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KUNNETH FORMULA IN CYCLIC HOMOLOGY

by

Dan BURGHELEA and Crighton OGLE

0. INTRODUCTION :

The cyclic homology HC,{A) of an associative algebra
with identity (unital algebra) A over a field of characte-
ristic zero k was introduced by A. Connes [C] (see alsc
{L,Ql). It comes equipped with a natural degree (-2) k-linear
map S : HC*(A)-»HC*~2(A)  which provides HC,(A) with a
k[u]l] co-module structure, where HC, (k) = k[u] is the poly-
nomial algebra in the variable u of degree 2 regarded &s a
coalgebra (see section 3). The purpose of this paper is to

prove the following theorem

THEOREM A: 1) Given two unital k-algebras A and B , there

exists a short exact seguence

: ]

0 - LCotor (HC,(A), HC,(B))  HC,(A@B) -~ HC,(A) o HC, (B} -0

kiul

natural in A and B , where o denotes the cotensor product.




2) If HC,(B) is a quasi-free comodule “ ie.

HC,(B) = kluleV,_ +W_, , then

HC,(Ae@B) = HC,(A) W, + HH,(A) eV, .

As an application we have the following calculation of the

cyclic homology of the polynomial algebra A[t] resp. Laurent

polynomial algebra A[t,t"1] .

COROLLARY B: 1) If A[t] denotes the polynomial algebra

with coefficients in A then

HC, (a[t]) = HC,(R) + o (HH,(A))
' aEN

with N denoting the natural numbers, HH*(A)a being a copy

of HH,(A) ;

2) 1If A{t,t—1] denotes the algebra of Laurent poly-

nomials with coefficients in A then
1

HC, (Alt,t” 1) = HC,(A) + HC,_,(A) + Nill HC,(A) with

Nill HC,(A) = ®  (HH,(A)) . This can be re-written as
a€z\{0} ¢

3) HC,(alt,t”']) = HC,(A[t]) + HC, . (A) + Nill_HC,(A)

with Nill HC,(A) = ® (HH, (A)) , where
o€z \{OUN}

Nill HC, (A) = 2N(HH*(A))G , and Nill HC, (A) =
a

= Nill HC,(A) + Nill_HC, (A) .

(+ See Section 3 for definition.



The above theorem has a corresponding generalization

= 1. Nill HC_,(A) has interesting geometric applications. Note
the above corollary is also verified in [B]2 for A=kl[Gg]

a group ring.

In the particular cases of A and B dgroup rings,
both Theorem A and Corollary have been verified 'in {B]2 .
Theorem A was conjectured by Burghelea and Karoubi in May,
1984 and both of them have provided proofs through different
arguments. A subsequent proof was given by C. Qgle {0].(+

The results of this paper have been announced in Ober-
wolfach, August 1984.

This paper is a substitute for [B]3 and [0], and being
shorter than both of them better suitted for publication.
The arguments of [B]3 permit stronger conclusions (in
particular the fact that ¢ resp. #§ in Theorem A identify
to the Loday Quillen product [L,Q] resp. the dual of Connes
product in cyclic cohomology), but they are less conceptual
and more complicated.

The paper is organized as follows: In section I we review
the concept of algebraic 81—chain complex introduced in {831
and describe the "tensor product" of two algebraic Sq'chain
complexes. In section II we prove the Kiinneth formula for the

tensor product of two algebraic S1—chain complexes. In

{(+

C. Kassel K and J. Jones & C. Hood have also announced
the Kiinneth formula for cyclic homology of algebras.



section III we use "acyclic models" to show that Hochschild
and cyclic homology of the algebraic 51-chain complex asso-
ciated with the tensor product of two cyclic R-modules is

the same as of the tensor product of the associated algebraic
S1—chain complexes. In section IV we derive Theorem A and

Corollary B.

SECTION 1:

Let R Dbe a commutative ring with unit. An - algebraic
S1—chain complex (a chain complex equipped with an algebraic
circle action) an(c*,d*,ﬁ*) consists of the chain complex

satisfying 4d d =0,

of R-modules (C,,d,.), 4, : cn-*cn n+1 %n

-1
with the algebraic circle action B8, given by R-linear maps

By + C —»C_ . which satisfy 8 .8 =0,d .8 +B8 ,d =0.

n+i"n n+l™n n-1in

A morphism of algebraic S1—chain complexes

h
*

: (C,,d,,B8,) - (C),d],B)) consists of R-linear maps

£ :Cn~+Cg which commute with the d's and B8's .

To an algebraic S1-chain complex (C,,d,,B8,) one can
associate the chain complex (BC*'Bd*) with
gCn =Cn T Chp v o ,Bdn(xn,xn_z,...)==(dxn-ﬁsxn_z,dxn_z-+an_4,...)

and the following short exact sequence of chain complexes

(*) 0+ (C,rd,) Lo (40,04, > zz‘sc*’ad*) ~0 .
Here I is the inclusion I(xn) = (xn,O,...O) , L denotes
the suspension L(C,,d,) = (B,,d]) with Bn+1==cn'BO:=°'dA+1==dn'
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and 71 is the projection w(xn,xn_2,...) (xn—2'xn—4""

3 ERA
*,BM*; Zwe

The homology groups H,(C,,d,) , resp. H*(BC

by definition the Hochschild resp. cyclic or equivariant

homology of c =(C,4,d,,B,) . The long exact homology sequence
associated with the short exact sequence (*) becomes, with the

above notation:
(**) —> gE (O L5 mC, () =5 wC, (@) —> BHH, _(T) —>
* * g . *—1

and will be called the Gysin-Connes exact sequence. Obviously
a morphism of algebraic 81—chain complexes f : C-oC°

provides a commutative diagram

~ BH,(€) - HC, (C) - HC, , (@) - HH, .(C) -

() ! } ! l

- HH*(E') - HC, (E‘:') —&HC*_Z (E') --»HH*__.l (E') -,

Given two algebraic S1-chain complexes C' and C" one
defines the tensor product C'eC" as being the chain complex
(C,®C;,D,) with
n k
s 1" = ' u" = t - L]
(C'sC ) kgo Cp®Cry v Dn(xk@yn_k) d kayn__ka-( N xed"v, o

equipped with the algebraic circle action By ¢

o) - — k o
Bpxyoyn y) = B'xpey, , + CENTx 08,

We denote by chainsR {resp. ST~chainsR) the category

of chain complexes resp. algebraic S1~chain complexes of

R-modules and by F , T : S1~chainsR > ¢hainsR



the functors which associate with (C,,d,,8,) the chain

complexes (C,,d,) resp. (BC*'Bd*) .

SECTION II:

Let k be a field of characteristic zero and let
kfu]l be the graded commutative algebra generated by of
degree 2. ki{u]l] can be also viewed as a co-commutative
coalgebra with commultiplication A : k{u] »k[u] ®k{u] given
by A@P) = tut e P! ana co-unit given by

{(11 ﬁ i:g . A k[ul-comodule is a graded vector

e(ui) =
space M, equipped with the k~linear map AM : M, +k[uleM,
which satisfies the expected axioms. These axioms imply that

2

AM(m) = m+ueS{m) + u oSZ(m) +... , where S 1s a degree ~2

k-~linear map of M, . Conversely, any S : M -M provides

*-2
a kl[u]l-comodule structure on M, , hence the klul-comodule
structures on a graded vector space M, identify to the

k-linear maps of degree -2 .

EXAMPLE: 1) Suppose V, 1is a k-graded vector space. Then
V,ok{ul is equipped with a canonical k{ul-comodule struc-
ture given by S{xeu”) = xeu ! and S(x) = 0 . This is
called the free kl[u]-comodule of base V, . A kl[u]l-comodule

M, is free iff S : M, - M is surjective in which case

*-2
a base is provided by kers.



2) Suppose V, is a k-graded vector space and S=710
The k{u]l-comodule structure given by this S is call=d © :

trivial structure.

DEFINITION 2.1: A kl[ul-comodule M, is called quasifree if

M, is the direct sum M} + M} of two k[ul-comodules

(SM* = SM;‘ + S8

trivial (S

with M, free (S surjective) and M}

m)
=0) .

M

M*
Given two kl[ul-comodules M, and N, one defines the graded
vector space M,op. (N, and ZZCokerk[uJ(M*,N*) as the
kernel resp. cokernel of the linear map D: M, o N, - 22 (M, @ N,)
given by DMon)=SMm0®n~m®SNm); SM and SN are
the degree (-2) - linear maps which define the k{[ul]-comodule

structures of M, and N, and ZnK* denotes the n- fold

suspension of K, .

L d

1f € = (c,,d,,B,) 1is an algebraic s'-chain complex,
then HC*(E) has a k[ul-comodule structure induced by

s : HC,(C) »HC,_,(T) .

PROPOSITION 2.2: If C' = (Ci,d},B)) and C"= (C&,dl,By)

are two algebraic S1—chain complexes then there exists a

(natural) short exact sequence

‘}’ "~ o, Ut
02 Cokery . (0, @) , HC, €) ~ HC, € & T") ﬂfx:*(”')k?u}ﬁc*(c") -0 .



If moreover HC,(€") 1is quasifree and HC,(C*) =V, ek[u] +W,

where V e kfu] is the free part and W, the trivial part,

then

HC, (T' eT") = HC,(C')eV, + H (C",d%) oW, .

PROOF OF PROPOSITION 2.2: Note that if (C,,d,,8,) 1is an

algebraic s'-chain complex, then the chain complex (SC*'Bd*)
is a chain complex of free k{ul-comodules with ﬁd* being
a morphism of k[ul-comodules. If (Cj,d;,8;) and (Cj,d;,8})
are two algebraic S1-chain complexes, we have the following

short exact sequence of chain complexes

I ] 2 J
(*> 0 ~—-—>,é(c;cc;,;) -—>B'C;‘esnc; —> I (B'C*o c3) —> 0 .

The differential § in Bc;oBC: is given by the tensor
product differential, D is defined by

D(XeY) = S'XFey-%0s"y , X€ C;‘,?EBc:; with S' resp. 8"

B
defining the k[ul-comodule structure of Bc; resp. BC: and
I as follows. We formally write x-= (xn,xn_z,xn_4,...} EB'Cr'x as
- _ k - - k
X = Exn__Zku r Y = (yr'yr—Z’yr-—&l"")eg"Cr as Yy = L‘yr__Zkv
- " = =. k .
and  z = (2,2 5,2y 4r...) € é(c;oc*) as 2z =lzg o U 3
r t % r-%
then I is given by I(xmoynU } = E (xmu ) o (ynv }) . The

£=0
reader can easily check the exactness of this sequence.



Moreover, if one equippes B,C;e B"C" with the degree -2

morphism of chain complexes §

i

Seid+ide S , then
B‘C;a B,,C: is a chain complex of k[ul-comodules and both

I and D are morphisms of chain complexes of kl[ul-comodules.
since H,(g,Cie ,CY) = HC, (C') @ HC, (C") and

H (D) = SHC* (E') ®id-ide SHC* ('5..) the long exact sequence

for homology induced by (*) is

— 231, € e HC, ©) » BC, CLall) - H, @) enc, (Cn) S2id-ideS,

—> 2, @) o me, @) » ...
which clearly provides the following short exact sequence

0 - I Coker (HC, (CL) ,HC, (C!) - HC, (CL®C!) »HC, (Cl) o HC, (Cn) -0
k{ul

or equivalently HC*(E,;@'E;‘,) = Ker D + Coker LD .

Suppose now that HC*(E") = kfu] eV, +W, is quasifree.

Then D : HC,(C') ® HC,(C") » HC,(C') ® HC, (C") is D, +D,

D, : HC, (C') @ k[u] + V, > HC, (C') @ k[u] +V, defined by

with

D,l(xcunov) = sxeuov - xeu® 'ev and
D, s HC, (C) ® W, »HC, (C) e W, defined by DZ(XQW) = SX®wW .
Clearly Coker D1 =0, Ker D, = EC*(E') oV, . The Gysin Connes

exact sequence tensored by W, gives the exact sequence
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-1
-2 £ D

— L HC*(‘E’) QW*} 2>H'5*(C') oW, MHH*(E') oW, ‘IG id)

I D
—> £ 'HC,(C') o W,

2 >22HC*(E')tsW; —_— .. .

This implies HH, (C') oW, = Coker }:-1D2 + Ker D, , which

implies that

Ker D + Coker LD = HC,(C') e V, + HH,(C') o W, .

SECTION IIX:

We recall that a cyclic set (R-module} see [C] or [BF],

(X, ,t,) consists of a simplicial set (R-module)

X, = (Xn,d;,si; 0sisn) and a cyclic structure
~ . . n+l _ i-1_ .1

te = (t, ’xn"xn) which satisfies t, = id, tn-1dn dntn '
i-1 - i "~

tnsn -—sntn for 1s51isn . Let AR resp. AR denote

the category of simplicial R-modules resp. cyclic R-modules
(when there is no danger of confusion we will write A, R,

~

chains,s1~chains instead of AR, AR . chainsR ’ S1~chainsR) .

As with A , ; is equipped with an internal tensor product

i _i i i i i i i
(Gn’dn'srl:'tn) ® ‘G;u'dxll 'S;x 'tr'x) = (Gn“foz’dn"d;x 1S, @ 31‘1 'tnOtr'x) .
With any cyclic R-module (Gn,di,si,tn) one associates the
S1~algebraic chain complex

n 2
= _qy L qi IPTIPRS PEREPRS L 3 n _qy D _qyn .n
(Gn,dn—izo( Vi B = (DTN e s (e e v (-1 )

denote by E(C*,t*) . The purpose of this section is to prove
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that Hochschild résp. cyclic homology of CT(G,,t,) ®C(GL,t!®
and C(G, o Gy, ty®t})) are naturally isomorphic. Prec ¢
A,B:A xA ~wo s'-chains are the functors defined by
A((G,,t,),(Gh,t!)) =C(a, oG, t,0tl), B({G,,t,) (G, t})) =

= €(G,,t,) @ C(GL,tl) then we have

THEQREM 3.1: There exists the diagram of functors and natural

transformations which is naturally homotopv commutative.

i

A

FA > TA
N
.
nF 4
id i id
s B >78
£ / A
FA > TA
id n id
nF T
A4 i MV
3 EB B > TB

The proof will require the Theorem of acyclic models [M,p.1281]

which we will review below.

Let € be a category and Mcobg a set of objects called
models. Given a covariant functor L : ¢ —> Ab , A = the
cateqgory of abelian groups one can define a new covariant functor
L : € —>As and a natural transformation 0 : L ~~> L by

L(K) = the free abelian group generated by

X (K) (Hom(M,K) x L(M)) for Ke€obgC, L(f)(a,u) = (f£e0a,u)

MEM
for feHom(K,L), o€ Hom({M,K) and uwueL{M) , with
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n® : L(K) —> L(K) given by n*“(a,u) = A(a)(u) . The

functor L 1is called representable with respect to M iff

n admits a right inverse, i.e. a natural transformation

¢ L ~>L with no¢ = id.

THEOREM of acyclic models [M,p.128]: Let A,B:C ~~~> chains

be two covariant functorg, f = {fi: (A} i (B)i  0sisn}

a natural transformation of chain complex functors through

dimension n and M a set of models in ¢ . If A, is repre-

sentable for all 1 , B(M) is acyclic in dimension >n

B
n+1

for all M€eM and fn(Im dﬁn) cImi{d ) then there exists

(3

a natural transformation f : A~>B extending {f.}, .

Moreover the extension f is unique up to all higher homotopies.

PROOF of Theorem 3.1: We take Ng and €p as given by the
"Alexander Whitney map" resp. "shuffle map"; Ng°e€p resp.
Npe°ep are naturally homotopic to the identity, see [M]pp. §§29.
We also take (nT)o = id and (eT)O = id and we will verify
that all functors involving T and F are representable with
respect to the class of models M, € ob (A x K) defined below.

By verifying the acyclicity of TA and TB applied to the
models we can use the Theorem of acyclic models as follows:

i) Take A =TA and B =TB resp. A = TB and B = TA

to obtain the extensions Ny Tresp. €r .
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ii) Take A =B =TA = TB +to obtain the natural homotopy
between €r ° Ny and 1d resp. Ny e €r and id .

iii) Take A =FA and B = TBresp. A = FB and A = TA
to obtain the natural homotopy between Ny e iA and iB° nr
resp. ep o iB and iAo €p -

MODELS: In [Mlpp. 130, M5 = (#P,al,s}) is defined to be the
free simplicial R-module generated by the standard p-simplex

alpl (alpl = Hom,(n,p)) and M = {8, M) |p, 20} cob A x A

the set of models used to prove the standard Eilenberg Zilber
theorem. In analogy‘let Mﬁ be the free cyclic R-module
generated by the cyclic set Alpl . By Alpl we denote the
"free" cyclic set generated by Alp] (see [B.F] definition 1.3).
It follows from [BF] (Proposition 1.4 that the geometric reali-
zation of the underlying simplicial set Alpl] is homotopy

1 1

equivalent to 8§ by an S -equivariant map. Let

- P 4 xR
M, = {(MA,MA){ p,gq20}lcob AxA .

REPRESENTABILITY: (TA)n and (TB)n are direct sums of functors
of type (FA)n = Kn resp. (FB)n = gn so it suffices to check

the representability for Xn resp. Eﬁ in order to do it for
(TA)n and (TB)n . This is done as in [M] Lemma 2.9.1 by using
the "free-ness" of our models. Preg\isely if xnﬁKn K€ob A

X
it induces a simplicial map Aln] —2-> K and then a cyclic

map Aln] —2> K . This induces the homomorphism of cyclic
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X

R-modules Mf: ~2, K. So if (K,L) €ob Zx:\'
a
n o~ - — o
¢~ : An(K,L) = KnoLn > _I;L_n(K,L) and
Bn r
¢ e Bn(K,'I:) = igo K_eL _ —> jﬁ_n(x,m are defined by the
% =
n C (T . T (Mt n
formulas ¢ (anYn) (xn xY . Anoxn) eﬁomeA(MA xMA,KxL) x

B
n . n n - —
x An(MI\'M/\) : ¢ (xpo xn-p) = (xp x xn—p ’ AP ® An) €

€ Hom (Mp x MPP ; KxL) xB (Mp,Mn-p) with A, the prefered
'K XK A A n A A g -~
A B

generator of MI: . It is straightforward to verify ¢  and ¢ n

An gn

are natural transformations inverse to n and n .

n n ~
ACYCLICITY: By definition H*(TA(MA,ME\))) = HC, (B, ()) o T, (¥2))
and H,(TB(M),¥)) = nC, (T, (M  aMP)) (M oM’ in the free

cyclic R-module generated by the cyclic set Alnl x Alpl ) . By
[BF] section I  HC,(T,(M})) = H,(|a[n]]:R) and
HC, (€, (M" aMP) = H,(Aln] xAlp] ; R) and HH, (€, 00%) =B, (s";iR) .

Combined with Proposition 2.2 one concludes that
0 if %x>0

H (TAM?,MP)) = u (TB(M®,MP)) =
* ATA * ATA R if »=0

Q.E.D.
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SECTION IV:

PROOF of Theorem A: Given an R-algebra A the Hochschild

resp. cyclic homology of A are calculated by the algebraic

1 i i . _
S '—-chain complex (Tn(AJ ,dn,sn,tn) with Tn(A) =A®...®A
n+
3 i £ -—
aoa...eaiai+1®...®an if i %n-1

i
dn(aoﬁ-.. Qan) =

a.®...9a, @ ...0a if i=n
an 0 ® i n-1

L]

i
sn(aon...@an) a a...@ai@1cai+1®...®a

0 n

n

A
tn(aos...oan) anoa ®...®2a

0 n-1

Theorem 3.1 implies that Hochschild resp. cyclic homology of

B

S(r,(aeB) ,t) , and of T(r,(a),t?) oC(r,(®) ,t2) are

naturaly isomorphic, Theorem A follows then from Proposition

PROOF of Corollary B: This follows from the calculation of
B

given in [LQ] section 2. In both cases the cyclic homology is

the Hochschild resp. cyclic homology of k[t] and kl[t,t

quasifree k[u]l-comodule with the free part isomorphic to k[t]

resp. k{t,t_1] regarded as graded vector spaces concentrated

in degree zero.

Q.E.D.
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