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Introduction

The aim of this notes is to study extremal contractions from threefolds with only terminal
singularities to surfaces. More precisely, we study an analytic analog of such contractions,
so called Q-Fano fiberations over two-dimensional base (see (1.1) ). We are interesting
in the biregular structure of Q-Fano fibrations. For birational structure of fibration on
rational curves, constructing standard models, etc see [24]. The study of Q-Fano fibrations
may be applied for Sarkisov’s program of factorization of birational maps [25], [4] and also
for study Q-Fano threefolds with extremal contractions to surfaces ( see section 7).

(0.1) Conjecture (special case of Reid’s general elephants conjecture). Let
f(X,C) = (S,s) be a Q-Fano fiber space with two-dimensional base. Then a general
member of the linear system | — K x| has only Du Val singularities.

(0.2) Conjecture. Let f:(X,C)— (S,s) be a Q-Fano fiber space with two-dimensional
base. Then (S,s) is Du Val singularity of type A,, n > 0.

In this paper we shall prove that conjecture (0.1) implies conjecture (0.2) (propo-
sitions (6.3) ,(5.5) ). We also give detailed analysis of primitive Q-Fano fiber spaces in
section 5. In some cases (theorem (5.2) ) conjecture (0.1) is proved. Our main tool is
Mori’s technique of study small extremal contractions [18].



1 Background results and first properties

(1.1) Definition. Let (X,C) be a germ of a three-dimensional complex space along a
compact reduced curve C and let (S, s) be a germ of a two-dimensional normal complex
space. Suppose that X has at worst terminal singularities. Then we say that proper
morphism f : (X,C) = (S,s) is a Q-Fano fiber space with two-dimensional base (or
simply Q-Fano fiber space) if

(i) f7H{s) = C;

(i) f.Ox = Os;

(i11) —Kx is f-ample.
A Q-Fano fiber space f : (X,C) — (S,s) is said to be minimal if C is irreducible. A
Q-Fano fiber space f: (X,C) — (S, s) is called conic bundle if (S,s) is non-singular and
there exists an embedding i : (X, C) — P? x (S, s) such that Opa, g(X) = Op2,5(2) and
1-pry = f.
(1.2) Example. Let P! x C* = C? be the standard projection. Define the action of the
group Z, on C  and P, x CZ :

(z,y,u,v) = (z,%y,cu,e7'v),

where ¢ = exp(2ni/n), b € N, (n,b) = 1. Denote X = (P' x C*)/Z,, S = C*/Z,. Then
the projection f : X — S is a Q-Fano fiber space. The threefold X has on the fiber
f71(0) exactly two terminal points Py, P, which are cyclic quotients of type 1(1,-1,=+b),
the surface S has in 0 a Du Val point of type A,_;.

The following is a consequence of the Kawamata-Viehweg vanishing theorem (see [20], §4,
[10], 1-2-5).

(1.3) Proposition. Let f: (X,C) = (S,s) be a Q-Fano fiber space. Then R f.Ox =0,
> 0.
(1.3.1) Corollary (cf. [18], (1.2)-(1.3)). (i) For an arbitrary ideal T such that
Supp Ox /I C C we have, H'(Ox/I) = 0.

(i1} The fiber C is a tree of non-singular rational curves.

(iit) If C has p irreducible components, then

Pic(X) ~ H*(C,Z) ~ Z%*.

(1.3.2) Remark. By [7], 4.5 for every threefold X with terminal singularities there
exists a projective bimeromorphic morphism ¢ : X? = X called Q-factorialization of
X such that X7 has only terminal {analytically) Q-factorial singularities and ¢ is an
isomorphism in codimension 1. If f : (X,C) — (S,s) is a Q-Fano fiber space, then
applying the Minimal Model Program to X? over (5, s) we obtain a @-Fano fiber space
f (X, C") — (S,s) with analytically Q-factorial singularities, the same base S and
p(X',CNY/(S, s)=1. In particular f': (X',C") — (S, s) is minimal.

(1.3.3) Remark. Let f : (X,C) — (S,s) be a Q-Fano fiber space. Since —Kx is f-
ample, the Mori cone NE((X,C)/(S,s)} C R? is generated by classes of C;. Thus any
C; generates an extremal ray R; and NE((X,C)/(S,s)) C R? is simplicial. If p > 2,
then the contraction of any extremal face of NE((X,C)/(S,s)) over (S, s) is an extremal
neighborhood (18], [13] (not necessary isolated).
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(1.4) Proposition [3]. Let f: (X,C) — (S,s) be a Q-Fano fiber space. Assume that
X has only points of indez 1. Then (S,s) is non-singular and f : (X,C) — (S,s) is a
conic bundle (possible singular).

Note that converse statement is not true (see example (6.2.1)). We only have the
following.
(1.4.1) Lemma Let f : (X,C) = (S,s) be a Q-Fano fiber space S. Assume that (S,s)
is non-stngular. Then f is flat.

PROOF. Since singularities of X are rational, X is Cohen-Macaulay [11]. By [15], 23.1 f
is flat. Q.E.D.

(1.5) Du Val singularities. Let (5,s) be a germ of surface log-terminal singularity.
By (8], 1.9 (S,s) ~ (C,0)/G, where G C GL(2,C) is a finite group. The projection
(C*,0) = (S,s) is called topological cover of (S,s). Order of the group G is called
topological index of (S, s) and denoted by I1,,(S, s).

(1.5.1) Is well known that every Du Val singularity is analytically isomorphic one of
the following hypersurfaces in C°:

A, uv + y"t! Lop(FyP) =n +1
or
22 4 2% ™!

D,, n>4 22 4+ z(y? + z"7?) . Liop(F, P) = 4n — 8
orforn=4
224 ud 408

Eﬁ ' 22-*'21734'3}fl Itop(F, P)=24
E; 22 + z(y® + 2%) Liop(F, P) = 48
Eg 22+ 2% 4P Liop(F, P) = 120

(1.5.2) Proposition [1]. Let (F,P) be a germ of Du Val singularity and 7 : (F, P) —
(F, P) be an involution. Then there ezxists an analytic T-equivariant embedding (F, P) C
(C*,0) such that (F, P) can be given by equations (1.5.1). Moreover the action of T and
the quotient (F, P)/T are:



singularity involution quotient

(F, P) T (F,P)/T
Av, Dy, By (29,2) = (2,9,7) non-singular

Eq (z,y,2) = (z, ,z) Ay

FEs (z,y,2) = (:r z) Ey

Dy (z,y,2) = (z, -y, 2) A,

Dy ( ’y:z) — ('T z) Dak-a
Aokt (z,y,2) = (z,~y,2) Ak
Azkt1 (z,9,2) = (=, —’y, z) Diys

Ak (:B Y,z ) ( -, Y, z) Akt
Az (v, v,9) = (~u,v,~y) 2k+1(k 2k -1)
Aok (u,v,y) = (—u, ~v, —y) “_H(Zk + 1,2k + 1)

(1.5.3) Proposition (see e.g. [23]). Let (F',P’), (F,P) are two-dimensional singu-
larities and (F', P’) = (F, P) be a finite morphism of degree r. Assume that (F, P) is Du
Val and (F' — {P'}) = (F — {P}) is an étale cover with group Z., r > 2. Then (F', P’)
is also Du Val and (F', P') = (F, P) is one of the following:

r description action of Z,

n (F', P')
any Ak =5 Ao, (u,v,y) = (eu,e7tv,y)
4 A?k—? ‘il) D2k+1 (:l:, y’z) — (i:B, =Y, _iz)
2 Agk—1 RIIN Diys (z,y,2) = (—z, -y, 2)
3 Dy 2 Eg (u,v,2) = (eu,e v, 2)
2 Dis 2L Dyx (z,y,2) = (z, -y, —2)
2 Es 24 E; (z,y,2) = (z, —y, —2)

where € = exp (2mw1/r). Moreover except the first case the action Z, on the dual graph of
the minimal resolution of (F', P') is non-trivial.

(1.8) Terminal singularities. Let (X, P) be a terminal singularity of index m > 1 and
let m: (X!, P') = (X, P) be the canonical cover. Then (X* P?) is a terminal singularity
of index 1. It is known [22] that (X", P*) is a hypersurface singularity, i. e. there exist
an Zn-equivariant embedding (X*, P*) C (C',0). We fix a generator ( € Z,, and for
Z ,-semi-invariant z define weight wt(2) € Z as

wt(z) = amodm iff ((z) = &%,

where € = exp 2mi/m. Usually we assume that 0 < wt(z) < m.
(1.6.1) Theorem [5],[19]. If (X", P') is smooth, then it is isomorphic (C2

0)
T1,%2,73?
such that wt(zy, z2,23) = (a, —a,b), where a, b are integer prime to m. Conversely every

such singularity is terminal.

(1.6.2) Theorem [17], [23], [14]. Assume that (X* PY) is singular and let
{¢(z1, 22,73, 24) = 0} is an equation of X* in (C}, ., .. 2,,0). Then modulo permuta-
tion of T(, T2, Z3, 24 we have one of the following:
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(i) (the main series) wt(zy, z9, 3, Ta; ) = (a,—a,b,0;0) modm, or

(ii) (the ezceptional case) m = 4, and wt(z,, 23,23, 24; ¢) = (a,—a,b,2;2) mod 4,
where a, b are integer prime to m.
(1.6.3) Remark. There is the complete classification of terminal singularities in terms
of normal forms of ¢(z, x3, z3, z4) and actions of Z,, [17], see also [23], [14].
(1.6.4) Theorem [23]. Let (X, P) be a germ of terminal singularity. Then a general
member F € | — Kx| has only Du Val singularity (at P).
(1.6.5) Definition. Let X be a normal variety and Cl(X) be its Weil divisor class
group. The subgroup of Cl(X) consisting of Weil divisor classes which are Q-Cartier is
called by the semi-Cartier divisor class group. We denote it by CI*°(X).

(1.6.6) Theorem ([22],[9]. Let (X, P) be a germ of 8-dimensional singularity. Then
CI°(X, P) = Z, and it is generated by the class of K(x py.
The following is an easy consequence of (1.6) .

(1.6.7) Lemma. Let (X, P) be a germ of a terminal threefold singularity of indez m > 1
and (F,P) C (X, P) be a germ of irreducible surface. Assume that F is Q-Cartier and
(F,P) is Du Val with topological index I;op(F,P). Then ILip(F, P) is divisible by m.
Moreover if Iip(F, P) = m, then (X, P) is a cyclic quotient singularity and (F, P) is of
type Am—1.

2 Topological properties of Q-Fano fiber spaces

(2.1) Proposition, [17]. Let (X, P) be a germ of terminal singularity of index m,
(C, P) C (X, P) be a germ of smooth curve. w: (X¥, P*) — (X, P) be the canonical cover
and C':= (771(C))cea- Then

(1) for arbitrary £ € CI*°(X, P), there exists an effective (Weil) divisor D such that
[D] =€ and DN C = {P}.

(i1) € = (D - C)p induces a homomorphism

d(C, P) : CI*(X, P) — %z /ZC Q/Z.

(2.2) Definition, [17]. Let things be as in (2.1) . X D C is called primitive at P if
one of the following equivalent conditions is satisfied:

(i) i(C, P) : CI**(X, P) > +Z/Z is an isomorphism,

(ii) C! is irreducible,

(iil) imysp 7 {UNC = P) ~ Z = limysp m(U — P) =~ Z,, is surjective,
and imprimitive otherwise. The order of Ker(cl(C, P)) is called the splitting degree of
X D C at P and denoted by e.

(2.2.1) Remark. In the situation above C* has exactly e irreducible components.

(2.3) Nowlet X bea three-dimensional complex spase with only terminal singularities.
and P! ~ C C X be a non-singular rational curve. Assume that C is irreducible and let
Py, Py, ..., P, € X be all the points of indices m;,mq,...,m, > 1. Then there exists the
following exact sequence [18], 1.8:

0 = Pie(X) = CI"(X) = P Cre(X,P) — 0.
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(2.4) Corollary, ([18], 1.10) In notations of (2.3) . The following are equivalent

(i) (D - C) =1/mymy---m, for some D € Cl*(X);

(i) CI"(X) ~ Z;

(iii) CI*°(X) is torsion-free;

(iv) X D C is locally primitive (i. e. primitive at any point P € C) and (m;,m;) =1,
foralli# 3.

(2.5) Proposition [17]. Let things be as in (2.8) . Take an effective Cartier divisor H
such that H N C is a smooth point of X and (H - C) = 1 and effective Weil Q-Cartier
divisors Dy, ..., D; such that D; N C = {P;} and D; is a generator of CI*°(X, P;) for any
i (see (2.1) ).

(i) Assume that (X, C) is imprimitive of splitting degree e in P;. Then the divisor
D = (m,-/e)D,- - ((m,—D.— . C)/e)H

is a e-torsion in CI°(X,C). It defines a finite Galois Z.-morphism ¢* : X* — X such
that P* := ¢* ' (P.) is one point, ¢° is étale over X — {P,} (hence X* has only terminal
singularities), indez of (X*, P*) is equal to m;/e, C* := (gb_l(C))md is @ union of e P'’s
meeting only in P*, and each irreducible component of C® is primitive at P,

(i) Assume that (X, C) is locally primitive and for some distinct points P;, P; we have
n:=(my,m;) > 1. Then there are integers o, 3,7 such that the divisor

D:=aD;+ pD; +~vH

is a n-torsion in CI°(X,C). It defines a finite Galois Z,.-morphism g¢ : X' — X such
that P! := gt~'(P) (resp. P} = ¢} (P;)) is one point, ¢ is étale over X — {P,, P;)
(hence X' has only terminal singularities), inder of (Xh,P{h) (resp. (Xh,Pf) ) is equal to
mi/n (resp. mj/n), and C:= (¢*'(C))rea ~ PL.

(2.8) Let f:(X,C)— (S,s) be a Q-Fano fiber space. The following easy remark [12],
proposition 3.1, (see also [6], proof of 1.6) show that singularities of S are log-terminal:
A general hyperplane section H C X is non-singular and transversally to C. Hence
H — § is a finite morphism in neighborhood of C'. Then by [2], 6.7 (5, s) is log-terminal.
We generalize this remark in (2.8) .

(2.7) Construction I. Let f: (X,C) — (S5, s) is a a Q-Fano fiber space. Assume that
(S, s) is singular. Then the topological cover h : (5%, s%) =~ (C?,0) — (S, s) is non-trivial.
Let X" be a normalization of X xs S and G = Gal(5%/5). Then we have the diagram

) GRS ¢
d s ]
UG

The group G acts on X* and clearly X = X%/G. Since the action of G on S% — {s}
is free, so is the action of G on X% — CY where Ct := (fh-l(sh)),ed. Therefore X" has
only terminal singularities and the induced action of G on X! is free outside of a finite
set of points (see e. g. [2], 6.7). Since K'xy = g"(Kx), we obtain the Q-Fano fiber space
S5 (X5, C%) = (5% sY) with two dimensional non-singular base.

(2.8) Proposition Let f: (X,C) — (S,s) be a Q-Fano fiber space. Then (S,s) is a
cyclic quotient singularity.



PROOF. Because (X,C) is bimeromorphic to the minimal Q-Fano fiber space f' :
(X',C") = (S,s) over (S,s), we consider the case when f : (X,C) — (S,s) is mini-
mal. It is sufficient to prove only that in (2.7) G is cyclic.

If C*% is irreducible, then C* ~ P!, so G C PGL(2) and therefore G is either cyclic
Z,, dihedral ©,, 24, G4 or As. On the other hand, G acts on (S%,s%) ~ (C?,0). Hence
G C GL(2). It is easy to check that then G is a cyclic or dihedral. But in the second case
the action G on C? is not free in codimension 1. Indeed any element in @, of order 2 is

either
-1 0 or a reflection 10
0 -1 0 -1 /-

Therefore G is a cyclic group in this case.

Now we assume that C% = UCtl is reducible (it means that (X, C) contains an 1rnpr1rn—
itive point). We claim that NCY is a point. Indeed since the configuration UC is tree
and the actlon G on the set {CE} is transitive, Ch N(Ct - CH 1s a point. Assume that
Cin...NCY = {Pt} and let C}, , N(CIU...UCH) #0. Then C},, N(CIU...UCY) isa
pomt Whlch must be PY. The induction proves our claim.

Thus the action G on X! has a fixed point P! := NCY. Let P = g(P"). Take a small
neighborhoods U* C X% of P? and U = g(U!) C X of P. Since g|y is étale on U™\ {Pt},
we have a surjective map 7 (U\{P}) = G. But on the other hand, 7 (U\{P}) is a cyclic
group (see [22], 0.6, [16]). Therefore in this case (S,s) also is a cyclic quotient. This
proves the proposition. Q.E.D.

(2.8.1) Corollary. Let f : (X,C) — (S5,s) be a minimal Q-Fano fiber space and let
Pi,..., P be all the points of indices my,...,m; > 1. Assume that (X,C) is locally
primitive and (m;,m;) =1 for all 1 # 3. Then (S, s) ts non-singular.

PROOF. If (S,s) is singular, then by (2.7) the topological cover (X" C%)/(St s%) —
(X,C)/(S, s) is non-trivial. Since it is cyclic Galois cover {2.8) étale over X — Smg(X ,
torsion part of C1°°(X} is non-trivial, a contradiction with (2.4) . Q.E.D.

(2.9) Construction II. Let f: (X,C) — (S,s) be a minimal Q-Fano fiber space.
Assume that (X, C) has a finite unramified in codimension 2 cover g : (X", Cb) = (X,0),
where X7 is normal and C* is connected. Take the Stein factorization

X L X
b 17
LRI

Then A is étale over S* — {st}, hence by (2.8) h: 8" — § is a cyclic cover. Therefore f! :
(X2, CY — (S s%) is a Q-Fano fiber space. It is easy to see that X! is the normalization
of Sh X5 X.

(2.10) Lemma (cf. [18}, 1.13). Let f: (X,C) — (5,s) be a Q-Fano fiber space.
Then any component C; C C contains at most one imprimitive point.

ProoF. If C is reducible, then our assertion follows from [18], 1.13. Assume that C
1s irreducible and Py, P, € C are imprimitive points of splitting degree e, and e;. Let
(X*,C") — (X, C) and (X', CY) = (X, C) be splitting covers corresponding to P, and P,
respectively (see (2.5) ). By (2.9) , we can construct two @-Fano fiber space (X*,C*) —

(S, 5°) and (X¥,C®) — (859, sh). Then (XP xx X8 C% xx CN) = (5 x5 SY, 5" x5 s also
is a Q-Fano fiber space. By construction, C* x x C" is a Galois Z.,., cover of C ~ P! such
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that each components meets e; — 1 {resp. ez —1) other components at every point over P,
(resp. over P,). Therefore C* x x C" contains a cycle of P''s, a contradiction with (1.3.1).
Q.E.D.

(2.11) Proposition (cf. [18)], 0.4.13.3, 6.2). Let f: (X,C) — (S,s) be a Q-Fano
fiber space. Then any component C; C C cannot contain three points of index > 1

PROOF. As in (2.10) we consider only the case when C is irreducible and locally primitive,
because general case can be reduced to this case and [18], 0.4.13.3 by (1.3.3), (2.5) .
Assume that Py, P2, P; € C are points of indices my,mq,m3 > 1. Using Van Kampen’s
theorem it is easy to compute the fundamental group of X — { Py, P2, P }:

ﬂ'](X - {Pl,Pg, P3}) = (0’1,0’2,0’3)/{0’?' = 1.,0';"2 = ].,(J':'_;;n8 = ].,0'10'20'3 = ].}

This group has a finite quotient group G in which the image of o is exactly of order m;.
By (2.9) we obtain a Q-Fano fiber space f7: (X" C?) — (S, s%) with irreducible C. By
(2.8) G is cyclic. A contradiction with the fact that any action of cyclic group on P! has
exactly two fixed points. Q.E.D.

3 Numerical invariants wp and ip according to Mori

(8.1) Let X be a normal three-dimensional complex space with only terminal singu-
larities and let C C X be a reduced non-singular curve. Denote by I the ideal sheaf of
C. As in [18], we consider the following sheafs on C":

gre w := torsion-free part of wy /(Zowy),
gry, O = torsion-free part of Zg/Z2.
If C ~ P!, then we have '

wx [(Zewx) = grg w + Tors, Tc/Tk = gry O + Tors.

(3.2) Let m be index of X. The natural map
(wx ® Oc)®™ = Oc(mKx)

induces an injection
B (grg w)®™ = Oc(mKx).

Denote
wp := (lengthp Coker B)/m.

(3.2.1) Remark. deggrlw <0, (because deg Oc(mKx) < 0).
(3.3) We have the natural map

grt O x gry, O x we ~ wx ® O¢ — grew,

T Xy Xzdu— zde Ady Adu

which induces a map
a: A grt O) @ we = grew |

8



Let
ip := lengthp Coker(a).
Note that ip = 0 if X is smooth in P.
(3.3.1) Lemma ([18], 2.15). If (X, P) is singular, then ip > 1.
(3.4) Example (cf. [18], 0.4.12.4). Let Z,, acts on (C*,0) by

(z,y,2) = (e%z,e7 %y, €2),

where € = exp(2ni/m) and a is an integer prime to m such that 0 < a < m. Let C*' c C®
‘be the z-axis. Then (X, P) := (C*,0)/Z,, is terminal and C := C*/Z,, C X is a smooth
curve. We have the following

(i) Oc,p = C{z"}; '

(ii) gr2 w = O¢(z™ 'dz A dy A dz), Oc¢(mKx) = O¢(dz A dy A d2)™ near P;

(iil) wp = (m — 1)/m;

(iv) grg O = O¢(z™%z) ® O¢(2"y) near P;

(v)ip=1.
From definitions we have

(3.5) Proposition. If C ~ P! then

deggrs O =2+ deggrgw — 3 ip,
P
(Kx -C)=deggriw+ Y wp,
P

(3.6) Proposition. Let f: (X,C) = (S,s) be a minimal Q-Fano fiber space. Then

deggrs O > -2.

PROOF. Consider the exact sequence
0 —)Ic/Ié - Ox/Ié — O¢ — 0.

By (1.3.1) HYOx/I%) = 0 and since H°(Ox/T%) — H®O¢) is onto, we have
HY(Ic/TZ) = 0. Hence H'(grt O) = 0. 1t gives us our assertion. Q.E.D.
(3.6.1) Corollary.
' Zip§4+deggr%w53,
P

S wp < —deggriw <4-) ip(l),
P P

> wp(0) + 3 ip(1) < 4.

(3.6.2) Example. Let f:(X,C) = (S,s) be a Q-Fano fiber space as in (1.2) . Then
from (3.4) it is easy to compute :

(iip, =ip =1, wp =wp, =(n—1)/n,

(i) deggri w = -2, deggry O = -2,

(iii) (Kx - C) = =2/n.



(3.7) Corollary. Let f: (X,C) — (S,s) be a minimal Q-Fano fiber space. Then (X,C)
contains at most three singular points.

PROOF. It follows from (3.6.1) and (3.3.1). Q.E.D.

(3.7.1) Remark. If f: (X,C) — (S,s) is non-minimal, then for every irreductble
component C; C C germ (X, C;) is an extremal neighborhood. By [18], results (3.6) ,
(3.6.1), (3.7) are true for (X, C}).

4 Computations of :p and wp

(4.1)  In this section we fix the following notations. Let (X, P) be a germ of three-
dimensional terminal singularity of index m and let (C, P) C (X, P) be a germ of smooth
curve. We assume that P is primitive. Consider the canonical Z,-cover (X!, P*) = (X, P)
and let C' = (C xx X')rea. Since P is primitive, C* is irreducible. Then Z,, natu-
rally acts on X!, C* and on the normalization of C¥. There exists an Z,,-equivariant
embedding (X!, P*) C (C} ., ..z,0). Let ¢ = &(z1,2;,23,74) be the equation of
(X", P") C (C}, ;252 0)- Recall that we assume that wt(z, ) = (e, —q,b,¢;c) modm,
where (a,m) =1,(bym)=1,1 <a,b <m—1and ¢ =0or ¢ =2, m =4 (exceptional
case). For any regular function z on X* such that 2(0,0,0,0) = 0 by

ord(z) € NU {co}

we denote the order of vanishing of z on the normalization of C!. All the numbers
ord(z) < oo form a simigroup, which is denoted by

ord(C").

Let ord(z;) = a;. Then ord(C*) is generated by a;’s. We choose the generator of Z,, such
that
a; = ord(z;) = wt(z;) modm, if a; # co.

(4.1.1) Lemma (see e. g. [2], 15.5). In notations above there exists Z,,-invariant
coordinate system in C* such that C* is monomial. More precisely, C* is the image of

t— (1, 1%,1% %),

where t* =0 if a; = co.
(4.1.2) Lemma-Definition [18], 2.6. In notations (4.1) there exists Z,,-invariant
coordinate system in C* which satisfies the following conditions:
(i) a; < oo and (a; — m) € ord(C") for all i = 1,2,3,4.
(ii) a; = wt(z;)modm for all : = 1,2,3,4.
Such coordinate system is called by normalized coordinate system.

(4.2) Let things be as in (4.1) . A local generator of wy is
:= Res(¢~'dz; A dzg A dz3 A dy),

where Res is the Poincaré residue map. Then we can write a local generator of grl w as
Z n-invariant ¥§), where wt(y) = — wt(Q2) = m — b. Therefore

muwp = dim(Oc(mf\"x)/(ij)Q)mOc(me). :
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Finally, we have
(4.2.1) Proposition, ([17], 2.10).

mwp(0) = min{ord(¢) | Y = (), 22, 73, I4)s Wt(%[’) = - Wt($1$2$3$4/¢) =m-— b}-

(4.3) Let t be a local parameter on the normalization of C! (cf. (4.1.1)). Then dt™ is
a local generator of wg. Denote by Zp (or simply Z) the ideal sheaf of C* in C* and by
T} the invariant part of Z. Local generators of gri @ lift back to ¢;, ¢z € Z1°}. Therefore
é1 A ¢2 A dt™ is a local generator of A%(grh O) ® we. Computations gives as

1 AP Adt™ ="M A ¢y A dzy =t YT, 1, ¢2)/0(21, T2, T3) P02

Therefore
mip = m — aq —ord(y) + ord(B(qS, ¢1,¢2)/a(-”31,$2, -’153))-

Let
[Cl’ C?: C3] = ord(a(Cl) CZ’ C3)/a($la T2, 33))‘

Finally, we have
(4.3.1) Proposition, [17]. [ford(z4) < oo, then

m(ip(1) +wp(0)) = m - ord(za) + _min_{[6,é1,éa]}

(4.3.2) Remark. It is easy to see that for any (;, (2,3 one has

[Cl, C‘Za C3 + Cé] 2 min{[Cla ¢2a CS]? [Cla C21 C:’i]}

Note that if (X, P) is not exceptional, then ¢ € Z{%. If (X, P) is exceptional, then we
may assume that ord(z4) = 2 (cf. proof of (4.6) ) hence z4¢ € Z{°}. In any case we have

(4.3.3) Corollary. If ord(z4) < oo, then
m(ip + wp) 2 [¢1, b2, ¢3]

for some &1, P2, b3 € T19}.

(4.3.4) Remark. By (4.1.1) we can take C* as monomial curve. Using (4.3.2) ¢;’s may
be chosen from

‘(ta1+a:)/m ] {e1p+azg)/m

. r.s (azr+azs)/m m ay .
12y — % y  T1T3 — T4 y  Tolg — T4 y Ty T T4, ] —112a3

where p,¢,7,5 € N, ap + bg = 0mod m, (m — a)r + sb = 0mod m.

(4.4) Lemma. For any three-dimensional terminal singularity (X, P) a general member
of F € | — K(x,py| is given by a section

T,”)Q-l € OXI(—I{XI),
where wt(¥) = wt(z,292374/¢) = b and Q = Res(¢p~dz, A dzy A dzs A dz4). Moreover

(F-C)p = min{ord(¥) | ¥ = ¥(z1, T2, 23,24), Wt(3p) = b}.
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PROOF. [t is clear that F € | — Kx| is given by an invariant section of | — Kxy|. By the
residue formula this section has form ¢¥Q~!, where 8 = Res(¢~'dzy A dza A dz3 A dzy).
The rest is obvious. Q.E.D.

(4.5) Lemma. Let m = 2 and assume that wp(0) +ip(1) < 4. Then ord(C*) =N (i. e.
CY is smooth).

PROOF. Take a normalized coordinate system for X* in C! . such that wt(z) =
(1,1,1,0), ord(z) = (a;). Since C is smooth, as = 2. But then ord(C!) is generated
by a4 = 2 and the smallest a;, for example a3. It is sufficient to show only 1 € ord(CY).

By (4.3.3) we have
8 > 2(wp +ip) > 2 — ord(z4) + [¢1, P2, da] = [B1, 2, 3] = D _ ord(z))

for some ¢; € Igz}, where z; = 0¢;/0z;. Hence ord(z;) £ 2 for some ¢ = 1,2,3. But since
wt(z;) = m — wt(z;) = 1, ord(2;) = 1. Thus 1 € ord(C*). Q.E.D.

(4.6) Lemma. Let things are as in ({.1) . Assume that (X, P) is a singularity of index
4 of exceptional series (see (1.6.2), (1)) and wp(0)+1ip(1) < 4. Then we have one of the
following

(i) ord(C") = N (i. e. C* is non-singular), or

(i) ord(C*) = (2,3).

Moreover wp = (4 — b)/4, except the case

(ir*) ord(C") = (2,3), b=3, wp = 5/4, ip = 2.
PROOF. Suppose that ord(C!) # N, then 1 ¢ ord(C*). Since C"/Z4 is non-singular,
4 € ord(C*). But ord(z;) # 4, by ord(z;) = wt(z;) mod4. Hence ord(z;) + ord(z;) = 4
for some 1,5 € {1,2,3,4}. It is possible only if ord(z4) = 2. Then ord(C") is generated
by 2 and the smallest odd k € ord(C*). Therefore C* is planar and it is sufficient to show
only 3 € ord(C"). By (4.3.3) we have

16 > 4(ip + wp) > [¢1, é2, ¢3] > Y ord(z)

for some ¢; € Ié, , where z; = 0¢;/0z;. Moreover 2; are semi-invariants with ord(z;) < co
and wt(z;) = 4 ~wt(z;). Thus ord(z;),7 = 1,2,3 are odd. If 3 & ord(C*), then ord(2;) > 5
fori=1,2,3. It gives as ord(z;) = 5 for 1 = 1,2, 3, which contradicts wt(z;) = 4 — wt(z )
Therefore ord(C") =(2,3).

Assume that wp # (4 — b)/4. Then by (4.2.1) 4 — b ¢ ord(C*). It is p0551ble only
we have the case (2) and b = 3. In this case 2-4 —b = 5 € ord(C"), so wp = 5/4,
ip 2. Ifip =1, then 12 > 4(ip + wp) > ¥ ord(z;), where ord(z,) + ord(2;) = 0 mod 4,
ord(z;) + ord(z;) > 8, ord(z3) = 1 mod 4. It gives us ord(z3) = 1, a contradiction. This
proves the lemma. Q.E.D.

(4.7) Lemma (cf. [18], 3.1). Assume that (X, P) is not ezceptional and wp +1p < 3.
Then up to permutation x,, 22, we have one of the following

(i) ord(C¥) =N,

(i) @) = a = 2 € ord(C"), b is odd,

(iii) ord(C") is generated by a; = a and a3 = b, in this case m — b € ord(C").
PROOF. If m = 2, then by (4:5) , ord(C*) = N. Thus we suppose that (X, P) is in the
main series, m > 3 and a; = ord(z;) > 2 for i = 1,2,3,4. Using (4.3.3), we get

3m > m(ip + wp) = [b1, 2, ¢3] = D ord(z:)
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for some ¢; € IC{,(,)}, where z; = 0¢;/9z;. Since ord(z;) = — ord(z;) mod m, we have
Y ord(z;) £ 3m ~b.

By (4.3.4), ¢; (i = 1,2,3) ahs the form

T1Tq — mﬁ“""“’)/m, izd - zﬁa'p““)/m, THTs — a:&“”'“a")‘/m, or z} -z, j=1,2,3,
where p,q,7,s € N, ap+bq50modm (m — a)r + sb = 0mod m.
First we assume that ¢; # =7 — zy, V1,7 < 3. Then

{¢’1,¢’2,¢3} - {zlmg_xgawa:)/m, mzfxg_mgaw+uaq)/m, zgmg_:ﬂ‘(‘azrﬂas)/m}, i=1,2,3

hence 3m — b > Y ord(z;) = a1p + aaq + azr + azs — as. Since a;p + azg = Omod m,
asr + azs = 0modm, we have a1p + azq < 2m and a,r + azc £ 2m. Note that we still
may permute zp, T3, SO we assume a,p + a3q < a7 + azs and if a1p + azg = azr + ass,
then p > r. Consider the following cases:
(4.7.1) a;p + azq = 2m, ayr + a3s = 2m, hence a3 > m. But then g=s=1,a, <m,
a; < m, ay +a; =m, (al,a2) = 1. So a;p = apr. It gives us p = a2k, ¢ = a;k for some
k € N. Thus a a2k < m = ay + a3. Therefore a; = 1 or a3 = 1, a contradiction.
(4.7.2) ayp+ azg = m, ayr + azs = 2m, hence .a1p < m, a3 < m, (a1,a3) = 1. If
ay +ag 2> 2m, then a; > m, r = 1, a; + az = 2m. We obtain a, = a3s, a contradiction
with (a1,a3) = 1. Thus a;+a; = m and we have ay = m = a1p+azq, a; = m—a;, = a1(p—
1)+ a3q. Therefore ord(C!) is generated by a;, a3 and m —a3 = a,p+as(g—1) € ord(C¥).
This is case (iii).
(4.7.3) aip+asq=m, axr+aszs = m, then a1+a; = m, ay(p—r)+mr+as(g+s) = 2m.
It gives us r = 1, az = a3s, a contradiction with (as,m) = 1.

Now we assume that ¢; = z* — z’ for some 1. By ord(z) = (m — 1)a; < 3m — 3, we
have a; < 3. If a; = 3, then ord(z;) + ord(zx) < 3 — b < 1, where {7,5,k} = {1,2,3}, a
contradiction with 1 € ord(C"). Thus a; = 2 for some ¢ = 1,2 or 3, m is odd and then

ord(z;) +ord(z¢) <m+2-b, {i,4,k}=1{1,2,3}.

In this situation ord(C*) is generated by a; = 2 and the smallest odd integer € ord(C!).
We treat the following cases:

(4.7.4) i =3, a3 =2 =b. Then ord(z;) + ord(2;) = m. By normalizedness of (z),
a) = ord(z;) < m, a; = ord(z;) < m. Modulo permutation z,z; we may assume that a,
is odd. In this case ord(C") is generated by az = 2 and a,. This is case (iii).

(4.7.5) i=1,a; = a =2, ord(C") is generated by 2 and asz. Then a3 < m, because
m € ord(C?). Since m — a3 is even, m — a3 € ord(C"). We get case (iii).

(4.7.8) i=1,a =a=2,ord(C!) is generated by 2 and m. By ord(z;) + ord(z;3) <

m+2—b, we have ord(zz),ord(z;3) < m. Thus ord(z;),ord(z3) are even and 2, = =),

x‘f’d(“m It is possible only if ¢y = 122 — 28 T°™ $3 = 2Pus — 2PYY™ where
p = ord(23)/2 and 2p+ b = Omodm Since ord(z3) < m, one has 2p +b = m, 50 b is odd.
This is case (ii).
(4.7.7) i=1,a, =a=2, ord(C?) is generated by 2 and a; = m — 2. Then, obviously,
m > 5. We only have to show that b is odd. Assume the opposite. Then b € ord(C*)

13



and by normalizedness of (z) a3 = b. From ord(z;) + ord(z3) < m + 2 — b we get
ord(z;),ord(23) < m. If both of ord(z2),ord(z;) are even, then we obtain (ii) as above.
So assume that ord(z;) is odd, then m — 2 < ord(2;) < m+ 2 —b. Thus a3 = b = 2.
Permuting z,, z2, T3 we obtain case (iii). Q.E.D.

(4.8) Corollary (from proofs of (4.6) , (4.7) ). Let things be as in (4.1) . If
wp +ip < 2, then CY is non-singular.

Results of lemmas (4.6) , (4.7) may be summarized in the following
(4.9) Theorem. Let things be as tn (4.1) . Assume that wp + ip < 3. Then in
some (not normalized) coordinate system (z) such that wt(z) = (a,m — a,b,c), where
(a,m) = (b,m) = 1, we have one of the following cases
(P1) the main series, c=0

ord(CY) | m Ct a b i w, (F-C)p
(P1.1) (a1) >2| =z —axis |1 , L2 (m=b)/m b/m
a =1
(P1.2) (as) >3] z3—axis 1 ‘1,2 (m=1)/m 1/m
as = 1
(P1.3)| {aj,m) |odd| z"—zi= |2 odd 2 | (m—=b)/m|(m+b)/m
a =2 >3l z,=23=0
(P1.4) | {ay,a2) |odd|zP*—zi=|2 odd 2 {(m=0b/m|(m+b)/m
a =2 >8|za=a4=0 #*m-2
ay=m-—2
(P1.5)| (ai,a3) |[>5]| 2§ —z5= (a,0) =1 2 {(m—=20b)/m b/m
a =a To=z4=0 m = aa + b
az=1"b a>1,8>2

(P2) the exceptional case, m=4,¢c=2,a=1

ord(C*) Ct al b |1, Wy (F-C)p
P21)|  (ai=1) T, — axis 1(1,3[1,2|(4A—b)/a| b/4
(P22) [{as=3as=2) | —a3=c1=2,=0]1] 1 | 2 | 3/4 574

where F' is a general member of | — K(x py|.

(4.10) Lemma. Let things be as in (4.1) . Suppose thatip =1 and 2 < wp < 3. Then
(X, P) is non ezceptional, b € ord(C"), and b > 3.

PROOF. Assume that b ¢ ord(C*). By (4.6) , (X, P) is not exceptional. From (4.3.3), we
have

3
4m > m(ip +wp) 2 [¢1, ¢z, 03] = Y ord(z),
i=1

where ¢ € I, 2 := 8¢:/dz; # 0. Using ord(z;) + ord(z;) = Omodm, ord(z3) =
bmod m, we obtain

4m —b>> ordz, 3m — b > ord(zs).

By (4.2.1), mwp = min{ord(¢))| wt(y)) = m — b} = 3m — b. Hence ord(z3) > 3m — b.
Thus ord(z3) = 3m — b, ord(z;) + ord(z;) = m.
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By normalizedness of (z) we get ord(z;) = ord(z;}, ord(z;) = ord(z). By our as-
sumption ord(z3) > m + b. Therefore ¢, ¢, depend only on z;, z;, 4 and obviously
$1 = ¢ = (T172 — T4). But then [y, ¢, $3] = 00, a contradiction. Therefore b € ord(C*).
If b < 2, then 2m — b € ord(C*) and . wp < 2 — b/m, a contradiction. This proves lemma.
Q.E.D.

(4.11) Lemma. Let things be as in ({.1) . Suppose thatip < 2,1 < wp < 2, b< 2.
Then ip = 2, m is odd, b = 2, b € ord(C") and ord(C") = (2, m).

PROOF. Assume that b ¢ ord(C*). By (4.5) , (4.6) (X, P) is not exceptional and m > 3.
By (4.2.1), mwp = min{ord(¢)| wt(3)) = m — b} = 2m — b. Hence 2m — b € ord(C*) and
m — b & ord(CY). From (4.3.3) we have

3
4m > m(ip +wp) > (b1, b2, ¢3] = zord(z;), ¢ € T 2z := 0/ Ox; # 0.

Since
ord(z;) + ord(z;) = 0modm, ord(z3) > 2m — b,

it 1s easy to see
dm—-b> Zordz;.

Hence
2m — b =ord(z3), ord(z)+ ord(z2) < 2m.

We can choose ¢;’s from the following invariants:

3;54“""“’)/'" P.g mgalp+asq)/m ros $£a2r+aaa)fm

1%z — ) I1T3 ' ‘7"23:3 ’ x;_n - x:ja .7 = 1’233'
Consider two cases:

(1) ord(z;) + ord(z2) = m. Then ord(z) = m — a, ord(z;) = a, hence ord(z;) =
ord(z,) = m — a, ord(zq) = ord(z,) = a by normalizedness of (z). By our assumptions
b ¢ ord(C*) and m — b ¢ ord(C*). So ord(C") is generated by ord(z;) = ord(zs) = m —a
and ord(z;) = ord(z;) = a. Since (a,m — a) = 1, we have z; = z,, 23 = z,. It gives as
¢1 = ¢ = 127 — z4. This is impossible.

(2) ord(z;)+ord(zz2) = 2m. Permute z, z3 such that ord(z;) < ord(z;), then ord(2;) =
m — a, ord(z;}) = m + a. So, as above, a; = m — @, 2y = Tg, P; = T1T3 — zﬂa‘ﬂ“)/"‘. We
have the following possibilities for z; = O¢;/0z,:

zo =z 'z}, where (r —1)(m —a)+saz=m+a or
z; = z3~!, where (m ~a)(m—1)=m+a.

But if (r — 1)(m — a) + saz = m + a, then since az > m + b, we have s =1, a3 = m + b,
m-b>a—-b={(r—1)m—-2), m—b=r(m—a) € ord(C*), a contradiction with our
assumption. Therefore (m —a)(m—1)=m +a,thena=m —2, m —a =2 € ord(CH
and m is odd. Since m — b € ord(C"), b also is even. Hence b € ord(C").

Now it is easy to see that b # 1. Suppose b = 2. Then m is odd and ord(C*) is
generated by 2 and the smallest odd k € ord(C"). Since m — 2 ¢ ord(C*), k = m. Again
from 4m — 2 > Y ord z; we have ord z; + ord zz; = m or 2m. But if ord(z,) + ord z; = m,
then K < m. Thusordz; +ord 2 = 2m, m > ord 2y = a3 =m—a is even,ord 2z = m+«,
a is odd. Hence a € ord(C*), a; = m + a. This proves the lemma. Q.E.D.
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5 Primitive case

(5.1) Lemma. Let f : (X,C) = (S,s) be a minimal Q-Fano fiber space with
two-dimenstonal non-singular base, let P\, P;,..., P, € X be all the points of indices
my, ma,...,mk > 1 and let m = l.e.m.(mymy---my) be the global index of X. Then

(i) X has no imprimitive points;

(ii) & < 2;

(ii) of & = 2, then (my,mq) = 1;

(iv) (=Kx - C) = 6/m, where § = 1 or 2.

PROOF. (i) Assume that P € X is an imprimitive point. Then by (2.5) there exists an
étale in codimension cyclic cover X® — X. By (2.9) we obtain an étale in codimension
1 cover S? — S. This is impossible because S is smooth.

(ii) It follows from (2.11) .

(1) Assume for example that & = 2. The same arguments as in (i) shows that
(m1,m2) = 1. Since P, P, are primitive, by (2.4) , we have (D - C) = 1/m;m, for some
D € CI**(X) = Z. Obviously, (—=Kx - C) = §/m mn, for some § € Z. Hence —Kx = éD.
Let L be a general fiber of f. Then (—Kx - L) = 2, therefore (D - L) =2/6. But (D - L)
is an integer, so § = 1 or 2. Q.E.D.
(5.1.1) Remark. If (—Ax:C)=2/m, then —Kx = 2D for some D € CI*°(X). In this
case equality —Kx = 2D holds in CI’°(X, F;) for any points P; of index m; > 1. Since
—Kx is a generator of C1*°(X, P;) =~ Z,;, we obtain (2,m;) = 1. Therefore (2,m) =1 in
this case. :
(5.1.2) Corollary. Let f:(X,C) — (S5,s) be a minimal locally primitive Q-Fano fiber
space. Assume that (S,s) is singular and let n be topological index of (S,s). Then X
contains ezactly two singular points Py, P; of indices > 1 and at most one point of indez
1. If indez of (X, P,) is equal to mn;, (1 =1,2), then

(i) (s, mz) = m,

(it) (—Kx - C) = énf/myms, where § =1 or 2.
Moreover § = 2 only if both of m,/n and mq/n are odd.

(5.2) Theorem. Let [ : (X,C) = (S,s) be a minimal Q-Fano fiber space. Assume that
(X, C) is locally primitive. Then

(0) (Kx - C) = §/m, where m is global indez of (X,C), § =1 or 2.
(I) deggrew > —2;
(I1) If deggrlw = —2, then we have one of the following

(ITla) f:(X,C)— (5,s) ts as in ezample (1.2) .

(IIb) X contains only one singular point P of odd indez m, ip = 2, wp =2 —2/m.
In this case (S, s) is non-singular and a general member of | — Kx| does not
contain C and has only Du Val singularity at P.

(III) If deggr® w = —1, then we have one of the following

(ITla) X contains three singular points Py, P, P3 of indices my, mq and mg = 1 with
(my,mq) = 1. In this case ip, =ip, =ip, =1, wp +wp, =1+ (Kx-C) <1,
and (S, s) is non-singular.
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(IIIb) X contains three singular points Py, P,, Ps of indices my > my = 2 and
mas = 1, my is even. In this case m = my, § = 1, ip, = ip, = ip, = 1,
wp, = 1/2, wp, = 1/2 — 1/my, wp, = 0, and (S,s) is Du Val of type A,.
Furthermore (X, P2) is a cyclic quotient singularity of type %(1,1,1) and a
general member of | — 2K x| does not contain C (and has only log-terminal
singularity at Pp).

(IlTc) X contains two singular points Py, P, of indices my > m, > 1. In this case
ip,+ip, £33, wp +wp, =14+ (Kx-C)< 1. Ifn:=(m,my), then (S,s) is a
cyclic quotient singularity of indez n.

(IIId) X contains two singular points Py, P; of indices my and my = 1. In this case
ip +1ip, £3, m=my, wp, =1—4§/my, and (S, s) is non-singular.

(Ille} X contains only one singular point P of indez m withip <3, wp=1-4/m
In this case (S, s) is non-singular.

PRroOOF. (O) is the same as (5.1.2). (I) By (3.6) d < 4 - T pip < 3. Assume that
d = 3, then X contains only one singular point P with tp = 1. By (5.1.2), (5.1) (S,s) is
non-singular and (Kx - C) = ~§/m, where m is index of (X, P), § = 1 or 2. Then from
(3.5) we have wp = 3 — §/m < 3. Therefore m > 2 and b = § (see (4.2.1)). Lemma
(4.10) gives us a contradiction.

(IT) First assume that the only singular point of X is P. By (5.1.2), (5.1) (S,s) is
non-singular and (Kx - C) = —8/m, where m is index of (X, P), § = 1 or 2. Then from
(3.5) we have wp = 2 — ¢/m < 2. Therefore m > 2 and b = § (see (4.2.1)). Moreover
from (4.11) we have b =2, mis odd, ip = 2 and ord(C") = (2,m). Let F € |- K(x,r)| be
a general member. Then FNC = {P} and F + Kx is Cartier. By (4.4), (F-C)p = 2/m.
It gives us ((F + Kx)-C) =0, hence F' € | — Kx|. It follows from (1.6.4), then F has
only Du Val singularity at P.

Now we consider the case when X has more then one singular point. Then ¥ ip < 2,
so X contains exactly two singular points P, P» with ip, = 1p, = 1. Let m;, mq
their indices and m = mym;/(m;,mz) be global index of X. Then from (3.5) we have
wp, +wp, =24+ (Kx -C)=2-§/m < 2. Hence (X, P;) D (C,P;), i =1,2 are such as
in (4.9) . In particular wp,,wp, < 1 hence wp,,wp, > 0 and Py, P, are non-Gorenstein.
Take general divisors F; € | — K(x py)| (i = 1,2). We claim that Fy + F; € | — Kx/|. Indeed
it is sufficient to show only ((F; + F» + Kx) - C) = 0. But

((F1+F2+Kx)-0)= ((F -Chp+wp, — 1)+ ((F2- C)p + wp, - 1).

By (4.9) , in the last equation both of terms are zero.

Therefore a general member Fy + F; € | — Kx| does not contain C and has only
Du Val singularities. Let L be a general fiber of f : X = S. Since (—Kx - L) = 2,
(Fy-L)=(F;-L)=1. Hence (F\, P,) ~ (Fy, P,) ~ (S, s) are Du Val of type A,_;. By
(5.1.2), (1.6.7) n > m; > n Thus m; = m, = n and the topological cover X4/5% -+ X/S
gives us a conic bundle f' : X% — S% Moreover F; lifts back to Z,-invariant section F}
of f% Therefore f7: X* = S is Z,-isomorphic to P! x C* — C?. After change of the
coordinate system if necessary we obtain a Q-Fano fiber space as in (1.2) .

(I11} Let deggr® w = ~1. Then Y. ip < 3, S wp = 1+ (Kx - C). First suppose that X
contains three singular points Py, P, P; of indices my, my, m3. By (2.11) , one of m;’s, say
ma is equal to 1. Let n = (m,, m3) be topological index of (S5, s). Consider the topological
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Zn-cover (2.7) . Then the fiber C? is irreducible and the cover g : C* ~ P! - C ~ P!
is ramified only over two points P, P,. Hence ¢g7!(P;) is a point Pf’ for 1 = 1,2 and
g Y (Ps) = {PA(1),..., Pi(n)}. Since all the P2(:)’s are singular, by (3.7) , we have n < 3.
If n = 1, then we have case (I11a). .

Let n = 2. Then (X? C" contains two singular points P2(1), Pi(2), hence at least
one of P! or P! is non-singular. So we may assume that (X%, PY) is non-singular and
(X, P;) is a cyclic quotient singularity. This is case (IIIb). Points P;, P, may be only
of types (P1.1), (P1.2) or (P2.1) of theorem (4.9) . In particular, ord(C*) = N. As in
case (II) take a general divisor D € | — 2K(x,p,)|. Since wp, < 1/2, in notations (4.1)

we have b > m/2. Similar to (4.4) (D - C)p, = (2b — my)/m2 = 1 — 2wp,. The
divisor D + 2Kx on X is Cartier, because index of P; is equal to 2. On the other hand
((D-I—?I(X)- C) =1 —2wp, -l-2(u)p1 + wp, — 1) = 0. Hence D ¢ |—21{_x|.

Now consider the case n = 3. Then (X" C%) contains three singular points P3(1),
Pi(2), P3(3). In this case (X, P,) and (X, P,) are cyclic quotient singularities. Hence,
by (1.4) , ff: (X" C% — (894 is a conic bundle with irreducible fiber C! ~ P!, This
contradicts the following
(5.2.1) Lemma. Let f: (X,C) - (C?,0) be a minimal conic bundle with only isolated
singularities. Then (X, C) contains at most two singular points.

PROOF. Assume that (X, C) contains three singular points. Then scheme-theoretical fiber
f71(0) is a double line. Hence in some coordinate system (zo, 71, z2; u,v) in P? x (C%,0)
X is given by the equation

xtzl + 45(71, U)SE? + w(ui.v)IlIQ + C(ua 'U)I% = 07

where ¢(0,0) = %(0,0) = ((0,0) = 0. Moreover we may assume that singular points are
(zo, 21, z2; 4, v) = (0,1,0;0,0), (0,0,1;0,0) and (0,1,1;0,0). But then easy computations
gives us

96(0,0)/9u = 9(0,0)/dv = 8(0,0)/u = dP(0,0)/v = H¢(0,0)/8u = 8¢(0,0)/dv = 0.

Therefore C' C Sing(X), a contradiction. Q.E.D.
The rest assertions of the theorem is only division into cases. Here we use (5.1.2),

(2.8) and (2.8.1). Q.E.D.

(5.3) Proposition. Let f:(X,C) = (S, s) be a minimal locally primitive Q-Fano fiber
space such as in (5.2) (Ilc). Assume that ip, = ip, = 1, wp, < 1/2 and wp, < 1/2.
Then

(1) e general member of | — 2K x| does not contain C (and has only log-terminal sin-
gularities),

(i) f : (X,C) = (S,s) is a quotient of the minimal conic bundle f' : (X% C") —
(8%, %) =~ (C%,0) by Zn, where the action Z, on C* — {0} is free.

ProoF. (i) As in (5.2) (II) take general divisors F; € | — 2K(x p)|. We claim that
Fi+ F; € | — 2Kx|. It is sufficient to show only ((Fy + Fy +2Kx) - C) = 0. Note that
by (4.9) both of (X, P;) and (X, P;) are of type (P1.1), (P1.2) or (P2.1). In particular
for corresponding b; = wt(zs) we have b; = (1 — wp,)m; > m;/2. Similar to (4.4) ,
(F;- C) = (2b; — m;)/m; = 1 — wp,, because ord(C!) = N. It now follows that

(Fy+ Ry +2Kx) - C)= ((Fi-C) + wp, = 1) + ((Fy - C) + wp, — 1) = 0.
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This proves (i).

(ii) Let n = (m1,m2). By (2.5), (2.9) , it is sufficient to prove only m; = my = n.
Let Fy + F; € | — 2Kx| be a general member, where F; € | — 2K(x p,)] and let L be a
general fiber of f. We have ((F) + F3)- L) = (-2Kx - L) = 4. Hence up to permutation
(Fy-L)=(Fy-L)=2,0r (F1-L)=3(F,-L)=3. Let us consider these cases.

CASE (1). Then (F,-C) = (F;-C) = (=Kx - C) = én/mym3. But (F;-C) = ki/m;,
where k; € N. It gives us ki(mo/n) = ko(m,/n) = &. Hese m; # n only if § = 2 and
m;i/n = 2, a contradiction with (5.1.2).

CASE (2). In this case (F3, Py) =~ (S,s). In particular Iip(F2, Py) = Liop(S,8) = n.
Hence, by (1.6.7), (X, P,) is a cyclic quotient singularity of index n = m,. As in case
(1) we have (F; - C) = k/n, (F; - C) = 3k/n, (-Kx - C) = 2k/n = §/m,. We obtain
2k(my/n) =4, 1. e. § =2, my = my = n. This proves the proposition. Q.E.D.

(5.4) Example. Consider the following hypersurface in P2 = x C?

29,2
Xt {z? + uy® + vz* = 0}.
Define an action of Z, on X! as
(z,y,2,u,v) = (e, 'y, z,eu, e~ "v),

where 2a + 1 = n, € = exp(2mi/n). Then f : X'"/Z, = C*/Z, is a Q-Fano fiber space.
The singular locus of X'/Z, consist of two cyclic quotient points of index n. The point
(S,s) is Du Val of type A,_;.
(5.4.1) Computations. Consider the open set {z # 0}. The local coordinates are
(tr = z/2,t2 = y/z,u). Let Q@ = (1/t1)(dt; A dtz A du}. Since Q € wyn is Zn-invariant,
=1 defines a general element F' € | — Kx|. It is easy to see that F contains central
fiber C = f~'(0)rea and has two singular points of type A,_;. Similar to (3.4) we may
compute

(G) (=Kx - C) = 1/n,

(i) ip (1) = 1p(1) = 1,

(iii) wr, (0) = a/n  wry(0) = (n —a—1)/n,

(iv) deggrg w = —1.
Therefore this is an example of Q-Fano fiber space as in (5.2) (IIlc).

Now we shall study locally primitive Q-Fano fiber spaces under the assumption the
existence of good member in | — Kx|.

(5.5) Proposition. Let f: (X,C) — (S,s) be a minimal locally primitive Q-Fano fiber
space. Assume that a general member of | — Kx| has only Du Val singularities. Then one
of the following hold:

(1) (S,s) is non-singular,
(i) (S,s) is of type A,

(iii) f:(X,C) = (S,s) is quotient of a non-singular conic bundle f%: (X8, C*) — (5% st)
with irreducible CU by the group Z,, where m > 3 and the action Z., on (5%, s%) ~
(C?,0) is free in codimension 1. Moreover (S,s) has type A, in this case.

~
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PROOF. Let F € | — Kx| be a general member. If C ¢ F, then we have (5.2) (IIa). So
we assume that F' O C and n := [,,,(S, s) > 3. By (5.2) X contains exactly two singular
points Py, P; of indices my, mqy with (m;,m3) = n. Since —Ky - L = 2, where L is a
general fiber of f, the restriction f|r : F — § is generically finite of degree 2. Let

fri(F,C) Ly (P, P) 25 (S, 9)

be the Stein factorization, where P’ is a point. Then f, : (F,C) — (F’, P') is bimeromor-
phic and f2 : (F', P’) = (S, s) is finite of degree 2. By the adjunction formula, Kr = 0.
Therefore the morphism f; is crepant and (#', P’) is Du Val singularity. Thus there ex-
ists the common minimal resolution (F,C U E,U...UE,) = (F,C) — (F', P'), where
Ei,..., E. are exceptional divisors. Let ' = T'(F/F") be a dual graph for this resolution.
Denote vertex corresponding C (resp. E;) by e (resp. o). Then white vertices form at
least two connected graphs corresponding singular points of (F,(C). Note that graphs
[; C T for points (F, P,), (F, P;) has at least n — 1 vertices, because m; > n and by
(1.6.7). From (1.5.2) keeping in mind that (5,s) is a cyclic quotient singularity we get
the following cases for (F’, P’} — (S, s):

(1) Fe — Ag, n =3,

(2) Agepr 22 Ay, n=k+1,

(3) Age 25 1o (k, 2k — 1), n=2k+1
(4) Ar 25 Agpp, n=2k+1,
(5)° Ages1 = 22k +1,2k +1), n =4k +4.

Let ¢ : (X! P} — (X,P), i = 1,2 be the canonical cover and F} := "' F. Then
Fi~ —K(x1 pryisa Cartier divisor, hence it is normal and (F?, P}) is a Du Val point. Thus

we have étale in codimension 1 Z,,-covers 7! : (F¥, P} — (F, P;) of Du Val singularities,
where (my,mq) = n.
Consider also the topological cover

xXv 2 X
1 I

sty g

It is sufficient to prove that f%: X* — S% is anon-singular conic bundle.
CaSE (1). (F',P') = Es, (S,s) = Az, n =3, m; = 3m}. We have only one possibility
for T'.

o

O — 0 — e — O — 0

Then (F, P.-z is type Aq, my = my = 3 and (Xﬁ,P,-u) are non-singular (see (1.5.3)). But
then (X, P}) is non-singular too. We obtain case (iii).
CaSE (2). (F',P') = Aggr, (S,8) = Ag,n=k+1,mi=(k+1)m; > k+1 Then I
is
9—0—0.«—-01—-—.———0—--.._0
11 12
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Whence (F, F;) is of type Ay;, where l; < 2k. On the other hand l; +1 > m; = (k + 1)m/.
Hence l; = k, (F, P.) is type Ay and by (1.5.3) (X%, P") = (X", P is non-singular. As in
(1) we get case (iii).

Similarly cases (3), (4), (5), (6) are impossible, by (1.5.3). This proves our proposition.
Q.E.D.

6 Some results in imprimitive case

(6.1) Proposition. Let f:(X,C)— (S,s) be a minimal Q-Fano fiber space. Assume
that (X,C) contains an imprimitive point P of indez m and splitting degree e (i. e. C*
has ezactly e irreducible components). Then

(i) The topological cover factors through splitting cover;
g: Xt g—h> Xt i}
AL 1 )
L AN N
Hence n (topological index of (S,s)) is divisible by e.

(i1) X contains no another imprimitive pointé and at most two primitive points, one of
them has indez 1.

(iii) g~} (P) (resp. ¢~ (P)) is only one point P% (resp. P*), all the components of C¥ 1=
(7(C)rea (resp. (6" (C))red) pass through Pt (resp. P*). In particular m is
divisible by n and by e.

iv) Ife >3, then (X", PY) and (X*, P*) have indez > 1.

(

(v) deggrdw = —1.

(vi) (Kx -C) = (Ky» - C*(3)) > =1, where C*(i) is an irreducible component of C*.
(

vii) wp = wpi(;), where P*(i) = P® is considered as a point of (X*,C*(3)).

PROOF. (i), (ii), (iii) immediately follows from (2.5) and (2.10) . To prove (iv) consider
the extremal neighborhood

(X5, U;:CY), (resp.  (X*,U;Ch)),

where C’? (resp. CJ?) are irreducible components of C? (resp. C*). Since U#;Cf and U#.-Cf
are reducible, points (Xh,ﬂ#,-C?) = (X", P*) and (Xb,ﬂ#,-C;) = (X", P*) has indices > 1
by [18], 1.15. :

(v) The splitting cover ¢* : (X*,C*) = (X, C) induces an isomorphism C*(i) — C =~
P!, where C*(2) is an irreducible component of C*. Hence we have the map

grocp(i) w — grgw

By (18], 2.3.2, grg-.mw ~ Ogv(;y(—1). Therefore gt w ~ Oc(-1).
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(vi) Tt follows from Ky = ¢°"(Kx).
{vii) We have

wp + Z wg = 1 + (KX : C) = 1 + (lev(") ' Cb('l) = wpb(.-) + z: wQ;(,-).
Q#P QH(i)#P*
Since g*(X*, C*(¢)) — (X, C) is an isomorphism outside P*(i), for Q*(i) = ¢*(Q) one has
the equality wg = wg(;). Whence wp = wps(;). This proves the proposition. Q.E.D.
The following is an easy consequence of the classification of extremal neighborhoods of
index 2 [13].
(6.2) Proposition. Let f: (X,C) = (S5,s) be a Q-Fano fiber space. Assume that X

has only points of indez one and two (we do not assume that C is irreducible). Then we
have one of the following:

(i) f:(X,C) = (S,5) ~ (C?,0) is a conic bundle.

(i) f:(X,C) = (S,s) is a quotient of a conic bundle f : (X" CY%) — (S% &) ~ (C?,0)
by Z,, where the action Zy on C* — {0} is free.

(iii) (S,s) ~ (C?,0), X has a unique point, say P, of index two, C = ¥ C; has at most
four components, they all pass through P. Moreover in this case (—Kx-C;) = 1/2 for
each irreducible component C; C C and for the scheme-theoretical fiber Z := f~1(s)
we have

(ilia) Z =4C, C is irreducible,

(iiib) Z = 2C = 2(C, + C2),

(iiic) Z2=C1+3C,, C=Cy + Cy,

(iid) Z=C1+Cy+2C5, C=C1 +Ca+C5
(iie) Z=C=C1+C2+ Cs + Cy.

PROOF. Assume that (5,s) ~ (C?,0) (is non-singular) and f : (X,C) = (S,s) is not a
conic bundie. Let Z := f~!(s) be the scheme-theoretical fiber of f. Then Z = ¥ o;C;,
where a; € Nand C =Y. C;.

From lemma (1.4.1) we have 2 = (—Kx - Z) = ¥ a(—Kx - C;). Thus the number of
components is at most 4. If C is irreducible, then X contains a unique point of index 2
by (5.1.2). If C has 3 or 4 components, then (X, C;UCj;) is an extremal neighborhood for
any C;,C; C C such that C; N C; # 0. In this case by [13], 4.7 C; N C; is the only point
of index 2. It gives as case (iil). Consider the case C = C; + C; and let C, N C; = {P}.
Again by {13], 4.7 any of C}, C; contains at most one point of index 2. If P has index 2,
then we obtain case (iii), so assume that (X, P) is Gorenstein. Let P, € C), P, € C) are
points of index 2, P; # P. Then by [18], 7.3 general members F; € | — K(x p)|, ¢t = 1,2
are general members of | — Ky ¢,y with (F;-Cy) = 1/2. Therefore Fy + F; € | — K(x,0)l-
But then (F;, P;) =~ (S, S), a contradiction. The case when only one of (X, C}), (X, C?)
contains point of index 2 is treated by the similar way.

Now we assume that (S, s) is singular. Consider the topological cover

Xt 40X
L 1y

sr hyog
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If X" is Gorenstein, then we have case (ii). In the opposite case f%: X® — 5% is such as in
(iii). Then point P" of index 2 is Zy-invariant. Hence g(P") has index > 2, a contradiction.
Q.E.D.

(6.2.1) Example. Let V = V C P® be a projective cone over the Veronese surface
F = F} C P° with the vertex O and let Py,..., Py € V be points such that (P,..., Py) =
P® ¥ O. A unique singular point of V is O, it is cyclic quotient singularity of type
3(1,1,1). Consider the projection p : V— — —P? from (P,,..., P;) = P°. Denote by
s € P? the image of 0. The resolution of the base locus of p is

p:V(a—X—">P2,

where X — V is the blow-up of P,,..., P;. Fibers of X — P? are strict transforms of
VNP, hence a general fiber is P!. The fiber f~!(s) is the union of four P"s meeting in the
point O := o~ 1(0) (of type 3(1,1,1)). Let f~'(s) = Ly U...U L,. Easy computations
gives us —2Ky = Oy(5), thus we have (=Kx + L;) = (¢*(~Kv) - L;) — (2E; - L;) =
1/2(Oy(5) - o(L:)) — 2 = 1/2 > 0, where E; is the exceptional divisor over P;. Therefore
f:(X,L,U...ULy) = (P%s) is a Q-Fano fiber space with non-singular base and a
unique singular point of index 2.

(6.3) Proposition. Let f: (X,C) = (S,s) be a minimal Q-Fano fiber space with
an imprimitive point P. Assume that a general member F € | — Kx| has only Du Val
singularities. Then we have one of the following

(1) (S,s) is Du Val of type Ay, or

(ii) (S, s) s Du Val of type As, in this case (X, C) has a unique cyclic quotient singu-
larity P of indez 8 and has no another points of indez > 1, splitting degree of (X,C) is
equal to 4.

PROOF. Let P be an imprimitive point of index m and splitting degree e. It follows from
(5.1.2) that (S,s) is singular. Let n = [5(S5,s) be topological index of the base. We
assume that n > 2 (otherwise we have case (i). Remember that m is divisible by n and n
is divisible by e (see (6.1) ). Consider the topological cover

X2 X
L I
stk o9

Then g=!(P) is one point, say P, Cl := (§71(C))rea is reducible, C? = $°¢_, C¥. Moreover
Pt e C for all 4. .

(6.4) First we assume that C ¢ F. Since —Kx - L = 2, where L is a general fiber of f,
the restriction f|p: ' — S is finite of degree 2. If C'N F is two point P, P, then we can
assume that F' = Fy + Fy, where Fy 3 P, F} 3 Py. But then (Fo, P) ~ (Fy, P) ~ (5,s)
are Du Val of type A,-;. Since Fl := g~'(F) € | — Kx|, as above, we see that /! has two
connected components Fi := g~'(Fp), F¥ := ¢g~'(F;). But then F¥ # P! and hence Fl"1
intersects only one component of C¥, because we consider germs (X, C), (X", C"). This
contradicts the fact that Z, transitively acts on {C?}.

Now we assume that C N F is only one point P. Since P is a unique point of index > 1,
the action G' on C" is free outside PY. In particular, the number of components of C? is
divisible by n, so n = e. Thus if n = 2 and (X", P!) has index 1, then we have the case (i).
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So we assume the opposite. From (1.5.2) we get the following cases for (F, P) = (S, s) as
n (5.5) :

(1) Es 24 A, n=3,

(2) Azeir =5 Ay, n=k+1,

(3) Agk =5 s (K, 2k = 1), n=2k+1
(4) Ar 25 Agkgr, n=2k+1,
(5) Askpr = 252k + 1,2k + 1), n=4k+4.

Let m! : (X!, P!} — (X, P) be the canonical cover and F? := 7!~ F'. Then F* ~ —K(x1,p1)
is a Cartier divisor, hence it is normal and (F*, P*) is a Du Val point. Thus we have étale
in codimension 1 Z-cover 7! : (F¥ P¥) — (F, P) of Du Val singularities, where m > n.
By (1.5.3), cases (4), (5) are impossible and (F, P) from (3) admits only cover by non-
singular (F*, P") of degree n = m = 2k+1. But then (X*, P!) = (X* P!) is a non-singular
point. Then f%: (X% C%) — (5% s") is a conic bundle and C" has only two components.
Hence 2k + 1 = e = n = 2, a contradiction. In case (1) (F, P) = Eg admits only cyclic
cover Dy 24 Es. Thenm=n=e=3 and f: (X!, CY = (X", C*) — (5% st) is a conic
bundle. But in this case C! = C* has only two components, a contradiction.

Finally, consider case (2). If (X!, P%) has index 1, then, as above, C% has only two
components, son = e = 2, we get case (i) of our theorem But if (X¥, P") has index m > 1,
then m > n = k + 1 and by (1.5.3) (FY, P") 4 (F, P) is A, L s, m o= 2k 4 2.
Then index of (X%, P) is equal to m/n = 2, (X!, P!) is non-singular, hence (X, PY) is a
cyclic quotient singularity of type 1(1,1,1). Therefore f%: (X% C% — (S% 5% is either
as in (6.2) , (iiib), or (6.2) (iiie) (since Z,, permutes C;, multiplicities of C; in Z are the
same). Thus n = e = 2 or 4. We obtain cases (i) , (ii} of our theorem.

(6.5) Now we assume that C' C F. As in (5.5) consider the Stein factorization

fr i (F,C) L5 (F', Py L5 (8, 9),
where P’ is a point. Then (F’, P') is Du Val, f, : (F,C) — (F', P') is bimeromorphic
crepant morphism, and f; : (F', P} — (S, s) is finite of degree 2. For f; : (F', P') = (S, s)
we have the same possibilities as for (F, P) — (S;s) in (6.4) . Let us consider these cases.
We shall draw graph T for f; : (F,C) — (F', P') as in (5.5) .

CASE (1). (F', P") = E¢, (S,5) = Az, n = e = 3, m = 3m¥, (X", PY) is not Gorenstein
(because e > 2)

o o
| < |
¢ — O — 0 — 0 — © o — e — o0 — o0 — 0

But points Ds, A;, and A, have no étale in codimension 1 cyclic covers of degree m = 3m!.

0

o — o0 — & — 0 — O

Then (F, P) is type A, and (X!, P!) = (X", P%) is non-singular. But C* has three com-
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ponents, a contradiction with (6.1) .

g — 0 — 0 — 0 — 0

Then (F, P) is type A and it is a unique singular point on C. As above we obtain that
(X% P") has index 2, hence f%: (X% C% — (S%s!) is such as in (6.2) (iiid). This is
impossible, since Z3 permutes C;.

CASE (2). (F',P") = Agy1, (S,8) = Ap,n=k+1,m=(k+1)m" > k+1. .

90— —0—e—9o—---—0
{ r

Then (F, P) is of type A;, where [ < 2k. On the other hand {+1 > m = (k+1)m*. Hence
| =k, (F,P)is type A; and (X!, P%) = (X*, PY) is non-singular. By (6.1) C" has exactly
two components C7,CY. If k = 1, then (X, C) contains only points of index 1 or 2, so
by (6.2) we have case (i). Thus we assume that £ > 1. Then C" and C? are invariant
under the action of subgroup Zy,/; C Zg41. Therefore there exist fixed points RE € CP,
R! # Pt Thus the point R := g(R}) = g(R%) € X has index > 1. Since [ +r = 2k,
we have r = k and (F, R) is of type Ar. Moreover we may assume that (X* C%) is not
Gorenstein, so (X, R}), (XY, R) has (the same) index mo > 1 and (X!, C") contains no
another points of index > 1. But then index of (X, R) is mo(k + 1)/2 < k + 1. Hence
mo = 2, (X%, C" has two points of index 2, a contradiction with (6.2) .

Asin (6.4) cases (5), (4), (3) are impossible. Q.E.D.

(6.6) Example. Let X* be a hypersurface in P2 x C?

Tz u,v?
equation:

defined by the following

z” + y2 + z2¢(u1v) =0,
where {¢(u,v) = 0} C C* has an isolated singularity in 0 and ¢(u,v) has only monomials
of even degree. Denote by f1: X*® — C? the natural projection. Then X* has only one
singular point P = (z =y =u=wv =0,z =1) on f£~'(0). Define the action of G = Z,
on X" and C*:
(z,y,z,u,v) = (—z,y, 2, —u, —v).

Set X = X®/G, S = C*/G. The only fixed point on X?is P If (X% P")/G is terminal,
then f : X — § is a Q-Fano fiber space. The point P* gives us a unique imprimitive
point P € X of index 2. The surface S has Du Val singularity of type A, in 0. Consider
the following cases for ¢(u,v):

(1) §(u,v) = u? + v

(2) d(u,) € !, Clu,v}.
Then by [14] (X, P) is terminal and has type cA/2 and cAx/2, respectively. Thus we
have examples of Q-Fano fiber spaces as in (6.3) , (i).

(6.7) Example. Let things be as in example (6.2.1). Then the Veronese surface
F} C P® is the image of

q: P? — Psa q:(z,y,z) — (zzwyzazza'ry:zz;yz)'
Define the action of Zg on P? and F}:

(2"1 Y, Z) — (6275-13}7632)1
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where ¢ := exp(27i/8). Then we can take points P; € V as
P =4q(1,1,1), P=gqle,e7'e%), Py=gq(e%e%e"),  Py=q(e}e73 €.

Since points (1,1,1), (e,e7%, &%), (€2,672,€°), (3,673,¢°) are in general position, their
images Py,..., P, generates P? such that P> N F? = {Py,...,Py}. Then the induced
action Z4 on V can be lifted on the Q-Fano fiber space f: (X, L, U...U Ly) = (P?s).
It is easy to see that the action Z4 on V C P8 looks like

(zo, z1, T2, T3, T4, Ts, Ts) — (T0,1T1, —1T2, —1T3, T4, —T5,1T6).

Projection p : (V,0)— — —(P%s) gives us the action of Z4 on (P?s) (in affine neigh-
borhood of s):
(y1,92) — (391, —iye).

Thus we obtain a Q-Fano fiber space X/Z, — P?/Z4 such as in (6.3) , (ii).

7 Appendix: Q-Fano with extremal contractions to
surfaces

(7.1) Definition. A normal projective variety X is called Q-Fano if it has only terminal
singularities and, — Ky is an ample Q-Cartier divisor.

In the paper {21] Nikulin obtained some boundedness results for Picard number of Q-
Fano threefolds under assumption that there are no small contractions and contractions
of extremal faces onto curve or surface. In this direction we discuss the following.

(7.2) Propostion. Let X be a Q-Fano threefolds with Picard number p(X) > 2. Assume
that there ezists an contraction of extremal face f : X — § such that

(i) dimS =2,

(i1) f has only fibers of dimension 1, (iii) in small neighborhood of any point s € S for
f: X = S conjecture (0.2) is true. '
Then S is a rational weak Del Pezzo surface. Furthermore, if f : X — S as above s ¢
contraction of extremal ray, then p(X) < 10. '

PROOF. For a divisible enough m the linear system —mKx is a very ample system of
Cartier divisors. Then the curve L := f.((—mAKx)?) is very ample on S. Indeed, L is
effective and (C - fu((=mKx)?)) = fu(f*C - ((-mKx)?)) > 0. We have the standard
formula ~4Ks = f.(K%) + A, where A is a reduced Weil divisor on S. Thus

-—4[\,5 = L + A, (*)

1
m

(7.2.1) Claim The surface S is rational.

PROOF. By (*), —4m K is effective, hence k(S) = —oo. Since H'(5,05) = HY(X,0x) =
0, S is rational. Q.E.D.

Assume that there exists an irreducible curve C C S such that (=Ks-C) < 0. It
follows from (*) that (=L -C) = (mC - (4Ks + A)) < 0. Hence (A-C) < 0,C C A,
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((Ks+C)-C) <0 and (C)? < 0. Take a minimal resolution g : § = S. Since $ has only
Du Val singularities, we have

g Ks = Kg, g C = ¢ + ET.‘E,',

where r; > 0, E; are exeptional divisors, and C is the proper transform of C. Then

-~

0<(Ks-C)=(Kz-C),

0> (C)=(CY +(C-Y_rEy).

Since

0> 4(Ks-C)+(C)? =a(Kz-C)+ (02 +(C - Y riE),
we have 4( K5 - C) + (C~')2 < 0 and

3(Kz C)+2p.(C)—-2<0.

It follows from (Kg-C) > 0 that pa(C) = 0, (K3-C) +(C)? = -2, and (3K3-C) -2 < 0.
Hence (K- C) = 0. It is possible only if C ~ P!, (Kz-C) =0, (C)* = -2,i.e. Cisa
(=2)-curve. By definition S and S are weak Del Pezzo surfaces. Q.E.D.
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