition may be phrased equivalently as follows: for every i ∈ Qm

0 ,
the complex

Ti
⊕
b∈Q1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φb Φ∂r

a∂bW Φa

is a weak 2-almost split sequence in addT , which we abbreviate to

Ti Ui1 Ui0 Ti,
fi2 fi1 fi0

and for each i ∈ F0, the complex⊕
b∈Qm

1
hb=i

Ttb
⊕
a∈Q1
ta=i

Tha Ti
Φ∂r

a∂bW Φa

is a right 2-almost split sequence in addT , which we abbreviate to

Ui1 Ui0 Ti.
fi1 fi0

(I) There exist complexes

Tk Uk1 T ∗k ,

T ∗k Uk0 Tk

fk2 hk

gk fk0

in C such that fk1 = gkhk.
(II) The complex

T ∗k Uk0 Uk1 T ∗k
gk fk0fk2 hk

is a weak 2-almost split sequence in add(µkT ).
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(III) The sequences

HomC(T ∗k , T ∗k ) HomC(Uk1, T
∗
k ) HomC(Tk, T ∗k ),

HomC(T ∗k , T ∗k ) HomC(T ∗k , Uk0) HomC(T ∗k , Tk),

hk fk2

gk fk0

induced from those of (I) by applying HomC(−, T ∗k ) and HomC(T ∗k ,−) respec-
tively, are exact.

(IV) For all i ∈ Q0, we have Tk /∈ (addUi1) ∩ (addUi0). For i ∈ Qm
0 the sequences

HomC(T ∗k , Ui1) HomC(T ∗k , Ui0) HomC(T ∗k , Ti),

HomC(Ui0, T ∗k ) HomC(Ui1, T ∗k ) HomC(Ti, T ∗k ),

fi1 fi0

fi1 fi2

obtained by applying HomC(T ∗k ,−) and HomC(−, T ∗k ) respectively to the weak
2-almost split sequence from (O), are exact. For all i ∈ F0, the sequence

HomC(T ∗k , Ui1) HomC(T ∗k , Ui0) HomC(T ∗k , Ti),
fi1 fi0

obtained by applying HomC(T ∗k ,−) to the right 2-almost split sequence from
(O), is exact.

Lemma 6.7. Let E be a stably 2-Calabi–Yau Frobenius category satisfying (C1) and
(C2), (Q,F,W ) an ice quiver with potential such that Q has no loops, and Φ: KQ →
EndE(T )op an algebra homomorphism. Assume that T is cluster-tilting in E, that Ti =
Φ(ei)(T ) is not projective-injective when i ∈ Qm

0 , and that Φ induces an isomorphism

Φ: J (Q,F,W ) ∼→ EndE(T )op.

Let k ∈ Qm
0 be such that there are no 2-cycles in Q incident with k. Then there exists

T ∗k 6∈ addT such that Φ, T and T ∗k satisfy the assumptions (O)–(IV).

Proof. By the assumptions on Φ, we have that Tk is an indecomposable non-projective-
injective summand of the cluster-tilting object T . Since E is stably 2-Calabi–Yau and
Q has no loops or 2-cycles at k, we may take T ∗k as in Proposition 2.8. For this
choice of T ∗k , most of our desired statements are proved in [?buanmutation, Lem. 5.7].
Note in particular that the complexes in (I) are in fact the short exact sequences from
Proposition 2.8; we will use this below. It remains to check the statements of (O) and
(IV) dealing with frozen vertices.

The existence of the required right 2-almost split sequence in (O) follows from the
statement (i) =⇒ (ii) of Proposition 6.5. Since there are no 2-cycles of Q incident with
k, the statement that Tk /∈ (addUi1)∩ (addUi0) holds when i is frozen exactly as when
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i is unfrozen. For the remaining statement in (IV), consider the diagram

(6.3)

0 0 0

HomE(Tk, Ui1) HomE(Tk, Ui0) HomE(Tk, Ti) 0

HomE(Uk0, Ui1) HomE(Uk0, Ui0) HomE(Uk0, Ti)

HomE(T ∗k , Ui1) HomE(T ∗k , Ui0) HomE(T ∗k , Ti)

0 0 0
in which the lowest non-zero row is the sequence we wish to prove is exact. The columns
are obtained by applying HomE(−, X) to the short exact sequence

0 T ∗k Uk0 Tk 0gk fk0

for various X ∈ addT ; since T is cluster-tilting, we have Ext1
E(Tk, X) = 0 in each case,

and so these columns are short exact sequences. The rows are obtained by applying
HomE(Y,−) to the complex

Ui1 Ui0 Ti,
fi1 fi0

which we have already shown is right 2-almost split in addT , for various Y ∈ E . In the
case of the first two rows, we even take Y ∈ addT ; it then follows immediately from
the definition of right 2-almost splitness that the second row is exact. Exactness of the
first row follows similarly, using that Tk 6∼= Ti to see that

HomE(Tk, Ti) = RadE(Tk, Ti),
so that we also have exactness at HomE(Tk, Ti). Exactness of the lowest row now follows
by viewing the diagram (6.3) as a short exact sequence of chain complexes, and passing
to the long-exact sequence in cohomology. �

Example 6.8. We pick out three families of Frobenius cluster category for which some
cluster-tilting objects are known to have endomorphism algebra isomorphic to a frozen
Jacobian algebra J (Q,F,W ) in which Q has no loops or 2-cycles, to which Lemma 6.7
applies. (For cases (ii) and (iii), proofs that the categories are indeed Frobenius cluster
categories can be found in [?presslandinternally, Eg. 3.11–12].)

(i) For the Frobenius cluster category GP(BQ) constructed in this paper from the
data of an acyclic quiver Q, the initial cluster-tilting object T = eA has endo-
morphism algebra EndB(T )op ∼= J (Q̃, F̃ , W̃ ) by Theorem 5.3.
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(ii) Buan–Iyama–Reiten–Scott associate Frobenius cluster categories Cw to elements
w of Coxeter groups. Each reduced expression i for w in terms of simple re-
flections determines a cluster-tilting object Ti ∈ Cw, and Buan–Iyama–Reiten–
Smith have shown that EndCw(Ti)op is isomorphic to frozen Jacobian algebra,
constructed combinatorially from i [?buanmutation, Thm. 6.6].

(iii) Jensen–King–Su [?jensencategorification] describe a Frobenius cluster cat-
egory CM(Bk,n) categorifying Scott’s cluster algebra structure on the homo-
geneous coordinate ring of the Grassmannian of k-dimensional subspaces of
Cn [?scottgrassmannians]. A (k, n) Postnikov diagram D determines both
a cluster of Plücker coordinates in the cluster algebra, and a cluster-tilting
object TD ∈ CM(Bk,n). Baur–King–Marsh show that EndBk,n

(TD)op is iso-
morphic to a frozen Jacobian algebra, constructed combinatorially from D
[?baurdimer, Thm. 10.3].

Under the notation and assumptions of Proposition 6.5, let k ∈ Qm
0 be a mutable

vertex. Choose T ∗k /∈ addT and write µkT = T/Tk ⊕ T ∗k . Assume (O)–(IV). By (IV),
there are no 2-cycles in Q incident with k, so we may take (Q′, F ′,W ′) = µk(Q,F,W ).
We now define an algebra homomorphism

Φ′ : KQ′ → EndC(µkT )op

by choosing a summand of µkT for each i ∈ Q′0 and a map Φ′a : Tj → Ti for each arrow
a : i→ j in Q′1, as follows. By assumption,

T/Tk =
⊕
i∈Q′0
i 6=k∗

Ti,

noting that Q′0 \ {k∗} = Q0 ∩Q′0. We complete the assignment of summands of µkT to
vertices of Q′ by associating T ∗k to the vertex k∗. On arrows, we define Φ′ as follows.

(i) If a is an arrow common to Q and Q′, then we take Φ′a = Φa.
(ii) On arrows [ab] of Q′, define Φ′[ab] = Φb ◦ Φa.
(iii) Recall that by assumption (I) we have maps

gk : T ∗k →
⊕
a∈Q1
ta=k

Tha, hk :
⊕
b∈Q1
hb=k

Ttb → T ∗k .

If a ∈ Q1 has ta = k, define Φ′a∗ to be the component of gk indexed by a, and
if b ∈ Q1 has hb = k, define Φ′b∗ to be the component of −hk indexed by b.

We are now able to state the main result of this section.

Theorem 6.9. Under the assumptions and notation of the preceding paragraph, we
have an induced isomorphism

Φ′ : J (Q′, F ′,W ′) ∼→ EndC(µkT )op.
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Proof. We wish to apply the statement (ii) =⇒ (i) of Proposition 6.5, so it suffices to
show, for each i ∈ Q′0, that the sequence

(6.4)
⊕
d∈Q′m1
hd=i

Ttd
⊕
c∈Q′1
tc=i

Thc Ti
Φ′∂r

c∂dW
′ Φ′c

is right 2-almost split in add(µkT ). When i is mutable, this follows from [?buanmutation,
Thm. 5.6], so we need only deal with the case i ∈ F ′0 = F0. Our argument fol-
lows closely the proof of [?buanmutation, Lem. 5.10], using freely computations of
the derivatives ∂rc∂dW ′ from Lemma 6.2. We treat elements of direct sums as column
vectors, with maps acting as matrices from the left; this convention is transposed from
that of [?buanmutation].

Let i ∈ F ′0 = F0. Since Q has no 2-cycles incident with k, either there is no arrow
k → i in Q, or there is no arrow i → k in Q. In the first case, the sequence (6.4) has
the form

(6.5)

( ⊕
b∈Q1
b : i→k

T ∗k

)
⊕( ⊕

d∈Qm
1

hd=i

Ttd

)

( ⊕
a,b∈Q1
ta=k
b : i→k

Tha

)

⊕( ⊕
c∈Q1
hc6=k
tc=i

Thc

) Ti,
x ( Φ′[ab] Φ′c )

where the direct sums are divided so that the upper portion consists of the contribution
from arrows in Q′1 \Q1, and x is given by the matrix

x =
(

Φ′a∗ Φ′∂r[ab]∂d[W ]
0 Φ′∂rc∂d[W ]

)
.

First we note that this is a complex, since∑
a∈Q1
ta=k

Φ′[ab]Φ′a∗ = Φbfk0gk = 0,

∑
a,b∈Q1
ta=k
b : i→k

Φ′[ab]Φ′∂r[ab]∂d[W ] +
∑
c∈Q1
hc 6=k
tc=i

Φ′cΦ′∂rc∂d[W ] = Φ∂dW = 0

for each b : i→ k in Q1 and d ∈ Qm
1 with hd = i. Let ` be the number of arrows i→ k

in Q. Then we have Ui0 = T `k ⊕ U ′′i0 with Tk /∈ addU ′′i0, and the maps fi0 and fi1 from
the right 2-almost split sequence of (O) decompose as

fi0 =
(
f ′i0 f ′′i0

)
: T `k ⊕ U ′′i0 → Ti,

fi1 =
(
f ′i1
f ′′i1

)
: Ui1 → T `k ⊕ Ui0.
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We may then rewrite (6.5) as

T ∗`k ⊕ Ui1 U `
k0 ⊕ U ′′i0 Ti,

(
g`

k t

0 f ′′i1

)
( f ′i0f

`
k0 f ′′i0 )

where f `k0t = f ′i1.
Next we show that ( f ′i0f

`
k0 f ′′i0 ) is right almost split in addµkT . Let p ∈ RadC(T/Tk, Ti).

Since fi0 = ( f ′i0 f ′′i0 ) is right almost split in addT , there exists ( p1
p2 ) : T/Tk → T `k ⊕ U ′′i0

such that p = f ′i0p1 + f ′′i0p2. Moreover, since fk0 is right almost split in addT , there
exists q : T/Tk → U `

k0 such that p1 = f `k0q, and so
p = f ′i0f

`
k0q + f ′′i0p2

factors through ( f ′i0f
`
k0 f ′′i0 ) as required. On the other hand, if p ∈ RadC(T ∗k , Ti), then

since gk is left almost split in add(µkT ) there exists q : Uk0 → Ti such that p = qgk.
Since there are no arrows k → i in Q, there are no summands of Uk0 isomorphic to Ti,
and so q ∈ RadC(Uk0, Ti). Since Uk0 ∈ add(T/Tk), we see as above that q, and therefore
p, factors through ( f ′i0f

`
k0 f ′′i0 ).

Now we show that
(
g`

k t

0 f ′′i1

)
is a pseudo-kernel of ( f ′i0f

`
k0 f ′′i0 ) in addµkT . By (III) and

(IV) we have exact sequences

(6.6) HomC(µkT, T ∗k ) HomC(µkT, Uk0) HomC(µkT, Tk)
gk fk0

and

(6.7) HomC(µkT, Ui1) HomC(µkT, T `k ⊕ U ′′i0) HomC(µkT, Ti).

(
f ′i1
f ′′i1

)
( f ′i0 f ′′i0 )

Now if ( p1
p2 ) : µkT → U `

k0 ⊕ U ′′i0 satisfies

0 =
(
f ′i0f

`
k0 f ′′i0

)(p1
p2

)
=
(
f ′i0 f ′′i0

)(f `k0 0
0 1

)(
p1
p2

)
,

then by exactness of (6.7) there exists q : µkT → Ui1 such that(
fi1′
f ′′i1

)
q =

(
f `k0 0
0 1

)(
p1
p2

)
.

It follows that f `k0p1 = f ′i1q and p2 = f ′′i1q. In particular,
f `k0(p1 − tq) = f ′i1q − fi1q = 0,

so by exactness of (6.6) there exists r : µkT → T ∗`k such that p1 − tq = g`kr. It follows
that (

p1
p2

)
=
(
g`k t
0 f ′′i1

)(
r
q

)

factors through
(
g`

k t

0 f ′′i1

)
, as required. This completes the proof that (6.4) is right

2-almost split when there are no arrows k → i in Q.
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Now assume instead that there are no arrows i→ k in Q. In this case, the sequence
(6.4) has the form

(6.8)

( ⊕
a,b∈Q1
hb=k
a : k→i

Ttb

)

⊕( ⊕
d∈Qm

1
hd=i
td6=k

Ttd

)

( ⊕
a∈Q1
a : k→i

T ∗k

)
⊕( ⊕

c∈Q1
tc=i

Thc

) Ti,
y ( Φ′a∗ Φ′c )

where
y =

(
Φ′b∗ 0

Φ′∂r[ab]∂c[W ] Φ′∂rd∂c[W ]

)
.

We see using (I) that this is a complex, since∑
a∈Q1
a : k→i

Φ′a∗Φ′b∗ +
∑
c∈Q1
tc=i

Φ′cΦ′∂r[ab]∂c[W ] = (−gkhk + Φ∂ra∂bW )|Ti
Ttb

= (−fk1 + fk1)|Ti
Ttb

= 0,

∑
c∈Q1
tc=i

Φ′cΦ′∂rd∂c[W ] = Φ∂dW = 0

for each pair a, b ∈ Q1 with hb = k and a : k → i, and each d ∈ Qm
1 with hd = i and

td 6= k. (The notation after the first equality sign on the first line refers to taking the
component Ttb → Ti = Tha indexed by the pair (a, b).) Let ` be the number of arrows
k → i in Q. Then Ui1 = T `k ⊕ U ′′i1, where Tk /∈ addU ′′i1, and fi1 decomposes as

fi1 =
(
f ′i1 f ′′i1

)
: T `k ⊕ U ′′i1 → Ui0.

We may then rewrite (6.8) as

U `
k1 ⊕ U ′′i1 T ∗`k ⊕ Ui0 Ti,

(
−h`

k 0
s fi1′′

)
(u fi0 )

where sf `k2 = f ′i1 and fi0s = uh`k.
Before showing that this sequence is right 2-almost split in addµkT , we establish that

the map u : T `k → Ti, whose components are given by Φ′a∗ for the ` arrows a : k → i,
induces a bijection
(6.9) u : HomC(T ∗k , T ∗`k )/RadC(T ∗k , T ∗`k ) ∼→ RadC(T ∗k , Ti)/Rad2

add(µkT )(T ∗k , Ti).
By (C2), we have HomC(T ∗k , T ∗k )/RadC(T ∗k , T ∗k ) ∼= K, spanned by the class of the
identity, so it is sufficient to show that the ` maps Φ′a∗ for a : k → i form a ba-
sis of RadC(T ∗k , Ti)/Rad2

add(µkT )(T ∗k , Ti). These maps are some of the components of
gk, which is left almost split in add(µkT ) by (II), meaning that its components span
RadC(T ∗k , Uk0)/Rad2

add(µkT )(T ∗k , Uk0). Since there is no 2-cycle of Q incident with k, we
have fk0fk2 ∈ RadC(Uk0, Uk1), from which it follows that gk is also left minimal, i.e. that
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its components are linearly independent in RadC(T ∗k , Uk0)/Rad2
add(µkT )(T ∗k , Uk0), hence

a basis. Restricting to the summands of Uk0 isomorphic to Ti then gives the desired
result.

We may now show that ( u fi0 ) is right almost split in add(µkT ). Since fi0 is right
almost split in addT by (O), for any p ∈ RadC(T/Tk, Ti) there exists p′ : T/Tk → Ui0
such that

p = fi0p
′ =

(
u fi0

)(0
p′

)
.

On the other hand, if p ∈ RadC(T ∗k , Ti), then by (6.9) there exists p1 ∈ HomC(T ∗k , T ∗`k )
such that p− up1 ∈ Rad2

add(µkT )(T ∗k , Ti). Since gk is left almost split in add(µkT ), there
exists q : Uk0 → Ti such that p − up1 = qgk. Now, using again that fi0 is right almost
split in addT , there exists r : Uk0 → Ui0 such that q = fi0r, so that

p = up1 + fi0rgk =
(
u fi0

)( p1
rgk

)

factors through ( u fi0 ) as required.
Finally, we show that

(
−h`

k 0
s fi1′′

)
is a pseudo-kernel of ( u fi0 ) in add(µkT ). Assume

that ( p1
p2 ) : T ′ → T ∗`k ⊕ Ui0 satisfies(

u fi0
)(p1

p2

)
= 0.

We first show that p1 factors through h`k. To do this, we first observe that p1 ∈
RadC(T ′, T ∗`k ), for which it suffices to consider the case T ′ = T ∗k . We then have p2 ∈
HomC(T ∗k , Ui0) = Radadd(µkT )(T ∗k , Ui0), and fi0 ∈ RadaddT (Ui0, Ti) = Radadd(µkT )(Ui0, Ti)
by (O) and the assumption that there are no arrows i→ k in Q, so that Ui0 ∈ add(µkT ).
It follows that

up1 = −fi0p2 ∈ Rad2
add(µkT )(T ∗k , Ti)

so by (6.9) we have p1 ∈ RadC(T ∗k , T ∗`k ) as required. Now since hk is right almost split
in add(µkT ) by (II), there exists q : T ′ → U `

k1 such that p1 = h`kq.
By (III) and (IV) we have an exact sequence

(6.10) HomC(µkT, T `k ⊕ U ′′i0) HomC(µkT, Ui0) HomC(µkT, Ti).
( f ′i1 f ′′i1 ) fi0

Since fi0(p2 +sq) = fi0p2 +uh`kq = 0, it follows from (6.10) that there exists ( q1
q2 ) : T ′ →

T `k ⊕ Ui0 such that

p2 + sq =
(
fi1′ f ′′i1

)(q1
q2

)
.

We therefore have

p2 = −sq + f ′i1q1 + f ′′i1q2 = s(f `k2q1 − q) + f ′′i1q2,
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and so (
p1
p2

)
=
(
−h`k 0
s f ′′i1

)(
f `k2q1 − q

q2

)

factors through
(
−h`

k 0
s fi1′′

)
, as required. This shows that (6.4) is right 2-almost split

when there are no arrows i→ k in Q, completing the proof. �

Proposition 6.10 (cf. [?buancluster, Prop. II.1.11]). Let E be a Hom-finite Frobenius
cluster category, and let T ∈ E be a cluster-tilting object. If the quiver of EndE(T )op

has no loops at its mutable vertices, then it has no 2-cycles incident with its mutable
vertices.

Proof. Let A = EndE(T )op and let

Sk = HomE(T, Tk)/RadE(T, Tk) ∼= K

be the simple A-module corresponding to a non-projective summand Tk of T . We show
that Ext2

A(Sk, Sk) = 0. Consider the exchange sequences

0 Tk Uk1 T ∗k 0,

0 T ∗k Uk0 Tk 0,

fk2 hk

gk fk0

for Tk. Applying HomE(T,−) to these sequences and gluing gives a projective resolution

0 HomE(T, Tk) HomE(T, Uk1) HomE(T, Uk0) HomE(T, Tk) C 0

of C = coker(HomE(T, fk0)). Since A has no loops, we have C ∼= Sk (cf. [?geissrigid,
Lem. 6.1]), and Tk is not a summand of Uk1, so Ext2

A(Sk, Sk) = 0. The result then
follows by [?geissrigid, Prop. 3.11], using that gl. dimA <∞ (since E is a Frobenius
cluster category) and that A is finite-dimensional. �

Corollary 6.11. Let E be a Frobenius cluster category, and assume that there is a
mutation class of cluster-tilting objects in E such that the quivers of endomorphism al-
gebras of these objects have no 2-cycles incident with their mutable vertices. Let T ∈ E
be a cluster-tilting object in this class such that EndE(T )op ∼= J (Q,F,W ) for some
quiver Q with no loops or 2-cycles incident with its mutable vertices. Then for any
cluster-tilting object T ′ = µk`

· · ·µk1T mutation equivalent to T , there is an isomor-
phism EndE(T ′)op ∼= J (Q′, F ′,W ′) for some quiver Q′ which has no loops and, after
removing arrows between frozen vertices, coincides with the Fomin–Zelevinsky mutation
µk`
· · ·µk1Q of Q.

Proof. First assume T ′ = µkT . By Theorem 6.9, we have EndE(T ′)op ∼= J (Q′0, F ′0,W ′
0)

for (Q′0, F ′0,W ′
0) = µk(Q,F,W ). By construction, the quiver Q′0 has no loops, and

differs from µkQ only by arrows between frozen vertices and the possible addition of
2-cycles, of which µkQ has none. By using reduction, i.e. using the defining relations of
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J (Q′0, F ′0,W ′
0) to cancel redundant arrows (see Remark 6.3), we can find an ice quiver

with potential (Q′, F ′,W ′) such that

J (Q′, F ′,W ′) ∼= J (Q′0, F ′0,W ′
0) ∼= EndE(T ′)op

and Q′ is the Gabriel quiver of these three isomorphic algebras. By assumption, the
quiver Q′ has no 2-cycles incident with its mutable vertices, so it must agree with µkQ
up to arrows between frozen vertices, and it has no loops since this was already true
of Q′0. Thus mutation is defined at every mutable vertex of (Q′, F ′,W ′), and so the
general case follows by induction. �

Consider again the Frobenius cluster categories from Example 6.8 of types (i) and
(ii). By Proposition 6.10 and Corollary 6.11, the endomorphism algebra of any cluster-
tilting object within the mutation class of those referred to in Example 6.8 has en-
domorphism algebra isomorphic to a frozen Jacobian algebra, and moreover mutation
of cluster-tilting objects commutes with Fomin–Zelevinsky mutation of quivers within
these classes.

The argument above does not apply to the Grassmannian cluster categories of Ex-
ample 6.8(iii)—since these are Hom-infinite, we may not use [?geissrigid, Prop. 3.11]
in the final step of the proof of Proposition 6.10. However, we may replace this propo-
sition by the following ad hoc argument, and then use Corollary 6.11 to draw the same
conclusion as in cases (i) and (ii).

Proposition 6.12. Let CM(B) be a Grassmannian cluster category [?jensencategorification],
and let T ∈ CM(B) be a cluster-tilting object. If the quiver of EndE(T )op has no loops
at its mutable vertices, then it has no 2-cycles incident with its mutable vertices.

Proof. By [?jensencategorification, Thm. 4.5], there is an exact functor π : CM(B)→
SubQk, which is a quotient by the ideal generated by an indecomposable projective B-
module Pn. Here SubQk denotes the exact category of submodules of an injective
module Qk for the preprojective algebra of type An−1, see [?geisspartial, §3], and is
a Hom-finite Frobenius cluster category [?presslandinternally, Eg. 3.11] (in fact, it
is even one of the categories Cw considered in [?buancluster]; cf. [?geisskacmoody,
Lem. 17.2]).

As such, πT is a cluster-tilting object in SubQk, and the quiver of EndSubQk
(πT )op

is obtained from that of EndB(T )op by deleting the vertex corresponding to the sum-
mand Pn of T , and all incident arrows. Thus this smaller quiver has no loops, and
so by Proposition 6.10 it has no 2-cycles. It follows that any 2-cycles in the quiver
of EndB(T )op incident with a mutable vertex must also be incident with the vertex
corresponding to Pn.

However, because of the cyclic symmetry of the algebra B, the same argument applies
when replacing Pn by one of the n − 1 other indecomposable projective B-modules,
giving another quotient functor π′ : CM(B)→ SubQk (typically with π′T 6∼= πT ). This
allows us to also rule out any 2-cycles in the quiver of EndB(T )op between a mutable
vertex and that corresponding to Pn. �
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We end this section with a proof of part (ii) of Theorem 1.

Theorem 6.13. Let Q be an acyclic quiver. Then there is a bijection between cluster-
tilting objects of GP(BQ) and seeds of the cluster algebra ÃQ, commuting with mutation,
such that the ice quiver of the endomorphism algebra of each cluster-tilting object agrees,
up to arrows between frozen vertices, with the ice quiver of the corresponding seed.

Proof. Let T = eAQ be the initial cluster-tilting object. By Corollary 6.11, the quiver
of EndBQ

(T ′)op has no loops or 2-cycles incident with its mutable vertices whenever
T ′ is a cluster-tilting object mutation equivalent to T . It follows that, within this
mutation class, every cluster-tilting object may be mutated at all of its non-projective
indecomposable summands.

Now for any sequence km, . . . , k1 of vertices ofQ, we associate the cluster-tilting object
µkm · · ·µk1T , which is well-defined by our initial observations, to the seed µkm · · ·µk1 s̃0 of
ÃQ. By construction, this map commutes with mutation, and by Corollary 6.11 again,
the quiver of a cluster-tilting object T ′ agrees, up to arrows between frozen vertices
with the corresponding seed. Since cluster-tilting objects of GP(BQ) are in bijection
with those of the stable category GP(BQ) ' CQ (see Theorem 5.3), the fact that this
assignment is a bijection follows from [?buanclusters, Thm. A.1]. �

7. Boundary algebras

Whenever we can construct a categorification of ÃQ via Theorem 2.6, such as when
Q is acyclic, the objects of this category are modules for the idempotent subalgebra
BQ,W of AQ,W determined by the frozen vertices, so we wish to describe this subalgebra
more explicitly. In this section we will present BQ via a quiver with relations, in the
case that Q is acyclic.

Recall that the double quiver Q of a quiver Q has vertex set Q0, and arrows Q1∪Q∨1 ,
where Q∨1 = {α∨ : α ∈ Q1}. The head and tail maps agree with those of Q on Q1, and
are defined by hα∨ = tα and tα∨ = hα on Q∨1 . The preprojective algebra of Q is

Π(Q) = KQ/
( ∑
α∈Q1

[α, α∨]
)

and, up to isomorphism, depends only on the underlying graph of Q. We begin with
the following very general statement for frozen Jacobian algebras, which reveal some of
the relations of BQ,W for an arbitrary quiver with potential (Q,W ).

Proposition 7.1. Let (Q,F,W ) be an ice quiver with potential, let A = J (Q,F,W )
and let B = eAe for e the frozen idempotent be the boundary algebra of A. Then there
is a map π : Π(F )→ B given by π(ei) = ei for all i ∈ F0, and π(α) = α, π(α∨) = ∂αW
for all α ∈ F1.

Proof. It suffices to check that π(∑α∈F1 [α, α∨]) = 0, i.e. that∑
α∈F1

[α, ∂αW ] = 0.
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By construction, for any v ∈ Q0 we have∑
α∈in(v)

α∂αW =
∑

β∈out(v)
∂βWβ

in KQ. Projecting to A and summing over vertices, we see that
0 =

∑
α∈Q1

[α, ∂αW ] =
∑
α∈Qm

1

[α, ∂αW ] +
∑
α∈F1

[α, ∂αW ] =
∑
α∈F1

[α, ∂αW ],

where the final equality holds since ∂αW = 0 in A whenever α ∈ Qm
1 . �

Remark 7.2. Familiarity with the constructions of [?geisspartial], [?buancluster]
and [?jensencategorification] may make it tempting to conjecture that the map
π in Proposition 7.1 is surjective, at least when J (Q,F,W ) is bimodule internally
3-Calabi–Yau, but this is not the case. A small explicit counterexample is

2 3

1

4

where the frozen subquiver is indicated by boxed arrows and dashed arrows as usual,
and the potential is given by the difference of the two 3-cycles, so that the relations
are generated by setting equal the two length two paths from 1 to 4. In this case the
boundary algebra and the frozen Jacobian algebra agree, and the arrow from 4 to 1 is
not in the image of π : Π(F ) → B. Since this algebra can be graded with every arrow
in degree 1, one can again check that the bimodule complex gives a resolution via the
more straightforward task of computing a projective resolution of each simple module.
We will see in this section that π fails to be surjective for our frozen Jacobian algebras
J (Q̃, F̃ , W̃ ) whenever Q is acyclic with a path of length at least 2; see Example 7.4
below.

We now turn to our description of B = BQ. Acyclicity of Q means that AQ/〈e〉 = KQ
has a natural basis, given by the paths of Q, each of which will determine an arrow of
the quiver QB of B.

Definition 7.3. Let Q be an acyclic quiver, and consider the frozen subquiver F̃ of Q̃,
which has vertex set

F̃0 = {i+, i− : i ∈ Q0}
and arrows

δi : i+ → i−

δa : ha+ → ta−
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for each i ∈ Q0 and a ∈ Q1. We define a quiver QB by adjoining to F̃ an arrow
δ∨p : tp− → hp+

for each path p of Q.
As usual, if p = ei is the trivial path at i ∈ Q0, we write δ∨p = δ∨i to avoid a double

subscript. The double quiver of F̃ appears as the subquiver of QB obtained by excluding
the arrows δ∨p for p of length at least two; the notation for the arrows of QB is chosen
to be consistent with that used earlier for the arrows of this double quiver.
Example 7.4. Let

Q = 1 2 3b a

be a linearly oriented quiver of type A3. Then QB is the following quiver.

QB = 1+ 1− 2+ 2− 3+ 3−
δ1

δ∨1 δ∨b

δb δ2

δ∨2 δ∨a

δa δ3

δ∨3

δ∨ab

Before we describe the ideal I of relations such that KQB/I ∼= B, we need an addi-
tional definition.
Definition 7.5. Let Q be a quiver. A zig-zag in Q is a triple (q, a, p), where p and
q are paths in Q, and a ∈ Q1 is an arrow, such that hp = ha and tq = ta. Thus if
a : v → w is an arrow of Q, a zig-zag involving a is some configuration

w v
a

p

q

where the dotted arrows denote paths. We call the zig-zag strict if p 6= ap′ for any
path p′ and q 6= q′a for any path q′, but do not exclude these possibilities in general. If
z = (q, a, p) is a zig-zag, then we define hz = hq and tz = tp.

We now write down what will turn out to be a set of generating relations for B,
having three flavours, as follows.

(i) For each path p of Q, let
r1(p) = δ∨p δtp −

∑
a∈Q1
ha=tp

δ∨paδa.
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(ii) For each path p of Q, let

r2(p) = δhpδ
∨
p −

∑
a∈Q1
ta=hp

δaδ
∨
ap.

(iii) For each zig-zag (q, a, p) of Q, let

r3(q, a, p) = δ∨q δaδ
∨
p .

We write I for the closure of the ideal of KQB generated by the union of these three sets
of relations. This generating set is usually not minimal, as for certain zig-zags (q, a, p),
the relation r3(q, a, p) may already lie in the ideal generated by relations of the form r1
and r2. For example, if a ∈ Q1 is an arrow such that i = ta is incident with no other
arrows of Q, then

r1(a) = δ∨a δi,

r2(ei) = δiδ
∨
i − δaδ∨a ,

so in KQB/〈r1(a), r2(ei)〉 we already have

r(a, a, a) = δ∨a δaδ
∨
a = δ∨a δiδ

∨
i = 0.

However, we obtain a combinatorially more straightforward presentation by including
all relations of the form r3(q, a, p), rather than characterising and excluding the re-
dundant ones. One can check that if (q, a, p) is a strict zig-zag, then r3(q, a, p) is not
redundant, but this condition is not necessary; if Q is a linearly oriented quiver of type
A4 and a is the middle arrow, then the non-strict zig-zag (a, a, a) yields an irredundant
relation.

Remark 7.6. When p = ei is a vertex idempotent, the relations r1(ei) and r2(ei)
reduce to ‘preprojective’ relations on the double quiver of F̃ , of the form predicted by
Proposition 7.1. Each arrow a ∈ Q1 is part of the trivial strict zig-zag (eta, a, eha), and
so contributes an irredundant relation r3(eta, a, eha) = δ∨taδaδ

∨
ha.

Let Φ: KQB → AQ be the map given by the identity on the vertices of QB and the
arrows δi and δa for i ∈ Q0 and a ∈ Q1; this makes sense as these are subsets of the
vertices and arrows of Q̃. On the remaining arrows δ∨p of QB, we define

Φ(δ∨p ) = αhppβtp.

Proposition 7.7. The map Φ induces a well-defined map Φ: QB/I → B.

Proof. Since Φ sends every vertex or arrow of QB to (the image in AQ of) a path of Q̃
with frozen head and tail, it takes values in B. It remains to check that it is zero on
each of the generating relations of I, which we do by explicit calculation as follows. Let
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p be a path in Q. Then
Φ(r1(p)) = αhppβtpδtp −

∑
a∈Q1
ha=tp

αhppaβtaδa

= αhpp(∂αtpW ) = 0,
Φ(r2(p)) = δhpαhppβtp −

∑
a∈Q1
ta=hp

δaαhaapβtp

= (∂βhp
W )pβtp = 0.

If (q, a, p) is a zig-zag, then
Φ(r3(q, a, p)) = αhrqβtaδaαhapβtp = 0,

since
0 = ∂aW̃ = ∂aW − βtaδaαha = −βtaδaαha

by acyclicity of Q. �

Theorem 7.8. Let Q be an acyclic quiver. Then the map Φ: QB/I → BQ, where Φ,
QB and I are all defined as above, is an isomorphism.

Proof. We begin by showing surjectivity. As in the proof of Theorem 5.2, we may use
Lemma 5.1 to see that any path in Q̃ determining a non-zero element of A has the form

p = q1p
′q2

where q1 and q2 contain no arrows of Q1, and p′ is a path of Q. If p has frozen head
and tail, then q1 and q2 must be non-zero, so we even have

p = q′1αhp′p
′βtp′q

′
2 = q′1Φ(δ∨p′)q′2

Now q′1 and q′2 are, like p, paths of Q̃ with frozen head or tail, but with the additional
property that they include no arrows of Q1. Let q be such a path. If q contains an
arrow βi for some i ∈ Q0, then this arrow cannot be the final arrow of q, since its head
is unfrozen, so it must be followed by the arrow αi, as this is the only arrow outside of
Q1 that composes with βi. It follows that q is either a vertex idempotent e±i = Φ(e±i ),
or is formed by composing paths of the form δi = Φ(δi) for i ∈ Q0, δa = Φ(δa) for
a ∈ Q1, or αiβi = Φ(δ∨i ) for i ∈ Q0, and so is in the image of Φ.

We conclude that image in A of any path of Q̃ with frozen head or tail lies in the
image of Φ. Since such classes span B = BQ, we see that Φ is surjective.

To complete the proof, we will use [?buanmutation, Prop. 3.3], stated earlier for
Jacobian algebras as Proposition 6.5. In this context, [?buanmutation, Prop. 3.3]
states that Φ is an isomorphism if and only if the sequences

(7.1)
⊕
p path
tp=i

Be+
hp Be−i ⊕

( ⊕
a∈Q1
ha=i

Be−ta

)
m(Be+

i ) 0f (·δi,·δa)
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and

(7.2)
( ⊕
p path
tp=i

Be−hp

)
⊕
( ⊕
z zig-zag
tz=i

Be+
hz

) ⊕
p path
tp=i

Be+
hp m(Be−i ) 0g ·Φ(δ∨p )

are exact for all i ∈ Q0. Here the left-most maps in each sequence are obtained from
our generators of I by right-differentiation and the application of Φ, as proscribed in
[?buanmutation], so they act on components by

(7.3)

f(ye+
hp) = yΦ(δ∨p )e−i −

∑
a∈Q1
ha=i

yΦ(δ∨pa)e−ta,

g(ye−hp) = yδhpe
+
hp −

∑
a∈Q1
ta=hp

yδae
+
h(ap)

g(ye+
hz) = yΦ(δ∨q )δae+

hp, where z = qa−1p.

Note that the sums in the above expressions are formal, and we have tried to resolve
the usual ambiguity about which summand contains each term via the notation for
the idempotent on the right. For example, the term −yδae+

h(ap) of g(ye−hp) lies in the
summand Be+

h(ap) of the codomain of g indexed by the path ap. We stress that this
means that, for example, −yδae+

h(ap) and −yδae+
h(bp) should be interpreted as distinct

(and even linearly independent) when a 6= b, even if ha = hb, since they lie in two
different (albeit possibly isomorphic) summands of the codomain.

Since Φ is well-defined and surjective, sequences (7.1) and (7.2) are complexes and
exact at m(Be+

i ) and m(Be−i ) respectively, so we need only check exactness at the next
term to the left in each case.

We proceed as in Section 4, using our explicit set R of relations for AQ (3.2), and
begin with (7.1). Let xi ∈ eKQ̃e−i and xa ∈ eKQ̃e−ta for each a ∈ Q1 with ha = i.
Assume

xiδi +
∑
a∈Q1
ha=i

xaδa ∈ 〈R〉,

so that this expression projects to 0 in A. Since the only generating relation ∂αi
W with

terms ending in δi or δa for a ∈ Q1 with ha = i is ∂αi
W , it follows that in KQ̃, we have

xiδi +
∑
a∈Q1
ha=i

xaδa = ziδi +
∑
a∈Q1
ha=i

zaδa + y
(
βiδi −

∑
a∈Q1
ha=i

aβtaδa

)

for zi, za ∈ 〈R〉 and y ∈ KQ̃. Comparing terms, we see that

xi = zi + yβi,

xa = za − yaβta.
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Since hxi and hxa are frozen, but hβv is unfrozen for all v ∈ Q0, we must have
y =

∑
p path
tp=i

ypαhpp.

for some yp ∈ Be+
hp. Projecting to B, we have

xi =
∑
p path
tp=i

ypΦ(δ∨p ),

xa =
∑
p path
tp=i

−ypΦ(δ∨pa),

Thus the yp give the required preimage of xi and the xa under the map f , and sequence
(7.1) is exact.

Now we turn to (7.2). For each path p with tp = i, pick xp ∈ eKQ̃e+
hp, and assume

that ∑
p path
tp=i

xpΦ(δ∨p ) = 0

in AQ, or equivalently that ∑
p path
tp=i

xpαhppβi ∈ 〈R〉.

By comparison with the generating relations, we see that we may write∑
p path
tp=i

xpαhppβi =
∑
p path
tp=i

(
zpαhppβi+yp

(
δhpαhp−

∑
b∈Q1
tb=hp

δbαhbb
)
pβi−

∑
a∈Q1
ha=hp

ya,p(βtaδaαha)pβi
)
,

for some zp ∈ 〈R〉, and yp, ya,p ∈ eKQ̃. Note that either p = ei, or we may write p = br
for some arrow b and path r. By comparing terms, we deduce that after projection to
B we have

xi = yiδi −
∑
a∈Q1
ha=i

ya,ei
βtaδa,

xbr = ybrδhb − yrδb −
∑
a∈Q1
ha=hb

ya,brβtaδa,

Since ya,p ∈ eKQ̃, but hβta = ta ∈ Q0, we must have

ya,p =
∑
q path
tq=ta

yq,a,pαhqq

for some yq,a,p ∈ eKQ̃e+
hq. Since the triple z = (q, a, p) occurring in a subscript here

satisfies ha = hp and ta = tq, it is a zig-zag. One may then calculate explicitly using
(7.3) that the yp and yz = yq,a,p give a preimage of the xp under g. �
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By similar methods, we may obtain the following curious property of the category
GP(BQ).

Proposition 7.9. Assume Q is an acyclic quiver with no isolated vertices, and let
P+ = ⊕

k∈Q0 BQe
+
k . Then GP(BQ) ⊆ Sub(P+).

Proof. Write B = BQ. Since GP(B) is a Frobenius category with injective objects those
in addB, it suffices to show that B = B ∈ Sub(P+), or that Be±k ∈ Sub(P+) for each
k. Since this is true of Be+

k by definition of P+, it remains to show Be−k ∈ Sub(P+) for
each k. Since Q has no isolated vertices, k cannot be both a source and a sink.

First assume k is not a source in Q. Then the map Be−k → Be+
k given by right

multiplication by δk is injective as follows. If x ∈ Be−k satisfies xδk = 0 in Be+
k , then

lifting to KQB and using the explicit generating set of I, we have

xδk =
∑
p path
tp=k

yp

(
δ∨p δk −

∑
a∈Q1
ha=k

δ∨paδa

)
.

Since k is not a source, the sum over arrows on the right-hand side is non-empty, so
comparing coefficients shows that yp ∈ I for all p, and hence x = 0.

Now assume k is not a sink. Pick a ∈ Q1 with ta = k. Then the map Be−k → Be+
ha

given by right multiplication by δa is injective as follows. If x ∈ Be−k satisfies xδa = 0
in Be+

k , then lifting to KQB and using our explicit relations, we have

xδa =
∑
q path
tq=ha

zq

(
δ∨q δha −

∑
b∈Q1
hb=ha

δ∨qaδa

)
,

and comparing coefficients shows zq ∈ I for all q, so x = 0. �

Example 9.2 below shows that, in general, GP(BQ) 6= Sub(P+). If Q does have an
isolated vertex k, then this corresponds to a direct summand C of GP(BQ) equivalent
to mod Π for Π the preprojective algebra of type A2, with indecomposable objects S±k
and P±k . It follows that S−k , P−k /∈ Sub(P+).

8. Gradings, indices and c-vectors

Let Q be an acyclic quiver. In this section, we show that GP(BQ) may be equipped
with the structure of a Zn-graded Frobenius cluster category [?grabowskigradedfrobenius,
Defn. 3.7], corresponding to the natural grading of the principal coefficient cluster alge-
bra A •

Q described by Fomin–Zelevinsky [?fomincluster4, §6]. By [?grabowskigradedfrobenius,
Thm. 3.12], the data of this grading, when restricted to an initial seed, is equivalent to
the data of a group homomorphism K0(GP(BQ)) → Zn, where K0(GP(BQ)) denotes
the Grothendieck group of the exact category GP(BQ). We will be able to describe
this group homomorphism in (almost) purely homological terms. The material in this
section is largely well-known or elementary, but is used to illustrate how one can pass
information back and forth between a cluster algebra and its categorification, and how
GP(BQ) may serve as a model for the principal coefficient cluster algebra A •

Q.
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First we briefly recall how to specify a grading on a cluster algebra, and how to
interpret it categorically. Here we will only consider Zn-gradings, where n is the rank
of the cluster algebra; a more detailed explanation for gradings by arbitrary abelian
groups has been given by Grabowski and the author [?grabowskigradedfrobenius].

To give a Zn-grading of a rank n cluster algebra (i.e. a grading of the underlying
algebra in which all cluster variables are homogeneous elements), it suffices to pick a
seed s with (extended) m×n integer exchange matrix b̃, and an m×n integer matrix g
such that b̃tg̃ = 0 [?grabowskigraded, Defn. 3.1]. The i-th row of g̃ is the degree of the
cluster variable xi (which is frozen if i > n), and the compatibility condition ensures
that all of the exchange relations are homogeneous. If b is skew-symmetric, so we may
think of it as a quiver, the compatibility condition is equivalent to requiring, for each
1 ≤ k ≤ n, that the sum of degrees of cluster variables xi at the tails of arrows with
head at xk is equal to the sum of degrees of cluster variables xj at the heads of arrows
with tail at xk.

Now assume that the upper n×n submatrix (principal part) of b̃ is skew-symmetric,
and let Q be ice quiver corresponding to b̃. If E is a Krull–Schmidt Frobenius cluster
category, and T ∈ E is a cluster-tilting object such that the quiver of A = EndE(T )op

agrees with Q up to arrows with frozen vertices, then one can interpret a grading g as
the element

G =
m∑
i=1

g̃i ⊗ [Si] ∈ Zn ⊗Z K0(fd(A)) = K0(fdA)n,

where K0(fdA) is the Grothendieck group of finite-dimensional A-modules, and g̃i de-
notes the i-th row of g̃. The matrix identity b̃tg̃ = 0 implies, on the level of Grothendieck
groups, that

〈M,G〉 = 0
for all M ∈ modA, where A = EndE(T )op and 〈−,−〉 : K0(modA) × K0(fdA)n → Zn
is induced from the Euler form of A by tensor product with Zn. This form is well-
defined since, by the assumption that A is a Frobenius cluster category, gl. dimA ≤ 3.
Moreover, any G ∈ K0(fdA)n with the above property arises from a unique grading of
the cluster algebra in this way.

Now by [?grabowskigradedfrobenius, Thm. 3.12], given G ∈ K0(fdA)n as above,
the map

degG : [X] 7→ 〈HomE(T,X), G〉
is a group homomorphism K0(E)→ Zn, and, having fixed T , all such homomorphisms
arise in this way for some unique G. Thus the Zn-gradings of the cluster algebra
generated by S are in bijection with HomZ(K0(E),Zn).

We now return to the case of polarised principal coefficient cluster algebras. Let
(Q,W ) be a quiver with potential such that A = AQ,W is Noetherian and the category
GP(BQ,W ) is a Krull–Schmidt Frobenius cluster category, such as if Q is acyclic. We
abbreviate B = BQ,W . To write down matrices unambiguously, we pick a labelling of
the vertices of Q by 1, . . . , n, so that the vertices of Q̃, the ice quiver of our preferred
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initial seed of ÃQ, are labelled by 1, . . . , n, 1+, . . . , n+, 1−, . . . , n−. The rows of the
3n × n matrices we are about to write are indexed by these labels, in this order, and
their columns are indexed by 1, . . . , n.

Let b be the skew-symmetric matrix associated to Q. Then the extended exchange
matrix of our preferred initial seed s̃0 for ÃQ is

b̃ =

 b
1n
−1n

 .
The principal coefficient grading of ÃQ is defined via the matrix

g̃ =

1n
b

0n

 .
It is straightforward to check that this is indeed a grading;

b̃tg̃ = bt + b = 0,
since b is skew-symmetric. Note that if one sets the cluster variables x−i of ÃQ to
1, obtaining the principal coefficient cluster algebra A •

Q, then this quotient map is
homogeneous for the grading of the target cluster algebra defined by Fomin–Zelevinsky
[?fomincluster4, §6], which is given by the first 2n rows of g̃. This grading extends
to the Laurent polynomial ring R generated by the xi and x±i , since ÃQ is a subring
containing these generators. The degree of a homogeneous element of R is called its
g-vector [?fomincluster4, §6].

Let T = eA ∈ GP(B) be the cluster-tilting object of GP(B) from Theorem 2.6. In
GP(B), we have

T ∼=
n⊕
i=1

Ti,

where Ti = eAei. Let G ∈ K0(fdA)n be the element corresponding to the grading g̃,
and degG : K0(GP(B))→ Zn the associated group homomorphism.

For any X ∈ GP(B), its cluster character CT
X with respect to T (defined by Fu–Keller

[?fucluster, Thm. 3.3], see also [?grabowskigradedfrobenius, §3]) is a homogenous
element of R, with degree equal to degG(X) [?grabowskigradedfrobenius, Prop. 3.11].
If X has no non-zero projective summands, Fu–Keller [?fucluster, Prop. 6.2] (see also
Plamondon [?plamondonclusteralgebras, Prop. 3.6]) show how to compute the g-
vector of CT

X homologically in the stable category GP(B), as we now recall.
Let X ∈ GP(B) have no non-zero projective summands. Pick a triangle

(8.1) TmX T pX X Ω−1Tmj
f

of GP(B). We use monomial notation, so that

T x =
n⊕
i=1

T xi
i .
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Since T is cluster-tilting, such a triangle can be obtained by choosing f to be a right
(addT )-approximation, this property being equivalent to having domain and mapping
cylinder in addT . Then the index of X with respect to T is by definition the vector
indT (X) = pX −mX ∈ Zn. This quantity is independent of the choice of f , although
pX and mX individually are not. By [?fucluster, Prop. 6.2], we then have

degG(X) = indT (X).

This applies in particular to the non-projective rigid indecomposable objects of GP(B),
which are in bijection with the unfrozen cluster variables of A via X 7→ CT

X when Q
is acyclic, and can be exploited to compute degG(X) for any X ∈ GP(B), using the
explicit degrees of the projective objects eAe±i given by the lower 2n rows of g̃ and the
fact that degG is additive on direct sums.

Remark 8.1. By choosing a suitable map P → X, where P is projective, the triangle
(8.1) may always be lifted to a short exact sequence

0 TmX T pX ⊕ P X 0

in GP(B), from which it follows that in K0(A) we have

[HomB(T,X)] = [HomB(T, T pX )] + [HomB(T, P )]− [HomB(T, TmX )],

and all of the A-modules on the right-hand side are projective. We have

indT (X)i = (pX −mX)i = 〈HomB(T, T pX ), Si〉 − 〈HomB(T, TmX ), Si〉

for all 1 ≤ i ≤ n, and

degG(X)i = (〈HomB(T, T pX ), G〉 − 〈HomB(T, TmX ), G〉+ 〈HomB(T, P ), G〉)i
= 〈HomB(T, T pX ), Si〉 − 〈HomB(T, TmX ), Si〉+ (〈HomB(T, P ), G〉)i,

from the definition of G and the fact that T pX and TmX have no projective summands
in GP(B). We therefore deduce from the identity indT (X) = degG(X) that

〈HomB(T, P ), G〉 = 0,

giving a linear relation between the rows of the (unextended) exchange matrix b, with
coefficients determined by the multiplicity of Be+

i as a summand of P . When b has full
rank, it follows that it is always possible to choose P ∈ addP−, where P− = ⊕

i∈Q0 Be
−
i .

We conjecture that this is in fact true in general. We can observe this property directly
in Examples 9.2 and 9.3 below, in which the exchange matrices do not have full rank.
Conversely, establishing that one can always choose P ∈ addP− would provide a new
proof of the identity deg(CT

X) = indT (X).

Having understood the grading g̃ globally, as a function on K0(GP(B)), we may now
recover local information for any cluster-tilting object, as follows. Let T ′ = ⊕n

i=1 T
′
i⊕B,

with T ′i indecomposable and non-projective, be a cluster-tilting object of GP(B), and
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write A′ = EndB(T ′)op. Let b̃′ be the extended exchange matrix associated to the ice
quiver Q′ of A′, and let

g̃′ =

g
′

b
0n


be the 3n× n matrix whose first n rows are given by

degG(T ′i ) = 〈HomB(T, T ′i ), G〉 = indT (T ′i ).
One can check as in [?grabowskigradedfrobenius, §3] that the corresponding element
G′ ∈ K0(fdA′)n satisfies 〈M,G′〉 = 0 for all M ∈ mod EndB(T ′)op, and the induced
function K0(GP(B)) → Zn coincides with degG. In particular, this means that g̃′ is a
grading of the cluster algebra associated to Q′, and so

(b̃′)tg̃′ = 0.
Writing

b̃′ =

b
′

c′

d′

 ,
where b′, c′ and d′ are n × n submatrices, and using that b′ is skew-symmetric, we
conclude that

b′g′ = (c′)tb.
If Q is acyclic, then by Theorem 6.13, the matrix b̃ is the extended exchange matrix
of a seed of ÃQ, and the submatrix c′ is by definition the matrix of c-vectors of this
seed. Thus in this case we recover (the transpose of) an identity of Fomin–Zelevinsky
[?fomincluster4, 6.14] (see also [?nakanishitropical, Rem. 2.1]), noting for com-
parison that it is the rows, not columns, of our matrix g′ that are g-vectors.

9. Examples

Example 9.1. Let Q be an A2 quiver, so, as computed in Example 3.2,

(Q̃, F̃ ) = 1 2

1+

1−

2−

2+

a

α1

β1 α2

β2

δ1 δ2

δa

and
W̃ = β1δ1α1 + β2δ2α2 − aβ1δaα2.
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2 4
1 3

2

3
2 4

1 3
2

2

3
2

1
2

4
3

2

1 3
2

4
1 3

2

2
1 3

2

2 4
1 3

2

Figure 1. The Auslander–Reiten quiver of GP(BQ) for Q of type A2.

Then AQ = J (Q̃, F̃ , W̃ ), and its boundary algebra is BQ
∼= KQB/I for

QB = 1 2 3 4
α

α∨

β

β∨

γ

γ∨

and

I = 〈α∨α, αα∨ − β∨β, ββ∨ − γ∨γ, γγ∨, βα, γβ, α∨β∨γ∨〉.

Here we have relabelled the vertices by mapping the ordered set (1+, 1−, 2+, 2−) onto
(1, 2, 3, 4) in the unique order preserving way. The Auslander–Reiten quiver of GP(B)
is shown in Figure 1, where we identify the left and right sides of the picture so that the
quiver is drawn on a Möbius band. To calculate the objects of GP(BQ) it is useful to
observe that, in this example, BQ is 1-Iwanaga–Gorenstein, and so GP(BQ) = Sub(BQ).
The stable category GP(BQ) is the cluster category of type A2, as expected. The cluster
tilting object

T = 3
2 ⊕ 1 3

2 ⊕BQ

of GP(BQ) has endomorphism algebra AQ, and corresponds to the initial seed of the
cluster algebra with polarised principle coefficients associated to our initial A2 quiver
Q.
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Example 9.2. Let Q be a linearly oriented quiver of type A3. We may then compute

(Q̃, F̃ ) = 1 2 3

1+

1− 2+ 2−

3−

3+

b a

α1

β1
α2 β2

α3

β3

δ1

δ2

δ3

δb δa

Relabelling vertices similarly to Example 9.1, the boundary algebra BQ has quiver
QB = 1 2 3 4 5 6

as computed before in Example 7.4. Explicit relations can be written down as in
Section 7, but here we will simply give radical filtrations for the projective modules.
Note that despite the ‘geographical’ separation of 2 and 5 in these filtrations, the arrow
2 → 5 always acts as a vector space isomorphism from the 1-dimensional subspace of
e2BQ indicated by a 2 in the filtration to the 1-dimensional subspace of e5BQ indicated
by a 5 in the row below, when this configuration occurs.

P1 = 1
2 P2 = 2

1 3 5
2 4

P3 =
3

2 4
1 3 5

2 4

P4 = 4
3 5

2 4
P5 =

5
4 6

3 5
2 4

P6 = 6
5

4

In this case the Gorenstein dimension of BQ is 2; the indecomposable projective
P2 has injective dimension 2, while all others have injective dimension 1. (This is in
fact the first example known to the author of a Frobenius cluster category GP(B),
with GP(B) 6= 0, for which the Gorenstein dimension of B is greater than 1.) The
Auslander–Reiten quiver of GP(BQ) is shown, again on a Möbius band, in Figure 2.

Example 9.3. Applying our construction to the quiver with potential (Q,W ) from
Example 3.2 with Q a 3-cycle (which we may do, since while A is not finite-dimensional
in this case, it is still Noetherian) yields, as observed above, the Grassmannian clus-
ter category GP(BQ,W ) = CM(B2,6) [?jensencategorification]. This is a Hom-
infinite category, and the Gorenstein projective B-modules are all infinite-dimensional.
Representing these modules by Plücker labels as in [?jensencategorification], the
Auslander–Reiten quiver of GP(BQ,W ) is shown, on the now familiar Möbius band, in
Figure 3. In this case, the quiver of the endomorphism algebra of the object



CATEGORIFICATION FOR PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS 51

4
1 3 5

2 4

2 4 6
1 33 55

22 44

2 4
1 3 5

2 4

5
4 6

3 5
2 4

2

3
2 4

1 3 5
2 4

5
4

1
2

3 5
2 4

6
5

4

1 3 5
2 4

4
3 5

2 4

6
3 5

2 4

2
1 3 5

2 4

4 6
1 33 55

22 44

2 4 6
1 33 55

22 44

4
1 3 5

2 4

Figure 2. The Auslander–Reiten quiver of GP(BQ) for Q linearly ori-
ented of type A3. Note that there are more than just the usual mesh
relations corresponding to Auslander–Reiten sequences; the length two
path from P2 to P5 represents the zero map.

13⊕ 15⊕ 35⊕BQ,W

is Q̃, as is the quiver of the (isomorphic) endomorphism algebra of

24⊕ 26⊕ 46⊕BQ,W .

We note that the stable category GP(BQ,W ) is equivalent to the cluster category CQ,W '
CQ′ where Q′ is any orientation of the Dynkin diagram A3. Thus all of the conclusions
of Theorem 5.3 (replacing KQ by J (Q,W ) and CQ by CQ,W ) still hold for this example,
despite the failure of acyclicity.
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12

36

45

13

46

23

14

56

24

15

34

25

16

35

26

45
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12

Figure 3. The Auslander–Reiten quiver of the Grassmannian cluster
category GP(BQ,W ) = CM(B2,6), where (Q,W ) is a 3-cycle and its usual
potential.

mutations between the Grassmannian cluster category and the Grassmannian cluster
algebra had not been previously established.
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