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The aim of this notes is to study extremal contractions from threefolds with only terminal
singularities to surfaces. More precisely, we study an analytic analog of such contractions,
so called Q-Fano fiberations over two-dimensional base (see (1.1) ). We are interesting
in the biregular structure of Q-Fano fibrations. For birational structure of fibration on
rational curves, constructing standard models, etc see [24]. The study of Q-Fano fibrations
may be applied for Sarkisov's program of factorization of birational maps [25], [4] and also
for study Q-Fano threefolds with extremal contractions to surfaces ( see section 7).

(0.1) Conjecture (special case of Reid '5 general elephants conjecture). Let
f ; (X, C) -+ (S, s) be a Q-Fano fiber space with two-dim ensional base. Th en a general
"member of the linear system I - !(x I has only Du Val singularities.

(0.2) Conjecture. Let f : (X, C) --t (8, s) be a Q-Fano fiber space with two-dimensional
base. Then (S, s) is Du Val singularity 0/ type An, n ~ O.

In this paper we shall prove that conjecture (0.1) implies conjecture (0.2) (propo­
sitions (6.3) ,(5.5) ). We also give detailed analysis of primitive Q-Fano fiber spaces in
section 5. In some cases (theorem (5.2) ) conjecture (0.1) is proved. Our main tool is
:Nlori's technique of study smaH extren1al contractions [18].
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1 Background results and first properties

(1.1) Definition. Let (X, C) be a germ of a three-dimensional complex space along a
compact reduced curve C and let (S, s) be a germ of a two-dimensional normal complex
space. Suppose that X has at warst terminal singularities. Then we say that proper
morphism f : (X, C) --t (S, s) is a Q-Fano fiber space with two-dimensional base (or
simply Q-Fano fiber space) if

(i) /-1 (s) = C;
(ii) f.Ox = Os;
(iii) -Kx is f-ample.

A Q-Fano fiber space f: (X,C) --t (S,s) is said to be minimal ifC is irreducible. A
Q-Fano fiber space f: (X,C) --t (8,s) is called conic bundle if (8,s) is non-singular and
there exists an embedding i : (X, G) Y IP2 X (3, s) such that OJFY.Zxs(X) = O!F2 xs(2) and
i . pr2 = f.
(1.2) Example. Let pI x (:'l --t (:2 be the standard projection. Define the action of the
group Zn on ~.v and P;,u x ~.v:

where E: = exp(27ri/n), bEN, (n, b) = 1. Denote X = (PI x (:2)/Zn, S = Cl /Zn. Then
the projection 1 : X -t 8 is a Q-Fano fiber space. The threefold X has on the fiber
1-1 (0) exactly two terminal points PI, P2 which are cyclic quotients of type ~(1, -1, ±b),
the surface 8 has in 0 a Du Val point of type An-I'

The following is a consequence of the Kawamata-Viehweg vanishing theorem (see [20], §4,
[10], 1-2-5).

(1.3) Proposition. Let 1 : (X, C) -t (8, s) be a Q·Fano fiber space. Then Ri !.Ox = 0,
i > O.
(1.3.1) Corollary (cf. [18], (1.2)-(1.3)). (i) For an arbitrary ideal I such that
Supp Ox /I C C we have, HI(Ox /I) = O.

(ii) The fiber C is a tree 0/ non-singular rational curves.
(iii) 11 C has p irreducible components, then

(1.3.2) Remark. By [7J, 4.5 for every threefold X with terminal singularities there
exists a projective bimeromorphic morphism q : xq -t X called Q-Jactorialization of
X such that x q has only terminal (analytically) Q-factorial singularities and q is an
isomorphism in codimension 1. If f : (X, C) --t (8, s) is a Q-Fano fiber space, then
applying the ~Iinimal Model Program to X q over (S, s) we obtain a Q-Fano fiber space
/' : (X', G') -t (5, s) with analytically Q-factorial singularities, the same base 5 and
p(X',C')/(5,s)=1. In particular I': (X',C') --t (5,s) is minimal.

(1.3.3) Remark. Let f: (X,C) --t (S,s) be a Q-Fano fiber space. Since -[(x is f­
ample, the Mari cone lVE((X, C)/(5', s)) c IRP is generated by classes of Ci. Thus any
Ci generates an extremal ray ~ and lVE((X,C)/(8,s)) C]RP is simplicial. If p 2:: 2,
then the contraction of any extremal face of PiE((X, G)/(8, s)) over (S, s) is an extremal
neighborhood [18), [13] (not necessary isolated).
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(1.4) Proposition [3]. Let f : (X, C) -+ (S, s) be a Q-Fano fiber space. Assume that
X has only points 0/ index 1. Then (S, s) is non-singular and f : (X, C) -+ (S, s) is a
conic bundle (possible singular).

Note that converse statement is not true (see example (6.2.1)). We only have the
following.

(1.4.1) Lemma Let f : (X, C) -+ (5, s) be a Q-Fano fiber space 5. Assume that (S, s)
is non-singular. Then f is flat.

PROOF. Since singularities of X are rational, X is Cohen-Macaulay [11]. By [15], 23.1 /
is Bat. Q.E.D.

(1.5) Du Val singularities. Let (S, s) be a germ of surface log-terminal singularity.
By [8], 1.9 (S,s) ~ (rJ,O)/G, where G c GL(2,C) is a finite group. The projection
«(:2 ,0) -+ (S, s) is called topological cover of (5, s ). Order of the group G is called
topological index of (S, s) and denoted by [top( S, s).

(1.5.1) Is weil known that every Du Val singularity is analytically isomorphie one of
the following hypersurfaces in ca:

uv + yn+l

or
Z2 + x 2 + yn+l

Z2 + X(y2 + xn-~)

or for n = 4
Z2 + u3 + v3

Z2 + x 3 + y4

Z2 + X(y3 + x 2 )

Z2 + x 3 + yS

[top(F, P) = n + 1

Itop(F, P) = 4n - 8

Itop(F, P) = 24
[top (F, P) = 48
[top (F, P) = 120

(1.5.2) Proposition [1]. Let (F, P) be a germ 0/ Du Val singularity and T : (F, P) -+
(F, P) be an involution. Then there exists an analytic T-equivariant embedding (F, P) c
«(:3,0) such that (F, P) can be given by equations (1.5.1). Moreover the action 0/ T and
the quotient (F, P) / T are:
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singularity
(F,P)

A k , D k , Ek

E6

E6

Dk

Dk

A2k+1

A2k+1

Ak

A2k

A2k+1

involution
T

(x, y, z) ~ (x, y, -z)
(x, y, z) ~ (x, -y, z)

(x, y, z) -t (x, -y, -z)
(x, y, z) ~ (x, -y, z)

(x, y, z) ~ (x, -y, -z)
(x, y, z) ~ (x, -y, z)

(x, y, z) ~ (x, -y, -z)
(x, y, z) ~ (-x, y, -z)
(u,v,y) ~ (-u,v,-y)

(u, v, y) ~ (-u, -v, -y)

quotient
(F, P)/T

non-singular
A2

Er
Al

D2k- 2

Ak

Dk+3

A2k+1

2k~1 (k, 2k - 1)
4k~ (2k +1, 2k +1)

(1.5.3) Proposition (see e.g. [23]). Let (F I
, Pi), (F, P) are two-dimensional singu­

lanties and (F' , PI) ~ (F, P) be a finite morphism of degree r. Assume that (F, P) is Du
Val and (F I

- {PI}) ~ (F - {P}) is an etale cover with group Zr, r ~ 2. Then (F' , Pi)
is also Du Val and (F I

, P') ~ (P, P) is one 01 the following:

r

any

4

2

3

2

2

description action of Zr
on (F', P')

(u, v, y) ~ (cu, c; -1 v, y)

(x,y,z) ~ (ix, -y, -iz)
(x, y, z) ~ (-x, -y, z)
(u, v, z) ~ (cu, c; -1v, z)
(x, y, z) -t (x, -y, -z)
(x, y, z) ~ (x, -y, -z)

where c = exp (2tri/r). J\1oreover except the first case the action Zr on the dual graph of
the minimal resolution 01 (F', P') is non-trivial.

(1.6) Terminal singularities. Let (X, P) be a terminal singularity of index m ~ 1 and
let 1r : (X~, Pd) ~ (X, P) be the canonical cover. Then (X~, P~) is a terminal singularity
of index 1. It is known [22] that (Xd, P~) is a hypersurface singularity, i. e. there exist
an Zm-equivariant embedding (Xli, pI!) C (et, 0). 'VVe fix a generator ( E Zm and far
Zm-semi-invariant z define weight wt(z) E Z as

wt(z) =a mad m iff

where € = exp 21ri/m. Usually we assurne that Ü ::; wt(z) < m.

(1.6.1) Theorem [5],[19]. If (Xd, pI!) is smooth, then it is isomol'Phic (rC;I,X2,X3'O)
such that wt (x 1, X2, X3) = (a, -a, b), tahere aJ b are integer prime to m. Conversely every
such singularity is terminal.

(1.6.2) Theorem [17], [23], [14]. Assume that (xtt, pd) is singular and let
{cP(Xll.X2,X3,X4) = ü} is an equation of .Xa in (C:1.x2,X3,X4'Ü). Then modulo permuta­
tion of Xl, X2, X3, X4 we have one of the following:
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(i) (the main series) wt(XI,X2,X3,X4;<P) _ (a,-a,b,O;O)modm, or
(ii) (the exceptional case) m = 4, and wt(xt, X2, X3, X4; <p) =(a, -a, b, 2; 2) mod4,

where a, b are integer prime to m.

(1.6.3) Remark. There is the complete classification of terminal singularities in terms
of normal forms of 4>(Xl, X2, X3, X4) and actions of Zm [17], see also [23], [14].
(1.6.4) Theorem [23]. Let (X, P) be a germ 0/ terminal singularity. Then a general
member F E 1- Kxl has only Du Val singularity (at P).

(1.6.5) Definition. Let X be anormal variety and Cl(X) be its Weil divisor dass
group. The subgroup of CI(X) consisting of vVeil divisor classes which are Q-Cartier is
called by the semi-Cartier divisor dass group. We denote it by Cl"C(X).

(1.6.6) Theorem [22],[9]. Let (X, P) be a germ 0/ 9-dimensional singularity. Then
C1"C(X, P) ~ Zm and it is generated by the class 0/ K(x,p),

The following is an easy consequence of (1.6) .

(1.6.7) Lemma. Let (X, P) be a germ 0/ a terminal three/old singularity 0/ index m > 1
and (F, P) C (X, P) be a germ 0/ irreducible Bur/ace. Assume that F is Q-Cartier and
(F, P) is Du Val with topological index I top ( F, P). Then Itop( F, P) is divisible by m.
lvforeover if Itop(F, P) = m, then (X, P) is a cyclic quotient singularity and (F, P) is 0/
type Am-I.

2 Topological properties of Q-Fano fiber spaces

(2.1) Proposition, [17]. Let (X, P) be a germ 0/ terminal singularity 0/ index m,
(C, P) c (X, P) be a germ of smooth curve. iT : (XU, PU) -+ (X, P) be the canonical cover
and Cu := (7T-

I (C) )red. Then
(i) for arbitrary ~ E Cl"C(X, P), there exists an effective (Weil) divisor D such that

[D] = ~ and D n C = {P}.
(ii) ~ ~ (D . C)p induces a homomorphism

1
cl(C, P) : CI"C(X, P) -+ -Z/71 c Q./Z.

m

(2.2) Definition, [17]. Let things be as in (2.1) . X ::> C is called primitive at P if
one of the following equivalent conditions i8 satisfied:

(i) cl(C, P) : CI"C(X, P) -+ ~ Zj71 is an isomorphisffi,
(ii) Cd is irreducible,
(iii) lirnu3P 7Ti (U n C - P) ~ Z -+ limu3P 7Tl (U - P) ~ Zm is surjective,

and imprimitive otherwise. The order of Ker(cl( C, P» is called the splitting degree of
X :;J C at P and denoted by e.

(2.2.1) Remark. In the situation above Cti has exactly e irreducible components.

(2.3) Now let X be a three-dimensional complex spase with only terminal singularities.
and !pi ~ C C X be a non-singufar rational curve. Assurne that C is irreducible and let
Pi, Pz, . .. ,Pn E X be all the points of indices ml, mz, . .. ,mn> 1. Then there exists the
following exact sequence [18], 1.8:

. 0 ---t Pit(X) ~ Cl"C(X) ---t EB Cl"C(X, Pd -+ o.
i
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(2.4) Corollary, ([18], 1.10) In notations 0/ (2.9) . The /ollowing are equivalent
(i) (D . C) = l/mlm2· .. mn tor some D E CISC(X);
(ii) CI#C(X) ~ z;
(iii) CIsC (X) is torsion-/ree;
(iv) X :> C is locally primitive (i. e. primitive at any point P E C) and (mi, mj) = 1,

tor all i i- j.

(2.5) Proposition [17]. Let things be as in (2.3) . Take an eJJective Cartier divisor H
such that H n C is a smooth point 0/ X and (H . C) = 1 and ejfective Weil Q-Cartier
divisors Dl, .. . , D1 such that Di n C = {Pi} and Di is a generator 0/ CpC(X, Pd for any
i (see (2.1) ).

(i) Assume that (X, C) is imprimitive 0/ splitting degree e in Pi. Then the divisor

is a e-torsion in CIscCX, C). !t defines a finite Galois Ze-morphism gb : X b -r X such

that pb := gb-\ Pi) is onf point, gb is etale over X - {PiJ (hence X b has only terminal

singularities), index 0/ (Xb, pb) is equal to mi/e, Cb := (gb-\ C))red is a union 0/ e pI '8
meeting only in pb, and each irreducible component 0/ Cb is primitive at pb.

(ii) Assume that (X, C) is local/y primitive and tor some distinct points Pi, Pj we have
n := (mi, mj) > 1. Then there are integers a, ß, i such that the divisor

D:=aDi+ßDj+iH

is an-torsion in CISC(X, C). It defines a finite Galois Zn-"morphism gb : Xb -r X such

thai Pi~ := g~-l(Pd (resp. pJ := g~-I(Pj») is one point, g~ is fiale over X - {Pi, Pj}
(hence Xb has only terminal singulariiies), index 0/ (X~, Pi~) {resp. (Xb, Pj~) ) is equal to

mdn (resp. mj/n), and Cb := (gb-1(C))red :::: pI.

(2.6) Let / : (X, C) -t (5, s) be a Q-Fano fiber space. The following easy remark [12],
proposition 3.1, (see also [6], proof of 1.6) show that singularities of S are log-terminal:
A general hyperplane section HeX is non-singular and transversally to C. Hence
H -t 5 is a finite morphism in neighborhood of C. Then by [2],6.7 (S,s) is log-terminal.
We generalize this remark in (2.8) .

(2.7) Construction I. Let / : (X, C) -t (S, s) is a a Q-Fano fiber space. Assurne that
(S,s) is singular. Then the topological cover h: (S~,s~) ~ ((:2,0) -+ (5,s) is non-trivial.
Let X~ be a normalization of X Xs Sb and G = Gal(S~/S). Then we have the diagram

X~ ~ X
.!- JQ J, /
Sb ~ S

The group G acts on Xb and clearly X = X~/G. Since the action of G on S~ - {SO}
is free, so is the action of G on ~X"o - C~, where C~ := (f~-\Sb))red. Therefore ..\'o has
only terminal singularities and the induced action of G on X b is free outside of a finite
set of points (see e. g. [2), 6.7). Since !(xQ = g·(I(x), we obtain the Q-Fano fiber space
fb : (X~, Ob) -+ (S~, sb) with two dimensional non-singular base.

(2.8) Proposition Let f : (X, C) --+ (5,5) be a Q-Fano fiber space. Then (5, s) is a
cyclic quotient singularity.
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or a reflection(-1 0)
o -1

PROOF. Because (X, C) is bimeromorphic to the minimal Q-Fano fiber space f' :
(X',C') -+ (S,s) over (8,s), we consider the case when f: (X,C) -+ (S,s).is mini­
mal. It is sufficient to prove only that in (2.7) G is cyclic.

If C~ is irredueible, then C~ ~ IP 1
, so G C PGL(2) and therefore G is either eydie

Zn, dihedral ::Dn, 214 , 6 4 or 215 , On the other hand, G acts on (Sb, sb) ~ (C2, 0). Henee
G C GL(2). It is easy to check that then G is a cydie or dihedral. But in the seeond ease
the action G on Cl is not free in codimension 1. Indeed any element in ::Dn of order 2 is
either

Therefore G is a eydic group in this case.
Now we assurne that C~ = UCf is reducible (itmeans that (X, C) contains an imprim­

itive point). We claim that nct is a point. Indeed since the configuration UC~ is tree
and the action G on the set {Ci} is transitive, Gib n (Gb - G~) is a point. Assume that
C~ n ... n C~ = {Pb} and let C~+1 n (C~ u ... U C:) :I 0. Then C:+1n (C~ u ... U C:) is a
point which must be pb. The induction proves our claim.

Thus the action G on Xb has a fixed point pb := nC~. Let P = g(pb). Take a small
neighborhoods Ub C X~ of pb and U = g(Ub) C X of P. Since glUb is etale on Ub\{Pb},
we have a surjective map rrI(U\ {P}) -+ G. Butan the other hand, 1i"1 (U\ {P} ) is a cyclic
gro~p (see [22], 0.6, [16]). Therefore in this case (S, s) also is a cydic quotient. This
proves the proposition. Q.E.D.

(2.8.1) Corollary. Let /: (X,C) -+ (S,s) be a minimalQ-Fano fiber space and let
PI, ... ,PI be all the points 0/ indices ml, ... , ml > 1. Assume that (X, C) is locally
primitive and (mi, mj) = 1 for all i =1= j. Then (S, s) is non-singular.

PROOF. lf (S,s) is singular, then by (2.7) the topological cover (Xb,Cb)/(Sb,sb) -+
(X, C)/(S, s) is non-trivial. Since it is cydic Galois cover (2.8) etale over X - Sing(X),
torsion part of CI"C(X) is non-trivial, a contradiction with (2.4) . Q.E.D.

(2.9) Construction II. Let / : (X, C) -+ (S, s) be a minimal Q-Fano fiber space.
Assume that (X, C) has a finite unramified in codimension 2 cover 9 : (Xb, Cb) -+ (X, C),
where Xb is normal and Cl:! is connected. Take the Stein factorization

Xb ....!....t X
j. jb t j

Sb ~ 8

Then h is etale over Sb - {sb}, heuce by (2.8) h: Sb -+ S is a cyclic cover. Therefore /b :
(X~, Cb) -+ (Sb, sb) is a Q-Fano fiber space. It is easy to see that Xb is the normalization
of Sb Xs X.

(2.10) Lemma (cf. [18], 1.13). Let f : (X, C) -+ (S, s) be a Q-Fano fiber space.
Then any component Ci C C contains at most one imprimitive point.

PROOF. If C is reducible, then Ollr assertion follows from [18], 1.13. Assume that C
is irreducible and PI, P2 E C are imprimitive points of splitting degree el and e2' Let
(XP, Cb) -+ (X, C) and (Xb, Cb) -+ (X, C) be splitting covers corresponding to PI and P2 ,

respectively (see (2.5) ). By (2.9) , we cau construct two Q-Fano fiber space (~Xb, C b) -+
(Sb,sb) and (Xb,Cb) -+ (Sb,sb). Then (Xb Xx )(b,CP Xx eil) -+ (Sb XsSIl,sP xssb) also
is a Q-Fano fiber space. By construction, eb x x eb is a Galois Zete1 cover of C ~ pI such



that each components meets el -1 (resp. e2 -1) other components at every point over PI
(resp. over P2 ). Therefore C~ Xx Cb contains a cycle of f'l's, a contradiction with (1.3.1).
Q.E.D.

(2.11) Proposition (cf. [18], 0.4.13.3, 6.2). Let f : (X, C) -t (S, s) be a Q-Fano
fiber space. Then any component Ci C C cannot contain three points 0/ index> 1

PROOF. As in (2.10) we consider only the case when C is irreducible and locally primitive,
because general case can be reduced to this case and (18], 0.4.13.3 by (1.3.3), (2.5) .
Assume that Pb P2 , P3 E C are points of indices mb m2, ffi3 > 1. Using Van Kampen's
theorem it is easy to compute the fundamental group of X - {PI, P2, P3 }:

1r1 (X - {Pb P2' P3 } ) = (0"1, 0"2, 0"3)1{O"~l = 1, 0";'2 = 1, O";ns = 1, 0"10"20"3 = I}.

This group has a finite quotient group G in which the image of O"i is exactly of order mj.
By (2.9) we obtain a Q-Fano fiber space fb : (Xb, Cb) -t (Sb, sb) with irreducible Cb. By
(2.8) G is cyclic. A contradiction with the fact that any action of c;:yclic group on pI has
exactly two fixed points. Q.E.D.

3 N umerical invariants w p and i P according to Mari

(3.1) Let X be anormal three-dimensional complex space with only terminal singu­
larities and let C c X be a reduced non-singular curve. Denote by Ie the ideal sheaf of
C. As in [18], we consider the following sheafs on C:

gr~ w := torsion-free part of Wx 1('Icwx ),

grh CJ := torsion-free part of Ie171:.
If C ~ f'l, then we have

wx1('Icwx ) = grß w + Tors,

(3.2) Let m be index of X. The natural map

IeIT& = gr~ 0 + Tors.

(wx ® Oe)0m -r Oe(mKx )

induces an injection
ß : (gr~ w)0m -t Oc(mKx ).

Denote
Wp := (length p eoker ß)/m.

(3.2.1) Remark. deggrß w < 0, (because deg Oc(mKx) < 0).

(3.3) We have the natural map

1 1 . 0
grc (9 x grc (9 x We -t wx 0 Oe -t gre w,

x x y x zdu -t zdx /\ dy /\ du

which induces a map
Q: /\2(gr~ 0) 0wc -t gr~w

8



Let
i p := lengthp Coker(a).

Note that ip = 0 if X is smooth in P.

(3.3.1) Lemma ([18], 2.15). TI (X, P) is singular, then i p ~ l.

(3.4) Example (cf. [18], 0.4.12.4). Let Zm acts on (ca, 0) by

where € = exp(21Ti/m) and a is an integer prime to m such that 0 < a < m. Let CU C c<J
.be the z-axis. Then (X, P) := (C3, 0) /Zm is terminal and C := CU /Zm C X is a smooth
curve. We have the following

(i) Oe,p = C{zm}j
(ii) grg w = Oc(zm-Idx A dy /\ dz), Oc(mKx ) = Oc(dx /\ dy /\ dz}m near P;
(iii) Wp = (m - l}/m;
(iv) grh 0 = Oc(zm-ax ) EB Oe(zay ) near Pj
(v) i p = 1.

From defini tions we have

(3.5) Proposition. If C ~ pI, then

deggrh (9 = 2 + deggrßw - Lip ,
p

(I(x . C) == deggrß w + L Wp,
p

(3.6) Proposition. Let I : (X, C) --r (S, s) be a minimal Q-Fano fiber space. Then

deg grh 0 ~ -2.

PROOF. Consider the exact sequence

By (1.3.1) HI(Ox/rt) == 0 and since HO(Ox/rt) --r HO(Oc) is onto, we have
HI(Ic/rt) == O. Hence HI(grb 0) == o. It gives us our assertion. Q.E.D.
(3.6.1) Corollary.

2: i p :S 4 + deggrß w :S 3,
p

L Wp < - deggr~ w :S 4 - L ip(l),
p p

L wp(O) + L i p(l) < 4.

(3.6.2) Example. Let f : ()(, C) --r (S, s) be a Q-Fano fiber space as in (1.2) . Then
from (3.4) it is easy to compute

(i) ip\ == i~ == 1, WPI == WP2 == (n - l)/n,
(iii) deggr~w == -2, deggrh 0 == -2,
(iii) (I(x . C) == -2/n.

9



(3.7) Corollary. Let f : (X, C) --t (5, s) be a minimal Q-Fano fiber space. Then (X, C)
contains at most three singular points.

PROOF. It follows from (3.6.1) and (3.3.1). Q.E.D.

(3.7.1) Remark. If f : (X,G) --t (8,s) is non-minimal, then for every irreducible
component Ci C C germ (X, Cd is an extremal neighborhood. By [18], results (3.6) ,
(3.6.1), (3.7) are true for (X, Cd.

4 Computations of ip and Wp

(4.1) In this section we fix the following notations. Let (X, P) be a germ of three­
dimensional terminal singularity of index m and let (C, p) C (X, P) be a germ of smooth
curve. We assurne that Pis primitive. Consider the canonical Zm-cover (XU, P~) --t (X, P)
and let CU = (e Xx Xll)red. Since P is primitive, Cll is irreducible. Then Zm natu­
rally acts on X~, Cll and on the normalization of Cll. There exists an Zm-equivariant
embedding (Xli, Pli) C (~ x ,0). Let 1> = c/J(XI, X2, X3, X4) be the equation of.... 1 , 2, 3, .-

(Xll, Pli) C (C;I ,x, ,X3,X4 , 0). Recall that we assume that wt(x, c/J) - (a, -a, b, c; c) mod m,
where (a, m) = 1, (b, m) = 1, 1 :s; a, b :::; m - 1 and c = 0 or c = 2, m = 4 (exceptional
case). For any regular function z on X Usuch that z(O, 0, 0,0) = 0 by

ord (z) E N U {oo}

we denote the order of vanishing of z on the normalization of Cll. All the numbers
ord(z) < 00 form a simigroup, which is denoted by

ord(C ll ).

Let ord(xi) = ai. Then ord(Cll) is generated by a/s. We choose the generator of Zm such
that

ai = ord(xi) == wt(Xi) mod m, if ai =1= 00.

(4.1.1) Lemma (see e. g. [2], 15.5). In notations above there exists Zm-invariant
coordinate system in l!Y such that Cll is monomial. More preciselYJ Cl! is the image 0/

t --+ (tal t a, ta3 t a4 ), , , ,

where tai = 0 i/ ai = 00.

(4.1.2) Lemma-Definition [18], 2.6. In notations (4.1) there exists Zm-invariant
coordinate system in C4 which satisfies the following conditions:
, (i) ai < 00 and (ai - m) f/. ord(C~) for all i = 1,2,3,4.

(ii) ai =wt(xd mod m for all i = 1,2,3,4.
Such coordinate system is called by norrnalized coordinate system.

(4. 2) Let things be as in (4.1) . A loeal generator of W XI is

f2 := Res( c/J-l dXl A dX2 1\ dX3 1\ dX4),

where Res is the Poincare residue map. Then we can write a IDeal generator of grß w as
IEm-invariant 7jJf2, where wt(1J') _ - wt(O) = m - b. Therefore

mwp = dim(Oc(m/\x)/(w!1)mOc (mKx).
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Finally, we have

(4.2.1) Proposition, ([17], 2.10).

mwp(O) = min{ord(7P) 17fJ =7P(XI, X 2,Xa,X4), wt(7jJ) = -wt(X1x2xaX4/</;) = m - b}.

(4.3) Let t be a loeal parameter on the normalization of C~ (cf. (4.1.1)). Then dt m is
a Ioeal generator of We. Denote by XCI (or simply I) the ideal sheaf of C~ in Cl and by
I{O} the invariant part of I. Loeal generators of grh CJ lift back to (1, (2 E I{O}. Therefore
4>1 1\ <h 1\ dt rn is a loeal generator of /\2(grh 0) ~ We. Comput_ations gives as

Therefore

Let

Finally, we have

(4.3.1) Proposition, [17]. Iford(x4) < 00, then

(4.3.2) Remark. It is easy to see that for any (I, (2, (a one has

Note that if (X, P) is not exeeptional, then <f; E I{O}. If (X, P) is exeeptional, then we
may assume that ord(x4) = 2 (cf. proof of (4.6) ) hence X4cP E Z{O}. In any ease we have

(4.3.3) Corollary. lf ord(x4) < 00, then

for some <PI, </;2, 4>3 E I{O}.

(4.3.4) Remark. By (4.1.1) we can take C~ as monomial eurve. Using (4.3.2) <f;i's may
be chosen from

where p,q,r,s E N, ap + bq =Omodm, (m - a)r + sb =Omodm.

(4.4) Lemma. For any three-dimensional terminal singularity (X, P) a general member
0/ F E 1- ]«(X,P) I is given by a seetion

'1/;0- 1 E 0XI( -fix.),

where wt('t/J) = wt(XtX2XaX4/cf;) = band 0 = Res(cf;-ldXt 1\ dX2 /\ dX3/\ dX4)' J\1oreover
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PROOF. It i8 clear that F E I- Kx I i8 given by an invariant 8ection of I- Kxll. By the
residue formula this section has form 1j;O-l, where n = Res(<,6-1dxl 1\ dX2 1\ dX3 1\ dX4)'
The rest is obvious. Q.E.D.

(~.5) Lemma. Let m = 2 and assume that wp(O) + ip(l) < 4. Then ord(Ctt ) = N (i. e.
C~ is smooth).

PROOF. Take a normalized coordinate system for X tt in c:.. ,... ,x.. such that wt(x) =
(1,1,1,0), ord(x) = (ai)' Since C is smooth, a4 = 2. But then ord(C~) is generated
by a4 = 2 and the smallest ai, for example a3' It is sufficient to show only 1 E ord(C~).

By (4.3.3) we have

8 > 2(Wp + i p) 2:: 2 - ord( X4) + [<,61, <,62, <Pa] = [4>1,4>2, <,63] 2:: L ord(zd

for some 4;i E Ii:~}, where Zi = 8<,6i/aXi. Hence ord(zi) ~ 2 for some i = 1,2,3. But since
wt(zd = m - wt(Xi) = 1, ord(zi) = 1. Thus 1 E ord(CÖ). Q.E.D.

(4.6) Lemma. Let things are as in (4.1) . Assume that (X, P) is a singularity 0/ index
4 oJexceptional senes (see (1.6.9), (ii)) andwp(O)+ip(l) < 4. Then we haue one ofthe
/ollowing

(i) ord(C~) = N (i. e. CÖ is non-singular), or
(ii) ord( C~) = (2,3).
Moreouer Wp = (4 - b)/4, except the case
(ii*) ord(C~) = (2,3), b = 3, Wp = 5/4, ip = 2.

PROOF. Suppose that ord(Ctt ) f. N, then 1 ft ord( ctt). Since C~ /71 4 is non-singular,
4 E ord(C~). But ord(xt) f. 4, by ord(xi) =wt(xi)mod4. Hence ord(xi) + ord(xj) = 4
for some i, j E {I, 2, 3,4}. It is possible only if ord(X4) = 2. Then ord (C~) is generated
by 2 and the smallest ocid k E orci(C~). Therefore ctt is planar and it is sufficient to show
only 3 E ord(c~). By (4.3.3) we have

16 > 4(ip + wp) 2:: [<,61, <,62, 4>J] 2:: Lord(zi)

for some <,6i E Ii:~}, where zi = 84>daxi. Moreover Zi are semi- invariants wi th ord (Zi) < 00

and wt (Zi) = 4 - wt(xt}. Thus ord(zt}, i = 1, 2, 3 are odd. If 3 rt ord(c~), then ord(Zi) 2: 5
for i = 1,2,3. It gives as ord(zi) = 5 for i = 1,2,3, which contradicts wt(Zi) = 4 - wt(Xi).
Therefore ord(c~) = (2,3).

Assume that Wp =f. (4 - b)/4. Then by (4.2.1) 4 - b fI. ord(C tt ). It is possible only
we have the case (2) and b = 3. In this case 2 . 4 - b = 5 E ord(C~), so Wp = .5/4,
ip ~ 2. If ip = 1, then 12 > 4( i p + wp) 2:: L ord(zi), where ord(zd + ord(z2) =0 mod 4,
ord(zt} + ord(z2) 2:: 8, ord(z3) =1 mod 4. It gives us ord(z3) = 1, a contradiction. This
proves the lemma. Q.E.D.

(4.7) Lemma (cf. [18],3.1). Assume that (X,?) is not exceptional andwp+i p < 3.
Then up to permutation Xl, X2, we haue one 0/ the Jollowing

(i) ord(C~) = N..
(ii) al = a = 2 E ord(Cd), b is odd,
(iii) ord(C tt ) is generated by al = a and a3 = b, in this case m - b E ord(C~).

PROOF. Ir m = 2, then by (4;5) , ord( C~) = N. Thus we suppose that (~~, P) is in the
main series, m ~ 3 and ai = ord(xd ~ 2 for i = 1,2,3,4. Using (4.3.3), we get

3m > m(ip + 'lUp) 2:: [<,61, 4>2, 4>3] 2:: L ord(zj)
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for some <Pi E I~~}, where Zi = 84>d8xi. Since ord(Zi) =-ord(Xi)modm, wehave

1:ord(zi) :s; 3m - b.

By (4.3.4), <Pi (i = 1,2,3) ahs the form

m aj' - 1 2 3or xi - X 4 , J - , , ,

where P, q,T, sEN, ap + bq - Omod m, (m - a)r + sb =Omoq m.
First we assume that cPi 1= xj - x:i, Vi, j ~ 3. Then

i = 1,2,3

hence 3m - b ~ L: ord(zi) = alP + aaq + a2r + aas - aa. Since alP + aaq =0 mod m,
a2T + aaS =0 mod m, we have alP + aaq ::; 2m and a2T + aaC ~ 2m. Note that we still
may permute Xl, X2, so we assume alP + aaq :::; a2r + aaS and if alP + aaq = a2T + aaS,
then P ~ T. Consider the following cases:

(4.7.1) alP + aaq = 2m, a2r + aaS = 2m, hence aa > m. But then q = S = 1, al < m,
a2 < m, al + a2 = m, (ab a2) = 1. So alP = a2r. It gives us P = a2k, q = alk for some
k E N. Thus ala2k < m = al + a2. Therefore GI = 1 or a2 = 1,. a contradiction.

(4.7.2) alP+ aaq = m, a2r + a3s = 2m, hence.alP < m, aa < m, (al,aa) = 1. If
GI + a2 ~ 2m, then a2 > m, r = 1, al + a2 = 2m. We obtain al = aaS, a contradiction
with (ab a3) = 1. Thus al +a2 = m and we have a4 = m = alP+aaq, a2 = rn-al = adp­
1) +aaq. Therefore ord(CU) is generated by ab aa and m - aa = alP+Ga( q - 1) E ord(CU).
This is case (iii).

(4.7.3) alP+aaq = m, a2r+aaS = m, then al +a2 = m, al(p-r)+mr+aa(q+S) = 2m.
It gives us r = 1, a2 = aaS, a contradiction with (aa, m) = 1.

Now we assurne that cPi = xi - X~i for some i. By ord(zi) = (m - l)ai ::; 3m - 3, we
have ai ~ 3. If ai = 3, then ord(zj) + ord(zk) ::; 3 - b::; 1, where {i,j,k} = {1,2,3}, a
contradiction with 1 rt ord(CU). Thus Gi = 2 for some i = 1,2 or 3, m is odd and then

ord(zj) +ord(zk) ::; m + 2 - b, {i,j, k} = {I, 2,3}.

In this situation ord( CU) is generated by ai = 2 and the smallest ocid integer E ord(CU).
We treat the following cases:

(4.7.4) i = 3, aa = 2 = b. Then orci(zI) + ord(z2) = m. By I?-0rmalizedness of (x),
GI = ord(z2) < m, G2 = ord(zd < m. Modulo permutation xl, X2 we may assume that GI

is odd. In this case ord(CU) is generated by aa = 2 anci al. This is case (iii).

(4.7.5) i = 1, al = a = 2, ord( CU) is generated by 2 and Ga. Then Ga < m, because
m E ord(CU). Since m - Ga is even, m - a3 E ord(CU). We get case (iii).

(4.7.6) i = 1, GI = a = 2, ord(CU) is generated by 2 and m. By ord(z2) + ord(za) ::;
m +2 - b, we have ord(zz), ord(z3) < m. Thus ord(z2), ord(za) are even and Z2 = x~rd(z:il)/2,

ord(Z3)/2 I' 'bl l'f A.._ (2+a:il)/m A.._ p (2p+a3Q)/m h
Z3=X 1 . tlSPOSSl eonYl n=XIX2-X4 ,n=X1Xa-X4 ,were
p = ord(z3)/2 and 2p +b =0 mod m. Since ord(z3) < m, one has 2p +b = m, so b is ocid.
This is case (ii).

(4.7.7) i = I, al = a = 2, ord(C tt ) is generateci by 2 and a2 = m - 2. Then, obviously,
m 2: 5. We only have to show that b is od.cl. Assume the opposite. Then b E ord( CU)
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and by narmalizedness of (x) a3 = b. From ord(z2) + ord(Z3) ~ m + 2 - b we get
ord( Z2 ), ard (Z3) < m. If bath of ord (Z2), ord(Z3) are even, then we 0 btain (ii) as above.
So assume that ard( Zj) is odd, then m - 2 :::; ard (Zj) < m + 2 - b. Thus a3 = b = 2.
Permuting Xl, X2, X3 we obtain case (iii). Q.E.D.

(4.8) Corollary (from proofs of (4.6) , (4.7». Let things be as in (4.1) . //
wp + i p < 2, then CU is non-singular.

Results of lemmas (4.6) , (4.7) may be summarized in the fallowing

(4.9) Theorem. Let things be as in (4.1). Assume that Wp + i p < 3. Then in
some (not normalized) coordinate system (x) such that wt(x) = (a, m - a, b, c), where
(a, m) = (b, m) = 1, we haue one 0/ the Jollowing cases
(PI) the main series, c = 0

ard(C~) m CU a b l p Wp (F· C)p
(Pl.l) (al) :2:2 Xl - axis 1 1,2 (m - b)/m b/rn

al = 1
(Pl.2) (a3) ~3 X3 - axis 1 '1,2 (m - 1)/m I/rn

a3 = 1
(Pl.3) (al, m) add x m _ x 2 - 2 oeld 2 (m - b)/m (m + b)/rn1 4 -

al = 2 ~3 X2 = X3 = 0
(P1.4) (a},a2) add x m -:.! _ x2 - 2 add 2 (m - b)/m (m + b)/m1 2 -

al = 2 :2:5 X3 = X4 = 0 #m-2
a2 = m - 2

(P1.5) (aI,a3) 2::5 x b _ xa - (a,b) = 1 2 (m - b)/m b/rn13-

al = a X2 = X4 = 0 m = na + ßb
a3 = b a2::1,ß2:2

(P2) the exceptional case, m = 4, c = 2, a = 1

ord(CU) CU a b I p wp (F, C)p
(P2.1) (al = 1) Xl - axlS 1 1,3 1,2 (4 - b)/4 b/4
(P2.2) (a 2 = 3, a4 = 2) x~ - x~ = Xl = X3 = 0 1 1 2 3/4 5/4

where F is a general member 0/ I - [«(X,P) I.

(4.10) Lemma. Let things be as in {4.1} . Suppose that ip = 1 and 2 < Wp < 3. Then
(X, P) is non exceptional, bE ard(Cu), and b 2:: 3.

PROOF. Assurne that b tf. ard(CU). By (4.6) , (X, P) is not exceptional. From (4.3.3), we
have

3

4m > m(ip + wp) 2:: [4>1, cP2, 1>3] = L ord(zd,
i=l

where <Pi E I{O}, Zi := 8cj;i/8xi =f:. O. Using ord(XI) + ord(X2) := Omodm, orcl(X3) =
bmod ffi, we obtain

By (4.2.1), mwp = min{ord(1/J)1 wt(1/J) = m - b} = 3m - b. Hence ord(z3) 2: 3m - b.
Thus ord(z3) = 3m - b, ord(zd + ard(z2) = m.
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By normalizedness of (x) we get ord(zt} = ord(x2), ord(z2) = ord(xt}. By our as­
sumption ord(x3) 2 m + b. Therefore 4>1, cP2 depend only on XI, X2, X4 and obviously
4>1 = 4>"l = (Xl X2 - X4)' But then [4>1,4>2, 4>3] = 00, a contradiction. Therefore b E ord(CÖ).
If b :::; 2, then 2m - b E ord(ctt) and. Wp ~ 2 - blm, a contradiction. This proves lemma.
Q.E.D.

(4.11) Lemma. Let things be as in (4.1) . Suppose that i p ~ 2, 1 < Wp < 2, b ~ 2.
Then ip = 2, m is odd, b = 2, b E ord( C~) and ord(Cd) = (2, m).

PROOF. Assurne that b ~ ord( Cd). By (4.5) , (4.6) (X, P) is not exceptional and m 2:: 3.
By (4.2.1), mwp = min{ord(1j;)I wt(1jJ) = m - b} = 2m - b. Hence 2m - b E ord(CU) and
m - b rt ord(CU). From (4.3.3) we have

3

4m > m(ip +wp) 2:: [4>1,4>2,4>3] = Lord(zi)' 4>i E X{O}, Zi:= 84>i/8xi i- O.
i=l

Since
ord(zd +ord(z2) =0 mod m, ord(z3) ~ 2m - b,

it is easy to see

Hence
2m - b = ord(z3), ord(zt} + ord(z2) ~ 2m.

We can choose <Pi'S from the following invariants:

m Clj' 1 2 3Xj - X 4 , J = , , .

Consider two cases:
(1) ord(zd + ord(z2) = m. Then ord(zd = m - a, ord(z2) = a, hence ord(zt} =

ord(x2) = m - a, ord(z2) = ord(xt} = a by normalizedness of (x). By our assumptions
b rt ord(CU) and m - b rt. ord(Cu}. So ord(CU) is generated by ord(zt} = ord(x2) = m - a
and ord(z2) = ord(xt} = a. Since (a,m - a) = 1, we have Zl = X2, Z2 = Xl' It gives as
4>1 = <h = XIX2 - X4· This is impossible.

(2) ord(zt}+ord(z2) = 2m. Permute Xl, X2 such that ord(zd ~ ord(z2), then ord(zt} =

d( ) S b A... (al+a'1)/m Wm - a, ar Z2 = m + a. 0, as a ove, a2 = m - a, Zl = X2, \f"l = XlX2 - X 4 . e
have the following possibilities for Z2 = fJ4>2/8x2:

Z2 = X;-lx~, where (r - I)(m - a) +sa3 = m + a or
Z2 = X~-l, where (m - a)(m -1) = m + a.

Eut if (r - 1) (m - a) + sa3 = m + a, then since a3 2 m + b, we have s = 1, a3 = m + b,
m - b > a - b = (r - l)(m - 2), m - b = r(m - a) E ord(Cd), a contradiction with our
assumption. Therefore (m - a)(m - 1) = m + a, then a = m - 2, m - a = 2 E ord(CU)
and m is add. Since m - b rt. ord( C~), balsa is even. Hence b E ord( CU).

Now it is easy to see that b =f. 1. Suppose b = 2. Then m is odd and ord( CU) is
generated by 2 and the smallest odd k E ord( Cd). Since m - 2 rt ord(CU), k = m. Again
from 4m - 2 ~ I: ord Zi we have ord Zl + ord Z2 = m Of 2m. But if ord(zd + ord Z2 = m,
then k < m. Thus ord Zl +ord =2 = 2m, m > ard Zl = a2 = m - a is even, ord Z2 = m +a,
a is add. Hence a rt. ord(CU), al = n1. + a. This proves the lemma. Q.E.D.
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5 Primitive case

(5.1) Lemma. Let f : (X, C) -t (5, s) be a minimal Q-Fano fiber space with

two-dimensional non-singular base, let PI, P2, ... ,Pk E X be all the points 01 indices

ml , m2, ... , mk > 1 and let m = l.c.m.(mlm2··· mk) be the global index 01 X. Then
(i) X has no imprimitive points;

(ii) k ~ 2;
(iii) if k = 2, then (mI, m2) = 1;
(iv) (-Kx . C) = J/m, where J= 1 or 2.

PROOF. (i) Assume that P E X is an imprimitive point. Then by (2.5) there exists an
etale in codimension cyclic cover Xb -t X. By (2.9) we obtain an etale in codimension
i cover Sb --? 5. This is impossible because 5 is smooth.

(ii) It follows from (2.11) .
(iii) Assume for example that k = 2. The same arguments as in (i) shows that

(ml,m2) = 1. Since PI, P2 are primitive, by (2.4), we have (D· C) = 1/mlm2 for same
D E CI"C(X) ~ Z. Obviously, (-Kx . C) = J/mlm2 for same J E Z. Hence -Kx = <5D.
Let L be a general fiber of f. Then (-Kx . L) = 2, therefore (D . L) = 2/0. But (D . L)
is an integer, so 0 = 1 or 2. Q.E.D.

(5.1.1) Remark. If (-Kx . C) = 21m, then -f(x = 2D for some D E Cl"C(X). In this
case equality - Kx = 2D holds in CI"C(X, P;) for any points Pi of index mi > 1. Since
-I<x is a generator of CI"C(X, Pd ~ Zm;, we obtain (2, md = 1. Therefore (2, m) = 1 in
this case.

(5.1.2) Corollary. Let f : (X, C) -t (5, s) be a minimallocally primitive Q-Fano fiber

space. Assume that (5, s) is singular and let n be topological index 01 (5, s). Then X
contains exactly two singular points PI, P2 01 indices> 1 and at most one point 01 index

1. 11 index 01 (X, Pd is equal to mi, (i = 1,2), then

(i) (mh m2) = n,
(ii) (-Kx . C) = onlmlffi2) where 8 = 1 or 2.

Moreover 0 = 2 only il both 01 ml/n and m2/n are odd.

(5.2) Theorem. Let f : (X, C) -r (5, s) be a minimal Q-Fano fiber space. Assume that
(X, C) is locally primitive. Then

(0) (I(x' C) = olm, where m is global index 01 (X, C), J = 1 or 2.

(I) deg gr~ w 2: -2,-

(II) 11 deg grß w = -2, then we have one 01 the following

(Ila) f : (X, C) -r (5, s) is as in example (1.2) .

(IIb) X contains only one singular point P 010dd index m, i p = 2, Wp = 2 - 21m.
In this case (S, s) is non-singular and a general member 01 1 - I{x I does not

contain C and has only Du Val singularity at P.

(III) 11 deggrß w = -1) then we have one 01 the following

(lIla) X contains three singula1' points PI, P2, Pa 01 indices ml, m2 and ma = 1 with

(ml,m2) = 1. In this case ip\ = i~ = i P3 = I, WPl + WP2 = 1 + (l\x . C) < 1,
and (5, s) is non-singular.
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(IIIb) X contains three singular points PI, P2 , P3 01 indices m I ~ m2 = 2 and

ffi3 = 1, ml is even. In this case m = ml, a= 1, i pt =::: i p• = ip3 = 1,
w~ = 1/2, WPl = 1/2 - I/mI, wPa = 0, and (5,s) is Du Val 01 type Al'
Furthermore (X, P2) is a cyclic quotient singularity of type ~(1, 1,1) and a
general member 01 1 - 2I{x 1 does not contain C (and has only log-terminal
singularity at P2).

(IIIc) X contains two singular points PI, P2 01 indices ml ~ m2 > 1. In this case

i p1 + ip. ~ 3, WPl +WP. = 1 + (Kx . C) < 1. If n := (mb m'l), then (S, s) is a
cyclic quotient singularity of index n.

(IIId) X contains two singular points PI, P2 01 indices ml and m2 = 1. In this case

iPI +ip• ~3, m=ml, WPl = I-alml' and(S,s) is non-singular.

(IIIe) X contains only one singular point P of index m with i p ~ 3, Wp = 1 - 0Im
In this case (S, s) is non-singular.

PROOF. (0) is the same as (5.1.2). (I) By (3.6) d ~ 4 - LP i p ~ 3. Assurne that
d = 3, then X contains only one singular point P with i p =::: 1. By (5.1.2), (5.1) (S, s) is
non-singular and (Kx . C) = -olm, where m is index of (X, P), 0 = 1 or 2. Then from
(3.5) we have Wp = 3 - olm< 3. Therefore m > 2 and b = 8 (see (4.2.1)). Lemma
(4.10) gives us a contradiction.

(11) First assume that the only singular point of X is P. By (5.1.2), (5.1) (S, s) is
non-singular and (Kx . C) = -J/m, where m is index of (X, P), J =::: 1 or 2. Then from
(3.5) we have wp = 2 - J/m < 2. Therefore m > 2 and b = J (see (4.2.1)). Mareover
from (4.11) we have b = 2, m is add, ip = 2 and ord(Cd) = (2, m). Let F E 1- K(x,p)1be
a general member. Then Fn C = {P} and F +!(x is Cartier. By (4.4) , (F· C)p = 21m.
It gives us ((F + Kx ) . C) = 0, hence F E 1- [(x I. It follows from (1.6.4), then F has
only Du Val singularity at P.

Now we consider the case when X has more then one singular point. Then ~ ip ~ 2,
so X contains exactly two singular points PI, P2 with i pt = i~ = 1. Let mh m2
their indices and m = mlm2/(ml, m2) be global index of X. Then from (3.5) we have
wP1 +WPJ =::: 2 + (Kx . C) =::: 2 - J/m < 2. Hence (X, Pd :> (C, Pd, i = 1,2 are su~h as
in (4.9) . In particular WPl' WP2 < 1 hence wP1 , w~ > 0 and PI, P2 are non-Gorenstein.
Take general divisors Fi E 1- [{(X,P;) 1(i = 1,2). We claim that F I +F2 E 1- !{x I. Indeed
it is sufficient to show only ((FI + F2 + K x ) . C) = O. Eut

((FI + F2 +K x ) . C) = (( FI • C)P + W Pt - 1) + (( F2 • C)p +w p. - 1).

By (4.9) , in the last equation both of terms are zero.
Therefore a general member FI + F2 E 1 - Kx 1 does not contain C and has only

Du Val singularities. Let L be a general fiber of f : X -+ S. Since (-l<x . L) = 2,
(F} . L) = (F2 . L) = 1. Hence (FI , Pd ~ (F2 , P2) ~ (S, s) are Du Val of type An-I. By
(5.1.2), (1.6.7) n ;::: mi ;::: n Thus ml = m2 = n and the topological cover XCI Sb --+ XIS
gives us a conic bundle fb : ~X"b --+ Sb. Moreover Fi lifts back to Zn-invariant section Fi

b .

of Jb. Therefore fb : Xb --+ Sb is Zn-isomorphie to pi X C2 --+ Cl. After change of the
coordinate system if necessary we obtain a Q-Fano fiber space as in (1.2) .

(111) Let deg gr~ w = -1. Then L ip ::; 3, L lUp = 1 +([(x' C). First suppose that X
contains three singular points PI, P2, P3 of indices ml, m2, m3. By (2.11) 1 one of mi's, say
m3 is equal to 1. Let n = (mI, m2) be tapological index of (S, s). Consider the topological
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Zn-cover (2.7) . Then the fiber Cb is irreducible and the cover g : C~ ~ pI -t C ~ pI
is ramified only over two points PI, Pz. Hence g-I (Pi) is a point pi

b for i = 1,2 and
g-1(P3) = {P~(l), ... , P~(n)}. Since all the P~(i)'s are singular, by (3.7) , we have n ~ 3.
If n = 1, then we have case (IIIa). .

Let n = 2. Then (Xb, Cb) contains two singular points P~(1), P~(2), hence at least
one of P~ or P~ is non-singular. So we mayassume that (Xb, P~) is non-singular and
(X, P2) is a cyclic quotient singularity. This is case (IIlb). Points PI, P2 may be only
of types (PLI), (P1.2) or (P2.1) of theorem (4.9) . In particular, ord(Ctt) = N. As in
case (Il) take a general divisor DEI - 2K(X,~) I. Since w P2 < 1/2, in notations (4.1)
we have b > m/2. Similar to (4.4) (D· C)~ = (2b2 - mz)/mz = 1 - 2w~. The

divisor D + 2Kx on X is Cartier, because index of PI is equal to 2. On the other hand
((D + 2I{x)' C) = 1 - 2w~ + 2(WPl + W~ - 1) = O. Hence D E 1- 2I{x I.

Now consider the case n = 3. Then (Xb, Cb) contains three singular points P~(l),

P~(2), P~(3). In this case (X, Pd and (X, Pz) are cyclic quotient singularities. Hence,
by (1.4) 1 jb : (Xb, Cb) -+ (Sb, sb) is a conic bundle with irreducible fiber Cb ~ }PI. This
cootradicts the following

(5.2.1) Lemma. Let f : (X, C) -t (Cl, 0) be a minimal conic bundle with only isolated
singularities. Then (X, C) contains at most two singular points.

PROOF. Assume that (X, C) contains three singular points. Then scheme-theoretical fiber
/-1(0) is a double line. Hence in some coordinate system (xo, Xl, X2; u, v) in p2 x (Cl, 0)
X is given by the equation

X~ + cjJ(u, v)xi + '!/J(u,.v )XlX2 + ((u, v )x~ = 0,

where cjJ(O, 0) = 7jJ(0, 0) = ((0,0) = 0. Moreover we may assume that singular points are
(xo, Xl, X2; u, v) = (0, 1,0; 0, 0), (0,0, 1; 0,0) and (0, 1, 1; 0, 0). But then easy computations
gIves us

fJcjJ(O,O)/fJu = fJcP(O,O)/fJv = 87jJ(0,O)/8u = 87jJ(O,0)/fJv = fJ((0,O)/8u = 8((0,O)/fJv = o.

Therefore C C Sing(X), a contradiction. Q.E.D.
The rest assertions of the theorem is ouly division ioto cases. Here we use (5.1.2),

(2.8) and (2.8.1). Q.E.D.

(5.3) Proposition. Let j : (.){, C) -+ (S, s) be a minimallocally primitive Q-Fano fiber
space such as in (S.!!) (IIIc). Assume thai ip1 = i~ == 1, wp\ < 1/2 and wP4 < 1/2.
Then

(i) a general member 0/ I - 2[{x 1 does not contain C (and has only log-terminal sin-
9ularities),

(ii) / : (X, C) -+ (S, s) is a quotient 0/ the minimal conic bundle jb : (Xb, Cb) -+
(Sb, sb) ~ (Cl, 0) by Zn, where ihe action Zn on CZ - {O} is /ree.

PROOF. (i) As in (5.2) (Il) take general divisors Fi E 1 -:- 2I{(x,Pdl. We claim that
F l + F2 E I - 2J(x I. It is sufficient to show only ((Fl + Fz + 2I(x) . C) = 0. Note that
by (4.9) both of (X, Pd and (.X",Pz) are of type (P1.I), (P1.2) or (P2.I). In particular
for corresponding bi = wt(X3) we have bi == (1 - wp;)mi > mil2. Similar to (4.4) l

(Fi . C) == (2bi - mi)/mi == 1 - wp" because ord(Ci~) == N. It now follows that ,

((Fl + F2 + 2I{x) . C) = ((FI . C) + wp\ - 1) + ((Fz . C) + wP4 - 1) = O.
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This proves (i).
(ii) Let n = (mb m2)' By (2.5) , (2.9) , it is sufficient to prove only ml = m2 = n.

Let PI + F2 E 1- 2/{x I be a general member, where Fi E 1- 2K(x,Pdl and let L be a
general fiber of I. We have ((F1 + F2 ) • L) = (-2I(x . L) = 4. Hence up to permutation
(F1 • L) = (F2 • L) = 2, or (F1 • L) = 3(F2 • L) = 3. Let üs consider these cases.

CASE (1). Then (F1 . C) = (F2 . C) = (-!(x . C) = on/m1 m 2' Eut (Pi' C) = kdmi'
where ki E N. It gives us k1(m2/n) = k2(ml/n) = o. Hese mi # n only if 0 = 2 and
mi/n = 2, a eontradietion with (5.1.2).

CASE (2). In this ease (F2,P2) ~ (S,s). In particular Itop(F2 ,P2) = Itop(S,s) = n.
Hence, by (1.6.7), (X, P2) is a cyc1ic quotient singulari ty of index n = m2. As in case
(1) we have (F2 . C) = kin, (F1 . C) = 3k/n, (-!(x . C) = 2k/n = o/m1' We obtain
2k(m1/n) = 0, i. e. 0 = 2, m1 = m2 = n. This proves the proposition. Q.E.D.

(5.4) Example. Consider the following hypersurfaee in IP;,y,Z x ~,v:

Define an action of Zn on X b as

( ) (
a -1 -1 )X,y,z,U,V -t c X,€ y,Z,€'U,€ V,

where 2a + 1 = n, c = exp(21ri/n). Then f : Xb/Zn -t Cl /Zn is a Q-Fano fiber spaee.
The singular locus of Xb/71n consist of two cyc1ic quotient points of index n. The point
(S, s) is Du Val of type An-I.

(5.4.1) Computations. Consider the open set {z # O}. The Ioeal coordinates are
(tl = x/z,t2 = y/z,u). Let n = (1/td(dt 1 /\ dt2 Ä du). Since n E Wx a is Zn-invariant,
n-l defines a general element F E 1 - [(xl. It is easy to see that F contains central
fiber C = 1-1 (O)red and has two singular points of type An-I. Similar to (3.4) we may
eompute

(i) (-f(x . C) ='1/n,
(ii) i Pt (1) = i P2 ( 1) = 1,
(iii) WP1 (0) = a/n wp~(O) = (n - a - 1)/17:,
(iv) deggrßw = -1.

Therefore this is an example of Q-Fano fiber space as in (5.2) (IIIc).
Now we shall study locally primitive Q-Fano fiber spaces under the assumption the

existence of good member in I - !(x I·

(5.5) Proposition. Let f : (X, C) --t (S, s) be a minimallocally primitive Q-Fano fiber
space. Assume that a general member of 1- [(x 1has only Du Val singularities. Then one
of the following hold:

(i) (S, s) is non-singula r,

(ii) (S,s) is of type All

(iii) f : (X, C) -t (S, s) is quotient of a non-singular conic bundle fb : (Xb, Cb) -t (Sb, sb)
with irreducible Cb by the group Zm, where m ~ 3 and the action Zm on (Sb: sb) ~
(C2 , 0) is free in codimension 1. A1oreover (S, s) has type Am - 1 in this case.
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PROOF. Let F E I- K x I be a general member. If C rt F, then we have (5.2) (Ha). So
we assume that F :) C and n := !top(S, 8) ;::: 3. By (5.2) X contains exactly two singular
points P1, P2 of indices ml, m2 with (ml' m2) = n. Since -I{x . L = 2, where L is a
general fiber of f, the restrietion flF : F ~ 8 is generically finite of degree 2. Let

IF: (P, C)~ (F', PI) Ä (8,8)

be the Stein factorization, where p' is a point. Then 11 : (F, C) ~ (F' , PI) is bimeromor­
phic and 12 : (F', PI) -+ (8,8) is finite of degree 2. By the adjunction formula, !{F = O.
Therefore the morphism 11 is crepant and (F' , PI) is Du Val singularity. Thus there ex­
ists the. common minimal resolution (F, CU EI U ... U Er) -+ (F, C) -t (F', PI), where
EI, ... ,Er are exceptional divisors. Let r = r( F/ F') be a dual graph for this resolution.
Denote vertex corresponding C (resp. Ei) by • (resp. 0). Then white vertices form at
least two connected graphs corresponding singular points of (F, C). Note that graphs
f i C r for points (F, PI)' (F, P1 ) has at least n - 1 vertices, because mi ?: n and by
(1.6.7). From (1.5.2) keeping in mind that (S,8) is a cyclic quotient singularity we get
the followi ng cases for (F/, PI) -+ (S, 8):

( )
2'1

1 E6 ~ A2 , n = 3,

(2) A1k+l 2:4 A k , n = k + 1,
2:1 1(3) A'Jk --t 2k+l (k, 2k - 1), n = 2k + 1

2'1
(4) A k -=--r A 2k+h n = 2k +1,

2:1 1(5)' AZk+l --t 4k+4 (2k + 1, 2k + 1), n = 4k +4.

Let 7r tt : (X~, ~tt) -+ (X, Pd, i = 1,2 be the canonical cover and F:tt := 7T tt -
1F. Then

Fl "V - K(X ~ ,pl) is a Cartier divisor, hence it is normal and (Fi
d, pl) is a Du Val point. Thus

we have etale in eodimension 1 Zmj-covers 7r~ : (F!, Pi
tt

) -+ (F, Pd of Du Val singularities,
where (mI, mz) = n.

Consider also the topological cover

XQ ...!!....:, X

t fb t f

Sb ~ S

It is sufficient to prove that jb : Xb -t Sb is anon-singular conie bundle.
CASE (1). (F', P') = E6 , (8,s) = A2 , n = 3, mi = 3m~. We have only one possibility

for r.
o

o - 0 - • - 0 - 0

Then (F, piJ is type A 2 , ml = mz = 3 and (Xtt , pj
tt

) are non-singular (see (1.5.3)). But
then (...Y"b, Pj ) is non-singular tao. We obtain case (iii). .

CASE (2). (F', PI) = A2k+1 , (S, s) = Ak , n = k + 1, mj = (k + l)mi ;:: k + 1. Then r
IS

0- 0 - ... -0 - • - 0-' .. -0
" v ,; "4ir'-I

11 12
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Whence (F, Pi) is of type A,i , where li < 2k. On the other hand Li +1 ~ mi = (k + l)m~.

Hence Li = k, (F, Pi) is type Ak and by (1.5.3) (Xtl, ptl) = (Xd, P~) is non-singular. As in
(1) we get case (iii).

Similarly cases (3), (4), (5), (6) are impossible, by (1.5.3). This proves our proposition.
Q.E.D.

6 Some results in imprimitive case

(6.1) Proposition. Let / : (X, C) -t (5, s) be a minimal Q-Fano fiber space. Assume
that (X, C) contains an imprimitive point P 0/ index m and splitting degree e (i. e. CP
has exactly e irreducibLe components). Then

(i) The topological cover faetors through splitting cover;

-ÄX
-1-1
S

Hence n {topological index 0/ (5, s)) is divisible bye.

(ii) X contains no another imprimitive points and at most two primitive points, one 0/
them has index 1.

(iii) g-l(P) (resp. g~-\P)) is only one point pb (resp. P~)J all the components 0/ Cb :=

(g-l(C))red (resp. (g~-\C))red) pass through pb (resp. P~). In particuLar m is
divisible by n and by e.

(iv) I/ e ~ 3J then (Xb, pb) and (X~, P~) have index> l.

(v) deg gr~ w = -1.

(vi) (!(x' C) = ([(x~ . C~( i)) > -1, where Cb( i) is an irreducible component 0/ C~ .

(vii) Wp = wp~(i)' where P~(i) = pb is considered as a point 0/ (X~, C~(i)).

PROOF. (i), (ii), (iii) immediately follows from (2.5) and (2.10) . To prove (iv) consider
the extremal neighborhood

(resp.

where CJ (resp. eS) are irreducible components of Cb (resp. C~). Since Uj;iiCJ and Uj;iiC;
are reducible, points (Xb, nj;iiCJ) = (~b, pb) and (X~, nj;iiC}) ~ (XP, P~) has indices> 1
by [18), 1.15.

(v) The splitting cover g~ : (X b, C~) -t (X, C) induces an isomorphism Cb(i) ~ C ~

pI, where Cb(i) is an irreducible component of C~. Hence we have the map

By [18], 2.3.2, gr~'(i) w ~ 0C'(i)( -1). Therefore grß w ~ Oc( -1).
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(vi) n follows from Kx~ = g~·(I(x).

(vii) We have

Wp + L wQ = 1 + (Kx . C) = 1 + (KX~(i) . C~(i) = wp~(i) + L wQ~(i)·
Q#P Q~(i);eP~

Since g~(XP, C~(i)) --+ (X, C) is an isomorphism outside P~(i), for Q~(i) = g~(Q) one has
the equality wQ = wQ~(i)' Whence Wp = wp~(i)' This proves the proposition. Q.E.D.

The following ia an easy consequence of the classification of extremal neighborhoods of
index 2 [13].

(6.2) Proposition. Let f : (X, C) --+ (8, s) be a Q-Fano fiber space. Assume that X
has only points 01 index one and two (we do not assume that C is irreducible). Then we
haue one 01 the following:

(i) I: (X, C) --+ (S, s) ~ (C\ 0) is a conic bundle.

(ii) 1 : (X, C) --+ (S, s) is a quotient oj a conic bundle f : (X~, Cb) --+ (Sb, sb) ~ (C2, 0)
by Z2, where the action Z2 on C2 - {O} is jree.

(iii) (8, s) ~ (C2, 0), X has a unique point, say P, 01 index two, C = L: Ci has at most
jour components, they all pass through P. Moreover in this case (-Kx ·Ci ) = 1/2 for
each irreducible component Ci C C and for the scheme-theoretical fiber Z := 1-1 (s)
we have

(iiia) Z _ 4C, C is irreducible,

(iiib) Z =2C = 2(C1 + O2 ),

(iiic) Z =Cl + 3C2 , C = Cl + C2 ,

(iiid) Z =Cl + C2 +203 , C = Cl +C2 + 0 3 , or

(iiie) Z == C = Cl + O2 + 0 3 +0 4 •

PROOF. Assume that (S, s) ~ ((:2,0) (is non-singular) and f : (X, C) ~ (8, s) is not a
conie bundle. Let Z := 1-1 (s) be the scheme-theoretieal fiber of f. Then Z == L>.}iCi,
where ai E Pi and C = L Ci.

From lemma (1.4.1) we have 2 = (-Kx · Z) = Ln(-Kx · Ci)' Thus the number of
components is at most 4. If C is irreducible, then X eontains a unique point of index 2
by (5.1.2). If 0 has 3 or 4 components, then (X, Ci U Cj ) is an extremal neighborhood for
any Ci, Cj C C such that Ci n Cj f:. 0. In this case by [13], 4.7 Ci n Cj is the only point
of index 2. It gives a.s case (iii). Consider the case C = Cl + O2 and let Cl n C2 = {P}.
Again by [13],4.7 any of Cl, C2 contains at most one point of index 2. If P has index 2,
then we obtain ease (iii), so assurne that (X, P) is Gorenstein. Let PI E CI, PI E Cl are
points of index 2, Pi =I P. Then by [18], 7.3 general members Fi E 1- !((x,pdl, i = 1,2
are general members of 1- !(P:,Ci)I with (Fi · Cd = 1/2. Therefore F1 + F2 E 1- K(x.c) I·
But then (Fi , Pd ~ (S, S), a eontradiction. The case when only one of (X, Cd, (X, C2 )

contains point of index 2 is treated by the similar way.
Now we assume that (S, s) is singular. Consider the topological cover

X b ~ X
J. jb J. J

Sb ~ S
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If Xb is Gorenstein, then we have case (ii). In the opposite case fb : Xb ~ Sb is such as in
(iii). Then point pb of index 2 is Zrinvariant. Hence g(pb) has index> 2, a contradiction.
Q.E.D.

(6.2.1) Example. Let V = Vl C p6 be a projective cone over the Veronese surface
F = F4

2 C jps with the vertex 0 and let Pb"" P4 E V be points such that (Pt, . .. ,P4) =
1P3 =j O. A unique singular point of V is 0, it is cyclic quotient singularity of type
~(1, 1, 1). Consider the projection p : V - - ~r2 from (PI" .. , P4) = jp3. Denote by
s E jp2 the image of O. The resolution of the base locus af p is

where X ~ V is the blow-up of pI, ... , P4 • Fibers of X -+ jp2 are strict transforms of
V np4, hence a general fiber is r 1. The fiber /-1 (8) is the union of four IP I'S meeting in the
point 0':= 0-- 1(0) (af type ~(1,1,1)). Let 1-1(8) = LI U ... U L4. Easy computations
gives us -2Kv = Ov(5), thus we have (-I(x . Li) = (o-*(-Kv) . Li) - (2E i • Li) =
1/2(Ov (5) . 0- ( Ld) - 2 = 1/2 > 0, where Ei is the exceptional divisor over Pi. Therefore
1 : (X, LI U ... U L4 ) -+ (P2, 8) is a Q-Fano fiber space with non-singular base and a
unique singular point of index 2.

(6.3) Proposition. Let I : (X, C) ~ (5,8) be a minimallQ-Fano fiber space with
an imprimitive point P. A8sume that a general member F E I - !(x I has only Du Val
singularities. Then we have one of the following

(i) (S, s) is Du Val 01 type At, or
(ii) (S, s) is Du Val o[ type A3 , in this case (X, C) has a unique cyclic quotient singu-.

larity P of index 8 and has no another points 01 index> 1, splitting degree 01 (X, C) is
equal ta 4.

PROOF. Let P be an imprimitive point of index m and splitting degree e. It follows from
(5.1.2) that (5, s) is singular. Let n = [top (S, s) be topological index of the base. We
assume that n > 2 (otherwise we have case (i). Remember that m is divisible by n and n
is divisible by e (see (6.1) ). Consider the topological cover

x b --4 X
+jb +j

Sb ~ S

Then g-l(P) is one point, say P~, Cb := (g-l(C))red is reducible, CIl = Li=l Gib. Moreover
pb E C~ für all i.

(6.4) First we assume that G rt. F. Since -f\x . L = 2, where L is a general fiber of f,
the restriction flF : F -+ S is finite of degree 2. Ir C n F is two point P, Pb then we can
assume that F = Fa + PI, where Fo :3 P, F1 3 PI. But then (Fa, P) ~ (Fb Pd ~ (S, s)
are Du Val of type An-I. Since pb := g-l(F) E 1- [(xl, as above, we see that Fb has two
connected components F~ := g-l(Fo), F~ := g-l(Ft}. But then F1

b ~ pb and heuce F1
q

intersects only one component of Cb, because we consider germs (X, C), ()[b, Gb). This
contradicts the fact that Zn transitively acts on {CJ~}'

Now we assume that CnF is only one point P. Since P is a unique point of index> 1,
the action G on Gb is free outside pb. In particular, the number of components of Cb is
divisible by n, so n = e. Thus if n = 2 and (Xb, pb) has index 1, then we have the case (i).
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So we assume the opposite. From (1.5.2) we get the following cases for (P, P) -+ (S, s) as
in (5.5) :

(1) E6 24A2 , n = 3,
( )

2'12 A2k+1~Ak, n==k+l,
2:1 1

(3) A2k -+ 2k+1 (k, 2k - 1), n == 2k + 1

( )
2'1

4 Ak -=..:..:.r A2k+1, n == 2k + 1,
2:1 1

(5) A 2k+ 1 -+ 4k+4 (2k + 1, 2k + 1), n == 4k + 4.

Let 7r u : (X~, PU) -+ (X, P) be the canonical cover and FU :== 7r U-
1F. Then FU ,......, -]«(XI,PI)

is a Cartier divisor, hence it is normal and (FU, PU) is a Du Val point. Thus we have etale
in codimension 1 Z rn-cover 1I'U : (PU, PU) -+ (F, P) of Du Val singulari ties, where m 2:: n.
By (1.5.3), cases (4), (5) are impossible and (F, P) from (3) admits only cover by non­
singular (FU, Pd) of degree n == m = 2k +1. But then (Xd, Pd) == (XQ 1 PQ) is a non-singular
point. Then /b : (Xb, eb) -+ (Sb, sb) is a conic bundle and eb has only two components.
Hence 2k + 1 == e == n == 2, a contradiction. In case (1) (F, P) == Ee admits only cydic
cover D4 2:4 Ee. Then m ==' n == e == 3 and fQ : (Xb, eb) == (X~, e~) -+ (SQ, sb) is a conic
bundle. But in this case eb == e~ has only two components, a contradiction.

Finally, consider case (2). If (XQ, PQ) has index 1, then, as above, eb has only two
components, so n = e == 2, we get case (i) of our theorem. Eut if (Xb, pb) has index m > 1,

then m > n :::: k + 1 and by (1.5.3) (FU, pd) ~ (F, P) is A o 2k+)=1 A2k+ 1, m == 2k + 2.
Then index of (Xb, PQ) is equal to m/n == 2, (XU, Pd) is non-singular, hence (Xb, pb) is a
cyclic quotient singularity of type !(l, 1, 1). Therefore /b : (Xb, eb) -+ (Sb, sb) is either
as in (6.2) , (iiib), or (6.2) (iiie) (since Zn permutes Ci, multiplicities of Ci in Z are the
same). Thus n == e == 2 or 4. We obtain cases (i) , (ii) of our theorem.

(6.5) Now we assume that C c F. As in (5.5) consider the Stein factorization

fF: (F,C) Ä (F',P') ~ (S,s),

where P' is a point. Then (F' , PI) is Du Val, /1 : (F, C) -+ (F' , PI) is bimeromorphic
crepant morphism, and /2 : (F' , PI) -+ (S, s) is finite of degree 2. For /2 : (F' , PI) -+ (S, s)
we have the same possibilities as for (F, P) -+ (S; s) in (6.4) . Let us consider these cases.
We shall draw graph r for /1 : (F, C) -+ (F', P') as in (5.5) .

CASE (1). (PI, PI) == E6 , (S,s) == A2 , n == e == 3, m = 3mQ, (Xb, P~) is not Gorenstein
(because e > 2)

o

• - 0 - 0 - 0 - 0

o

0-. - 0 - 0 - 0

But points Ds, Al, and A4 have 00 etale in codimension 1 cydic covers of degree m. = 3mb•

o

o - 0 - • - 0 - 0

Then (F, P) is type A2 and C\,d, P~) = (Xb, pb) is non-singular. Hut eb has three com-
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ponents, a contradiction wi th (6.1) .

•
o - 0 - 0 - 0 - 0

Then (F, P) is type A5 and it is a unique singular point on C. As above we obtain that
(Xb, Pb) has index 2, hence fb : (Xb; Cb) -+ (Sb, sb) is such as in (6.2) (iiid). This is
impossible, since Za permutes C~.

CASE (2). (F' ,P') == A2k+b (5,5) = Ak , n == k +1, m == (k + l)mb2: k + 1.

0-0-" '-0-.-0-" '-0
.... y ,; "4P'-I

I r

x2 -+ y2 + Z
2<p(u, v) = 0,

where {<jJ( u, v) == O} C C'2 has an isolated singularity in 0 and </;( u, v) has only monomials
of even degree. Denote by fb : Xb -+ Cl the natural projection. Then Xb has only one
singular point pb = (x == y == u = v = 0, Z == 1) on p-l (0). Define the action of G == Z2
on Xb and Cl:

(x,y,z,u,v) -+ (-x,y,z, -u,-v).

Set X = Xb/G, S = (J /G. The only fixed point on Xb is pb. If (Xb, pb)/G is terminal,
then f : X -+ S is a Q-Fano fiber space. The point PQ gives us a unique imprimitive
point P E X of index 2. The surface 5 has Du Val singularity of type Al in O. Consider
the following cases for <p(u, v):

(1) <jJ(u, v) == u 2 + v2k
;

(2) <jJ(u, v) E m~vC{u,v}.

Then by [14] (X, P) is terminal and has type cA/2 and cAx/2, respectively. Thus we
have examples of Q-Fano fiber spaces as in (6.3) , (i).

(6.7) Example. Let things be as in example (6.2.1). Then the Veronese surface
Fl C jp5 is the iIl1age of

Then (F, P) i8 of type Al, where 1< 2k. On the other hand 1+1 ~ m ::= (k+ l)mb• Hence
1== k, (F, P) is type Ak and (Xb, pb) = (XÖ, PÖ) is non-singular. By (6.1) Ob has exactly
two components C~, C~. If k == 1, then (X, C) contains only points of index 1 or 2, so
by (6.2) we have case (i). Thus we assume that k > 1. Then C~ and C~ are invariant
under the action of subgroup Zk+lj2 C Zk+l' Therefore there exist fixed points R~ E C~,

~ #- pb. Thus the point R :== g(R~) = g(m) E X has index> 1. Since 1+ r = 2k,
we have r == k and (F, R) is of type Ak. Moreover we may assume that (Xb, Ob) is not
Gorenstein, so (Xb, ~), (Xb, R~) has (the same) index ffio > 1 and (Xb, Ob) contains no
another points of index> 1. But then index of (X, R) is mo(k + 1)/2 ~ k + 1. Hence
mo = 2, (Xb, Ob) has two points of index 2, a contradiction with (6.2) .

As in (6.4) cases (5), (4), (3) are impossible. Q.E.D.

(6.6) Example. Let Xb be a hypersurface in 1P;'lI'Z x ~,v, defined by the following
equation:

Define the action of Zs on p2 and Fl:

(x, y, z) -t (ex, e-Iy, e3z),
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where e := exp(2rrij8). Then we can take points Pi EVas

PI = q(1, 1, 1), D (2 -2 6)r3 = q e ,e ,e ,

Since points (1, 1, 1), (e, c:- I
, c:3 ), (c: 2

, c:-2 ,c:6
), (c:3 , c:-3

, c: 9
) are in general position, their

images Pt, ... , P4 generates jp3 such that jp3 n F:t = {PI, .. ' 1 P4}' Then the induced
action Z4 on V can be lifted on the Q-Fano fiber space f : (X, LI U ... u L4 ) -+ (r2

, s).
I t is easy to see that the action Z4 on V C Ir6 looks like

Projection p : (V,O)- - -+(P2, s) gives us the action of Z4 on (P2
, s) (in affine neigh­

borhood of s):
(Yb Y2) -t (iYb -iY2)'

Thus we obtain a Q-Fano fiber space XjZ4 -+ p2jZ4 such as in (6.3) , (ii).

7 Appendix: Q-Fano with extremal contractions to
surfaces

(7.1) D efiniti0 n. A normal proj ective variety X is called Q-Fan0 if it has only terminal
singularities and, -/<x is an ample Q-Cartier divisor.

In the paper [21] Nikulin obtained some boundedness results for Picard number of Q-­
Fano threefolds under assumption that there are 00 small contractions and cootractions
of extremal faces onto curve or surface. In this' direction we discuss the following.

(7.2) Propostion. Let X be a Q-Fano lhreefolds wilh Picard number p(X) ~ 2. Assume
that there exists an contraction 0/ extremal face f : X -+ S such that

(i) dimS = 2,
(ii) f has only fibers 0/ dimension 1, (iii) in small neighborhood of any point sES for

f : X -+ S conjecture (0.2) is true. .
Then S is a rational weak Dei Pezzo sur/ace. Furtherf1}ore, i/ / : X -+ S as above is a
contraction 0/ extremal ray, then p(X) :S 10.

PROOF. Fot a divisible enough m the linear system -rnKx is a very ample system of
Cartier divisors. Then the curve L := f.(( -mKx )2) is very ample on S. Indeed, L is
effective and (C·f.((-mKx )2)) = f .. (!-C, ((-rn/ix?)) > O. We have the standard
formula -4Ks == ! .. (K}) + ß, where ß is a reduced Weil divisor on S. Thus

-4J<s = .!.L +~.
m

(7.2.1) Claim The sur/ace S is rational.

PROOF. By (*), -4m/<s is effective, hence~(S) = -00. Since H1(S, Os) = Hl(X,OX) =
0, S is rational. Q.E.D.

Assume that there exists an irreducible curve CeS such that (- /(5 . C) ::; O. It
follows from (*) that (-L· C) = (mC· (4/{s + ö,)) < O. Hence (~. C) < 0, C c ö"
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((Ks + C)· C) < 0 and (C)2 < O. Take a minimal resolution 9 : S -+ S. Since S has only
Du Val singularities, we have

where ri 2:: 0, Ei are exeptional divisors, and C is the proper transform of C. Then

o~ ([(s . C) = ([(s.15),

o> (C)2 = (15)2 + (C· L riEd.

Since
o> 4(1(s . C) + (0)2 = 4(1{s' C) + (C? + (6 .E riEd,

we have 4(1{s' C) + (C)2 < 0 and

3(Ks' C) + 2Pa(C) - 2 < O.

It follows from (Ks ' C) 2:: 0 that Pa(C) = 0, (l(s'O) +(0)2 = -2, and (3[{s'C) -2 < O.

Hence ([{s' C) = O. It is possible only if C :::: PI, ([{s' C) = 0, ((7)2 = -2, i. e. C is a

(-2)-curve. By definition Sand S are weak DeI Pezzo surfaces. Q.E.D.
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