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Branched coverings of a 2-dimensional sphere ( a complex projective line IP' ) by
an orientable surface were investigated by Hurwitz in his two papers [1] and [2]. If
we fix the degree d of the coverings and the number £ of the critical values then the
space of coverings form a covering space Z of the configuration space Wy of k points
in IP'. The fundamental group of Wi - the braid group of a sphere with & strings
— acts on the fiber of the covering. This is the Hurwitz action of the braid group
on the coverings with given critical values. The orbits of this action are in one-one
correspondence with the connected components of Z.

Consider a particular covering f : X — IP'. To each value in IP' correspond
several points in the fiber. The map f has some local multiplicity greater than or
equal to 1 in a small neighbourhood of each point. The value is critical if some
multiplicity is greater than one. The multiplicities form a branching data of the
critical value. The critical value is simple if one point in its preimage has multiplicity
2 and other points have multiplicity 1. Otherwise the critical value is special. The
set of the critical values of f form the discriminant D of f. We choose a base
point p outside D and we put F = f~!(p). A closed path o in IP' — D issued
from p determines a monodromy permulation pu, € Aut(F). We get a monodromy
homomorphism g : 7 (IP' — D, p) = Aut(F). The image of x is the monodromy group
of f (more precisely of f|(X — f~YD)) : (X = f7Y(D))} = (IP' — D)). Aut(F)is
isomorphic to the group I, of permutations on d letters and the monodromy group
of f, as a subgroup of 4, is defined up to conjugation.

The Hurwitz action preserves the branching data of the critical values, up to a
permutation of the critical values, so we can restrict the investigation to the part of Z
with the given branching data of all critical values. Hurwitz proved that there is only
one orbit in the generic case, when all critical values are simple. If the coverings have
only one special critical value then there is still only one orbit corresponding to the
given branching data of the special critical value (see [3] ). The Hurwitz action also
preserves the monodromy group of the covering, which is equal to the whole group
Y4 1n the above cases.



We prove in this paper that this last invariant classifies the coverings with two
special critical values.

Theorem 1 Let Z be the space of connected coverings f : N — IP' of degree d and
genus g which have given branching data over lwo special critical values, have no other
special critical values, and have a fired monodromy group. Then Z is connected.

A special case of this theorem, when the coverings are totally ramified over 0 and
over 00, is contained in the recent paper of Looijenga [4]. The present work is a direct
application of Looijenga’s result and of his technique.

A similar theorem is not true for coverings with more than two special critical
values. Some new invariants of the Hurwitz action are needed to distinguish the
orbits of the Hurwitz action in this case.

By a covering we shall mean a connected, orientable branched covering of IP' or

of a closed disk embedded in P!,

Definition. Coverings f, : X; — U; and f, : X; — U; are equivalent if there
exists a homeomorphism A : X; — X, and a homeomorphism g : U/; — U; such that
gfi = fh.

Let f: X — U be a branched covering of degree d. We choose a base point p
outside the discriminant of f and we put F' = f~!(p). By a simple arc we shall mean
an embedded interval connecting p with a point of the discriminant that does not meet
the discriminant along the way. A simple arc a determines up to isotopy (relative p
and the discriminant) a simple loop based at p, turning clockwise around the point of
the discriminant. The beginning and the end points of the liftings of this loop define
the monodromy permutation u, € Aut(F'). p, is a transposition if and only if the
point of the discriminant is a simple critical value of f. A collection of simple arcs
that do not meet outside p will be called an arc system. It is a complete arc system if it
connects p to all points of the discriminant. Loops around members of a complete arc
system form a basis of m(/ — D, p), hence their monodromy permutations generate the
monodromy group of f. Directions of departures of such collection of arcs determine
a clockwise order of arcs around p (a cyclic clockwise order if p is an interior point of
).

We recall the Riemann-Hurwitz formula. The branching index of a point of mul-
tiplicity m equals m — 1. Thus the branching index of a critical value w;, i.e. the
sum of branching indices of all points above w;, is equal to d-(the number of points in
f~(w;)). The total branching index & of f is the sum of branching indices of all its
critical values. The Riemann-Hurwitz formula says: y(X) = dy(U) —b. If U = P!
then the genus of X satisfies 2¢ = b — 2d 4+ 2. If U is a disk and X has s boundary
components then the genus of X satisfies 2g = b~ d +2 — s.

Lemma 2 Let f, : Xy = U, and [ 1 Xo = Uy be coverings of degree d with U,
homeomorphic to Us. Let «y,...,ar be a complete clockwise oriented arc system in
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[\, based at py, and let By, ..., Bx be a complete clockwise oriented arc system in U,,
based at p;. We assume that the points py and py are both interior points or both
are boundary points. Suppose that for a suitable bijection o : Fy = f7'(p)) = Fy =
ot (p2) we have (o) = pu(Bs) fori = 1,.... k. Then the coverings are equivalent.

Proof: Choose a homeomorphism ¢ : U; — U, such that g{ey) = i for i = 1,... 4.
For a fixed point @« € Fy choose g(a) = o(a) € 5. For 2 € X which does not lie
over a critical value choose a path 7, connecting « with z. Lift the path fi{7:) to the
covering X, from the point g{a). Let g(z) be the end of the lifted path. The map is
well defined, because of the monodromy conditions, it is a homeomorphism and can
be extended uniquely to the points lying over the points of the discriminant. ||

Proposition 3 Coverings f,g: IP* = IP' of degree d with no special critical values
outside 0 and oo and with the same branching date over 0 and co are equivalent.

Proof: Functions f and g are rational functions and branching data determine multi-
plicities of zeros and poles of the functions. Composing f and g with fractional linear
transformations we get equivalent coverings for which co lies over the regular value 1.
Thus f = (T2, (= - af)p‘)/(H§=m+1(‘Z —a;)") and g = ([T (z — b:)")/( f:m-}—l(z -
bi)P) where &0, pi = Yienp Pi = d and «; # a; and b; # b; for ¢ # j. The space
of k-tuples a,,...,ax for which f has special critical values outside 0 and co form
a complex hypersurface in the space of all k-tuples of distinct points. Thus we can
find a path f; = ([I2,(z — @:(t))P)/(T15 1 (2 — @i(2))P¥) such that a;(0) = a; and
a;{1) = b; for 1 = 1,...,k and f; has no special critical values outside 0 and oo for
0 <t < 1. By the Riemann-Hurwitz formula f, has & critical values which move along
a path in the configuration space Wy. The motion of the critical values different from
oo takes place in some bounded domain B. We can fix a base point p outside B.
Choose a complete arc system ay, ..., ax, for fi which changes continuously with ¢.
The points in F; = f;'(p) also change continuously with ¢ and the liftings of loops
corresponding to the arc system always connect the same (corresponding) pairs of
points in [. Therefore the arc system ay 4, ..., a1, corresponding to g, has the same
monodromy as the arc system corresponding to f. Proposition 3 follows by Lemma
2 |

Corollary 3.1 Let fi : X\ = U and f; : Ny — Uy be coverings of degree d, such
that X\, Xy, Uy and U, are disks, f) and f; have tha same branching dafa over one
special critical value and have no other special critical values. Then f, and fy are
equivalent.

Proof: Composing with a homeomorphism we may assume that the special critical
values are 0, and that {/; and U, do not contain co. We can extend the coverings



to coverings of /P! by IP' which are totally ramified over co and have no other new
critical values. There exist homeomorphisms ¢ and A of IP' such that gf; = foh. In
particular g(0) = 0, g{co) = co and g(U,) is a disk containing all critical values of f;
outside co. We can isotop g(U,) onto a big disk, containing U,, by an isotopy fixed
on the discriminant of f;. Then we can isotop the big disk onto U; by an isotopy
fixed on the discriminant of f,. Composition of g with the two isotopies lifts to the
required equivalence.||

Lemma 4 (The Riemann existence theorem) Let oy,...,0; be a sequence of
permutations in Sy which generate a transitive subgroup of L4. Let ay,...,ap be
« clockwise oriented sequence of simple arcs in a disk U € IP', which meet only al
their common end p. Then there exists a connected covering f + X — U such that
@1, ..., ap form a complete arc system for f and for i = 1,...,k we have po, = oy
Jor a suitable enumeration of the points in F' = f~'(p). The number of the boundary
components of X is equal to the number of disjoint cycles ino = oy ...0r. The genus
of X is delermined by the Riemann-Hurwitz formula. If o is trivial then f can be
completed to a covering of IP' with no new critical values.

Remark 1. The topological construction of the covering is obvious. The fact that a
branched covering has a complex structure is due to Riemann. Because of that one
could formulate the results of this paper in terms of algebraic curves and rational
functions instead of topological coverings.

Corollary 4.1 Let f : X — U be a covering of degree d of a disk by e disk with
one special critical value. Then there exists a« complete clockwise oriented arc system
g, Q1. .., based at p and an enumeration of points in F = f~(p) such that

1. jia, is @ product of disjoint cycles oy = (1,....p1), oo = (p1 + 1,...,p2), ...,
Omat = (Pm + 1,...,d),

S (pe=p) L. L (d=pm),

3. Ko =(l,p,’—|—l) fori=1,...,m.

&S

Proof: Order the multiplicities of the points over the special critical value of f in
the increasing order and choose cycles o; of the corresponding length, as in the claim

of the corollary. The monodromy sequence iq,, fa,. -- - Ha,, generates a transitive
subgroup of ¥;. Therefore there exists a covering f; : Xy — ), with such data.
The product of the monodromy sequence is equal to a d-cycle (1,...,d), hence X;

has one boundary component. We find from the Riemann-Hurwitz formula that X
has genus 0. Thus X is a disk and f; has only one special critical value with the
same branching data as the special critical value of f. By Corollary 3.1 there exists
a homeomorphism ¢ : U/; — U which takes the arc system in U/, onto a complete arc
system in U with the required monodromies. ||



Lemma 5 Let f: X — IP' be a covering with no special critical values outside 0 and
co. Then there exist two embedded disjoint disks Uy and Uy, in IP' such that 0 € Uy,
00 € U, and [~ (Up) and f~1(Uy) arve disks.

Proof: X is connected, hence X — f~!(c0) is also connected. Let Vj be a disk
neighbourhood of 0 containing no other critical values. Then f~!(14) is a union of m
disjoint disks. Choose a base point pg € 9V5. The monodromy usy, is a product of
m disjoint cycles. Since X is connected there exists a simple arc o in P! — 1} — o0,
based at pg, such that po = (¢,b) with @ and b in different cycles of upgy,. If we
adjoin a neighbourhood of a to ¥§ we get a disk ¥} such that f~!'(V}) is a union of
m — 1 disks. After m — | steps we get a disk Uy such that f~!'(Up) is a disk. Now
X — f~Y(Uy) is connected and IP' — U has only one special critical value co. We can
repeat the previous argument and find the required disk Ug.]|

A pair of disks Uy, U, obtained in the last lemma will be called a partition of a
covering f. Thus a partition of f is a pair of disks in IP' such that their preimages
are also disks and all critical values of f outside the disks are simple.

The following result was proven by Looijenga in [4].

Lemma 8 (Looijenga) Let f : X — IP! be a connected covering of degree d that
is totally ramified over 0 and 0o with no other special critical values. Suppose that
the genus of X is positive. Then there ezists a disk B in IP' — {0, 00} containing all
other critical values of f such that for a base point p € B, the monodromy group
of f over B is a single transposition (a’,a"). Moreover, if o is the monodromy of a
simple loop in IP' — int(B) around 0, based at p, then «" = o"(a’) for some divisor r
of d and f factorizes through the covering z € IP' — 2" € IP*.

Exactly the same argument gives the following corollary for partitions.

Corollary 6.1 Let f : X — IP' be a covering of degree d with no special critical
values outside 0 and co. Suppose that the genus of X is positive. Let Uy, Uy be a
partition of f. Then there exists a disk B in P — Uy — Uy containing all critical
values of f oulside Uy and Uy, such that for a base point p € B, the monodromy
group of f over B is « single transposition (a.b). Moreover, if ¢ is the monodromy of
a simple loop in IP' — int(B) around Uy, based at p, then b = o"(a) for some divisor
r of d.

If o is a d-cycle and (e, b) is a transposition then there exists a positive integer r,
r < df2, such that b = 0" (a) or @ = ¢"(b). r is called the mesh of (a,b) with respect
to o. If o is a simple arc and if u, is a transposition then the mesh of « is the mesh
of pto. The number r in the corollary is the mesh of the partition Uy, Uy

Remark 2. [t follows from the proof of Looijenga that the mesh 7 of the partition
depends only on the partition, not on the choice of B. r is equal to the minimal mesh
of a simple arc in P! — Uy — U, with respect to pay,. The mesh of any other simple
arc in IP' — Uy — Uy is divisible by 7.



Proposition 7 Let f : X — IP' be a covering of degree d with no special critical
values outside 0 and oo and with genus of X posilive. Then there exists a complete,
clockwise oriented arc system ag,aq, ..., Qm, B1y- 2 BrsYoos Y1y -+ Yn based al p and
an enumeration of points in F = f~'(p) such that

1. pag s a product of disjoint cycles oy = (1,2,....p1), o2 =(p + 1,....p2), ...,
Om41 = (pm + l: : "!d)J

m<(pe—p)<...<(d=pm),
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5. Uyw 18 @ product of disjoint cycles 7 = (L,d,d —1,....,q1 +2), 72 = (@1 +
i,ql,...,(jg-f-?.), iy Tnyl = ((1n+l,qn,...,2),

6. (d—q) S (q—q) <...<gn,
7 py, =(Lgi+1) fori=1,...,n,
8. the length of each cycle o; and ; is divisible by r.

The monodromy group of f is generated by the d-cycle o = (1,...,d) and the trans-
position (1,7 +1). f factorizes through the covering z € IP' — z" € IP'. The number
r is unique, determined by the monodromy group of f, and the equivalence class of
f is uniquely determined by the degree, genus, branching data of 0 and co and the
monodromy group.

Proof: Choose a partition Uy, U, for f with the smallest possible mesh r. Fix
a base point p € dlUy and a complete arc system g, ai,...,a, in Uy, based at p,
as in Corollary 4.1. Now choose a disk B as in Corollary 6.1 and a complete arc
system [31,...,0; in B based at a point py € dB. Now we isotop the arc system in
B along a path connecting p; with p so that all the arcs form one arc system based
at p. By Corollary 6.1 the monodromy pug,; ts a fixed transposition (a,b) with mesh
r with respect to o = pay, = (1,...,d). The monodromy is a homomorphism. If we
replace a simple arc 8 by an arc 8’ which goes first along a closed path a and then
proceeds along £ then the loop around g’ is equal afla™". Therefore ug = pappu;!.
If we rotate all arcs §; around Uy (first counterclockwise around /5 and then along
5;) their monodromy gets conjugate by ¢ and after a suitable number of turns the
monodromy pg, = (1,7 + 1). We now turn to the disk Uy. Choose a simple path &
which meets the arc system only at p, follows the arc §; in the clockwise order around
p, and connects p with a point of dU.. We can isotop Uy, along § and assume that
U~ meets the arc system only at p. U, is a loop which goes around the arc system
0p, a1, .-, Gy Bis .-+ Bk in a counterclockwise direction, when treated as a clockwise



boundary of U.. psu. is a d-cycle, therefore £ is even, & > 0 because X has a
positive genus, and pay, = (d,d—1,...,1). Reversing the enumeration in Corollary
4.1 we can find a complete arc system Yoo, 1. ... 7n in Uy, based at p, which has the
required monodromy, after a renumbering. But this renumbering does not change the
d-cycle 67! = pay.,. Thus the renumbering is a conjugation by a power of o. If we
rotate the whole arc system in U, around the boundary 9/, a suitable number of
times, we produce the same renumbering of the monodromy. Now the complete arc
SVSEem g, 01, .oy Om, B1y .+ By Yooy Y1y -« - » ¥ i1 P has the required monodromy.

We have to prove that the length of each cycle o; and 7; is divisible by r. Suppose
that the length of some cycle o; {the case of 7 is similar) is equal to s and is not
divisible by r. There are at least two such cycles so we may assume s < d/2. By
Corollary 3.1 and Lemma 4 we can choose a new complete arc system in U, called
again ag, &, ..., 0m, with the monodromy as in Corrollary 4.1 but with the last cycle
Om+ of length s. Then p,,, = (1,d — s+ 1). We replace 3, by an arc 3, which turns
once clockwise around «,, and proceeds along [3,. (3 precedes a,, in the clockwise
order around p and pg = (r + 1,d — s + 1). Consider a simple loop A based at p
which goes clockwise around arcs ag,a1,...,Qm—1. A bounds a disk V and x4, is a
product of two disjoint cycles (1,...,d — s) and (d — s + 1,d). It follows from the
construction in the proof of Lemma 3.1 that f~'(V) is a disjoint union of two disks.
The monodromy pug connects the two cycles of py, therefore a simple loop around
VV and B bounds a disk W such that f~'(W) is a disk. So W and U, form a new
partition for f. ¢’ = pow = (1,...,r,d—s+1,....d—1,d,;r+1,...,d —s). Arcs
am and B, are outside W and U, and have mesh r and r + s with respect to ¢’. By
Remark 2 the mesh of the new partition must be smaller than », which contradicts
the choice of the partition. So all cycles o; and 7; have length divisible by r. In
particular each p; and ¢; is divisible by r. Clearly the monodromy of each arc in the
arc system is a product of powers of ¢ and conjugates of (1,r + 1) by powers of o.
Thus ¢ and (1,7 + 1) generate the monodromy group of f. The monodromy group
determines uniquely the number 7. The monodromy sequence in the statement of the
proposition is uniquely determined by r and by the branching data of 0 and co. By
Lemma 2 the equivalence class of f is determined by d, genus of X, the branching
data and the monodromy group.

Consider the covering h : z € IP' = 2" € IP'. f factorizes through h if for every
closed path a in X' — f~!(D) the lifting of f(«) by & is a closed path. Let w be a loop
in IP' — {0, 00} which turns r times around 0. A loop « in [P lifts to a closed loop in
X if its monodromy fixes a point and it lifts to a closed loop in IP' if it is a power of
w in IP' — {0,00}. Every loop in IP' — discriminant(f) is a product of loops around
the arcs of the complete arc system. A loop around +., is a product of the others, so
we may ignore it. ji., moves each point by | modulo r and the monodromy of any
other arc of the arc system leaves all points fixed modulo r. Thus g, may fix a point
only if & winds tr times around 0, i.e. a is a power of w in P! — {0, 00}. It follows
that f factorizes through .||



Proof of Theorem 1. The objects in Theorem 1 were not described precisely so
we shall start with some definitions. Two coverings fi and f; define the same point in
Z if they have the same critical values and for a fixed complete arc system they have
identical monodromies, up to renumbering. Thus they are equivalent (see Definition)
with ¢ equal to the identity and with A — a complex isomorphism for the complex
structures induced by f, and f;. A point in Z is mapped onto the set of its critical
values — a point in Wy. For a point w in I, and a fixed complete arc system there
is a finite number of possible monodromies and hence a finite number of points in Z
over w. We define a topology in Z as follows. For a fixed covering f we have a fixed
discriminant w and for a fixed arc system [' we have a fixed monodromy sequence.
For w; very near w there is a unique, up to isotopy relative p and w,, arc system ['y
very near ['. To I'} we assign the same monodromy sequence as to . By Lemma 4
and the definitions this defines a unique point in Z over wy. In this way to a small
neighbourhood N of w corresponds a subset M of Z which covers N in a one-one
way. This is a neighbourhood of f in Z. This topology defines Z as a finite covering
of Wi. Two equivalent coverings f; and f, lie in the same connected component of
Z. Indeed the homeomorphism g (see Definition) is isotopic to the identity in IP'.
(If g fixes two points 0 and oo we can find an isotopy relative to these two points.)
Restriction of the isotopy to the discriminant of f; defines a path in W;. The lifting
of this path to Z from f; connects f; and f; in 2 (as in the proof of Proposition 3).
Covering with only two special critical values is equivalent , after a composition with
a homeomorphism, to a covering with no special critical values outside 0 and co. The
theorem follows from Proposition 7.||

Example.
Consider two triples of permutations in Xg:

o = (1, 2, 3)(5, 6, 7, 8), 02 = (1, 2)(3,4, 5), d3 = (0'10'2)-1 = (8 7, 6, 5, 4, 2, 3),

and 7 = (1,2,3)(5,6,7,8), 2 = (7,8)(3,4,5), 3 = (mim2)~' = (8,6,5,4,2,1,3).

Each triple has the trivial product. Each triple is determined by its first two
permutations and it generates the whole group Zs. Let us fix three arcs «, a3, as
in IP! meeting only at their common end point p. By Lemma 4 each triple defines a
connected covering of IP'. The coverings have the same degree and genus, the same
branching data and the same monodromy group. We shall prove that the coverings
are not equivalent. In the first pair o 1s a product of a 3-cycle and a 4-cycle. o2 1s a
product of a transposition, which belongs to the 3-cycle of o, and a 3-cycle. So the
first pair is not conjugate to the second pair, in which the transposition belongs to
the 4-cycle of the first permutation.

Consider now the Hurwitz action. Since the branching datas of different critical
values are different we should consider paths in W3 which do not permute the points.
The group of these paths is the pure braid group of a sphere with three strings. It
is generated by a full (360°) rotation around the first two critical values. By the
definition of the topology in Z the monodromy p’ of the new covering has old values
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on the new arc system B, = ayaamog' a7’ and 8y = ayazat’!. Thus ppy = g, for

?

¢ =1,2. Since ¢/ is a homomorphism we get u, = o5 'o o, and foy = o5 oy ogo 0.

So the new monodromy pair is conjugated to the original pair. We never get the
second pair by the Hurwitz action so the coverings belong to different orbits and are
not equivalent.
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