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Baxter operator formalism for Macdonald polynomials

Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

Abstract. We develop basic constructions of the Baxter operator formalism for the Macdonald
polynomials. Precisely we construct a dual pair of mutually commuting Baxter operators such
that the Macdonald polynomials are their common eigenfunctions. The dual pair of Baxter
operators is closely related to the dual pair of recursive operators for Macdonald polynomials
leading to various families of their integral representations. We also construct the Baxter oper-
ator formalism for the g-deformed Whittaker functions and the Jack polynomials obtained by
degenerations of the Macdonald polynomials. This note provides a generalization of our previ-
ous results on the Baxter operator formalism for the Whittaker functions. It was demonstrated
previously that Baxter operator formalism for the Whittaker functions has deep connections
with representation theory. In particular the Baxter operators should be considered as ele-
ments of appropriate spherical Hecke algebras and their eigenvalues are identified with local
Archimedean L-factors associated with admissible representations of reductive groups over R.
We expect that Baxter operator formalism for the Macdonald polynomials has an interpretation
in representation theory of higher-dimensional arithmetic fields.

Introduction

A new class of operators acting on eigenfunctions of quantum integrable systems was introduced by
Baxter to provide a solution of a wide class of integrable models [Ba]. These operators commute with
quantum Hamiltonians of a quantum integrable system and satisfy difference/differential equations
with coefficients expressed through quantum Hamiltonians. The Baxter operators were constructed
for many integrable models including periodic Toda chains [PG].

In [GLO1] we introduce Baxter operators for non-periodic gl,,-Toda chains given by one-
parameter families of integral operators. We also define dual Baxter operators acting on the spectral
variables of Toda chain eigenfunctions. The dual pair of Baxter operators enters a canonical
construction of a pair of recursive operators relating eigenfunctions of gl,, ;-Toda chains for different
ranks ¢ and thus it produces various families of integral representations for eigenfunctions. Hence
the Baxter operator formalism consisting of a pair of dual Baxter operators, a pair of dual recursive
operators provides a complete solution of the Toda chains.

One can expect that the Baxter operator formalism can be constructed for a wide class of
quantum integrable systems. Note that gl,, -Toda chains can be considered as a degeneration of the
quantum integrable system constructed by Ruijsenaars [Ru] and Macdonald [M]. The corresponding
quantum Hamiltonians are given by mutually commuting difference operators and their common
polynomial eigenfunctions are given by the Macdonald polynomials. In this note we construct
Baxter operator formalism for the Macdonald-Ruijsenaars integrable system. This includes a dual
pair of Baxter operators, a dual pair of recursive operators and various families of explicit iterative



expressions for the Macdonald polynomials, known and new ones. We also describe Baxter operator
formalism for specializations of the Macdonald polynomials given by class one g-deformed Whittaker
functions [GLO2] and Jack’s polynomials. Due to the results of [GLOS] the Baxter operator
formalism for the standard Whittaker functions [GLO1] can be recovered from the Baxter operator
formalism for g-deformed Whittaker polynomials in the limit ¢ — 1.

One should stress that the Baxter operators associated with the Whittaker functions have a
surprising relation with number theory and representation theory [GLO1]. Recall that the eigen-
functions of gl,,;-Toda chains can be identified with particular matrix elements in the principal
series representations of GLy41(R) and thus providing generalizations of the classical Whittaker
functions corresponding to SLy(R). In [GLO1] we argue that for gl,, -Toda chain the Baxter oper-
ator should be considered as a generating function of elements of spherical Hecke algebra associated
with the maximal compact subgroup of GL;1(R). Furthermore the gl,, ;-Whittaker functions are
eigenfunctions of the Baxter operators with the eigenvalues given by local Archimedean L-factors
of the corresponding principle series representations of G Lgy1(R).

This interpretation leads to establishing a deep relation between topological field theories and
Archimedean algebraic geometry [GLO5], [GLO6], [GLO7]. The construction of the Baxter operator
formalism for the Macdonald-Ruijsenaars integrable system allows to define a (g, t)-generalization
of the local Archimedean L-factors associated with principle series representations of GLg11 (g-
generalization of local L-factors was introduced previously in [GLO2]). One can expect that these
generalized L-factors shall be related with principal series representations of loop groups associated
with GLgy1. Taking into account the results of [GLO5], [GLOG6], [GLO7] one should look for a
higher dimensional topological field theory interpretation of the Macdonald polynomials and the
associated Baxter operator formalism. We are going to discuss this interpretation in the future
publications.

Finally we would like to point out that many of the constructions of this note are simple
reformulations of the results of Macdonald [M]. However we feel that establishing the direct relation
of the results of [M] with Baxter operator formalism might be useful.

Acknowledgments: AG was partly supported by Science Foundation Ireland grant. The research
of AG and DL was also partially supported by QGM (Centre for Quantum Geometry of Moduli
Spaces) funded by the Danish National Research Foundation. The research of SO was partially
supported by P. Deligne’s 2004 Balzan Prize in Mathematics.

1 Preliminaries on symmetric polynomials

In this Section we collect basic facts on the Macdonald symmetric polynomials and their degenerate
versions given by Jack polynomials and class one g-Whittaker functions. For details on Macdonald
and Jack’s polynomials see [M]; for class one g-deformed Whittaker functions see [GLO2], [GLO3],
[GLOA4].

1.1 Macdonald symmetric polynomials

Let Q(q,t) be a field of rational functions in variables ¢ and ¢. Define the following (g, t)-analog of
the classical I-function (see Appendix for its basic properties):

o0

Poe(a) = B0 gy = T(1 - o). w1)

(%3 @)oo i



Let Ay be the graded Q(g,t)-algebra of symmetric polynomials of variables x1, 2, ... of degree
one

_ (n)
Aq,t - @ Aq,t ’ (1-2)
n>0

(n)

where A, is the homogeneous component of A, of degree n. There are various convenient

q;t
bases in the space of symmetric polynomials in variables z1,...,z¢; 1 enumerated by partitions
A= (A1 > ... > Ny1), \i € Zy. Particularly, the elements of the bases of monomial symmetric
functions my (z) are given by sums of all distinct monomials obtained from 2* = xi‘l .. x?_ﬁl by
permutations of xy,...,zsy1. Let us denote p,(x) := Mm(y) the symmetric polynomial for the
partition (n) = (n,0,...,0). The bases of power series symmetric polynomials consists of the
polynomials px(z) = px, (). .. px,,, (¥). Equip the space A((fjl) with a scalar product (, ) defined
by
/41 1— q)\i
(Pas Pu)g,t = Oau z,\H T zZy = H n"mrmy!, mp = [{k: \p =n}|. (1.3)
i=1 n>1

Macdonald introduced a bases {Py(z) = P\(z; ¢,t)} of symmetric polynomials over Q(g,t) enu-
merated by partitions A such that

Py(z) = Zummu, uyy =1, (1.4)
n<A
and
<P)\7 Pu>q,t = 07 )‘#/’L (15)

In the above formula < denotes the natural ordering:

The relation (1.4) is invertible and thus the Macdonald polynomials Py(z) provide a bases in
A((f;' U The inverse norms of the Macdonald polynomials are given by

1 — N H=igh—)

q
1— N igh+1=5

by = <P>\, P)\>;1 = H (1.6)

(4,7)EX

where the product is over the boxes (i, ) in the Young diagram attached to partition A, and AT
denotes the conjugate partition. In particular, one has

1 —tg"™ Lytq-1(q)
b — _ atq ) _
(n) Z1;[1 1— qn+1—z I‘q7tq71(qn+1) (1 7)

The Macdonald polynomials Py(z) can be also characterized as common eigenfunctions of the

following set of mutually commuting difference operators [M], [Ru] acting in A((f;r b,
tx; — X
— r(r=1)/2 STy —
M, ¢ Z H T — T T]T ’ TIT H T 1 Fi o (18)
I, i€l i€l
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where the sum goes over all r-element subsets I, of (1,2,...,¢+ 1) and

Ty 2 flx1,. o xeq1) = f(z,...,qmiy ..., 2eg1).
The operators M,., r = 1,...,¢+ 1 are self-adjoint with respect to the scalar product (1.3) and the
eigenvalues of M, acting on Py(z) are given by the elementary symmetric functions
Xr(Y1, - Yer1) = Z Yiy o Yip s yi = t%q", (1.9)
1<i1 <ol <041

where g; = £ + 1 — i. The eigenfunction property of the Macdonald polynomials can be succinctly
described by the relation

M1 (X) - Pa(z) = ce1(N; X) Pa(2),

T (1.10)
copr(N X) = (1 - t)_(é'i_l) H(l + tQiinX) ’

i=1
where My 1(X) is a generating function of the difference operators (1.8):

{41
M1 (X) = (1— )~ (1 +3 X M,,> . (1.11)
r=1

Assume now that ¢ € C and |g| < 1, so that infinite product (z; ¢)oo converges for all z € C.
Following Macdonald define a new scalar product

1 _
(@ = gy [ AT A ).
r+1 (1.12)
1
A(z; g,t) = TS T
1:11 Tyi(ziz; ')
i#]

where a(z) and b(z) are Laurent polynomials and
T = {z: (215, Z041) e CHl. lzi| =1,1= 1,...,€+1}

is the (¢+1)-dimensional torus, with the Haar measure d*z = Hfill (2m1)~tdlog ;. The polynomials
P, are pairwise orthogonal with respect to the new scalar product (,)’ with the norms given by

£+1 j—i—1 Ai—Xj+1
T, (- 1gh= A1)
Py, Py = [] 22— .
< A >\>q7t F(Ltq_l(t]ilq)\i_)\j—‘rl) (113)

%,7=1
i<J

Let us recall the properties of the Macdonald polynomials that will play essential role in the
following (see [M] for the proofs).

Theorem 1.1 Consider two sets x = (x1,...,zn) and y = (Y1, ..., Ym) of variables. Let
Hn,m(xay) = Z b)\P)\($) P/\(y)a (114)
AEYn,m
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where summation goes over a set Yy, , of the partitions of length min(m,n) and by are given by
(1.6). Then the following identity holds

n m

Wy, m(2,y) = [ ] ] Tat(ivs)- (1.15)

i=1j=1

We will say that partitions u, A are interlaced if gy > Ay > ... > pgr1 > Apr1. In the sequel we
shall use the following abbreviation for interlaced partitions: p; > A; > pi41.

Theorem 1.2 Let P, (z) be the Macdonald polynomial corresponding to the partition (n) =
(n,0,...,0). Then the following product decomposition holds:

Poy() x Pa(x) = boy Y pu Pula),

1y 2N 2 1 (1.16)
|l —|X|=n
where
41 o N
Pu/x = H Fq’tq_l(t] ‘gt MJ—H) I‘q,tq‘l(tj Z_qu )‘J“—H) (1.17)
' 3 Dougr (B77qHi=2Fh) T g (971 mHan ) .

i<j
and we omit in the product (1.17) the factors depending on Apyo and ppis.

The Macdonald polynomials possess a remarkable self-duality property discovered by Koorn-
winder (see [M] and references therein). Let us introduce modified Macdonald polynomials:

l+1
Ox(z; ¢, t) == t*N T Tout® g ) x Pa(a; ¢,1), (1.18)

a,b=1
a<b

/41
where p(x) = > pizi, pi = 0i —¢/2. Then for any partitions A and p the following duality relation
i=1

holds:

Dy (¢" 5 q, ) = (M5 q, 7F). (1.19)
This duality naturally leads to the set of mutually commuting operators acting in the space of
functions on the set of partitions A = (A1,...,\py1) € Zﬁ“. The following Theorem was proved in
[GLO4].

Theorem 1.3 ([GLO4]) A set of mutually commuting difference operators

1 — ¢t~ j+1 Aj—Ai—lq ti—j—lq)\j—/\i

ré/2 Vv
=t Z H — - ]q)\ —X\i— 1— ti—jq)\j—)\i TIT ?
i€ly
B (1.20)
_ Vo
Tq,qki ' f()\l,.‘.,)\g+1) - f()\1,~-~,>\i+17m7>\£+1)7 TIT - H T, 7q)‘
i€l



acts in the space of functions fy labeled by partitions A = (A1 > ... > Apy1) € Zﬂ_”'l. The Macdonald
polynomials Py(x) as functions of the variables A\ are common eigenfunctions of the difference
operators (1.20):

MX+1(X) ' P)\($; Q7t) = 02/+1(t£/2$; X) P)\(QS‘, qat)v

41 (1.21)
i1 (z; X) = JJ(1+ Xai),
i=1
where
{41
MY (X) =) X" MY, My =1, (1.22)
r=0

1.2 Class one ¢g-deformed Whittaker functions

Let A, be the algebra of symmetric functions over the field of rational functions in variable ¢

convergent in the domain |g| < 1. Let A((JZH) be the homogeneous component A, of degree ¢ + 1.

Consider a pair of the scalar products on A[(fH). The first one is defined in terms of power series

symmetric polynomials as follows:

(+1
(Prs Pudg = Sauan [ — ). (1.23)

i=1

The second scalar product on the space A, is defined by

1 —1y AV
(@(:). By = gy L4 ) AYCE).
0+1 00 (1.24)
1 1
AV(Z) = T/ -1 N\ r (Q?) = ]
! 113__11 Ly(z; 12]') ! g l-¢x
i
and the notations of (1.12) are used.
Lemma 1.1 The polynomials P\(x;q) := Px(x;q,t = 0) satisfy the relations
Py(w) = > uxumy, un =1, (1.25)
H<A
(Py, Pt = 0, A% . (1.26)

and thus define a bases in A,.

Proof. Directly follows by specialization ¢ = 0 from the properties of the Macdonald polynomials.
O

Let us define renormalized symmetric polynomials

P (z) = A7H(N)Py(x;q,t = 0), Ay =TT = Aig)d! (1.27)



where (n),! = [T7, (1 —¢"+'7%). In the following we will call P{""(z) the g-Whittaker polynomials.
These polynomials were introduced in [GLO2] as class one g-deformed gl,, -Whittaker functions

() = P (x).

The g-Whittaker polynomials Pf\IW(a:) are orthogonal with respect to both scalar products
(1.23), (1.24) and are normalized as follows:

(P, By, = Certle F P = 5 () (1.28)

Theorem 1.4 ([GLOA4]) Let Hy,...,Hy, and HY ..., H) | be difference operators acting in
the space of functions on R x Zﬂ“

oy
HY = I T T, = || Ty =1,....0+1
' Z.ij—:c,- I o H A (1.29)
e i€l
- 1-6
Xi, —N; — 09 —ip, —
Hy = 3 [ (1= gttt gy, U | (1.30)
I k=1 icl,
forr=1,... 0+ 1, where i,11 := €+ 2 is assumed.

These operators are mutually commutative and the q- Whittaker polynomials solve the following
dual pair of eigenfunction problems:

HY - PV (2) = grevzrttren piWigy =1 041, (1.31)
and
HTP)?W(JJ) = XT(’:U) P)?W(aj)a Xr(x) = Z:U’h R (132)
I

forr=1,... 0+ 1.

Thus in particular for the generating function of the operators H,

/+1
Dei(X) = ) X"H,, Hy:=1, (1.33)
r=0

we have
De1(X) - PV (z) = ¢, (z; X) P{V (2),

041 (1.34)
cl (o X) = [+ X ).
i=1

The set of operators (1.30) define g-deformed Toda chain Hamiltonians and (1.29) provide a set
of mutually commuting difference dual Toda chain Hamiltonians introduced in [GLOA4].



Using the relation between ¢g-Whittaker polynomials P/'\IW (z) and Macdonald polynomials Py (z)
one can infer an analog of the Pieri formula (1.16)

W w
Pl @ x Pl @) = Y ol PV (),
B Z A4
il —|A|=n (1.35)
, .
<= A () H O\ — pit1) O(pit1 — Niy1)
e ! DS (i = piga)g! (pi1 — Aig1)g!
The analog of the Cauchy-Littlewood identity (1.14) is given by
HH q .Z'zy] = Z bq PqW PqW( )7
1=1j=1 AeYn,m (1.36)
_ Ay(N)
N i L
N VRN

summed over A = (A1 > ... > \py,) with m <n.

Remark 1.1 The g- Whittaker polynomials Pgw(m) can be also obtained from the Macdonald poly-
nomials Py(x) under the limit t = ¢~%, k — 4o00. Let

141
D(z) = Ha:fg”%i,
=1
Z+1 Z‘i’l 1 Fq,q—k (q)\,L*)\J)

AL k+o)
q >< . . - - .
H zla_[l gt (@RI T e (8 Y)
1<J
Then we have
PRV () = tim | DY) D@ x Py (et | (1.37)

k—+o0

for p=(p1,...,pe41) be a partition (p1 > ... > pey1), and Pgw(q/\) = 0 otherwise.

1.3 Jack’s symmetric polynomials

Now we consider a bases of symmetric polynomials consisting of the Jack polynomials, obtained
from the Macdonald polynomials by a specialization (see [M] and references therein).

Let k be a positive integer, and let A be an algebra of symmetric functions of variables
Z1,...,%p+1. Define a pair of scalar products on A using the standard bases of power series sym-
metric polynomials my and px = py, * - pa,,, With p, = my):

<p/\7 p,u>l€ = K_I(A)(S)\u % l()‘) = ‘{m‘ Am 7é O}‘ ) (138)
where z) = ] n™my! and m,, = [{k : Ay = n}|,
n>1
/I 1 —1
(Ox, Pu)ie = ] /Tde PA(2) Ppu(277) Ay (2) (1.39)

8



where

Aw(z) = [T @=2"2)" (1.40)

i#
Definition 1.1 Jack’s symmetric functions P)(\K) are the elements of A such that
(%) _
(P, Bi), =0

whenever \ # u, and
P = my + Zu&f}mu
p<A

The Jack polynomials P/SH)(:U) are orthogonal with respect to both scalar products and the following
normalization condition holds:

W v 1t D= N+ G —i+ D)) T(Ai— N+ 14k —i—1))
<P>\7P>\ >H:H Y . Y T
it LN — A+ K(j —1)) DX — A+ 1+k(j —1))
i<j

(1.41)

Similarly to the cases of the Macdonald polynomials and g-Whittaker polynomials, Jack’s poly-
nomials are eigenfunction of dual families of mutually commuting differential /difference operators.

Theorem 1.5 (i) The Jack symmetric polynomials are eigenfunctions of a set of mutually com-
muting Sekiguchi differential operators:

041
Dt (X) - PV (@) = [T(X + (A + aim) P () (1.42)
i=1
where
0+1
Dg+1(X) — ZXZ—H—T/HT
r=1
" b ) (1.43)
_ . N1 o o0 . .
= H (i —x5) " x Z (-1) H%Z {X +o(0i)k + wlaxi},
7=1 €811 i=1
i<j
with Ho = 1.

(ii) The Jack polynomials are eigenfunctions of a set of mutually commuting difference operators

DYy (X) - P\ () = ¢}y (x; X) P\ (),

041 (1.44)
iz X) = [+ Xz,
i=1
where
0+1
Diy(X) = > X", HY =1,
r=0

9



and

ZH Z—]+1I€+>\ )‘Z 1T
o (t—Jk+X—XN—1 b (1.45)

J¢Ir

Remark 1.2 The generating function (1.43) can be considered as an appropriately defined non-
commutative determinant:

1
Dp1(X) =

det ||z |

of (X + o mig )|

In particular, the first statement implies:
HwP){"‘)(x) = XT(A—%QR)P/SN)(H;), r=1,...,04+1, (1.46)

where g; = £+ 1 — 4. The first two Hamiltonians are given by

1+1

Hi = Z{Cﬁzai + Qi’i}v
41 82_ -« 0 o
7{2:2(%%4‘0#)(%8 +QJ>+RZ<QZ+Z:I:]—%> i.
ij=1 i
i<j H&Z

The Jack symmetric functions can be obtained from Macdonald polynomials by taking the limit
h— 0 for t = et g = el [M]
1 I'(n+ k)

lim I'y 4 () lim b, =

- - Ty t=e" g=¢é 1.48
B0 1—2)% 0 T(n)T(r)’ coa=e (1.48)

It is easy to infer analogs of (1.16) and (1.14) for Jack polynomials. In particular, the Pieri rules
for the Jack polynomials are given by (see [S]):

() w) _ 1 o) pl)
Py % Py =@ Y. ennbl

(m Mg 2N 2> g4 1

lul—IA|=n
S ﬁ {F(ui—uﬁlﬂj—i)ﬂ)F(Mi—kj+(j—i+1)'f) (1.49)
xR (i =+ (G — i+ Dw) D = Ay + 14 (5 — k)

i<j

» F(/\i — /\j+1 + 14+ (j — Z)/i) F(/\i — Mjt+1 + (j — 1+ 1)&) }
P =X+ (G —i+1D)r) TN — i + 1+ (5 — i)k)

and in the product (1.49) we omit the terms containing Asy2 and py42. The analog of the Cauchy-
Littlewood identity (1.14) is given by

) =] —— x) P
o l—JI (1 — ziy;)"~ Aezynzm o ) (1.50)

where the summation goes over partitions A = (A > ... > )\min(mm)) and

T . .
&) _ s R +1—0)+Ai— ] Kh h
= 1 = t — — .

b)‘ hlir[l) by (l%_)[e)\ I{()\;r _ ’L) +AN+1—37 ) e, g=¢ (151)

10



2 Baxter operator formalism for symmetric polynomials

In the previous Section we describe various bases in the space of symmetric polynomials defined
as common eigenfunctions of two sets of mutually commuting operators called (dual) quantum
Hamiltonians. In this Section we define a dual pair of the Baxter operators acting in the space
of symmetric polynomials, commuting with dual pairs of quantum Hamiltonians. The constructed
bases in the space of polynomials is also a bases of eigenfunctions of the dual pair of Baxter
operators.

2.1 Baxter operator formalism for Macdonald symmetric polynomials

In this Section we develop the Baxter operator formalism for the Macdonald polynomials. We
construct a dual pair of Baxter operators and a dual pair of recursive operators. This results in
various families of integral /sum representations for the Macdonald polynomials.

Definition 2.1 Baxter operator Q = Q+(q,t) associated with Macdonald integrable system is a

family of operators acting on the space A,(;j;rl) of symmetric polynomials as follows:
0, @) = [ Py Qi) AP, ve, (2.)
where integral kernel is given by
041 41
Qy(z,y) = [[(wws)” T Taulzi;)- (2.2)
i=1 ij=1

Theorem 2.1 The Baxter operator (2.1) acts on the Macdonald polynomials Py(x) as follows:

Q- Pa(z) = Ly(A) Pa(x), Aet1 >y (2.3)
0, Py(z) =0, Aest <4 (2.4)
where
{41
L“/(A) = Lv()\a%t) = }:[1 Fq’tqlr(‘?sz_li(;]i—y-s-l) : (2.5)
Proof. The Baxter operator (2.1) can be represented in the following form
Q, = DI ot o DT (2.6)
where the operator C%+1 acts as:
Co+1 - Py(z) = (Iloqq, oq1, PA)jM, (2.7)
and the operator Dgl”l in (2.6) acts on Py(x) according the following rule:
Dg[ﬂl - Py(w1,. ., meq1) = Py (w1, Teg) (2.8)
= (z1-... xp41) Pa(@1, .., Tp11) '

11



Pyi(e+1)7 (%) := Prj4v,.. 211 +~(2). The eigenvalue of the operator C9%+1 can be found explicitly
using the Cauchy-Littlewood identity (1.14) and orthogonality of the Macdonald polynomials with
respect to the two scalar products, (1.3) and (1.12)

[ [ _
Colee - P () = /deyﬂeﬂ,eﬂ(x,y)Pf”l(y HA(y)

= [eu( X @) A

p1>>ppyr1 >0

= Y ([ evErwrt AW R @)

(11> 141 >0 (2.9)
gl [PERRY) gl
- > (He — i) ) O pes1) b (P PR, PR (@)
MEZ€+1 =1
ﬁ <P9[e+1 P9[e+1> ol
== @()\z - )\i+1)@()\g+1) [ [ P)\ e (1’) .
i1 (P Py ‘“>q,t
Therefore the eigenvalue of the dual Baxter operator Q. on Py(z) is given by
(Pr—(e11)vs Pro(e1)7)s (Px, Pr)g,s
O(Aex1 — ) P i P R O(Ae1 — P P
(Pr—(e41y7> Pr—(e41) )t Py (e+1)7, Pr— (1z+1)w>q,
= ba_ (15179 (Aer1 — 1) (Pr, Pa)gs
One can rewrite the right hand side of (1.6) in the following form:
{+1 {+1 i Ai—Ai+1
(N
by = Hb,\ —Aip1) X H tJ z e /\]+1+1) )\g+2 =0, (2‘10)

zyl

where
n

1 —tg" "
bn) = H 1 gnti-i’
i=1
Then combining (2.10) with (1.13) one readily arrives at (2.3). O

There is an analog of the classical Baxter equation (see Theorem 2.3 in [GLO1]) relating Baxter
operator and quantum Hamiltonian operators.

Proposition 2.1 The operators Q. given by (2.1) and the generating function Myy1(X) from
(1.11) commute and satisfy the following relation:

Mypi(—q 7)o Qv(q,q_k) = Qv41(q, q" ). (2.11)

Proof. Recall that the Macdonald polynomials are common eigenvalues of Q- and My 1(X). Thus
it is enough to check (2.11) on common eigenvalues of Myy; and Q. acting on Py(x). Denoting
Ly(X\) and cp41(A) the corresponding eigenvalues:

/+1 {+1
LyA+ke g, a7%) =[] by, et tko —¢77) = (1—t)" D] (1 - ),
3 =1

12



we easily check the following relation:
copr(N+ko; —q7) x Ly(A+ko; q,t) = LN+ ko q,tq). (2.12)

This entails the operator relation (2.11). O

Now we define the dual Baxter operator.

Definition 2.2 The dual Bagter operator O, = Qz(q,t) is a family of operators acting in A((fjl)
éz - Py(x) = Z QZ()H 1) P“(a:) (2.13)
N/
with the kernel function
Qz()V M) = ZIMI_P\‘ Pu/x s (214>
and
O = ﬁ Loigt (F71qH 1Y) Ty (7NNt
o = LT, ) Ty (g )
= (2.15)
¢
xO(m — A1) [JON = pir)O(piy1 = Ain1)
i=1

where in the product one should omit the factors depending on Apyo and pioto.

Theorem 2.2 The action of the dual Baxter operator on the Macdonald polynomials reads
Q.- Pi(z) = LY(2) PA(), (2.16)
where the eigenvalue is given by

l+1
LY(x) = []Tqulzmi). (2.17)
=1

Proof. The statement of the Theorem directly follows from the Pieri formula for the Macdonald
polynomials (1.16), (1.17):

Q. Py(x) = Y MRy Py(a)

i N> pit1

=3 Y e Pu@) = (X by Pula)) Pa() (2.18)

m=0 M 2N 241 m=0
[l =Ix|=m

= Ilpy1,1(z, 2) PA(2),

and identification LY (z) = Ilp4q 1(z, 2). O
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Proposition 2.2 The operator 9, satisfies the following difference relation:
MY (—d"%2) 0 Q.(q,07%) = Qgala,a7*7Y). (2.19)

where My, (X) is the generating function (1.22) of the dual quantum Hamiltonians.

Proof. Tt is enough to check (2.19) on common eigenfunctions Py(x) of My, , and QY. Denoting
Ll\j and clYH the corresponding eigenvalues

£2+1 +1
) = [[TarCzaa),  elpala; —t722) = T[(1 = 2m1),
i=1 =1

we easily check the following relation:
chpa(a; =72 x LY (x5 q,t) = Ly(x; q,tq7"). (2.20)

This entails the operator relation (2.19). O
Let us introduce the following notation

an = (an,17-~-7an,n)a Q/n = (an,l,...,amn_l).

The following recursive relations hold; the first one (see [AOS])

[ _
Pa(zey1) = /T A"z Qg (o1 2ol Aerr) Alzg) P(z; ),

¢ (2.21)
[ A A
QE[EJrl (EeJrl; £€| )\£+1) = a"[jflfg_kl H(xé—i-l,iwé,z’) o X Hf+1’g(xg+1’i, :Eg’i) R
i=1
and the dual recursive relation (see [M]):
gl
P)‘e+1 Zég[Z-H 1 Aé’ forl) PAZ (x/) )
(2.22)
ot Agp1l=1Al
Qgéﬂ(&‘*l’ Al o) = xf—fl+1 ‘ 7’&)‘“1/&5 ’
where
r,, _1(tj—iqm—uj+1) r,, _1(tj_iq)‘i_>‘j+1+1)

i—4 A — 41 T T
1<i<<e F%tqfl(t] tqt Hi+ )Fq,tqfl(t] tqhi G+1t )

when X and p are interlaced (i.e. Ay > 1 > ... > XNg > g > A1 > 0), and Y/ = 0 otherwise.

The above recursive relations allows to introduce the corresponding recursive operators Qg " (A1)

and Qg " rpe):

[ [
Qo e - flagr) = /T A"y Q™ (15 ol o) Alzy) flag '), (2.24)
and

[ I
ég Hl (meq1) - f( )‘Z+1 = Zég ZH )‘£+1a Al wer1) F(Ar), (2.25)

14



The existence of the two dual recursive representations, (2.21) and (2.22), provide a family of 2¢
integral representations for the Macdonald polynomials. Namely, let us change our notations as
follows:

I A I o Mal _ .
Ryj1n = Qg[: (An+1) Ry, = ol (Tnt1) n=1,...,¢;

then for every array € = (€1,...,€7) of e, € {I, [T}, n=1,... ¢ the following holds:

[
PLT(@H) - {R;il,fo---oRgfl ORLO} -1, (2.26)

where R g is the gl;-Macdonald polynomial Pl

Let us remark that the recursive operators can be factorized into Baxter operators, similarly
to recursive operators for gl,, ;-Whittaker function (see Proposition 3.3 in [GLO1]). This reveals
the fundamental role of the Baxter operators in the description of various bases of symmetric
polynomials.

2.2 Baxter operator formalism for class one g-Whittaker functions
Now we provide similar results for ¢-Whittaker polynomials P/'\IW (z).

Definition 2.3 The Bazxter operator acting in A((IEH) is a family of integral operators

Q.- f(\) = Z Ag(1) Qe e41(p5 Al 2) f(1) (2.27)

“EZZ+1
with the kernel

Qi1 e41(p, Al 2) = 2= 90,3/,\ = 2 Mg, t=0) x AN

¢
- O — M) H O\ — pit1) O(fi+1 — Ait1) (2.28)

= Z .
(11 = A)g! 2 (Ni = pig1)g! (Hitr — Aiga)g!

Theorem 2.3 (i) The action of the Baxter operator Q, on q- Whittaker polynomials (1.37) is given
by

Q. P (x) = L.(z) PIV (2), (2.29)

where

/41

L.(z) = [[Tq(z2:). (2.30)
i=1

(i1) The operators Q. and Dy, ,(X) (1.34) satisfy the following relation:
Dyy1(—2)o0Q, = Qg - (2.31)

Proof. The relation (2.29) is a direct consequence of the Pieri formula (1.35). The relation (2.31)
follows from the relation between the corresponding eigenvalues: cf,  (z; —2) L.(z) = Lg.(z). O
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(4+1)

Definition 2.4 The dual Baxter operator acting in Ag 1 a family of integral operators

&, P(z) = /T &y Qlsy (o, v ) AVW) PG7Y, e, (2.32)

with the kernel

{+1

Qear (v 7) = [ (@avi) Tolziy;) - (2.33)
ij=1

Theorem 2.4 (i) The action of the dual Baxter operator Q7 on q- Whittaker polynomzials reads as
follows:

1

Q, - P{"(z) = LY\ P (2), LY(A,. o A1) = Cvn = (2.34)
when v < Apg1, and
Q, - P™(x) =0, v > Apst . (2.35)
(i) The dual Baxter operator satisfies the following difference equation:
{1-¢7H}oQ, = Q. (2.36)

Proof. The first statement follows from (1.36) and the orthogonality of the ¢-Whittaker polyno-
mials (see [GLO1]). The second statement follows from the relation between the corresponding
eigenvalues: (1 — ¢M+177) x LY(AN) =LY ;(V). O

In [GLO2] and [GLO4] the following recursive relations for the g-deformed Whittaker functions
were established.

Proposition 2.3 ([GLO2],[GLO4]) The following recursive relations hold:

PV (2) = (QYF (we1) - PV (),

2.37
= Y Qe plwe) Ag(p) PV (), (2.37)
AiZ i > Nit1
where
O(Ni — i) O(pi — )\z+1)
Qui1,c(N; p|z) = 27l (2.38)
* ( | H >\ - Mz (Mz - )\z+1)
and
[ _
PqW qul P,(\I/ (z) = /d ydeﬂ (@ yl Xey1) A (y )qu( h. (2.39)
where
/+1
Qepre(@r, -z ynowely) = [[27 [Tv] T Talwivy)- (2.40)
i=1  j=1  1<i<e+1



The action of recursive operators (2.37) and (2.39) provide a pair of dual integral /sum represen-
tations of the g-deformed Whittaker functions (see [GLO2] and [GLO4]). Combining the recursive
operators of different types one can obtain 2¢ explicit formulas for ¢-Whittaker functions similarly

0 (2.26).

Remark 2.1 The recursive operators Q [”1(:1;g+1 ) and Qg “*1(\gy1) can be factorized into the Baz-
ter operators (2.27) and (2.32), szm@larly to Proposition 5’ 3 from [GLO1].

2.3 Baxter operator formalism for Jack’s symmetric polynomials

Now we consider Baxter operator formalism associated with the Jack symmetric polynomials.

Definition 2.5 Bazter operator is a family of integral operators acting in AESLU
G P (z) = | d%y QW (w,y; 7) Ay (y) P (y 7! Z 2.41
Q'y A (:E) . Yy Q (xvyv 7) (n)(y) A (y )7 Y E 4, ( . )
with the kernel
/41
QW (@,y;7) = [T@w) I, 4 (@) (2.42)
i=1

Theorem 2.5 (i) The action of the Baxter operator Q(f) on the Jack polynomials is given by

{+1
") . pM) () — £ (x) p® _ 17 P =+ (e + 1)) 9 4
Q- Py (y) = Ly(A) Py () L(X) H1 v =7 Fomt 1) (2.43)
when v < App1+ K, with g =0 +1—i,i=1,... .0+ 1, and
Q). P (y) = 0, v > st + k. (2.44)

(ii) The Baxter operator Q(f) commutes with the generating function Dyyq (1.43) and satisfies
the following difference equation:

Dysi(k—7) 0 Desr(1—7) Lo QW = @) (2.45)

Proof. (2.43) follows from (1.50) and the orthogonality of the Jack polynomials [M]. O

Definition 2.6 The dual Bazter operator QQ‘) is a family of operators acting in Aggl)
é( ~) P(H Z é /%)‘ Z )(x>7 (2.46)
NGZZ+1
with the kernel
441 . .
é( )(M,)\ Z i Z"u‘ BY H [ — M5 +1+(] —Z)K,) F(Hi_Aj+(J —Z‘f‘l)/{)
fte pi+ (G =i+ 1K) T — Ay + 14 (j —i)k)
i<j
y P = Ajp1 + 14+ (G —9)r) TN — g1 + (§ — i+ 1)k) } (2.47)
P =N+ (G —i+1D)r) TN — g1 + 1+ (§ — i)k)
)4
xO(p1 — A1) [T O = mis1) Opirs — Ais1) -
i=1
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Theorem 2.6 (i) The action of the dual Baxter operator on the Jack polynomials is given by

0@ . P (x) = L.(x) P (x), (2.48)
where
/41 1
L.(z) = Hl(l_w)n (2.49)

(i) The dual Bazter operator commutes with D(VH) given by (1.44) and satisfies the following dif-
ference equation:

yo QW = Q1) (2.50)

Proof. The first relation (2.48) follows from the Pieri formula (1.49), and the Cauchy-Littlewood
identity (1.50) is implied by the relation between the eigenvalues: ¢}, (z; —z)x L) (x) = L (x).
g

The recursive relations (2.21) and (2.22) imply similar recursive relations for Jack’s symmetric
functions. Namely, the following recursive relation hold (see [AMOS1], [AMOS2], [AOS]):

K [ K
P( ) (@_‘_1) — Qgé+1()\£+17€+1)'P)(\/)

Apg1 aly PV ( )
2.51
d>< . A A P(H) -1
Ty Qg+1 g( 15 g €+1,5+1) (k) (z¢) PV (£€ )
where
(k) . A
Qz+1,e(£é+17 z,| €+1,£+1)
/\4 e 41 ¢ (2.52)
_ +1, 0+ x Ly ML R .
Lot1, 041 1![ (Te41,i%0,i H H 1 P J)n
<i<t i=1j= 1
We also have the dual recursive relations
gl
) @) = (O5 e enn) - PP (),
gl (2.53)
= Z égé“ (A@rl; Aé| $e+1,e+1) PA(’Z) @ZH)-
Aet1,i 2N, i =Nt it 1
Here
gl .
Qg[j+1 (M? )\| Z)
byt +<]—Z—i—l)fi)r(ui—)\j—i-l—l—(j—i)/ﬁ) (2.54)
1<j

y P —Ajs1 + 14+ (G —i)r) T(Ni — gy + (j — i + 1)k) }
T =X+ (G —i+D)r) TN —pjn + 1+ (G —i)r) 17

when (p1, ..., mer1) and (Mg, ..., Ag,0) are interlaced, and Q%H (u; Al z) = 0 otherwise. Obviously
for Jack polynomials one has the proper analogs of the mixed integral /sum representations (2.26)
of the Macdonald polynomials.
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Example 2.1 The simplest dual recursive operator intertwining gly and gly Jack’s symmetric func-
tions reads as follows:

[
g[f(/\zl, A22; A1t | 2)

F(H + Ao1 — )‘11) F(’% + A11 — )\22) ()\21 — )\22)! (255>
F("{ + )\21 - >\22) (/\21 — )\11)! ()\11 — )\22)! )

This leads to the following representation of the gly-Jack’s polynomial:

_ $5\21+>\22—)\11

A
i Dk+M —p)T(k+p—2A) (A1 — A)! A

Lk + A — Ag) (A = )l (= M)t 172

P)(\’:?)Q (1'1, :Bz) =
H=A2

Remark 2.2 The recursive operators Qiii+1(A@+1’@+l) and Q§Ei+1($£+1’[+1) can be factorized into
the Baxter operators (2.41), (2.46), similarly to Proposition 3.3 from [GLO1].

3 Appendix: Various analogs of classical I'-function

In this Appendix we provide basic facts on analogs of classical I'-function entering the description
of the Baxter operator formalism for Macdonald, g-Whittaker and Jack polynomials.

Classical I'-function can be defined by analytic continuation of the function defined by Euler’s
integral representation:

L(s) = /Rdt este™" Re(s) > 0. (3.1)

Equivalently I'-function is defined as a solution of the functional equation
I(s+1)=sI(s), ') =1,

such that ﬁ is an entire function on the complex plane. I'-function allows a representation as the

Weierstrass product
oo S 1
(1 — ¢ 8 n (1 7) , 2
(o) = e Lok (1] (32)

where v = —I"(1) is the Euler constant. Also the following reflection property holds

™

r rt—-s) = .
(s) x (1 —s) Sn () (3.3)
Note that the integral representation (3.1) can be inverted via the Mellin transform
e = = ds e ¥T(s)
271 ’ (3.4)
1R+-€
Define (q,t)-analog of the classical I'-function as the following infinite product
oo
1—txq"
r = - )
ey };[O vt (3.5)
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where we imply that ¢ is variable taking values in |¢| < 1. This function has poles at x = ¢~

m € Z>o and zeroes at x =t~ 1q™™, m € Zxy.

The function I'y; defined by (3.5) possesses all the basic properties of the classical I'-function
outlined above. The analog of the Weierstrass product is given by (3.5). The analog of the relation
(3.3) is given by:

201 ()% q)

-1\ _
Dy i(2) x Ty y—1(qz™") = ma (3.6)
where we take into account the product representation
z—z" ; ; 9
01z q) = ¢/' —— [J(1 = )1 = 2¢)(1 - =7%¢). (3.7)

j>1
of the standard elliptic theta-function 6,(z; q).

Finally, the analog of the Euler integral representation (3.1) and its inverse (3.4) are given by
A Fq7 tqg—1 <Q) I‘q, tq—1 (Q)

Fye(z) = T, :/dxxx/\F x).
) é Fq,tq—l(qM_l) Pq7tq—1(q/\+1) T o1(2) (38)

Consider now a specialization of the I'y; at ¢ = 0 given by

1 1
T,(2) = cr ]]1 g (3.9)

The ¢-Gamma function I';(z) has poles at z = ¢~™, m € Z, and satisfy proper analogs of (3.1)-
(3.3). The g-analog of the Weierstrass product formula (3.2) is given by (3.9). The g-analog of the
Euler integral formula (3.1) is given by

_ o Lq(q) Lelg) Xy AT (4
M = 2 e Rl CEE ) (3.10)

and the g-analog of the functional equation (3.3) has the following form:

g/t 12

[, (2) xTy(gz™h) = , (3.11)
o) * Tolaz") Ty(q) 01(21/2; q)
which can be deduced from (3.7).
Now consider the following analog of the I'-function
1 K
r(z) = lim Dya(e) = (+—) et g=h 3.12
(Z) hl—r>n0 q,t(x) 1— 2 ) t=e", qg=e, ( )
depending on a positive integer parameter x. The analog of the functional equation (3.3) reads
1
F(K/)(Z) X F(_H)(Z_l) = ——, (313)
zK/

and the binomial formula for I'®)(z) = (1—2z)~* implies the following analogs of the Euler’s integral
formula (3.1) and its inverse:

%) () — 2" I'(k+n) I'(k+n) . %, n PR,
06 = SN ry S e e, (3.1

The functions T'y;(x), Ty(2) and T'®)(z) play an important role in the Baxter operator formalism
for Macdonald, g-Whittaker and Jack polynomials correspondingly.
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