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Abstract

We express non-commutative quantummechanics as aWeyl pseudo-
di¤erential calculus on double phase space R2n � R2n, which is in-
tertwined with the standard Weyl calculus using a family of partial
isometries of L2(Rn) �! L2(R2n) indexed by S(Rn). This allows us
to reduce the study of non-commutative quantum mechanics to that
of conventional Weyl calculus. In particular we easily obtain spectral
results for the operators arising in non-commutative quantum mechan-
ics.

1 Introduction

Traditional quantum mechanics is based on the canonical commutation re-
lations

[ bX�; bX�] = [ bP�; bP� ] = 0 , [ bX�; bP�] = i~��� (1)

for 1 � �; � � n. Setting bZ� = bX� if 1 � � � n and bZ� = bP��n if
n+ 1 � � � 2n, these relations can be rewritten

[ bZ�; bZ� ] = i~j�� for 1 � �; � � 2n (2)

where J = (j��)1��;��2n is the standard symplectic matrix
�
0 I
�I 0

�
(0

and I are the zero and unity n � n matrices). We now make the following
observation. In traditional quantum mechanics one traditionally chooses to
represent explicitly the canonical commutation rules (1)�(2) by imposing
that bX� and bP� are the operators de�ned by bX� = multiplication by x� andbP� = �i~@x� ; both operators are viewed as acting on functions de�ned on
Rn. Of course, this choice (which is suggested by historical reasons) is not
the only possible; for instance we could as well de�ne the �Bopp shifts�[6]

eX� = x� +
1
2 i~@p� , eP� = p� � 1

2 i~@x� (3)
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where bX� and bP� now act on functions de�ned on phase space. Indeed, in
two recent papers de Gosson [11] and de Gosson and Luef [15] have shown
that this approach is useful for the reformulation of deformation quantiza-
tion in terms of the Moyal product, and for the study of generalized �Landau
operators�. Now, the study of noncommutative �eld theories and their con-
nections with quantum gravity [8, 20, 23] has led physicists to consider more
general commutation relations of the type

[ eX�; eX� ] = ��� , [ eP�; eP�] = ��� , [ eX�; eP�] = i~��� (4)

where � = (���)1��;��n and N = (���)1��;��n are antisymmetric matrices
measuring the non-commutativity in the position and momentum variables.
Writing eZ� = eX� if 1 � � � n and eZ� = eP��n if n + 1 � � � 2n these
relations are equivalent to

[ eZ�; eZ�] = i~!�� (5)

where 
�;N = (!��)1��;��2n is the 2n � 2n antisymmetric matrix de�ned
by


�;N =

�
~�1� I
�I ~�1N

�
: (6)

Since det
�;N = det(I + ~�2�N) the matrix 
�;N is invertible as soon as
~�2�N is su¢ ciently small (we will give a precise statement in Subsection
4.1); this requirement is physically meaningful: see the discussions in [5,
7]. Two of us have have investigated in detail the features of the �non-
commutative quantum mechanics�determined by the commutation relations
(5) in recent papers [1, 2].

It turns out that when 
�;N is invertible we can use it to de�ne a sym-
plectic (non-Kählerian) structure on phase space R2n; the discussion above
then suggests that we represent the operators eX� and eP� by the following
generalization of (3).

eX� = x� +
1
2 i~@p� +

1
2 i
X

�
���@x� (7)

eP� = p� � 1
2 i~@x� +

1
2 i
X

�
���@p� ; (8)

which we �nd convenient to write in compact form as

eZ = z + 1
2 i~
�;N@z; (9)

notice that these operators reduce to (3) when � = N = 0. These �quantiza-
tion rules�lead us to consider pseudo-di¤erential operators formally de�ned
by eA! = a( eZ) = a(z + 1

2 i~
@z) (10)
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where 
 is an arbitrary antisymmetric invertible matrix; such a matrix de-
�nes a symplectic form ! on R2n:

!(z; z0) = z � 
�1z0

which coincides with the standard symplectic form � when 
 =
�
0 I
�I 0

�
.

In this article we will show that:

� The formal de�nition (10) can be made rigorous, and that the Weyl
symbol of the operators eA!;

� The operators eA! are intertwined with the usual Weyl operators bA
using a family of partial isometries  7�! Us;� of L2(Rn) in L2(R2n)
parametrized by � 2 S(Rn);

� The spectral properties of the operators eA! can be recovered from
those of bA using these intertwining relations; in particular the consid-
eration of Shubin�s classes of globally hypoelliptic symbols will allow
us to state a very precise result when bA is formally self-adjoint.
� The matrix 
�;N is invertible (and hence de�nes a symplectic form
! = !�;N ) under a certain condition of �smallness� of the entries of
the matrices � and N (this was proven in former work by two of us
and our collaborators in [5, 7].

In a sense our results show that the study of noncommutative quantum
mechanics is reduced to that of standard quantum mechanics provided that
one works in a double phase space.

Remark 1 In a recent paper two of us pointed out the relevance of Sjöstrand
classes for deformation quantization, which relies on the fact that Sjöstrand
classes are members of the family of modulation spaces. The results in this
investigation extend to the present setting. Our approach to this problem will
closely tie the previous setting with the symplectic structure of the double
phase space R2n � R2n. The main consequences are that the Sjöstrand�s
classes are Banach algebras with respect to twisted convolution and that its
is spectral invariant; these facts will be exploited in a forthcoming work.

Notation 2 The generic point of T �Rn = R2n is denoted by z = (x; p) and
that of T �R2n = R4n by (z; �). The standard symplectic form � on R2n is
de�ned by �(z; z0) = p � x0 � p0 � x and the corresponding symplectic group is
denoted Sp(2n; �). Given an arbitrary symplectic form ! on R2n we denote
by Sp(2n; !) the corresponding symplectic group.

We denote by S(Rn) the Schwartz space of rapidly decreasing functions
on Rn; its dual S 0(Rn) is the space of tempered distributions. The scalar
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product of two functions  ; � 2 L2(Rn) is denoted by ( j�) and that of
	;� 2 L2(R2n) by ((	j�)). The corresponding norms are written jj jj and
jjj	jjj.

2 Phase Space Weyl Operators

In this section we show how to de�ne a Weyl-type pseudodi¤erential calculus
on a symplectic space (R2n; !) where ! is an arbitrary symplectic form (with
constant coe¢ cients) on R2n.

Let us begin by giving a short review of the main de�nitions and prop-
erties from standard Weyl calculus as exposed (with �uctuating notation)
in for instance [9, 10, 17, 21, 22, 24].

2.1 Standard Weyl calculus

Given a function a 2 S(R2n) the Weyl operator bA with symbol a is de�ned
by: bA (x) = � 1

2�~
�n ZZ

R2n
e
i
~p�(x�y)a(12(x+ y); p) (y)dydp (11)

for  2 S(Rn); here ~ is a positive constant which is identi�ed with Planck�s
constant h divided by 2� in quantum mechanics. This de�nition makes sense
for more general symbols a provided that the integral interpreted in some
�reasonable way�(oscillatory integral, for instance) when a is in a suitable
symbol class, for instance the Hörmander classes Sm�;�, or the global Shubin
spaces H�m1;m0

� (which will be de�ned later in this article). We refer to
the existing literature for these well-known facts. A better de�nition is, no
doubt, the following:

bA = � 1
2�~
�n Z

R2n
F�a(z0) bT (z0) dz0 (12)

because it immediately makes sense for arbitrary symbols a 2 S 0(Rn); in the
formula above F� is the symplectic Fourier transform:

F�a(z0) =
�
1
2�~
�n Z

R2n
e�

i
~�(z0;z)a(z)dz (13)

which extends into an automorphism S 0(Rn) �! S 0(Rn) and bT (z0) is the
Heisenberg�Weyl operator S 0(Rn) �! S 0(Rn) formally de�ned by

bT (z0) = e�
i
~�(bz;z0) with bz = (x;�i~@x); (14)

the action of bT (z0) on  2 S(Rn) is given by the explicit formula
bT (z0) (x) = e

i
~ (p0�x�

1
2
p0�x0) (x� x0) (15)
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if z0 = (x0; p0). The Weyl correspondence, written a
Weyl ! bA or bA Weyl ! a,

between an element a 2 S 0(R2n) and the Weyl operator it de�nes is bijective;
in fact the Weyl transformation is one-to-one from S 0(R2n) onto the space
L(S(Rn);S 0(R2n)) of continuous maps S(Rn) �! S 0(Rn) (see e.g. Maillard
[19], Wong [24]). This can be proven using Schwartz�s kernel theorem and the
fact that the Weyl symbol a of the operator bA is related to the distributional
kernel of that operator by the formula

a(x; p) =

Z
Rn
e�

i
~p0�yK(x+ 1

2y; x�
1
2y)dy (16)

where the integral is interpreted as the distributional bracket

he�
i
~p0�(�);K(x+ 1

2(�); x�
1
2(�))i

(which is essentially a Fourier transform) whenK 2 S 0(Rn�Rn). Conversely
(cf. (11)) the kernel K is expressed in terms of the symbol a by the formula

K(x; y) =
�
1
2�~
�n Z

Rn
e
i
~p�(x�y)a(12(x+ y); p)dp:

Assume that the product bA bB exists (this is the case for instance if bB :
S(Rn) �! S(Rn)); then the Weyl symbol c of bC = bA bB and its symplectic
Fourier transform c� are given by

c(z) =
�
1
4�~
�2n ZZ

R2n�R2n
e
i
2~�(u;v)a(z + 1

2u)b(z �
1
2v)dudv (17)

F�c(z) =
�
1
2�~
�n Z

R2n
e
i
2~�(z;z

0)F�a(z � z0)F�b(z0)dz0: (18)

The �rst of the formulas above is often written

c = a ?~ b (19)

especially in the context of deformation quantization [3, 4] where the oper-
ation ?~ is called the Moyal star-product.

Two important properties of Weyl operators are the following:

� The operator bA Weyl ! a is formally self-adjoint if and only the symbol a
is real; more generally the symbol of the formal adjoint of an operator
with Weyl symbol a is its complex conjugate a;

� The property of symplectic covariance: let Mp(2n; �) be the meta-
plectic group, that is the unitary representation of the double cover
of Sp(2n; �). To every s 2 Sp(2n; �) thus corresponds, via the nat-
ural projection � : Mp(2n; �) �! Sp(2n; �), two operators �S 2
Mp(2n; �), and we have S�1 bAS Weyl ! a � s. This property is charac-
teristic of the Weyl pseudo-di¤erential calculus (see Stein [22], Wong
[24]).

5



A related object is the cross-Wigner transform W ( ; �) of  ; � 2 S(Rn)
(see e.g. [9, 10]); it is de�ned by

W ( ; �)(z) =
�
1
2�~
�n Z

Rn
e�

i
~p�y (x+ 1

2y)�(x�
1
2y)dy (20)

(it is thus, up to a constant, the Weyl symbol of the operator with kernel
 
 �). We note, for further use, that W ( ; �) can alternatively be de�ned
by the formula

W ( ; �)(z) =
�
1
�~
�n
( bTGR(z) j�) (21)

where bTGR(z) is the Grossmann�Royer operator:
bTGR(z0) (x) = e

2i
~ p0�(x�x0) (2x0 � x): (22)

Formula (21) allows us to de�ne W ( ; �) when  ; � 2 S 0(Rn). Following
property is important, and is sometimes taken as the de�nition of bA:

( bA j�) = Z
R2n

a(z)W ( ; �)(z)dz: (23)

Also note that the cross-Wigner transform satis�es the Moyal identity

((W ( ; �)jW ( 0; �0))) =
�
1
2�~
�n
( j 0)(�j�0): (24)

2.2 De�nition of the operators eA!
In what follows 
 denotes an arbitrary (real) invertible antisymmetric 2n�
2n matrix. The formula

!(z; z0) = z � 
�1z0 = �
�1z � z0 (25)

de�nes a symplectic form on R2n; notice that ! coincides with the standard
symplectic form � when 
 = J .

Let us introduce the following variant of the symplectic Fourier trans-
form: if a 2 S(R2n) we set

F!a(z) =
�
1
2�~
�n jdet
j�1=2 Z

R2n
e�

i
~!(z;z

0)a(z0)dz0; (26)

the presence of the inverse square root jdet
j�1=2 ensures us that F! extends
into a unitary automorphism of L2(R2n): jjjF!ajjj = jjjajjj. This unitarity
most easily follows from the second formula (38) in Proposition 6 below,
or from the observation that F! is related to the usual unitary Fourier
transform F on R2n by the formula

Fa(z) = jdet
j1=2F!a(�
z): (27)
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The symplectic Fourier transform F! extends into a continuous automor-
phism of S 0(R2n) in the usual way by de�ning F!a for a 2 S 0(R2n) by the
formula hF!a; bi = ha; F!bi for all b 2 S(R2n) (or, alternatively, by using
the relation (27) above). Note that when 
 = J we have F! = F� since
det J = 1. Using (27) together with the usual Fourier inversion formula
shows that F! is involutive, that is

F!F!a = a: (28)

We will also need the operators

eT!(z0) : S 0(R2n) �! S 0(R2n)
de�ned by the formula

eT!(z0)	(z) = e�
i
~!(z;z0)	(z � 1

2z0): (29)

These operators satisfy the same commutation relations as the usual Heisenberg�
Weyl operators bT (z0) when ! = �. In fact, a straightforward computation
shows that

eT!(z0 + z1) = e�
i
2}!(z0;z1) eT!(z0) eT!(z1) (30)eT!(z0) bT (z1) = e
i
}!(z0;z1) eT!(z1) eT!(z0): (31)

Let us now de�ne the operators eA!.
Proposition 3 Let a 2 S 0(R2n) and 	 2 S(R2n). The operator eA! :
S(R2n) �! S 0(R2n) de�ned by

eA!	 = � 1
2�~
�n
(det
)�1=2

D
F!a(�); eT!(�)	E (32)

that is formally by

eA!	 = � 1
2�~
�n
(det
)�1=2

Z
R2n

F!a(z) eT!(z)	dz (33)

is continuous S(R2n) �! S(R2n) and its Weyl symbol is given by

ea!(z; �) = a
�
z � 1

2
�
�

(34)

and we have ea! 2 S 0(R2n�R2n). When a = 1 the operator eA! is the identity
on S(R2n).
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Proof. Since eT!(z)	 2 S(R2n) for every z and F!a 2 S 0(R2n) the operatoreA! is well-de�ned. We have, setting u = z � 1
2z0,

eA!	(z) = � 1
2�~
�n jdet
j�1=2 Z

R2n
F!a(z0) eT!(z0)	(z)dz0

=
�
1
2�~
�n jdet
j�1=2 Z

R2n
F!a(z0)e

� i
~!(z;z0)	(z � 1

2z0)dz0

=
�
2
�~
�n jdet
j�1=2 Z

R2n
F!a[2(z � u)]e

2i
~ !(z;u)	(u)du

hence the kernel of eA! is given by the formula
K(z; u) =

�
2
�~
�n jdet
j�1=2F!a[2(z � u)]e 2i~ !(z;u):

It follows from formula (16) that the symbol ea! is given by
ea!(z; �) = Z

R2n
e�

i
~ ���

0
K(z + 1

2�
0; z � 1

2�
0)d� 0

=
�
2
�~
�n jdet
j�1=2 Z

R2n
e�

i
~ ���

0
F!a(2�

0)e�
2i
~ !(z;�

0)d� 0

that is, using the obvious relation

� � � 0 + 2!(z; � 0) = !(2z � 
�; � 0)

together with the change of variables z0 = 2� 0,

ea!(z; �) = � 1�~�2n jdet
j�1=2 Z
R2n

e�
i
~!(2z�
�;�

0)F!a(2�
0)d� 0

=
�
1
2�~
�2n jdet
j�1=2 Z

R2n
e�

i
~!(z�

1
2

�;z0)F!a(z

0)d� 0:

Formula (34) immediately follows using the Fourier inversion formula (28).
That eA! = I when a = 1 immediately follows from the fact that F!a =
(2�~)2n� where � is the Dirac measure on R2n. The continuity statement
follows from the fact that eA! is a Weyl operator.

Two immediate consequences of this result are:

Corollary 4 (i) The operator eA! de�ned by (33) is formally self-adjoint if
and only if a is real. The formal adjoint eA�! of eA! is obtained by replacing
a with its complex conjugate a. (ii) The symbol ec of eC! = eA! eB! is given byec!(z; �) = c

�
z � 1

2
�
�
where c = a ?~ b is the Weyl symbol of the operatorbC = bA bB.

Proof. (i) The property is obvious since eA! is formally self-adjoint if and
only if its Weyl symbol ea! is real, that is if and only if a itself is real.
Similarly, the Weyl symbol of eA�! is the function

(z; �) 7�! c
�
z � 1

2
�
�
:
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(ii) The property is an immediate consequence of the de�nition of eC! since
a ?~ b

Weyl ! bA bB.
2.3 Symplectic transformation properties

Let ! be the symplectic form (25) on R2n. The symplectic spaces (R2n; !)
and (2n; �) are symplectomorphic (as are all symplectic spaces with same
dimension); ! and � having constant coe¢ cients they are even linearly sym-
plectomorphic. That is, there exists a linear automorphism s of R2n such
that s�! = � that is

!(sz; sz0) = �(z; z0) (35)

for all (z; z0) 2 R2n�R2n. [s is sometimes called the �Seiberg�Witten map�
in the physical literature; its existence is of course mathematically a trivial-
ity, because all symplectic structures with constant coe¢ cients are linearly
isomorphic (see e.g. de Gosson [10], §1.1.2)]. Identifying the automorphism
s with its matrix in the canonical basis, the relation (35) is equivalent to
the matrix equality


 = sJsT : (36)

Such a symplectomorphism s : (R2n; !) �! (R2n; �) is by no means unique;
we can in fact replace it by any automorphism s0 = ss� where s� 2 Sp(2n; �);
note however that the determinant is an invariant because det s0 = det sdet s� =
det s since det s� = 1.

We are going to see that the study of the operators eA! is easily reduced
to the case where ! = �, the standard symplectic form on R2n. This re-
sult is closely related to the symplectic covariance of Weyl operators under
metaplectic conjugation as we will see below.

For s a linear automorphism of R2n we de�ne the operator

Ms : S 0(R2n) �! S 0(R2n)

by the formula
Ms	(z) =

p
jdet sj	(sz). (37)

Clearly Ms is unitary: we have jjjMs	jjj = jjj	jjj for all 	 2 L2(R2n).

Notation 5 When 
 = J we write eT (z0) = eT�(z0) and eA = eA�.
Proposition 6 Let s : (R2n; !) �! (R2n; �) be a linear symplectomor-
phism. (i) We have the conjugation formulas

Ms
eT!(z0) = eT (s�1z0)Ms , MsF! = F�Ms (38)

Ms
eA! =fA0Ms with a0(z) = a(sz): (39)
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(ii) When s is replaced by an automorphism s0 = ss� with s� 2 Sp(2n; �)
then fA0 is replaced by the operator

fA00 =Ms�
fA0M�1

s� (40)

where Ms�	(z) = 	(s�z).

Proof. (i) Since !(sz; z0) = �(z; s�1z0) we have for all 	 2 S(R2n),

Ms

h eT!(z0)	i (z) =pjdet sje� i
~!(sz;z0)	(sz � 1

2z0)

=
p
jdet sje�

i
~�(z;s

�1z0)	(s(z � 1
2s
�1z0))

= e�
i
~�(z;s

�1z0)Ms	(z � 1
2s
�1z0)

= eT (s�1z0)Ms	(z)

which is equivalent to the �rst equality (38). We have likewise

MsF!a(z) =
p
jdet sjF!a(sz)

=
�
1
2�~
�n jdet
j�1=2pjdet sjZ

R2n
e�

i
~!(sz;z

0)a(z0)dz0

=
�
1
2�~
�n jdet
j�1=2pjdet sjZ

R2n
e�

i
~�(z;s

�1z0)a(z0)dz0

=
�
1
2�~
�n jdet
j�1=2jdet sjZ

R2n
e�

i
~�(z;z

00)Msa(z
00)dz0

hence the second equality (38) because

jdet
j�1=2jdet sj = 1 (41)

in view of the equality (36). To prove the equality Ms
eA! =fA0Ms it su¢ ces

to use the relations (38) together with de�nition (33) of eA!:
Ms

eA! = � 1
2�~
�2n jdet
j�1=2 Z

R2n
F!a(z)Ms

eT!(z)dz
=
�
1
2�~
�2n jdet
j�1=2 Z

R2n
F!a(z) eT (s�1z)Msdz;

performing the change of variables z 7�! sz we get, using again (41), and
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noting that jdet sj�1=2Msa(z) = a(sz),

Ms
eA! = � 1

2�~
�2n jdet
j�1=2jdet sjZ

R2n
F!a(sz) eT (z)Msdz

=
�
1
2�~
�2n Z

R2n
F!a(sz) eT (z)Msdz

=
�
1
2�~
�2n jdet sj�1=2 Z

R2n
MsF!a(z) eT (z)Msdz

=
�
1
2�~
�2n jdet sj�1=2 Z

R2n
F�Msa(z) eT (z)Msdz

=
�
1
2�~
�2n Z

R2n
F�(a � s)(z) eT (z)Msdz

=fA0Ms:

(ii) To prove formula (40) it su¢ ces to note that

Ms0
eA! = (Ms0M

�1
s )Ms

eA!
=Ms�(

fA0Ms)

= (Ms�
fA0M�1

s� )Ms�Ms

= (Ms�
fA0M�1

s� )Ms0 :

That we have Ms�	(z) = 	(s�z) is clear since det s� = 1.
We note that formula (40) can be interpreted in terms of the symplectic

covariance property of Weyl calculus. To see this, let us equip the double
phase space R2n � R2n with the symplectic structure �� = � � �. In view
of formula (34) with 
 = J the Weyl symbols of operators fA00 and fA0 are,
respectively

ea0(z; �) = a
�
s(z � 1

2J�)
�
, fa00(z; �) = a

�
s0(z � 1

2J�)
�

and hence, using the identities s�1s0 = s� 2 Sp(2n; �) and s�J = J(sT� )
�1,

fa00(z; �) = a0
�
s�(z � 1

2J(s
T
� )
�1�)

�
= ea0(s�z; (sT� )�1�):

Let now ms� be the automorphism of R2n � R2n de�ned by

ms�(z; �) = (s
�1
� z; sT� �);

formula (40) can thus be restated as

fA00 =Ms�
fA0M�1

s� with a
00
= a0 �m�1

s� (42)

Recall now (see for instance [10], Chapter 7) that each automorphism s of
R2n induces an element ms of Sp(4n; ��) de�ned by ms(z; �) = (s

�1z; sT �)
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and that ms is the projection of the metaplectic operator Ms 2 Mp(R2n �
R2n; ��) (with �� = � � �) de�ned by (37). Formulas (42) and (42) thus
re�ect the symplectic covariance property of Weyl calculus mentioned at the
end of Subsection 2.1.

We �nally note that if we equip R2n � R2n with the symplectic form
!� = ! � !, the symplectomorphism s : (R2n; !) �! (R2n; �) induces a
natural symplectomorphism

s� s : (R2n � R2n; !�) �! (R2n � R2n; ��):

3 The Intertwining Property

In this section we show that the operators eA! can be intertwined with the
standard Weyl operator bA using an in�nite family of partial isometries U�
of L2(Rn) (depending 
) on closed subspaces H� of L2(R2n).

3.1 The partial isometries Us;�

Let � 2 S(Rn) be such that jj�jj = 1 (L2 norm). In [15] two of us have
studied the linear mapping U� : S(Rn) �! S(R2n) de�ned by the formula

U� = (2�~)n=2W ( ; �) (43)

where W ( ; �) is the cross-Wigner distribution (20). We can thus take the
formula

U� (z) =
�
2
�~
�n=2

( bTGR(z) j�) (44)

as an equivalent de�nition of U�; recall that bTGR(z) is the Grossmann�Royer
transform (22).

Proposition 7 (i) For every if � 2 S(Rn) the mapping U� : S(Rn) �!
S(R2n) extends into a mapping

U� : S 0(Rn) �! S 0(R2n)

whose restriction to L2(Rn) is an isometry onto a closed subspace H� of
L2(R2n). (ii) The inverse of U� is given by the formula  = U�1� 	 with

 (x) =
�
2
�~
�n=2 Z

R2n
	(z0) bTGR(z0)�(x)dz0 (45)

and the adjoint U�� of U� is given by the formula

U��	 =
�
2
�~
�n=2 Z

R2n
	(z0) bTGR(z0)�dz0: (46)

(iii) The operator P� = U�U
�
� is the orthogonal projection of L

2(R2n) onto
the Hilbert space H�.
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Proof. In view of Moyal�s identity (24) the operator U� extends into an
isometry of L2(Rn) onto a subspace H� of L2(R2n):

((U� jU� 0)) = ( j 0):

The subspace H� is closed, being homeomorphic to L2(Rn). The inversion
formula (45) is veri�ed by a direct calculation: let us set

�(x) =
�
2
�~
�n=2 Z

R2n
	(z0) bTGR(z0)�(x)dz0

and choose an arbitrary function � 2 S(R2n). We have

(�j�) =
�
2
�~
�n=2 Z

R2n
	(z0)( bTGR(z0)�j�)dz0

= (2�~)n=2
Z
R2n

	(z0)W (�; �)(z0)dz0

=

Z
R2n

U� (z0)U��(z0)dz0

= ( j�)

hence � =  which proves (45); formula (46) for the adjoint follows since
U��U� is the identity on L

2(Rn). (iii) We have P� = P �� and P�P
�
� = P�

hence P� is an orthogonal projection. Since U��U� is the identity on L
2(Rn)

the range of U�� is L
2(Rn) and that of P� is therefore precisely H�.

Remark 8 The union of the ranges of the partial isometries U� viewed as
mappings de�ned on S 0(Rn) is in a sense a rather small subset of S 0(R2n)
even when � runs over all of S 0(Rn); this is a consequence of Hardy�s theo-
rem on the concentration of a function and its Fourier transform (de Gosson
and Luef [13, 14]), and is related to a topological formulation of the uncer-
tainty principle (de Gosson [12]). We will come back to these notions in the
framework of noncommutative quantum mechanics in a forthcoming publi-
cation.

In [15]) it was shown that the partial isometries U� can be used to
intertwine the operators eA = eA� with the usual Weyl operators with same
symbol; we reproduce the proof for convenience:

Proposition 9 Let eT (z0) = eT�(z0) and bT (z0) be the Heisenberg�Weyl op-
erator (14)�(15). We have the following intertwining properties:

U� bT (z0) = eT (z0)U� and U�� eT (z0) = bT (z0)U�� (47)

eAU� = U� bA and U�� eA = bAU��. (48)
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Proof. Making the change of variable y = y0 + x0 in the integral in the
right-hand side of (20) we get

U�

h bT (z0) i (z) = e�
i
~�(z;z0)U� (z � 1

2z0)

which is precisely (47). On the other hand we have

U� bA = � 1
2�~
�n Z

R2n
F�a(z0)U�[ bT (z0) ]dz0:

and hence, in view of (47),

U� bA = � 1
2�~
�n Z

R2n
F�a(z0)[ eT (z0)U� ]dz0

which is the �rst equality (48). To prove the second equality (48) it su¢ ces
to apply the �rst to U�� eA = ( eA�U�)�.

Let us generalize this result to the case of an arbitrary operator eA!.
Proposition 10 Let ! be a symplectic form (25) on R2n and s a linear
automorphism such that s�! = �. The mappings Us;� : S(Rn) �! S(R2n)
de�ned by the formula:

Us;� =M�1
s U� (49)

are partial isometries L2(Rn) �! L2(R2n), in fact isometries on a closed
subspace Hs;� of L2(R2n), and we haveeA!Us;� = Us;�cA0 and U�s;� eA! =cA0U�s;� (50)

where cA0 Weyl ! a � s.

Proof. We have, using the �rst formula (48),eA!Us;� =M�1
s
fA0Ms(M

�1
s U�)

=M�1
s (fA0U�)

=M�1
s U�cA0

= Us;�cA0;
the equality U�s;� eA! =cA0U�s;� is proven in a similar way. That Us;� is a partial
isometry is obvious since U� is a a partial isometry and Ms is unitary.

Let us make explicit the change of the mapping s:

Proposition 11 Let s and s0 be linear automorphisms of R2n such that
s�! = s0�! = �. We have

Us0;� = Us;S��(S� ) (51)

where S� 2 Mp(2n; �) is such that �(S�) = s�1s0.

14



Proof. The relation s�! = s0�! = � implies that s� = s�1s0 2 Sp(2n; �).
We have Ms0 =Mss� =Ms�Ms and hence

Us0;� =M�1
s0 U� =M�1

s M�1
s� U�:

Now, taking into account de�nition (43) of U� in terms of the cross-Wigner
transform and the fact that det s� = 1 we have

M�1
s� U� (z) = (2�~)

n=2W ( ; �)(s�1� z)

= (2�~)n=2W (S� ; S��)(z)

= (2�~)n=2US��(S� )(z)

hence formula (51).

3.2 Action on orthonormal bases

Let us prove the following important result that shows that orthonormal
bases of L2(Rn) can be used to generate orthonormal bases of L2(R2n) using
the mappings Us;�:

We begin by showing that thew result holds for U�. The general case
will readily follow.

Proposition 12 Let (�j)j be an arbitrary orthonormal basis of L2(Rn); the
vectors �j;k = U�j�k form an orthonormal basis of L2(R2n).

Since the U�j are isometries the vectors �j;k form an orthonormal sys-
tem. It is thus su¢ cient to show that if 	 2 L2(R2n) is orthogonal to the
family (�j;k)j;k (and hence to all the spaces H�j ) then 	 = 0. Assume that
(	j�jk)L2(R2n) = 0 for all indices j; k. Since we have

(	j�jk) = (	jU�j�k) = (U��j	j�k)

it follows that U��j	 = 0 for all j since (�j)j is a basis; using the anti-linearity

of U� in � we have in fact U��	 = 0 for all � 2 L2(Rn). Let us show that
this property implies that we must have 	 = 0. Recall (formula (46)) that
the adjoint of the wavepacket transform U�� is given by

U��	 =
�
2
�~
�n=2 Z

R2n
	(z0) bTGR(z0)�dz0

where bTGR(z0) is the Grossmann�Royer operator. Let now  be an arbitrary
element of S(Rn); we have, using de�nition 21 of the cross-Wigner transform,

(U��	j ) =
�
2
�~
�n=2 Z

R2n
	(z)( bTGR(z)�j )dz

= (2�~)n=2
Z
R2n

	(z)W ( ; �)(z)dz:
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Let us now view 	 2 L2(R2n) as the Weyl symbol of an operator bA	. In
view of formula (23) we have

(2�~)n=2
Z
R2n

	(z)W ( ; �)(z)dz = ( bA	 j�)
and the condition U��	 = 0 for all � 2 S(Rn) is thus equivalent to ( bA	 j�)L2 =
for all �;  2 S(Rn). It follows that bA	 = 0 for all  and hence bA	 = 0.
Since the Weyl correspondence is one-to-one we must have 	 = 0 as claimed.

Corollary 13 Let (�j)j be an arbitrary orthonormal basis of L2(Rn); the
vectors �j;k = Us;�j�k form an orthonormal basis of L2(R2n).

Proof. We have, by de�nition, Us;� = M�1
s U�. The result follows since

Ms is unitary. (Alternatively one could have used formula (51) to prove the
statement).

4 Spectral Properties of the Operators eA!
We begin by studying the standard case 
 = J ; as before we then use the
notation eA! = eA. The extension to the general case is rather straightforward
using again the reduction result in Proposition 6.

4.1 The case 
 = J

Proposition 12 and its Corollary are the keys to the following general spectral
result, which shows how to obtain the eigenvalues and eigenvectors of eA from
those of bA:
Proposition 14 The following properties hold true: (i) The eigenvalues
of the operators bA and eA are the same; (ii) Let  be an eigenvector of bA:bA = � . Then 	 = U� satis�es eA	 = �	; in particular, if 	 6= 0 it is an
eigenvector of eA corresponding to the same eigenvalue. (iii) Conversely, if
	 is an eigenvector of eA then  = U��	 is an eigenvector of bA corresponding
to the same eigenvalue.

Proof. (i) That every eigenvalue of bA also is an eigenvalue of eA is clear: ifbA = � for some  6= 0 theneA(U� ) = U� bA = �U� 

and 	 = U� 6= 0 ; this proves at the same time that U� is an eigenvector
of bA because U� has kernel f0g. (ii) Assume conversely that eA	 = �	 for
	 2 L2(R2n), 	 6= 0, and � 2 R. For every � we havebAU��	 = U�� eA	 = �U��	
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hence � is an eigenvalue of bA and  an eigenvector if  = U��	 6= 0. We
have U� = U�U

�
�	 = P�	 where P� is the orthogonal projection on the

range H� of U�. Assume that  = 0; then P�	 = 0 for every � 2 S(Rn),
and hence 	 = 0 in view of Proposition 12.

Let us now consider the case of general operators eA!. It follows from
Proposition 14 that:

Corollary 15 (i) The eigenvalues of eA! are the eigenvalues of the Weyl
operator cA0 Weyl ! a � s are the same; (ii) Let  be an eigenvector of bA:bA = � . Then 	 = Us;� satis�es eA!	 = �	; (iii) Conversely, if 	 is
an eigenvector of eA then  = U��	 is an eigenvector of bA corresponding to
the same eigenvalue.

Let us now specialize our discussion to the case where the Weyl symbol ofbA belongs to a very convenient space of symbols. Shubin has introduced in
[21] very convenient �global�symbol classes H�m1;m0

� (R2n) where m0;m1 2
R and 0 < � � 1. Introducing the multi-index notation � = (�1; :::; �2n) 2
Nn, j�j = �1 + � � � + �2n, and @�z = @�1x1 � � � @

�n
xn @

�n+1
y1 � � � @�2nyn , we have by

de�nition a 2 H�m1;m0
� (R2n) if:

� We have a 2 C1(R2n);

� There exist constants R;C0; C1 � 0 and, for every � 2 Nn, j�j 6= 0, a
constant C� � 0 such that for jzj � R we have the estimates

C0jzjm0 � ja(z)j � C1jzjm1 , j@�z a(z)j � C�ja(z)jjzj��j�j: (52)

A simple but typical example is the following: the function a de�ned by
a(z) = 1

2 jzj
2 is in H�2;21 (R2n), the same applies, more generally to a(z) =

1
2Mz � z when M is a real positive de�nite matrix.
The interest of these symbol classes comes from the following result:

Proposition 16 Let a 2 H�m1;m0
� (R2n) be real, and m0 > 0. Then the

formally self-adjoint operator bA with Weyl symbol a has the following prop-
erties: (i) bA is essentially self-adjoint and has discrete spectrum in L2(Rn);
(ii) There exists an orthonormal basis of eigenfunctions �j 2 S(Rn) (j =
1; 2; :::) with eigenvalues �j 2 R such that limj!1 j�j j =1.

For a proof we refer to Shubin [21], Chapter 4; the essential property
that there is a basis of eigenfunctions belonging to S(Rn) is due to the
global hypoellipticity of operators with Weyl symbol in H�m1;m0

� (R2n):

 2 S 0(Rn) and bA 2 S(Rn) implies  2 S(Rn)
(global hypoellipticity is thus a stronger property than that of the usual
hypoellipticity, familiar from the (micro)local analysis of pseudodi¤erential
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operators). Let us apply this result to the operators eA!. We will need the
following elementary result that says that the symbol classes H�m1;m0

� (R2n)
are invariant under linear changes of variables:

Lemma 17 Let a 2 H�m1;m0
� (R2n) with m0 > 0. For every linear auto-

morphism s of R2n we have a � s 2 H�m1;m0
� (R2n).

Proof. Set a0(z) = a(sz); clearly a0 2 C1(R2n). We now note that there
exist �; � > 0 such that �jzj � jszj � �jzj for all z 2 Rn. Since m0 > 0 it
follows that

C 00jzjm0 � ja0(z)j � C 0
1jzj

with C 00 = C0�
m0 and C

0
1 = C1�

m1 . Next, we observe that for every � 2 Nn,
j�j 6= 0, there exists B� > 0 such that j@�z a0(z)j � B�j@�z a(sz)j (this is easily
seen by induction on j�j and using the chain rule); we thus have

j@�z a0(z)j � C�B�ja0(z)jjszj��j�j � C 0�ja0(z)jjzj��j�j

with C 0� = B�C��j��j�j. Hence a0 2 H�m1;m0
� (R2n).

Proposition 18 Let a 2 H�m1;m0
� (R2n) be real, and m0 > 0. Then: (i)

The operator eA has discrete spectrum (�j)j2N with limj!1 j�j j = 1. (ii)
The eigenfunctions of eA are given by �jk = Us;�j�k where the �j are the

eigenfunctions of the operator bA with Weyl symbol a. (iii) We have �jk 2
S(R2n) and the �jk form an orthonormal basis of S(Rn).

Proof. It is an immediate consequence of Proposition 16 using Lemma 17.

Appendix: The Case 
 = 
�;N

We now specialize our discussion to the physically interesting case where

 = 
�;N with


 =

�
~�1� I
�I ~�1N

�
(53)

discussed in the Introduction. In order to apply the theory exposed in the
previous sections to systems associated with such a matrix, we have to �nd
conditions that ensure the invertibility of this matrix. We will follow closely
the exposition in [5, 7]. Before we proceed, let us recall a few notions about
the Pfa¢ an of an antisymmetric matrix. It turns out that the determinant
of such a matrix 
 can always be written as the square of a polynomial in
the entries of 
. This polynomial is called the Pfa¢ an Pf(
) of the matrix

. Thus, by de�nition:

[Pf(
)]2 = det
: (54)
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It follows that the Pfa¢ an is nonvanishing only for 2n � 2n antisymmetric
matrices, in which case it is a polynomial of degree exactly n. It immediately
follows from (54) that the Pfa¢ an has the following properties:

Pf(s
sT ) = det(s) Pf(
) (55)

and
Pf(
T ) = (�1)n Pf(
) , Pf(�
) = �n Pf(
):

Moreover, for an arbitrary n� n matrix M we have:

Pf

�
0 M
�MT 0

�
= (�1)n(n�1)=2 detM: (56)

Let (!��) (�; � = 1; � � � ; 2n) denote the elements of 
. The Pfa¢ an of

 can be obtained from the following recursive formula:

Pf(
) =
2nX
�=2

(�1)�!1;� Pf(
1̂;�̂) (57)

where 
1̂;�̂ denotes the matrix 
 with both the �rst and �-th rows and
columns removed.

Proposition 19 let us assume that

� = max
�
�ij�kl=~2 , 1 � i < j � n , 1 � k < l � n

	
< 1: (58)

Then: (i) we have det
 6= 0 and the sign of Pf(
) is given by

sign [Pf(
)] = (�1)n(n�1)=2: (59)

(ii) A matrix s such that sJsT = 
 has positive determinant: det s > 0.

Proof. (i) From (53) and (57) we get:

Pf(
) =

nX
i=2

(�1)i �1i
~
Pf(
1̂;̂{) + (�1)

n+1 Pf(
1̂; ^n+1): (60)

A term which is independent of the elements of � andN can only be found in
(�1)n+1 Pf(
1̂; ^n+1). Suppose that n � 3. If we apply the recursive formula
(57) again we obtain a term of the form (�1)n+1(�1)n Pf(A2) where A2 is
obtained from 
 by removing the 1st, 2nd, (n+1)-th and (n+2)-th rows and
columns. After i steps we obtain a term (�1)n+1(�1)n � � � (�1)n+2�i Pf(Ai)
where Ai is obtained from 
 by removing the 1st, 2nd,..., i-th, and (n+1)th,
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(n + 2)th,..., (n + i)th rows and columns. We terminate this process when
i = n� 2. We thus obtain:

(�1)n+1(�1)n � � � (�1)4 Pf

0BBB@
0

�n�1;n
~ 1 0

�n;n�1
~ 0 0 1
�1 0 0

�n�1;n
~

0 �1 �n;n�1
~ 0

1CCCA
=
�
�n�1;n�n�1;n

~2 � 1
�
(�1)

Pn+1
i=4 i:

(61)

And thus the term independent of the elements of � and N is (�1)n(n�1)=2.
We leave to the reader the simple task of verifying that this result also holds
when n = 2. Let us now turn to the � and � dependent terms. We resort to
the de�nition of the Pfa¢ an:

Pf(
) =
1

2nn!

X
�2S2n

sgn(�)�ni=1!�(2i�1);�(2i); (62)

where S2n is the symmetric group and sgn(�) is the signature of the permu-
tation �. Moreover, we use the following notation. If n = 2, for instance,
then we consider the permutations of the set f1; 2; 3; 4g. Suppose that in the
string �ni=1!�(2i�1);�(2i) we pick k elements of the matrix ~�1�, p elements
of the matrix ~�1N and l elements of the matrix I or �I. Then, of course:

k + l + p = n: (63)

If we pick l elements from I or �I, then the remaining k + p terms can
only be taken from 
 when 2l lines and rows have been eliminated. In
particular, we remove l lines and rows from ~�1�. That leaves us with
(n � l � 1)(n � l)=2 non-vanishing independent parameters in ~�1�. Each
time we choose one of the latter for our string �ni=1!�(2i�1);�(2i), we have
to eliminate another 2 lines and 2 columns. So if we pick k elements out
of the (n� l� 1)(n� l)=2 non-vanishing independent elements of ~�1�, we
remove 2k lines and columns. We are left with (n� l� 2k� 1)(n� l� 2k)=2
non-vanishing independent elements. But this is only possible if we have

2k � n� l: (64)

A similar argument leads to the inequality

2p � n� l: (65)

Now, (64) and (65) are only compatible with (63) if:

k = p =
n� l
2

: (66)
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This means that in each string we have exactly the same number of elements
of ~�1� and ~�1N . This proves that:

Pf(
) = (�1)n(n�1)=2 + P[n=2]; (67)

where P[n=2] is a homogeneous polynomial of degree [n=2] (the integral part
of n=2) in the dimensionless variables �ij�kl=~2 with 1 � i < j � n and
1 � k < l � n. Let �0 be the permutation which yields the contribution
(�1)n(n�1)=2 to the Pfa¢ an and let S02n := S2nn f�0g. We thus have:

��P[n=2]�� =
������ 1

2nn!

X
�2S02n

sgn(�)�ni=1!�(2i�1);�(2i)

������ (68)

� 1

2nn!

X
�2S02n

�ni=1
��!�(2i�1);�(2i)�� : (69)

If a string �ni=1!�(2i�1);�(2i) contains k elements of ~�1� and k elements of
~�1N , then

�ni=1
��!�(2i�1);�(2i)�� � �k < �; (70)

where we used � < 1. Since there are n! � 1 < n! elements in S02n, we
conclude that: ��P[n=2]�� < �

2n
< 1: (71)

This proves our claim. (ii) We have

det(s) Pf(J) = Pf(
); (72)

from (56) we get Pf(J) = (�1)n(n�1)=2 and hence, by (72), det s > 0 as
claimed.

Remark 20 Writing s in block-matrix form
�
A B
C D

�
the condition sJsT =


 is equivalent to the relations

ABT �BAT = ~�1� , CDT �DCT = ~�1N , ADT �BCT = I:
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