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ON THE IRREDUCIBILITY OF IRREDUCIBLE CHARACTERS

OF SIMPLE LIE ALGEBRAS

C. S. RAJAN

Abstract. We establish an irreducibility property for the characters of finite di-

mensional, irreducible representations of simple Lie algebras (or simple algebraic

groups) over the complex numbers, i.e., that the characters of irreducible represen-

tations are irreducible after dividing out by (generalized) Weyl denominator type

factors.

For SL(r) the irreducibility result is the following: let λ = (a1 ≥ a2 ≥ · · · ar−1 ≥

0) be the highest weight of an irreducible rational representation Vλ of SL(r). As-

sume that the integers a1 + r − 1, a2 + r − 2, · · · , ar−1 + 1 are relatively prime.

Then the character χλ of Vλ is strongly irreducible in the following sense: for any

natural number d, the function χλ(gd), g ∈ SL(r, C) is irreducible in the ring of

regular functions of SL(r, C).

1. Introduction

In [R], the following unique factorization property of tensor products of irreducible

representations of a complex simple Lie algebra g was proved:

Theorem 1.1. Let V1, · · · , Vn, W1, · · · ,Wm be non-trivial irreducible representations

of g (resp. rational irreducible representations of GL(r) for r ≥ 2 with trivial deter-

minant ) such that

V1 ⊗ · · · ⊗ Vn ≃ W1 ⊗ · · · ⊗ Wm,

as g (resp. GL(r))-modules. Then n = m, and there is a permutation σ of {1, · · · , n}

such that Vi ≃ Wσ(i).

In this introduction we restrict ourselves to GL(r). Given a rational representation

V of GL(r), let

χV (g) = Tr(V (g)), g ∈ GL(r),

denote the character of V . Since the character determines the representation upto

isomorphism, the hypothesis of the foregoing theorem can be reformulated as an
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equality of products of characters,

(1.1) χV1 · · ·χVn
= χW1 · · ·χWm

.

Now, the character is a regular GL(r)-invariant function of GL(r). The unique de-

composition of tensor products will follow if the non-trivial characters of irreducible

rational representations of GL(r), r ≥ 2 are irreducible in the ring of invariant regular

functions on GL(r).

But this turns out to be manifestly false for GL(2), where the characters are given

by cyclotomic type homogeneous polynomials in two variables of the form (xa+1
1 −

xa+1
2 )/(x1 − x2); hence factorizable over C.

Upto twisting by a power of the determinant, we can assume that the irreducible

representations Vλ of GL(r) are parametrized by their highest weights,

λ = (a1, · · · ar), a1 ≥ a2 ≥ · · · ≥ ar = 0,

where ai are nonnegative integers. Let T denote the diagonal torus of GL(r) con-

sisting of diagonal matrices with diagonal entries given by x = (x1, · · · , xr). Let W

denote the Weyl group of (GL(r), T ), the symmetric group on r-variables, acting by

permutations on T . Restricting to the torus T , gives an isomorphism of the algebra

of conjugacy invariant regular functions on GL(r) onto the algebra of Weyl group

invariant regular functions on T ; hence we can consider the characters restricted to

T . Let ǫ : W → Z/2Z be the sign homomorphism. For a weight µ = (b1, · · · , br)

with b1, · · · , br non-negative integers, define the Schur-Weyl function S(µ)(x) by,

S(µ)(x) =
∑

σ∈W

ǫ(σ)x
bσ(1)

1 · · ·x
bσ(r)
r = det(x

bj

i ).

This is an alternating polynomial in variables x1, · · · , xr, which vanishes if bi = bj for

a pair of indices i 6= j. Let

ρ = (r − 1, r − 2, · · · , 0)

be the ‘Weyl weight’. The Weyl denominator function S(ρ)(x) is the Vandermonde

determinant and has a product decomposition,

S(ρ)(x) =
∏

i<j

(xi − xj).

Given any weight µ of GL(r), it is easy to observe that the Weyl denominator S(ρ)

divides S(µ) in the polynomial ring in r-variables. The Schur-Weyl character formula
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for GL(r) gives the restriction of the character χλ of Vλ to the torus T by the formula,

χλ(x) = S(λ + ρ)(x)/S(ρ)(x)

= det(x
aj+r−j
i )/det(xr−j

i ) x ∈ T.
(1.2)

Based on the factorization of characters for GL(2) governed by cyclotomic theory,

the initial attempts in the general case towards finding the irreducibility property

property of characters underlying the unique decomposition theorem, was to look for

divisibility relations amongst the irreducible characters parametrized by appropriate

‘divisibility properties’ amongst the highest weights. Now let λ = (a1 > · · · ar−1 >

ar = 0) be a dominant regular weight for GL(r). Denote by d(λ) the greatest common

divisor of the integers ai:

d(λ) := g.c.d.(a1, · · · , ar).

We observe that the Schur-Weyl sum satisfies the ‘scaling’ relation,

(1.3) S(dλ)(x1, · · · , xr) = S(λ)(xd
1, · · · , xd

r),

where dλ = (da1, · · · , dar). Combined with the divisibility relation S(ρ)|S(λ) for any

weight λ, this implies the divisibility relation,

(1.4) S(dρ)|S(λ) if d|d(λ).

After a few calculations for GL(3), it turns out that apart from the obvious divis-

ibilty relation given by Equation (1.4), other divisibility relations are hard to come

by. If λ is not a multiple of ρ, define C(λ) as the quotient,

C(λ) = S(λ)/S(d(λ)ρ).

This defines a symmetric polynomial in r-variables. The experimental observations

for GL(3) leads us to expect and prove the following theorem:

Theorem 1.2. Let λ = (a1, · · · ar), a1 > a2 > · · · > ar = 0 be a dominant, regular

integral weight for GLr. If λ is not a multiple of ρ viz., λ 6= d(λ)ρ, then C(λ) is

absolutely irreducible, i.e., irreducible in the ring C[x1, · · · , xr].

This theorem has been proved R. Dvornicich and U. Zannier [DZ]. However their

motivation and proof are completely different.

An uniqueness result can also be established (see Theorem 2.4), that λ can be

recovered from C(λ) as long as C(λ) 6= 1. As a corollary one gets a proof of Theorem

1.1.
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We now give a brief indication of the proof of Theorem 1.2, and refer to Section

5 for further details. The proof proceeds by induction on r. The inductive step is

carried out using the cofactor expansion of the determinant expression for S(λ). The

cofactor expansion gives us a polynomial in one variable with coefficients that are

again of the form S(µ) with µ a weight for GL(r − 1).

There are three parts to the proof. The heart of the proof is the following (see

Proposition 5.1): suppose µ, η are dominant regular weights for GL(r − 1) with

η = µ + (c, 0, · · · , 0) for some natural number c, such that both d(µ) and d(η) are

divisible by a natural number d. Assume further that there exists non-monomial

symmetric polynomials U, V and polynomials X, Y satisfying the following system

of equations:

UV = S(µ)/S(dρ) and UX + V Y = S(η)/S(dρ).

Then the conclusion is that (d(µ), d(η)) > d. The proof of this proposition uses some

arithmetical ideas when r = 3. For higher ranks, the key observation is to realize

that an inductive proof is possible and this in turn depends crucially on the fact that

the Weyl denominator S(ρ) divides any S(λ).

The rest of the proof is built around this proposition. An use of Eisenstein criterion

allows us to rule out symmetric ‘monic’ factorizations, i.e., symmetric factorizations

C(λ) = U0V0 such that either both the leading coefficients of U0 and V0 (with respect

to the ‘cofactor expansion’ expressing them as a polynomial in x1 with coefficients

polynomials in the r − 1 variables x2, · · · , xr) or their constant coefficients are non-

monomial (see Proposition 5.2 and Proposition 8.1).

Finally, one reduces a non-symmetric factorization to either of the above proposi-

tions.

The outline of this paper is as follows: in the next section, we state the theorem

for a general simple Lie algebra, where we consider the characters as elements in the

algebra of the Weyl group invariants of the group algebra of the weight lattice. Extra

complications arise in the non-simply laced cases. The expected analogue of Theorem

1.2 however is not proved in general in this paper, and there is a gap in the proof for

a subclass of weights for G2 and F4.

In Section 3, the irreducibility theorem is stated in the context of regular functions

of a simple algebraic group, and a proof is given assuming the statement for the Lie

algebra. In Section 4 we recall the technique of cofactor expansions, which allows an

inductive set up based on the rank for the proof of the irreducibility result.
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Section 5 contains the statements of the key propositions and a proof of the main

Theorem 2.3 assuming the validity of these propositions. The overall idea of the

proof is the same as that of GL(r); in fact, it is simpler in some places for the Lie

algebras of type D and E. However, both the statement and the proofs of the various

propositions are more complicated for the non-simply laced Lie algebras.

Section 6 gives a proof of the key Proposition 5.1 for the root system sl2 using some

facts from arithmetic. The whole proof emanates from this proposition, and how it

helps in establishing the irreducibility property for GL(3) (the interested reader can

read this section first, especially Remark 6.3).

Section 7 gives a proof of Proposition 5.1 in the general case by an inductive

argument, a ‘swindle’ using the universal divisibility of the Weyl denominator.

The proof of Proposition 5.2 ruling out the existence of invariant monic factoriza-

tions is given in Section 8. This is an application of the method of proof used in the

classical Eisenstein criterion for irreducibility of polynomials. It is here that a gap

arises in the proof for a subclass of weights for G2 and F4.

The uniqueness result Theorem 2.4 is proved in Section 9. This section also contains

a preliminary result used in the proofs of the various propositions: for example, in

the case of GL(r), the fact that S(λ) is separable, for GL(s) with s < r. In this case,

it is quite easy to observe this fact assuming Theorem 1.2 and the factorization of

S(dρ).

Finally in Section 10 we extend the proof of the irreducibility result for GL(r) from

the ring of symmetric functions in r-variables to the polynomial ring in r-variables.

2. Simple Lie algebras

In this section, we consider the general case of a simple Lie algebra g over C, fix the

notations and state the main irreducibility theorem, which requires to be modified

when the Lie algebra has at least two roots of different lengths.

2.1. Notation. We first fix the notation and recall relevant facts from the theory of

root systems (see [B],[H]).

Let g be a simple Lie algebra over C, and let h be a Cartan subalgebra of g. Denote

by Φ ⊂ h∗ the roots of the pair (g, h), and let E the real subspace of h∗ generated by

Φ. The dual of the restriction of the Killing form to h × h defines a non-degenerate



6 C. S. RAJAN

symmetric bilinear form on E. With respect to this inner product, Φ defines a root

system in E.

Denote by Φ+ ⊂ Φ (resp. ∆ ⊂ Φ+; Φ∗ ⊂ E∗; Φ∗+; ∆∗ ) the subset of positive

roots with respect to some ordering of the root system (resp. a base for Φ+; the set

of coroots; positive coroots and simple coroots). Given a root α ∈ Φ, α∗ will denote

the corresponding coroot.

Denote by < ., . >: E∗ × E → R the duality pairing. For any root α, we have

< α∗, α >= 2, and the pairing takes values in integers when the arguments consist of

roots and co-roots.

Let W (resp. W ∗) denote the Weyl group of the (resp. dual) root system. The

Weyl group W (resp. W ∗) is the subgroup of Aut(E) (resp. Aut(E∗)) generated by

the reflections sα of E (resp. sα∗ of E∗) defined by

sα(u) = u− < α∗, u > α and sα∗(x) = x− < x, α > α∗,

where x ∈ E∗ and u ∈ E. We have sα(Φ) ⊂ Φ and sα∗(Φ∗) ⊂ Φ∗. There is a natural

isomorphism between the Weyl groups of the root system and the dual root system,

given by α 7→ α∗ and sα∗ =t sα the transpose of sα. We identify the two actions of

the Weyl group.

Remark 2.1. Sometimes we formulate the propositions for a based root system R =

(E, Φ, ∆) instead of g, and at times we refer to the root system just by Φ.

Let l(w) denote the length of an element in the Weyl group, given by the least

length of a word in the sα, α ∈ ∆ defining w. Let ǫ(w) = (−1)l(w) be the sign

character of W .

Denote by P ⊂ E (resp. P+ ⊂ P , P++ ⊂ P+, P ∗ ⊂ E∗, P ∗,++ the lattice of

integral weights (resp. dominant integral weights, dominant regular weights, lattice

of integral co-weights, dominant regular coweights). Let r = |∆| be the rank of Φ.

For a simple root α ∈ ∆, denote by ωα (resp. ω∗
α) the corresponding fundamental

weight (resp. coweight) defined by

< β∗, ωα >= δαβ and < ω∗
α, β >= δαβ, α, β ∈ ∆.

The fundamental weights form a Z-basis for P . A weight λ can be expressed as a

sum,

λ =
∑

α∈∆

mα(λ)ωα,
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where mα(λ) =< α∗, λ > are the coefficients of λ with respect to the basis of P

determined by ∆. The weight λ is regular (resp. dominant) if for any α ∈ ∆,

mα(λ) 6= 0 (resp. mα(λ) ≥ 0).

2.2. Schur-Weyl elements. For any ring A and a commutative group X, let A[X]

denote the group algebra of X with coefficients in A. We work with multiplicative

(exponential) notation. A basis for A[X] is given by the elements indexed by ex for

x ∈ A. The group law is expressed by ex.ey = ex+y, x, y ∈ X. The action of the

Weyl group is seen as, weλ = ewλ.

For a weight λ ∈ P , define the Schur-Weyl element S(λ) ∈ Z[P ] as,

S(λ) =
∑

w∈W

ǫ(w)ew(λ).

The Schur-Weyl elements are alternating with respect to the action of the Weyl group

W on Z[P ],

σ(S(λ)) = ǫ(σ)S(λ), σ ∈ W.

The group algebra A[P ] can be identified with a Laurent polynomial ring in r-

variables over A, where r = dimR(E) is the rank of g. In particular, C[P ] is a unique

factorization domain.

2.3. Weyl Character Formula. Let V be a finite dimensional g-module. With

respect to the action of h, there is a decomposition,

V = ⊕π∈P V π,

where V π = {v ∈ V | Xv = π(X)v, X ∈ h}.

are the weight spaces of V . The linear forms π for which V π are non-zero are the

weights of V , and V π is the subspace of V consisting of eigenvectors of H with weight

π. The formal character χV ∈ Z[P ] of V is defined as,

χV =
∑

π∈P

m(π)eπ,

where m(π) = dim(V π) is the multiplicity of π. The character is invariant under the

action of the Weyl group.

The irreducible finite dimensional g-modules are indexed by elements in λ ∈ P+,

given by Cartan-Weyl theory. To each dominant, integral weight λ, we denote the

corresponding irreducible g-module with highest weight λ by Vλ and the formal char-

acter of Vλ by χλ. The Weyl character formula gives the formula for the formal
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character χλ:

(2.1) Weyl character formula: χλ = S(λ + ρ)/S(ρ),

where ρ is the Weyl weight defined by the equations,

ρ =
1

2

∑

α∈Φ+

α =
∑

α∈∆

ωα.

Remark 2.2. It can be seen as an application of the Weyl character formula (or directly

by induction), that for λ ∈ P++, the element S(λ) is non-vanishing.

2.4. Divisibility. For any weight λ, define

(2.2) d(λ) = g.c.d.{mα(λ) | α ∈ ∆}.

Equivalently d(λ) can be defined as the largest integer d for which dρ divides λ (a

regular weight µ is said to divide a weight λ if for every α ∈ ∆, the coefficient mα(µ)

divides mα(λ)).

Example 2.1. For SL(r), denote by ωi, 1 ≤ i ≤ r−1 the set of fundamental weights

given by the highest weights of the i-th exterior power of the natural representation

of SL(r). For λ = (a1, a2, · · · , ar) a weight of GL(r), the coefficients are given by

mi(λ) = ai − ai+1. If the weight λ is normalized so that ar = 0, then the definition of

d(λ) given in the previous section agrees with the above definition.

The following proposition, especially the divisibility aspect is of fundamental im-

portance to us in this paper, needed in the formulation as well as the proof of the

main theorem (in establishing the inductive argument in the proof of Proposition

5.1):

Proposition 2.1. (a) (Factorization of Weyl denominator). For any positive integer

d, there is a factorisation in the Laurent polynomial ring Z[1
2
P ],

S(dρ) =
∏

α∈Φ+

(edα/2 − e−dα/2)(2.3)

= e−dρ
∏

α∈Φ+

(edα − 1).(2.4)

(b) (Divisibility by Weyl denominator). For any weight λ ∈ P with greatest common

divisor d(λ) and any natural number d dividing d(λ) the element S(dρ) divides S(λ)

in Z[P ]W .

(c) (Separability of Weyl denominator) The generalized Weyl denominators S(dρ)

are separable elements in the ring C[P ]
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Proof. Part (a) is well known. For d = 1, (b) is a restatement of [B, Proposition 2,

Chapter VI, Section 3.3, page 185]. For any natural number d, there are the ‘scaling’

maps [d] : Z[P ] → Z[P ] induced by multiplication by d on P . One has,

[d](S(λ)) = S(dλ).

Part (b) now follows from the ‘universal’ divisibility that S(ρ) divides S(λ).

A proof of (c) is given later as Corollary 9.1 in Section 9. �

2.5. Duality. It was pointed out by P. Deligne that for a general simple Lie algebra,

there are extra factors which arise whenever there are at least two roots of different

lengths in a root system for g. These extra factorisations arise from duality: the

weight lattices of the root system and its dual are seen to be commensurable lattices

in E as W -modules. Normalizing the square of the length of the shorter root to be

2, this can be seen by the standard identification α∗ = 2α/(α, α). If the root system

is not simply laced, then these lattices are not isomorphic. This gives raise to new

factorizations as the Weyl denominator weights ρ and ρ∗ are not rational multiples

of each other.

Let αl (resp. αs) be a long (resp. short) root in E. Define,

(2.5) m(Φ) = (αl, αl)/(αs, αs).

The classification of root systems imply that the possible values of m(Φ) are,

m(Φ) =















1 if Φ is of type A, D, E,

2 if Φ is of type B, C, F ,

3 if Φ is of type G.

The map

(2.6) α∗ 7→ 2α/(α, α).

provides a W -equivariant identification of the co-weight lattice P ∗ with a lattice in

E (for the extended action of W on E). Via this identification, if the short root is

normalized to have the square of its length as 2, we get

(2.7) ω∗
α =







ωα if α is a short root,

ωα/m(Φ) if α is a long root
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We identify P ∗ with its image in E. The lattices P and P ∗ are commensurable in E.

Let

(2.8) P̃ = m(Φ)P ∗.

Let ρ∗ denote the Weyl weight of the dual root system defined by Φ∗. Define

(2.9) ρ̃ = m(Φ)ρ∗ =
∑

α∈∆s

m(Φ)ωα +
∑

α∈∆l

ωα,

where ∆s = ∆∩Φs (resp. ∆l = ∆∩Φl), and Φs (resp. Φl) is the subset of Φ consisting

of the short (resp. long) roots. From the formula for m(Φ), it follows that ρ̃ = ρ

precisely for the simply laced root systems (of type A, D, E). It can be seen that

the element ρ̃ is a generator of the group Qρ∗ ∩ P .

The Weyl group invariance of the pairing allows us to transfer the factorization

and divisibility relations for the Schur-Weyl sums of integral multiples of ρ∗ in the

group ring Z[P ∗] to the group ring Z[P ] of the lattice P . The point is that when

there are at least two roots having different lengths, this gives us new factorizations

and divisibility relations. This is expressed by the following proposition ‘dual’ to

Proposition 2.1:

Proposition 2.2. (a) (Factorization of dual Weyl denominator). For any positive

integer d, there is a factorisation in the Laurent polynomial ring Z[1
2
P ],

S(dρ̃) =
∏

α∈Φ+
s

(edmα/2 − e−dmα/2)
∏

α∈Φ+
l

(edα/2 − e−dα/2)(2.10)

= e−dρ̃
∏

α∈Φ+
s

(edmα − 1)
∏

α∈Φ+
l

(edα − 1).(2.11)

(b) (Divisibility by dual Weyl denominator). If dρ̃|λ, then S(dρ̃) divides S(λ) in

Z[P ].

(c) (Separability of dual Weyl denominator) The elements S(dρ̃) are separable in

the ring C[P ].

We refer to elements of the form S(dρ) or S(dρ̃) as elements of (generalized) Weyl

denominator type in Z[P ].

2.6. Factors of S(λ) of Weyl denominator type. For λ 6= ρ a dominant regular

weight in P++, define

(2.12) D(λ) = l.c.m.dρ|λ, dρ6=λ
eρ̃|λ, eρ̃ 6=λ

(S(dρ), S(eρ̃)),
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where the l.c.m. is taken in the Laurent polynomial ring Z[P ]W . By [B, Theorem 1,

Ch. VI, Section 4, page 188], the ring Z[P ]W is isomorphic to a polynomial ring over

Z in r-variables:

Z[P ]W ≃ Z[{ωα | α ∈ ∆}].

Hence the units of the ring Z[P ]W are isomorphic to {1,−1}. With respect to the

dominant order (a weight is non-negative if it can be written as a non-negative linear

combination of positive roots), the leading term of S(λ) is given by eλ. The least

common multiple in the definition of D(λ) in the above equation is taken to be the

element whose coefficient of the leading monomial occuring in D(λ) with respect to

the dominant ordering is positive (equal to 1). Define,

(2.13) C(λ) = S(λ)/D(λ),

to be the quotient of the Schur-Weyl sum S(λ) divided by the obvious factors arising

from the Weyl character formula and duality. Since S(λ) is alternating, it follows

that C(λ) ∈ Z[P ]W .

We now look at the structure of D(λ). If λ = m(Φ)λ∗ for some λ∗ ∈ P ∗, define

(2.14) d∗(λ) = d(λ∗) = g.c.d{m∗
α(λ∗) | α ∈ ∆}.

Equivalently d∗(λ) can be defined as the largest integer d for which dρ̃ divides λ. Note

that we have the following inclusions:

(2.15) P ∗ ⊃ P ⊃ m(Φ)P ∗ ⊃ m(Φ)P.

Lemma 2.1. Suppose that λ ∈ P++ is neither a multiple of ρ or ρ̃. Then

(2.16) D(λ) =







S(d(λ)ρ) if λ ∈ m(Φ)iP\m(Φ)i+1P ∗ for some i ≥ 0,

S(d∗(λ)ρ̃), if λ ∈ m(Φ)i+1P ∗\m(Φ)i+1P for some i ≥ 0.

Proof. An element λ ∈ m(Φ)iP\m(Φ)i+1P ∗ for some i ≥ 0 iff m(Φ)i|mα(λ), ∀α ∈ ∆

and there exists a α ∈ ∆s such that m(Φ)i+1 does not divide mα(λ). If i = 0, then

ρ̃ does not divide λ. For i > 0, suppose em(Φ)j ρ̃ divides λ, with e coprime to m(Φ).

This implies that em(Φ)j+1|mα(λ) for all α ∈ ∆s. Hence, j ≤ i−1, and it follows that

em(Φ)j+1ρ|λ. But em(Φ)j ρ̃ divides em(Φ)j+1ρ. Thus the lcm can be taken amongst

factors of the form S(fρ) with fρ|λ. Since λ is not a multiple of ρ, the lcm is given

by S(d(λ)ρ), and this proves the first case.

In the second case, if em(Φ)jρ divides λ with e coprime to m(Φ), then j ≤ i. Since

λ ∈ m(Φ)i+1P ∗, it follows that λ is divisible by em(Φ)j ρ̃, and hence the lcm can be

taken with respect to such factors. This establishes the second case.
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�

2.7. The Main theorem. Our aim is to show that if λ ∈ P++ is neither a multiple

of ρ or of ρ̃ then C(λ) is absolutely irreducible. However the proof we have does not

prove this in full generality and has a gap for a class of regular weights of G2 and F4.

We make the following assumption (see Proposition 5.2):

Assumption NMFG: Consider the root systems given by F4 and G2, and regular

weights λ ∈ P++ be of the form,

λ = uωα + vωβ + d(λ)ρ, d(λ) = (u, v)

where ωα (resp. ωβ) is the fundamental weight corresponding to the short (resp. long)

corner root α (resp. β) in the Dynkin diagram such that the following inequalities

are satsified:

m(Φ)v ≥ u + d(λ) and u ≥ v + d(λ).

Assumption NMFG is that for this class of weights, any W -invariant non-trivial fac-

torization is non-monic (see Definition 5.2 for the definition of a factorization to be

non-monic).

The main theorem of this paper is the following:

Theorem 2.3. With notation as above, let λ ∈ P++ be a dominant regular weight for

the root system Φ. Assume further that Assumption NMFG is valid. If λ 6= dρ or dρ̃

for some natural number d, then C(λ) is absolutely irreducible, i.e., it is irreducible

in the ring C[P ]W .

Remark 2.3. As for the case of GL(r), it should be possible to obtain the irreducibility

statement in the larger ring C[P ], but we do not carry out this reduction out here.

Analogous irreducibility results can be obtained for characters of rational representa-

tions of simple algebraic groups G. Here the irreducibility results hold in the bigger

ring of regular functions of G, rather than the ring of regular invariant functions of

G (see Theorem 3.2).

Remark 2.4. Lemma 2.1 allows us by the use of duality to reduce the proof of Theorem

2.3 to the case that

λ ∈ m(Φ)iP\m(Φ)i+1P ∗,

for some i ≥ 0. In this case, D(λ) = S(d(λ)ρ) and we need to show that C(λ) =

S(λ)/S(d(λ)ρ) is irreducible. We will achieve this by showing that if C(λ) is reducible,

then λ ∈ m(Φ)i+1P ∗, contradicting our choice of λ (see Section 5).
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Remark 2.5. The scaling operation [d] : Z[P ] → Z[P ] given by mulitplication by d on

P allows a reformulation of the theorem using a slight modification of a ring used by

Bourbaki [B] in their formulation of the product expansion of the Weyl denominator.

Let

PQ = P ⊗Z Q,

and denote by C[PQ] denote the group algebra of PQ with coefficients in C (we use

exponential notation). Observe that in this ring there exist elements which are in-

finitely factorizable, for example elements of the form ep − 1 for p ∈ P . Further

an element C ∈ C[P ] is irreducible as an element in C[PQ] if and only if [d]C is

irreducible in C[P ] for all natural numbers d, where [d] : C[P ] → C[P ] denotes the

algebra homomorphism induced by multiplication by d. Since P and the dual weight

lattice P ∗ are commensurable in PQ, the two group rings C[P ] and C[P ∗] are both

contained in C[PQ]. In this ring of fractional Laurent polynomials, Theorem 2.3 can

be reformulated as saying that with the hypothesis of Theorem 2.3, the element C(λ)

is irreducible in the ring C[PQ]W , where we can assume that d(λ) = 1.

However we do not work with this ring any further, as there is no clear advantage

in working with this bigger ring.

2.8. An uniquness property. The following theorem expresses an uniqueness prop-

erty of ‘generalized characters’; in particular, that the highest weight λ can be recov-

ered from knowing C(λ) provided C(λ) is non-trivial:

Theorem 2.4. Let R = (E, Φ, ∆) be a simple based root system and λi, µi, i = 1, 2

be dominant regular weights for R. Assume that the weights µ1, µ2 are of generalized

Weyl denominator type, i.e., they are an integral multiple of either ρ or ρ̃. Assume

further that µi divides λi for i = 1, 2. Suppose there is an equality of the quotients,

S(λ1)/S(µ1) = S(λ2)/S(µ2),

and that these quotients are not equal to 1.

Then λ1 = λ2 and µ1 = µ2. In particular, if λ1 is neither a multiple of ρ nor ρ̃,

and C(λ1) = C(λ2), then λ1 = λ2.

The proof of the theorem is given in Section 9. Together with Theorem 2.3 and the

explicit factorizations of the generalized Schur-Weyl denominators, this gives a proof

of the unique factorization of tensor products given by Theorem 1.1, but subject to

Hypothesis NMFG. We refer to Section 9 for more details.
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Remark 2.6. The uniqueness property is required for the proof of Proposition 5.2

that any symmetric factorization is non-monic, which in turn goes into the proof of

Theorem 2.3.

3. Irreducibility property for characters of irreducible

representations of simple algebraic groups

In this section we extend the irreducibility results of the previous section to charac-

ters of finite dimensional representations of simple algebraic groups. For an algebraic

group H, denote by O(H) the algebra of regular functions on H. If a group L acts

on H, we denote by O(H)L the ring of regular functions on H which are invariant

with respect to the induced action of L on O(H).

Let G be a connected, simply connected, almost simple algebraic group over C.

Since G is simply connected, by a theorem of Fossum, Iversen and Popov (see [FI],

[KKLV1], [KKLV2]), the Picard group of G is trivial. Hence the ring O(G) is factorial.

We have the following:

Proposition 3.1. Let G be a connected, simply connected, almost simple algebraic

group over C. Suppose f ∈ O(G)G is an invariant regular function on G with respect

to the adjoint action of G on itself. Then any irreducible factor of f in O(G) is

invariant with respect to the adjoint action of G on itself.

In particular, if f is an irreducible element in O(G)G, then it is irreducible in

O(G).

Proof. Suppose there is a factorization

(3.1) f = p1 · · · pr,

in the ring O(G), where pi are irreducible elements in O(G). The group G(C) acts

by conjugation on O(G) leaving invariant the element f ; hence it acts by permuting

the irreducible factors (upto units) p1, · · · , pr. Since G(C) is connected, this implies

that the permutation action is trivial,

pg
i = ξi(g)pi, i = 1, · · · , r,

where ξi(g) is a nowhere vanishing function on G(C), and satisfies the 1-cocycle

condition,

ξi(gh) = ξi(g)hξi(h).
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From the regularity of the action of G on O(G), we conclude that ξi(g) is a regular

function on G, hence an unit in O(G). By a theorem of Rosenlicht ([KKLV1, page

78]) the units in O[G] are just the constants. Thus the G action is trivial on the units

of O[G]. This defines a homomorphism g 7→ ξg from the group G(O) to C∗. Since

G(C) has no abelian quotients, this implies the cocyle is trivial, and hence pg
i = pi

for any g ∈ G(C). Hence the factorization given by Equation 3.1 actually holds in

O(G)G. �

Let T be a maximal torus in G. By Chevalley’s restriction theorem, we have an

isomorphism

O(G)G ≃ O(T )W ,

between the algebra O[G]G and the algebra O(T )W of Weyl group invariant functions

of H. Let X∗(T ) denote the group of characters of T . The ring of regular functions

O(T ) on the torus T can be identified with the group algebra C[X∗(T )]. Since G

is simply connected, by a theorem of Chevalley it is known that these rings are

isomorphic to the polynomial ring in r-variables, where r is the dimension of T . The

Lie algebra g of G is simple. Choosing a Borel subgroup B ⊃ T of G allows us to

define simple roots, weights, etc. for g too. The lattice of weights P can be identified

with the character group X∗(T ) of T . Hence we have an identification,

(3.2) O(T )W ≃ C[P ]W .

To each dominant, integral weight λ, denote the corresponding irreducible G-

module with highest weight λ by Vλ. Via the above isomorphism given by Equation

3.2, the characters of the representation of G and the Lie algebra on Vλ can be identi-

fied. In particular, the irreducibility results of the previous section can be transferred

to the context of invariant functions on the group. But we obtain a bit more by

combining Theorem 2.3 and Proposition 3.1 (we have also incorporated the scaling

operation):

Theorem 3.2. Let G be a connected, simply connected, almost simple algebraic group

over C of rank at least two. With respect to notation as above, let λ be the highest

weight of an irreducible representation of G. Suppose that λ + ρ is not a multiple of

either ρ or ρ̃, and that d(λ + ρ) = 1. Assume further that Assumption NMFG holds

for the weight λ + ρ.

Then for any natural number d, the function g 7→ χλ(g
d) is irreducible in the ring

of regular functions of G.

Remark 3.1. For G ≃ SL(r), r ≥ 3, this is the theorem mentioned in the abstract.
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4. Cofactor expansions

The proof of the unique decomposition of tensor products of irreducible represen-

tations of simple Lie algebras (see Theorem 1.1) given in [R] is by induction on the

rank of the Lie algebra, by considering cofactor expansions of the Schur-Weyl ele-

ments occuring in the Weyl character formula. The same general principle is applied

to the proof of the irreducibility property of characters, with the expectation that an

inductive machinery can be setup.

4.1. Cofactor expansion for GL(r). We first recall the cofactor expansion of the

numerator of the Weyl character formula for GL(r). Let λ = (a1 > a2 > · · · > ar−1 >

ar = 0) be a regular weight of GL(r). The Schur-Weyl sum S(λ) can be expressed as

a determinant,

S(λ) =
∑

σ∈W

ǫ(σ)xa1

σ(1) · · ·x
ar

σ(r)

= det(x
aj

i ).

This admits a cofactor expansion,

S(λ)(x1, · · · , xr) = xa1
1 S(λ(1))(x2, · · · , xr) − xa2

1 S(λ(2))(x2, · · · , xr)+

· · · + (−1)r−2x
ar−2

1 S(λ(r−2))(x2, · · · , xr)

+ (−1)r−1(x2 · · ·xr)
ar−1S(λ(r−1))(x2, · · · , xr),

(4.1)

where for 1 ≤ i ≤ r − 2

λ(i) = (a1, a2, · · · , ai−1, ai+1, · · · , ar),

and

λ(r−1) = (a1 − ar−1, · · · , ar−2 − ar−1, 0),

are regular weights for GL(r − 1). For our purpose, we are interested only in the top

(resp. bottom) two leading terms, and not the full cofactor expansion as such.

In terms of the fundamental weights defined as in Example 2.1, if λ =
∑r−1

i=1 mi(λ)ωi

with mi(λ) = ai − ai+1, these weights can be expressed as,

λ(1) = m2(λ)ωr−1
1 + · · · + mr−1(λ)ωr−1

r−2,(4.2)

λ(2) = (m1(λ) + m2(λ))ωr−1
1 + · · · + mr−1(λ)ωr−1

r−2,(4.3)

λ(r−1) = m1(λ)ωr−1
1 + · · · + mr−2(λ)ωr−1

r−2(4.4)

where we have put a superscript r− 1 to indicate that these are fundamental weights

for GL(r − 1).



IRREDUCIBILITY OF IRREDUCIBLE CHARACTERS 17

4.2. Cofactor expansion. Our aim is to generalize the foregoing cofactor expansion

for GL(r) to that of a general simple based root system R = (E, Φ, ∆) of rank r. The

above interpretation of the cofactor expansion in terms of the fundamental weights

leads us to consider corner roots in the Dynkin diagram of R and to decompose

the weight lattice P as a sum of the weight lattice corresponding to the simple Lie

subalgebra corresponding to the corner root of corank one and the fundamental weight

given by the corner root.

Choose a simple root α ∈ ∆. We will be primarily interested in the special case

when α corresponds to a corner vertex in the Dynkin diagram of R. Let ∆α = ∆\{α},

and let Φα ⊂ Φ be the subset of roots lying in the span of the roots generated by ∆α.

Let

Eα =
∑

α∈∆α

Rα = {µ ∈ E |< ω∗
α, µ >= 0}.

It is known that Rα = (Eα, Φα, ∆α) is a based simple root system of rank r − 1.

Let Wα denote the Weyl group of Rα. It can be identified with the subgroup of

W generated by the fundamental reflections sβ for β ∈ ∆α. The following lemma

provides a Wα-equivariant decomposition of P , a complement to Eα inside E (see [R,

Lemma 3]):

Lemma 4.1. Let ωα (resp. ω∗
α) denote the fundamental weight (resp. coweight)

corresponding to the simple root α. The isostropy group of ω∗
α is precisely Wα. There

is Wα-equivariant decomposition,

E = Rωα ⊕ Eα and E∗ = Rω∗
α ⊕ Eα

∗.

Via the above decomposition, the rational weight lattice P⊗Q admits a Wα-equivariant

splitting,

P ⊗ Q = Qωα ⊕ Pα ⊗ Q,

where the weight lattice Pα of the root system Φα can be identified with the subspace

of P ,

(4.5) Pα = Ker(ω∗
α) = {π ∈ P |< ω∗

α, π >= 0}.

Further, there is a Wα-equivariant inclusion,

(4.6) P ⊂ Z
ωα

< ω∗
α, ωα >

⊕ Pα.

The last assertion follows from the fact if µ ∈ P takes integral values on the simple

coroots, then it’s projection to Eα also takes integral values on the simple coroots

β∗, β ∈ ∆α, as ωα is orthogonal to all such β∗.
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Denote by lα the rational weight,

(4.7) lα =
1

< ω∗
α, ωα >

ωα.

With respect to the decomposition, a weight π ∈ P0 can be written as,

(4.8) π = ω∗
α(π)lα + πα,

where πα ∈ Pα,0 = Pα ⊗Q d efined by the above equation, is the Wα-equivariant pro-

jection of π along ωα to Eα. The integer ω∗
α(π) (or the rational number ω∗

α(π)/ω∗
α(ωα)

will be referred to as the degree of π along lα (or along ωα or α).

Let ω be a fundamental weight of Φ distinct from ωα. It follows from Equation 4.8

that ωα is a fundamental weight for the root system Φα. In particular, the projection

ρα of ρ = ρ(Φ) is the sum of the fundamental weights of Φα. i.e., equal to the Weyl

weight of the root system Φα.

Suppose U is an element of C[P ]. Write

U =
∑

µ∈P

aµ(U)eµ.

Define P (U) to be the set finite of weights occuring in U ,

P (U) = {µ ∈ P0 | aµ(U) 6= 0},

Expand U in terms of the ‘degree along α’ as,

U =
∑

i≥0

U ′
α,u−i,

where

U ′
α,u−i =

∑

µ∈P (U), ω∗

α(µ)=u−i

aµ(U)eµ.

If U is W -invariant, then the terms U ′
α,u−i are Wα-invariant. The term U ′

α,u−i can

also be written as,

U ′
α,u−i = e(u−i)lαUα,u−i,

where we now consider Uα,i as an element of C[Pα]. Define the cofactor expansion of

U along α as,

(4.9) U =
∑

i≥0

e(u−i)lαUα,u−i.

The element Uα,u ∈ C[Pα] will also be referred to as the leading coefficient of U along

α.
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For any integer i ≥ 0, we refer to the term Uα,u−i as the i-th codegree term in the

cofactor expansion of U along α (see Section 9 where we use this notation).

Example 4.1. If we consider the cofactor expansion of S(λ) for GL(r), the top degree

coefficient is the leading coefficient corresponding to the cofactor expansion along the

simple corner root e1 − e2 (standard notation). Upto a monomial term, the constant

term is the leading coefficient in the cofactor expansion of S(λ) along the other corner

fundamental root er−1 − er.

4.3. Cofactor expansion of S(λ). We now describe the cofactor expansion of the

Schur-Weyl sum S(λ). Let W (α) be a set of right coset representatives for Wα in W ,

i.e., a section for the projection map W → Wα\W . For any element w ∈ Wα and

s ∈ W , the value

ω∗
α(wsλ) = (w−1ω∗

α)(sλ) = ω∗
α(sλ)

is a constant for any weight λ. Hence the Schur-Weyl sum S(λ) can be expanded as,

S(λ) =
∑

d∈Z

edlα

(

∑

w∈Wd

ǫ(w)e(wλ)α

)

,

=
∑

s∈W (α)

eω∗

α(sλ)lαS((sλ)α)

where Wd = {w ∈ W | ω∗
α(wλ) = d},

(4.10)

and for each s ∈ W (α), S((sλ)α) refers to the Schur-Weyl sum of the weight (sλ)α

belonging to the root system Rα. In the above notation,

S(λ)α,d =
∑

s

S((sλ)α),

where the sum ranges over s ∈ W (α) such that ω∗
α(sλ) = d.

We are interested in the first two leading terms in the above expansion. Given a

regular weight λ ∈ P+, define

aα,1(λ) = max{wλ(ω∗
α) | w ∈ W},

aα,2(λ) = max{wλ(ω∗
α) | w ∈ W and wλ(ω∗

α) 6= aα,1(λ)}.

The following lemma is proved in [R, Lemma 4]:

Lemma 4.2. Let λ be a regular weight in P+ and α ∈ ∆.

(1) The largest value aα,1(λ) of (wλ)(ω∗
α) for w ∈ W , is attained precisely for

w ∈ Wα. In particular,

aα,1(λ) =< ω∗
α, λ > .
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(2) The second highest value of aα,2(λ) is attained precisely for w in Wαsα, and

the value is given by

aα,2(λ) = ω∗
α(sαλ) = aα,1(λ)− < α∗, λ >= aα,1(λ) − mα(λ).

Assume now that α is a corner root. Then Rα is simple. As a corollary of the

above discussion, we obtain the first two terms for the cofactor expansion of S(λ)

along ωα:

Lemma 4.3. With notation as above, let λ =
∑

β∈∆ mβ(λ)ωβ. The cofactor expan-

sion of S(λ) given by Equation (4.10) is,

(4.11) S(λ) = eaα,1(λ)lαS(λα) − eaα,2(λ)lαS((sαλ)α) + L(λ),

where L(λ) denotes the terms of degree along lα less than the second highest degree.

In terms of fundamental weights,

λα =
∑

β∈∆α

mβ(λ)ωα
β ,(4.12)

(sαλ)α = λα + |mαn
(α)|mα(λ)ωα

αn
(4.13)

where αn is the unique root connected to α in the Dynkin diagram of R.

Proof. We need to prove only the last formula. By definition,

sαλ = λ− < α∗, λ > α = λ − mα(λ)α.

Since R is simple and α is a corner root, the term mβ(α) =< β∗, α > vanishes if β is

different from α and αn. Hence, in terms of fundamental weights,

(4.14) α =
∑

β∈∆

mβ(α)ωβ = 2ωα + mαn
(α)ωαn

,

where mαn
(α) =< α∗

n, α > is a negative integer. Putting all this together yields

(sαλ)α = λα + |mαn
(α)|mα(λ)ωα

αn

= (mαn
(λ) + |mαn

(α)|mα(λ))ωα
αn

+
∑

β 6=α, αn

mβ(λ)ωα
β .(4.15)

�

Example 4.2. For GL(r), |mαn
(α)| = 1, and this gives the formula expressed in

Equation 4.2:

λ(2) = m1(λ)ω
(r−1)
1 + λ(1).
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4.4. Eisenstein criterion. We now state the equivalent in our context of the obser-

vation used in the proof of the classical Eisenstein criterion regarding irreducibility

of polynomials. We first assert the separbility of S(λ):

Lemma 4.4. Assume that Theorem 2.3 holds for the based simple root system R =

(E, Φ, ∆). Then for any dominant regular weight µ, the Schur-Weyl sum S(µ) is a

separable element in C[P ].

Proof. This is a simple consequence of the hypothesis and the separability of general-

ized Weyl denominators given in Part (c) of Propositions 2.1 and 2.2 (see also Section

9). �

We now formulate the classical Eisenstein criterion in our context:

Lemma 4.5 (Eisenstein criterion). Assume that Theorem 2.3 holds for any irreducible

based root system of rank less than that of R = (E, Φ, ∆). Let λ be a dominant regular

weight and U be a factor of S(λ). Then for any α ∈ ∆ and for any i < mα(λ), the

leading term Uα,u in the cofactor expansion given by Equation 4.9 divides Uα,u−i in

the ring C[Pα].

Proof. Let µ = λα. By the previous lemma, S(µ) is a seperable element in C[Pα].

Further the terms of degree d in the cofactor expansion of S(λ) along α vanish in the

range

aα,1(λ) > d > aα,2(λ) = aα,1(λ) − mα(λ).

The proof of the classical Eisenstein criterion now applies to establish the lemma. �

5. Key lemmas and the proof of the main theorem

In this section we present the key propositions and the deduction of the main

theorem from these propositions. The heart of the proof of the main theorem is the

following proposition:

Proposition 5.1. Let R = (E, Φ, ∆) be a simple based root datum of rank l, not

isomorphic to F4 or G2. Let µ be a regular weight in P++ and η = µ + cωα for

some positive integer c, where ωα is the fundamental weight corresponding to α ∈ ∆.

Assume that α is a corner root in the Dynkin diagram for R if R is not simply laced.

Assume further that Theorem 2.3 is valid for all simple Lie algebras of rank less than

l.
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Let e|d(µ) and d|e, e 6= d be natural numbers. Suppose there exists symmetric

non-unit elements U, V ∈ O[P ]W satisfying the following:

•

(5.1) UV = C(µ, d).

• The factor V of C(µ, d) divides C(eρ, d).

• There exists elements X, Y ∈ O[P ] such that

(5.2) UX + V Y = C(η, d).

Then the following holds:

(1) If R is simply laced or if α is a short root, then (e, c) > d.

(2) If R is not simply laced and α is a long root, then (e,m(Φ)c) > d.

Remark 5.1. Although the proposition can be shown to be valid for F4 and G2, for

the proof of the main theorem, we will not require the F4 and the G2 cases of the

foregoing proposition.

Remark 5.2. When Φ is of rank one, the above proposition translates to a statement

about factors of a cyclotomic polynomial, such that their combination is equal to

another cyclotomic polynomial. The proof of the proposition is arithmetic and is

given in Section 6. Further, it is not required that the factors U and V be invariant.

For higher ranks, the arithmetical proof for sl(2) does not generalize, as the arith-

metical properties of a character, if any, are not easy to understand. The proof is by

induction on the rank and is given in Section 7. The invariant condition on the factors

is required, to ensure that there is a corner root such that the leading coefficients of

U and V are not units (see Proposition 5.2).

5.1. Non-monic invariant factorizations. In order to reduce the proof of the main

theorem to that of Proposition 5.1, we need to rule out certain types of factorizations:

factorizations such that in the cofactor expansion along any corner root, at least

one of the factors is monic. In the case of GL(r) we are working with symmetric

homogeneous polynomials in r-variables. We look at the polynomials as a polynomial

in x1 with coefficients polynomials in the variables x2, · · · , xr. In this case, we want

to rule out factorizations, where one factor is monic and the constant coeffecient of

some factor is monomial. (we call such factorizations as monic factorizations, see also

Example 4.1).
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Let R = (E, Φ, ∆) be a based simple root system of rank r. Let α ∈ ∆ be a corner

root in the Dynkin associated to E.

Definition 5.1. An element U ∈ C[P ] is said to be monic with respect to α, if

there is an unique weight µα ∈ P (U) with maximum degree amongst all the weights

occurring in U , i.e.,

ω∗
α(µα) ≥ ω∗

α(µ) ∀µ ∈ P (U)

with equality if and only if µ = µα.

If we further assume that U ∈ C[P ]W , since the ring C[P ]W is isomorphic to a

polynomial ring in r-variables, the element µα is well defined. By symmetry we

observe that µα is fixed by the subgroup Wα of the Weyl group W fixing ωα. Hence

µα = uωα for some integer u.

Definition 5.2. Let C be an element in C[P ], and suppose there is a factorization

C = UV in C[P ]. The factorization is said to be non-monic, if there exists a corner

root α in the Dynkin diagram of R, such that both U and V are not monic along α.

We show that any possible invariant factorization is non-monic under the assump-

tion NMFG:

Proposition 5.2. Let R = (E, Φ, ∆) be a simple based root system of rank r. Assume

that Theorem 2.3 is valid for all simple root systems of rank strictly less than r. Let

λ be a dominant regular weight for (E, Φ, ∆). Suppose there is a factorization,

C(λ) = UV,

where both U and V are in C[P ]W . Then this factorization is non-monic, except when

the root system is of type either G2 or F4 and the weight λ is of the form,

λ = uωα + vωβ + d(λ)ρ, d(λ) = (u, v)

where ωα (resp. ωβ) is the fundamental weight corresponding to the short (resp. long)

corner root α (resp. β) in the Dynkin diagram such that the following inequalities are

satsified:

m(Φ)v ≥ u + d(λ) and u ≥ v + d(λ).

Remark 5.3. Proposition 5.2 can also be considered as establishing the irreducibility

property in C[P ]W for a ‘general weight λ, i.e., those for which the leading coeffecient

of C(λα, d(λ)) along any corner root α is irreducible.

5.2. Proof of Main Theorem. We now prove Theorem 2.3 assuming the validity

of the above Propositions 5.1 and 5.2. First of all by duality (see Remark 2.4), we
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can assume that λ is an element of m(Φ)iP\m(Φ)i+1P ∗ for some i ≥ 0. In this case,

the greatest common divisor D(λ) of the ‘obvious’ Weyl denominator type factors of

S(λ) is S(d(λ)ρ), and we need to show that C(λ, d) = S(λ)/S(d(λ)ρ) is irreducible,

where d = d(λ).

Suppose there is a factorization in C[P ]W ,

(5.3) C(λ, d) = QR.

We have C(λ, d) ∈ Z[P ]W and the coefficient of eλ is 1.

Claim: Given any natural number N , there exists a UFD O ⊂ C such that the

rational primes p ≤ N are not units in O, and Q and R are in O[P ]W upto multiplying

by constants.

Proof of Claim. The claim goes under the name of Lefschetz principle, and for the

sake of completeness we give a proof based on Gauss’ lemma: Suppose A is a UFD,

and C ∈ A[x1, · · · , xn] is a polynomial such that the gcd of its coefficients is a unit

in A. Then if C admits a factorization in K[x1, · · · , xn] where K is the quotient field

of A, then it admits a factorization in A[x1, · · · , xn].

To prove the claim, by attaching the coefficients of Q and R, we can assume that

the factorization is over a finitely generated field E over Q. Let F be the alge-

braic closure of Q in E; this is a finite extension of Q and E is a finitely gener-

ated purely transcendental extension over F . We can write E as the quotient field

of A = F [ξ1, · · · , ξk] for some algebraically independent generators ξ1, · · · , ξk. By

Gauss’ lemma, we can assume (after multiplying by some units) that the factors Q

and R belong to A[x1, · · · , xn]. By considering them as polynomials in the variables

ξ1, · · · , ξk, x1, · · · , xn and by degree considerations, we see that the coefficients of Q

and R have to lie in the number field F .

Let OF be the ring of algebraic integers in F . By inverting the primes q ≥ N ,

we get a semilocal ring O. This is a UFD and the primes p < N are not units. By

Gauss’ lemma, the factorization is defined over O[P ]W , and this proves the claim.

Let N be a natural number greater than 2m(Φ)(
∑

α∈∆ mα(λ)). We also assume

that O contains the N -th roots of unity.

By Proposition 5.2, choose a corner root α0 of the Dynkin diagram of R such that

the leading coefficients U (resp. V ) of Q (resp. R) along α0 with respect to the



IRREDUCIBILITY OF IRREDUCIBLE CHARACTERS 25

co-factor expansion of Q and R along α0 are not units in the ring O[Pα0 ]
Wα0 . Let

µ = λα0 .

Then

(5.4) C(µ, d(λ)ρ) = UV.

The main observation that in conjunction with Proposition 5.1 will allow us to prove

Theorem 2.3 is the following:

(5.5) d = d(λ) = (d(µ),mα0(λ)) = (d(λα0), d((sα0λ)α0)).

The cofactor expansion of Q and R is given by,

(5.6) Q =
∑

i≥0

e(q−i)lα0Qα0,q−i, R =
∑

i≥0

e(r−i)lα0Rα0,r−i,

where we have denoted by q (resp. r) the degrees of the cofactor expansions of Q

and R along α. Further since Q and R are assumed to be invariant, the coefficients

Qα0,q−i and Rα0,r−i are Wα0-invariant.

By Eisenstein criterion Lemma 4.5, the leading coefficient U (resp. V ) of Q (resp.

R) along α0 divides Qα0,q−i (resp. Rα0,r−i) for i < nα0(λ). Upon substituting the

cofactor expansions of Q and R in equation 5.3, we see that there exists elements

X,Y in the ring O[Pα0 ]
Wα0 such that,

(5.7) UX + V Y = C(η, d(λ)).

Here η is given by the formula in Lemma 4.3:

(5.8) η = (sα0λ)α0 = µ + cωα0
α ,

where α is the unique root in the Dynkin diagram attached to R that is connected

to the corner root α0, and c is given by

c = mα0(λ)|mα(α0)|

=







m(Φ)mα0(λ) if α0 is long and α is short,

mα0(λ) otherwise.

(5.9)

We now analyze the possible factorizations of C(µ, d(λ)) assuming the validity of

Theorem 2.3 for Rα0 , and apply Proposition 5.1 to the root system Rα0 together with

Equation 5.5 to arrive at a contraduction (and thus prove Theorem 2.3).
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Case (i). We first analyze the case where the root system Rα0 is either simply

laced, or if not simply laced, then µ does not belong to m(Φα0)
i+1P ∗

α0
.

If µ is not of Weyl denominator type, then

(5.10) C(µ, d(λ)) = C(µ, d(µ))C(d(µ), d(λ)),

where C(µ, d(µ)) is absolutely irreducible. In this case, let

e = d(µ), d = d(λ), and d|e.

We also assume that V divides C(eρ, d).

If µ = eρ is of Weyl denominator type, then V (and U too) divides C(eρ, d).

Now suppose that we are not in the case where α0 is long and α is a short root.

Then, by Equation 5.9,

c = mα0(λ).

Applying Proposition 5.1,

d = d(λ) = (d(µ),mα0(λ)) > d,

and this gives a contradiction.

Assume now that we are in the situation where α0 is long, α is short (and µ does

not belong to m(Φα0)
i+1P ∗

α0
). In this case, the root system Rα0 is simply laced and

let e = d(µ), c = m(Φ)mα0(λ). By Proposition 5.1,

(5.11) (d(µ),m(Φ)mα0(λ)) > d.

We concentrate only on the contribution by the prime number m(Φ) to the compu-

tation of the gcd’s. Since we have assumed that λ ∈ m(Φ)i\m(Φ)i+1P ∗, this implies

d(µ) = m(Φ)id′(µ) with (d′(µ),m(Φ)) = 1.

Write d = m(Φ)id′ with d′ coprime to m(Φ). Let mα0(λ) = m(Φ)im′
α0

(λ) where

m′
α0

(λ) is a natural number. Substituting we get the following couple of equations,

(d′(µ)m(Φ)i,m(Φ)i+1m′
α0

(λ)) > m(Φ)id′

(d′(µ),mα0(λ)) = d′,
(5.12)

These equations imply that m(Φ) divides d′(µ) contradicting the choice of λ.

Case (ii). Now suppose that the root system Rα0 is not simply laced and µ ∈

m(Φα0)
i+1P ∗

α0
. From the classification of the Dynkin diagrams, this can happen only
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when both α0 and its neighbour α ∈ ∆ have the same lengths. Further m(Φ) =

m(Φα0).

Now if α0 is a long root, the assumption that µ = λα0 lies in m(Φ)i+1P ∗
α0

implies

that λ belongs to m(Φ)i+1P ∗, a contradiction since we have assumed that λ is not an

element of m(Φ)i+1P ∗.

Hence we can assume that both α0 and α are short roots. If m(Φ)i+1 divides

mα0(λ), then by our assumption on µ, we get that λ ∈ m(Φ)i+1P ∗, contradicting our

initial choice of λ. Hence, we can write

mα0(λ)) = m(Φ)im′,

with m′ coprime to m(Φ).

We have a factorization (assuming µ is not of Weyl denominator type)

(5.13) C(µ, d(λ)) = C(µ, d∗(µ)ρ̃)C(d∗(µ)ρ̃, d(λ)),

where d∗(µ) defined as in Equation 2.14 is the largest integer such that dρ̃ divides µ.

The factor C(d∗(µ)ρ̃, d(λ)) divides C(m(Φ)d∗(µ)ρ, d(λ)). In this case, we take

e = m(Φ)d∗(µ), d = d(λ).

We assume that V is not coprime to C(eρ, d).

If µ is of Weyl denominator type then both the factors divide C(eρ, d), where e is

defined as above.

By Proposition 5.1,

(m(Φ)d∗(µ),mα0(λ)) > d.

Since µ ∈ m(Φ)i+1P ∗
α0

, it follows that d∗(µ) is divisible by m(Φ)i. We argue as above,

and write

d∗(µ) = d′(µ)m(Φ)i, d = m(Φ)id′,

where d′ is coprime to m(Φ). The above inequality can be written as,

(m(Φ)d′(µ),m′) > d′.

On the other hand, Equation 5.5 yields,

d′ = (d(µ)/m(Φ)i,m′).

Since d∗(µ) divides d(µ), it follows that the only way this is possible is if m(Φ) divides

m′. This contradicts our choice of λ.
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Hence Theorem 2.3 is proved modulo the proofs of Propositions 5.1 and 5.2.

6. An arithmetic lemma

In this section we give an arithmetical argument to establish Proposition 5.1 when

the root system is isomorphic to sl2. This turns out to be an arithmetic statement in

the context of polynomial ring in one variable over suitable rings. It is this arithmetic

statement that is at the heart of the proof of the main theorem in the general case.

The proof of the main theorem is to reduce by induction on the rank to the arithmetic

statement (and not to the irreducibility of characters say of GL(3)). In retrospect,

as irreducibility is connected with divisibility, it is to be expected that the proof of

an irreducibility result depends on some arithmetic.

We first recall the following elementary lemma from cyclotomic theory.

Lemma 6.1. Let e be a natural number and let ζe denote a primitive e-th root of

unity.

i) If e is composite, then (1 − ζe) is a unit in the ring Z[ζe].

ii) If e = pk for some prime number p, then (1 − ζe) divides p in the ring Z[ζe].

In particular if p|N , then (1 − ζe) is not a unit in the ring Z[ζe]; thus in any ring O

containing Z[ζe] in which p is not invertible.

Proof. Let

Φe(x) =
xm − 1

x − 1
= 1 + x + · · · + xm−1.

We have Φe(1) = e. Further if e and f are coprime natural numbers, then Φe and Φf

are coprime polynomials.

For coprime natural numbers f1, · · · , fk dividing e, define

Φe:f1,··· ,fk
(x) = Φe(x)/

k
∏

i=1

Φfi
(x) =

∏

ζe=1,ζfi 6=1

(x − ζ),

where i goes from 1 to k in the above product. The gcd of the coeffecients of Φe(x) is

1, and it is clear that
∏k

i=1 Φfi
(x) divides Φe(x) in the ring Q[x]. Hence by Gauss’s

lemma, Φe:f1,··· ,fk
(x) ∈ Z[x].

Let e = pr1
1 · · · prk

k be the factorization of e into primes, where pi 6= pj are mutually

distinct rational primes. Since Φe:p
r1
1 ,··· ,p

rk
k

(1) = 1, i) follows from the above product

decomposition for Φe:p
r1
1 ,··· ,p

rk
k

(x).
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Similarly, ii) follows from the fact that

Φpk:pk−1(1) = p.

�

Remark 6.1. The proof uses the fact that we are working over a characteristic zero

ring.

Let N be a natural number (to be chosen later depending on the dominant regular

λ), and let O be a ring of characteristic zero such that the prime numbers p ≤ N are

not units in O.

The basic arithmetic proposition is the following:

Proposition 6.1. Let e, f be natural numbers not bigger than N and divisible by a

natural number d. Suppose there are non-unit elements U, V ∈ O[x] and elements

X, Y in O[x] satisfying the following:

UV = Φe:d(6.1)

UX + V Y = Φf :d(6.2)

Then the greatest common divisor (e, f) of e and f is strictly greater than d.

Proof. For a natural number e let µe denote the group of e-th roots of unity; for a

rational prime p let µp∞ denote the group of roots of unity of order a power of p. By

enlarging O by adjoining roots of unity, we can assume that U and V factorizes into

linear factors in O[x]. Given a polynomial W ∈ O[x], let ZW denote the zeros of W

in O. Upto units in O[x], there is a factorization

U(x) =
∏

ζ∈ZU

(1 − ζ−1x), V (x) =
∏

ζ∈ZV

(1 − ζ−1x),

so that

(6.3) ZU ∪ ZV = µ(e, d) := {ζ | ζe = 1, ζd 6= 1}.

We first make the following claim:

Claim: there exists γ ∈ ZU (or ZV ) and δ ∈ ZV (resp. δ ∈ ZU) such that γ−1δ is

an element of prime power order for some rational prime p.

Proof of Claim. Choose an element γ ∈ ZU , such that γ can be expressed as a product

γ = γ1 · · · γk having the following properties:
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• γi ∈ µp∞i
for some rational primes pi.

• pi 6= pj for 1 ≤ i, j ≤ k.

• k is minimal amongst all γ ∈ ZU .

Since ZU is non-empty such a choice is possible by Chinese remainder theorem.

Suppose for some i, δ := γγ−1
i ∈ ZV . Since γi is pi-primary,

γ−1δ = γ−1
i

is pi-primary, and this proves the claim in this case.

Hence we can assume that for any i = 1, · · · , k, γγ−1
i ∈ ZU ∪ µd. But since k is

minimal, this implies that

γγ−1
i ∈ µd

for every i = 1, · · · , k. If k > 1, then this implies that γ ∈ µd, contradicting the fact

that ZU is coprime to Φd. Hence we see that there exists an element γp ∈ µp∞ ∩ ZU

for some rational prime p.

Similarly arguing with ZV , we obtain an element δq ∈ µq∞ ∩ ZV for some rational

prime q.

If q = p, then take γ = γp and δ = δq. This establishes the claim since the

polynomial Φe is separable, hence γ−1δ 6= 1.

Assume now that p 6= q. It follows that the element γpδq belongs to the set µ(e, d)

defined as in Equation 6.3. If it belongs to ZU (resp. ZV ), then the pair γ = γpδq

(resp. δ = γpδq) and δ = δq (resp. γ = γp) produces the elements as required by the

claim. This proves the claim.

Now we deduce the proposition from the claim. Upon substituting x = δ, we get

(6.4) U(δ)X(δ) + V (δ)Y (δ) = Φf,d(δ).

We have V (δ) = 0 and

U(δ) =
∏

ζ∈ZU

(1 − ζ−1δ).

By the claim, there exists a factor of the form (1− γ−1δ) of U , such that γ−1δ ∈ µp∞

for some rational prime p. By Part ii) of Lemma 6.1, this implies that U(δ) is is not

a unit in O. So the left hand side of Equation 6.4 is not a unit. Now,

Φf :d(δ) =
∏

ζ∈µ(f,d)

(1 − ζ−1δ).
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Suppose (e, f) = d. Then for any pair of divisors e′|e, f ′|f with d dividing e′ and f ′

and not equal to either e′ or f ′, the least common multiple of e′ and f ′ has at least

two distinct prime factors. Hence for any ζ ∈ µ(f, d) of order f ′ (take δ to be of order

e′), the factor (1 − ζ−1δ) is a unit. Hence Φf,d(δ) is a unit, contradicting Equation

6.4, and this proves the proposition. �

Remark 6.2. The proof of Proposition 6.1 given out here uses characteristic zero

methods. Consequently, the proof of the absolute irreducibility of characters (Theo-

rem 2.3) given in this paper does not carry over to positive characteristics, even for

those admissible weights for which the Weyl character formula is known to be valid.

Remark 6.3. Let λ = (a1 > a2 > 0) be a regular weight for GL(3), with gcd (a1, a2) =

d. Consider a factorization C(λ) = UV such that the leading coefficients Uu and Vv

respectively of U and V considered as a polynomial in the variable x1 with coefficients

polynomials in x2, x3 are not monomials. A little argument using divisibility as used

in the proof of Eisenstein criterion, yields a pair of equations of the form,

UuVv = (xa2
2 − xa2

3 )/(xd
2 − xd

3), UuX + VvY = (xa1
2 − xa1

3 )/(xd
2 − xd

3),

for some polynomials X and Y . Proposition 6.1 applies to give a contradiction. The

entire schema of this paper is built around this proof.

For the root system given by sl2, the fundamental weight is given by ρ. The ring

C[P ] can be identified with the ring of Laurent polynomials C[x, x−1] by substituting

x = eρ. For any pair of natural numbers e, d with d|e, the element C(eρ, d) can be

written as,

(6.5) C(eρ, d) =
xe − x−e

xd − x−d
= xe−d x2e − 1

x2d − 1
= xe−dΦ2e,2d.

Corollary 6.1. Proposition 5.1 is valid for the root system given by the Lie algebra

sl2, i.e., let e, c, f = e + c be natural numbers and let µ = eρ, η = fρ = (e + c)ρ

be dominant weights for the root system A1. Let d be a natural number dividing

e, c. Suppose there are non-unit elements U, V ∈ O[x, x−1] and elements X, Y in

O[x, x−1] such that the following pair of equations are satisfied:

UX + V Y = C(fρ, d),(6.6)

C(eρ, d) = UV.(6.7)

Then (e, c) = (e, f) > d.

Proof. From Proposition 6.1, and by Equation 6.5, we get (2e, 2f) = 2(e, f) > 2d.

Hence it follows that (e, f) > d. �
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Remark 6.4. We do not actually require that U and V are W -invariant in the above

corollary. The invariant hypothesis is required in the induction step of the proof of

Proposition 5.1 at the stage when we use Proposition 5.2.

7. Proof of Proposition 5.1

In this section we give a proof of Proposition 5.1 for a simple based root system

R = (E, Φ, ∆) of rank l < r, needed for the proof of the main theorem for a simple

root system of rank r. In the rank one case, Proposition 5.1 is proved as Corollary 6.1

in the last section using arithmetic methods. In contrast the proof in the higher rank

case proceeds by induction on the rank; we reduce to a lower rank situation using

Proposition 5.2.

A fundamental ingredient in the proof of Proposition 5.1 is the ‘universal divisibil-

ity’ of the Weyl denominator as in Proposition 2.1. This is applied in the following

manner:

Lemma 7.1. Let d be a natural number and let U be a factor of either S(dρ) or

S(dρ̃). Suppose α is a corner root. Consider the cofactor expansion of U along α,

U =
∑

i≥0

e(u−i)lαUα,u−i.

Then the leading coefficient Uα,u divides Uα,u−i for all i ≥ 0.

Proof. It is enough, by duality, to prove the lemma when U is a factor of S(dρ). The

leading coefficient of S(ρ) along α is given by S(ρα), which is the Weyl denominator

for the root system Rα. Scaling by d, implies that the leading coefficient S(ρα) of

S(dρ) along α divides all the coefficients in the cofactor expansion of S(dρ) along α.

Now we apply the proof of the Eisenstein criterion to establish the lemma for any

factor U of S(dρ). �

We now begin the proof of Proposition 5.1. The proposition is true for the rank

one root system by Corollary 6.1. By induction, assume that the proposition holds

for all simple root systems of rank less than l. By Proposition 5.2 (this is where we

use the fact that the factors are W -invariant; see also Remark 7.1 at the end of this

section) there is a corner root β of the Dynkin diagram of Φ such that the leading

coefficient Uβ,u (resp. Vβ,v) of U (resp. V ) in the cofactor expansion along β is not

monic.
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Suppose β 6= α. The root α considered as an element in the root system Rβ

continues to have the same property regarding length, either short or long, as α has.

We have,

ηβ = µβ + cωβ
α,

where ωβ
α denotes now the fundamental weight corresponding to α for the root system

Rβ. Comparing the leading terms in Equations 5.1 and 5.2, we get

C(µβ, d) = Uβ,uVβ,v

Uβ,uXβ,x + Vβ,vYβ,y = C(ηβ, d),

where Xβ,x and Yβ,y are the leading coefficients of X and Y respectively. Since the

leading coefficient of C(eρ, d) along β is given by C(eρβ, d) and Vβ,v divides it, we

obtain by the induction hypothesis that (e, c) > d if either Rβ is simply laced or α

is a short root, and (e,m(Φβ)c) > d if Rβ is not simply laced and α is a long root.

This establishes Proposition 5.1, since m(Φβ) = m(Φ) if they are non-trivial.

Now suppose β = α. In this case, we get

ηα = µα and C(µα, d) = C(ηα, d) = Uα,uVα,v.

and it looks as if it is impossible to set up the inductive process. The trick out here

is to observe that the universal divisibility of the Weyl denominator, together with

the fact that V is of Weyl denominator type allow us to perform the inductive step

by considering the expansion upto the second leading non-zero term of S(η).

Considering the leading terms, we get the following equations:

C(ηα, d) = Uα,uVα,v

C(ηα, d) = Uα,uXα,x + Vα,vYα,y.
(7.1)

The separability of C(ηα, d) implies that Uα,u and Vα,v are coprime. Hence the above

equations imply that Vα,v divides Xα,x.

We continue comparing the coefficients in the cofactor expansion along α of the

equation,

S(η) = (UX + V Y )S(dρ).

Let T = S(dρ). Denote by s (resp. u, v, x, y, t) the degrees of S(η) (resp.

U, V, X, Y, T ) with respect to the cofactor expansion along α. Here s = ω∗
α(η), and

we have

ω∗
α(η) − ω∗

α(sα(η)) = mα(λ).
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Upon equating the ls−a
α -degree term in the cofactor expansion of S(η) along α, we get

(7.2)
∑

i+j+k=a

Uu−iXx−jTt−k +
∑

l+m+n=a

Vv−lYy−mTt−n = S(η)s−a,

where we have suppressed the use of the subscript α. The coefficients S(η)s−a of

ls−a
α -degree term in the cofactor expansion of S(η) along α are given by,

(7.3) S(η)s−a =















S(ηα) if a = 0,

0 if 0 < a < mα(η),

S((sαη)α) if a = mα(η).

To start the induction, we have Vv divides Xx. By induction assume that Vv divides

Xx−j for j < a. Now suppose 0 < a < mα(η) The right hand side in Equation 7.2 is

zero, and Equation 7.2 gives,

0 = Xx−aUuS(dρα) +
∑

i+j+k=a, i>0

Uu−iXx−jTt−k +
∑

l+m+n=a

Vv−lYy−mTt−n.

Since V is of Weyl denominator type, by Lemma 7.1, the leading coefficient Vv divides

all the coefficients Vv−j for all j ≥ 0 in the cofactor expansion of V along α. Further

in the second sum on the right, the assumption that i > 0 implies that j < a. Hence

by induction and the fact that Vv is coprime to S(dρα) and Uu we get that Vv divides

Xx−a for a < mα(η).

Thus upon comparing the s − a = mα(η) term in Equation 7.2 we get

(UuXx−a + VvỸ )S(dρα) = S((sαη)α),

for some element Ỹ ∈ O[Pα]. Here we have used the fact that the leading coefficient

S(dρα) divides all the other coefficients Tt−j in the cofactor expansion of S(dρ). Now,

by Equation 4.12

(7.4) (sαη)α = ηα + cnω
α
αn

,

where αn is the unique element of ∆ that is connected to the corner root α (since

α = β is a corner root). The value of cn is given by,

cn = | < α∗
n, α > |mα(η)

=







m(Φ)(mα(µ) + c) if α is long and αn is short,

mα(µ) + c otherwise.

(7.5)

The projection ωα
αn

of the fundamental weight corresponding to αn in R is the fun-

damental weight corresponding to the corner root αα
n in the root system Rα.
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Hence we can apply the induction hypothesis. Note, by assumption e|mα(µ). If α

is long and αn is short, then the root system Rα is simply laced. By the inductive

hypothesis, we obtain,

(7.6) d < (e, cn) = (e,m(Φ)(mα(µ) + c)) = (e,m(Φ)c),

establishing Proposition 5.1 in this case.

If Rα is not simply laced and αn is a long root, the inductive hypothesis again

yields,

d < (e, cn) = (e,m(Φα)(mα(µ) + c)) = (e,m(Φ)c)

since m(Φα) = m(Φ).

Finally, if either Rα is simply laced or αα
n is a short root in Rα, then the inductive

hypothesis gives,

d < (e, cn) = (e, (mα(µ) + c)) = (e, c).

This proves Proposition 5.1.

Remark 7.1. One can avoid the use of Proposition 5.2 in this proof, by trying to

prove directly the required statement. Indeed in the simply laced case, the leading

coefficients of a non-constant invariant V dividing a generalized Weyl denominator

function S(dρ), can easily seen to be non-trivial along any corner root. It is here that

we require the factor V to be invariant. For the other term U , if it contains a factor

not of Weyl denominator type, it is not too difficult to see that there has to be at

least one corner root along which the leading coefficient is non-unit. It seems possible

to extend this argument to cover the non-simply laced cases too, and avoid using the

more general Proposition 5.2.

8. Non-existence of invariant monic factorizations

Our aim in this section is to prove Proposition 5.2. For the proof, we require a

coprimality result given by Proposition 9.1, which we will prove in Section 9 as a

corollary of Theorem 2.4 establishing an uniqueness property of C(λ). The proof of

Proposition 5.2 is essentially based on the use of Eisenstein criterion (see Lemma 4.5),

together with Proposition 9.1 to obtain lower bounds for the degrees along the corner

roots of the factors U and V . These bounds suffice except for a class of weights for

F4 and G2 (Assumption NMFG).

8.1. Non-existence of symmetric monic factorizations for GL(r). We first give

the proof for GL(r). We restate Proposition 5.2 in the context of GL(r):
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Proposition 8.1. Let λ = (a1, · · · , ar−1, 0) be a normalized highest weight for GL(r).

Suppose there is a factorization

C(λ, d(λ)) = UV, U, V ∈ C[x1, · · · , xr]
W .

Write

U(x1, · · · , xr) = xu
1Uu + xu−1

1 Uu−1 + · · · + (x2 · · ·xr)
u0U0,

V (x1, · · · , xr) = xv
1Vv + xv−1

1 Vv−1 + · · · + (x2 · · ·xr)
v0V0,

where Uu, · · · , U0 and Vv, · · · , V0 are polynomials in the variables x2, · · · , xr. Then

either Uu and Vv or U0 and V0 are both non-constant polynomials.

Proof. We use the notation as given in Section 4 for the cofactor expansion of GL(r).

Let d = d(λ). We have

UV S(dρ) = S(λ).

Suppose C(λ(1), d) and C(λ(r−1), d) are both constant polynomials. Then λ = dρ and

there is nothing to prove. We assume that C(λ(1), d) is non-constant (and a similar

argument can be given if we assume that C(λ(r−1), d) is non-constant).

i) Assume Vv is constant. Since Sλ(1) is separable, by Eisenstein criterion, Uu divides

Uu, · · · , Uu−(a1−a2)+1. Now if u−(a1−a2)+1 ≤ 0, this implies Uu divides U , and hence

Uu divides Sλ(2) . But by Proposition 9.1, Uu = C(λ(1), d) is coprime to C(λ(2), d), and

this leads to a contradiction. Hence,

(8.1) u ≥ a1 − a2.

Since u + v + d(r − 1) = a1, we get

(8.2) v ≤ a2 − d(r − 1).

Since Vv is constant by W -invariance

(8.3) V0 = (xv
2 + · · · + xv

r) + lower degree terms.

Hence V0 is non-constant. If U0 is also non-constant, then we are done. Hence we can

assume that U0 is constant. Then,

(8.4) v = degx2
(V0) = degx2

(C(λ0, d)) = (a1 − ar−1) − d(r − 2).

Hence we get

(8.5) a1 − a2 ≤ ar−1 − d.
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Similarly arguing with the constant term, we get V0 divides V0, · · · , Var−1−1. By

the coprimality of C(λ(r−1), d) and C(λ(r−2), d), we get

(8.6) v ≥ ar−1.

Hence

(8.7) u ≤ (a1 − d(r − 1)) − ar−1 = a1 − ar−1 − d(r − 1).

But

(8.8) degx2
(Uu) = degx2

(C(λ(1), d)) = a2 − d(r − 2).

By W -equivariance,

(8.9) u ≥ a2 − d(r − 2).

Hence we get,

a2 − d(r − 2) ≤ a1 − ar−1 − d(r − 1)

(8.10) ar−1 ≤ (a1 − a2) − d.

Combining the above inequalities, we get

ar−1 ≤ (a1 − a2) − d ≤ ar−1 − 2d,

clearly a contradiction. This proves the proposition. �

8.2. Proof for D, E. The proof of the proposition is easiest for the root systems of

type D, E since there are more than two corner roots. We first observe a simple fact

about polynomial rings R[x] in one variable over an integral domain R: the degree

of a polynomial is the sum of the degrees of it’s factors. Applying this to the ring

C[P ]W , since λ has maximal degree in the cofactor expansion along any root α ∈ ∆,

amongst all the weights occurring in S(λ), we have:

Lemma 8.1. Suppose S(λ) = UV S(d(λ)ρ) where U and V are W -invariant. Assume

that there are weights µ ∈ P (U), ν ∈ P (V ) such that

λ − d(λ)ρ = µ + ν.

Then µ (resp. ν) has maximal degree in P (U) (resp. P (V )) with respect to any corner

root in ∆.

In particular, if U is monic along α, then µ is the unique weight in P (U) having

maximal degree along α and µ = uωα for some integer u.

Corollary 8.1. Suppose U is an invariant factor of S(λ) which is monic along a

corner root α. Then U cannot be monic along a different corner root β.
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Indeed, the unique ‘highest weight’ µ ∈ P (U) cannot simultaneously be a multiple

of ωα and ωβ. This corollary expresses the fact used in the proof of Proposition 8.1,

that if a symmetric homogeneous polynomial in at least two variables is monic con-

sidered as a polynomial in one variable, then its constant term cannot be a monomial.

Corollary 8.2. Proposition 5.2 is true for the simple root systems of type D and E.

Proof. Since there are three corner roots for the root systems of type D, E, this

implies that there is at least one corner root at which both U and V are not monic. �

8.3. Non-simply laced root systems. From now onwards we consider a non-

simply laced based root systems R = (E, Φ, ∆). By Corollary 8.1, we have

Corollary 8.3. Suppose S(λ) = UV S(d(λ)ρ) where U and V are W -invariant. As-

sume further that U is monic along one of the corner roots α and V is monic along

the other corner root β in the Dynkin diagram associated to R. Then,

(8.11) λ = uωα + vωβ + d(λ)ρ,

with d(λ) = (u + d(λ), v + d(λ)).

Proof. If U is symmetric and monic along a corner root α, by Corollary 8.1, U can-

not be monic along the other corner root, say β. If V is also monic along α, then

Proposition 5.2 is true. Hence we can assume that V is monic along β. Assume that

U (resp. V ) has an unique maximal weight uωα (resp. vωβ). This implies that the

weight λ can be written as λ = uωα + vωβ + d(λ)ρ. �

We recall the following fact [H, Exercise 5, Section 13, page 72], and it’s conse-

quences of relevance to us:

Lemma 8.2. Let R = (E, Φ, ∆) be a simple based root system.

(1) Suppose R is of type A1, Br, Cr, F4, G2. Then −1 is an element of the Weyl

group of R.

(2) Suppose R is of type B2, C2, F4, G2 and α be any corner root in the Dynkin

diagram associated to R. Then −1 is an element of the Weyl group of Rα.

(3) If r ≥ 3, then there is a corner root in the Dynkin diagram associated to

R = Br (resp. Cr) such that Rα is again of type B (resp. C). In particular

−1 is an element of the Weyl group of Rα.
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For α, β ∈ ∆, let

(8.12) wαβ =< ω∗
α, ωβ > .

This quantity is independent of the W -invariant inner product on E. The consequence

of the first part of the foregoing lemma is that the weights occurring in S(λ) are

invariant with respect to the map p 7→ −p, p ∈ E. An application of the proof of

Eisenstein’s criterion yields the trivial estimate:

Lemma 8.3. With notation as in Corollary 8.3, the following holds:

(8.13) 2uwβα + 1 ≥ < β∗, λ > .

Proof. We have the cofactor expansion of U along β:

(8.14) U =

2uwβα
∑

j=0

e(uwβα−j)lβUβ,uwβα−j.

Here we have used the symmetry of U , the fact that −1 belongs to the Weyl group,

to obtain that the degree along β of the weights in U varies from uwβα to −uwβα,

since the weight with maximum degree along β is given by uωβ. From the proof of

the Eisenstein criterion, we get that Uβ,uwβα
divides the terms

Uβ,uwβα
, · · · , Uβ,uwβα−<β∗,λ>+1.

Consequently, if 2uwβα + 1 is less than < β∗, λ >, then Uβ,uwβα
divides all the coef-

ficients of U along β, and hence all the coefficients of S(λ) along β. Since Uβ,uwβα
is

not a unit, this contradicts the corpimality of S(λβ) and S((sβλ)β). Hence the lemma

follows. �

We can prove a sharper estimate, assuming that −1 belongs to the Weyl group of

Rα:

Lemma 8.4. With notation as above, assume that the corner root α is such that the

automorphism x 7→ −x is an element of the Weyl group of the root system Rα. Then

vwαβ ≥ < α∗, λ > .

Proof. The hypothesis that −1 belongs to the Weyl group of Rα, implies that the

leading coefficient S(λα) of S(λ) along α is mapped to itself by the inverse map

p 7→ −p of Rα. We have the cofactor expansion of V along α:

(8.15) V =

2vwαβ
∑

j=0

evwαβ−jlαVα,vwαβ−j.
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Since V is invariant by W (R) and −1 ∈ W (R), the term ejlαVα,j goes to the term

e−jlαVα,−j by the map p 7→ −p on P . Since U is monic along α, the top degree term

Vα,vwαβ
is equal to S(λα)/S(d(λ)ρα). By our hypothesis that −1 belongs to the Weyl

group of Rα, we find that Vα,vwαβ
= Vα,−vwαβ

. From the proof of Eisenstein’s criterion,

we have that Vα,vwαβ
divides

Vα,vwαβ
, · · · , Vα,vwαβ−<α∗,λ>+1.

Similarly, since S(λ) is symmetric (−1 ∈ W ), we find that Vα,vwαβ
divides the coeffi-

cients

Vα,−vwαβ
, · · · , Vα,−vwαβ+<α∗,λ>−1.

If vwαβ is less that < α∗, λ >, this implies that Vα,vwαβ
divides all the coefficients of

V and hence of S(λ) in the cofactor expansion of S(λ) along α. But this contradicts

the corpimality of S(λα)S(d(λ)ρα and S((sαλ)α)/S(d(λ)ρα). This establishes the

lemma. �

We compute the numbers wαβ explicitly:

Lemma 8.5. Let R = (E, Φ, ∆) be a non-simply laced simple based root system. Let

α, β be corner roots in the Dynkin diagram associated to E. Then the following holds:

(1) wαβ > 0.

(2) Let R be of type B or C. Then

(8.16) wαβwβα =
1

2
.

(3) Let R = F4. or G2. Let α (resp. β) be a short (resp. long) corner root of the

Dynkin diagram associated to R. Then,

wαβ = m(Φ) =







2 if R = F4,

3 if R = G2.
(8.17)

wβα = 1.(8.18)

Proof. The proof is explicit and case by case. We use the classification of the root

systems as given in [H, Section 12.1]. For the root systems of type Cr, take as a base

α = ǫ1 − ǫ2, · · · , ǫr−1 − ǫr, 2ǫr = β.

The fundamental weights and coweights corresponding to the corner roots are given

by,

ω∗
α = ǫ1, and ω∗

β = (
r
∑

i=1

ǫi)/2.
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Further ωα = ω∗
α and ωβ = 2ω∗

β. Thus,

wαβwβα =< ω∗
α, ωβ >< ω∗

β, ωα >

=
1

2
.

For F4, we take as a base,

β = ǫ2 − ǫ3, ǫ3 − ǫ4, ǫ4, (ǫ1 − ǫ2 − ǫ3 − ǫ4)/2 = α.

Then the fundamental coweights are given by,

ω∗
α = 2ǫ1, and ω∗

β = ǫ1 + ǫ2.

The fundamental weights are given by ωα = ω∗
α/2 and ωβ = ω∗

β. Hence,

wαβ =< ω∗
α, ωβ >= 2,

wβα =< ω∗
β, ωα >= 1.

For G2, a base is given by,

α = ǫ1 − ǫ2, β = −2ǫ1 + ǫ2 + ǫ3.

The fundamental coweights are given by,

ω∗
α = −ǫ2 + ǫ3, and ω∗

β =
1

3
(−ǫ1 − ǫ2 + 2ǫ3).

The fundamental weights are given by ωα = ω∗
α and ωβ = 3ω∗

β. Hence,

wαβ =< ω∗
α, ωβ >= 3,

wβα =< ω∗
β, ωα >= 1.

This proves the lemma. �

8.3.1. Proof of Proposition 5.2 for B and C. We now prove Proposition 5.2 for the

simple root systems R of type Br and Cr. We stick to the above notation. We choose

α as in Part (3) of Lemma 8.2, and let β be the other corner root of the Dynkin

diagram attached to R. Write λ = uωα + vωβ + d(λ)ρ as given by Corollary 8.3. By

Lemmas 8.3 and 8.4 we obtain the inequalities,

2uwβα + 1 ≥ < β∗, λ > = v + d(λ)(8.19)

vwαβ ≥ < α∗, λ > = u + d(λ).(8.20)

Consequently,

2uwβαwαβ ≥ (v + d(λ) − 1)wαβ

≥ u + d(λ) + wαβ(d(λ) − 1).
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By Part (2) of Lemma 8.5, we have 2wβαwαβ = 1. Hence,

0 ≥ d(λ) + wαβ(d(λ) − 1).

But this contradicts the positivity of d(λ) and wαβ. Hence this proves Proposition

5.2 for the simple root systems of type B or C.

8.3.2. Proof for F4 and G2. For these simple root systems R, by Lemma 8.2, the

element −1 belongs to the Weyl group of R as well as to that of Rα for any corner

root α. Let α denote the short corner root and β the long corner root. Write

λ = uωα + vωβ + dρ, and we assume the factorization S(λ) = UV S(d(λ)ρ) is such

that U is monic along α and V is monic along β. Applying the sharper estimates

given by Lemma 8.4, and from Part (3) of Lemma 8.5, we get

m(Φ)v = vwαβ ≥ < α∗, λ > = u + d,(8.21)

u = uwβα ≥ < β∗, λ > = v + d.(8.22)

If λ as above does not satisfy the above equations, then any invariant factorization is

non-monic. This proves Proposition 5.2.

Remark 8.1. Unfortunately, this proof develops a gap out here. If we try to look for

cofactor expansions (say for G2) along any other linear form, we require that the top

degree term for S(λ) is not monic. This would require that the linear form is invariant

under a subgroup of the Weyl group as above, and thus upto a Weyl translate is either

ω∗
α or ω∗

β. Hence we cannot do better.

9. Proof of the uniqueness property

In this section, we give a proof of Theorem 2.4 and deduce some consequences. We

begin with a couple of preliminary lemmas.

Lemma 9.1. Suppose λ, µ are weights associated to a simple based root system

R = (E, Φ, ∆), such that for two distinct corner roots α, β in the Dynkin diagram of

R,

λα = µα, and λβ = µβ.

Then λ = µ.

Proof. The hypothesis for a particular corner root α implies an equality of the mul-

tiplicities mγ(λ) = mγ(µ) for all γ ∈ ∆ not equal to α. Since this happens at two

corner roots, the lemma follows. �
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We now give the proof of Theorem 2.4. We first reformulate the hypothesis. By

clearing the denominators, the hypothesis can be reformulated as an equality of prod-

ucts of Schur-Weyl elements,

(9.1) S(λ1)S(µ2) = S(λ2)S(µ1).

We want to show that λ1 = λ2 or µ1. Assuming that λ1 6= µ1 (or equivalently,

λ2 6= µ2), this will show that λ1 = λ2 and µ1 = µ2. The proof is by induction on the

rank of the root system. Assume first that Φ is of rank one isomorphic to the root

system associated to sl(2). The hypothesis indicates,

(xa − x−a)(xe − x−e) = (xb − x−b)(xf − x−f ),

for some positive integers a, b, e, f , and a 6= f . The proposition follows immediately

by comparing the roots on both sides.

Now assume that R is of rank r, and the theorem has been proved for all simple

root systems of rank less than r. By Lemma 9.1 and the inductive hypothesis, we

can conclude the following:

(i) Since there are three corner roots for the simple root systems of type D and E,

the theorem follows for them.

(ii) We can assume that there is a corner root, say α at which

(9.2) λα
1 = λα

2 and µα
1 = µα

2 ,

and another corner root β where

(9.3) λβ
1 = µβ

1 and λβ
2 = µβ

2 .

Suppose mα(λ1) < mα(λ2). We have,

(9.4) mα(λ1) = mα(µ1) < mα(λ2) = mα(µ2).

Comparing the coefficients of the second leading term on both sides in the cofactor

expansion along α, we get

S((sαλ1)
α)S(µα

2 ) = S(λα
2 )S((sαµ1)

α).

By induction, if λα
2 = µα

2 , coupled with Equation 9.3, this implies λ2 = µ2 contradict-

ing our hypothesis that they are not equal. The other equality gives,

(sαλ1)
α = λα

2 = λα
1 .

But since λ1 is regular,

λα
1 = (sαλ1)

α = λα
1 + cωα

αn
,
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for some positive integer c, where αn is the unique root in the Dynkin diagram

connected to α. This yields a contradiction and proves Theorem 2.4.

9.1. A coprimality property.

Lemma 9.2. Let X be a finitely generated free abelian group and a1, a2 ∈ X. Then

ea1 −1 and ea2 −1 are coprime elements in the group algebra C[X], unless there exists

integers k, l different from zero such that ka1 = la2.

Proof. Consider the subspace generated by a1, a2 in the rational vector space XQ =

X ⊗Q. Suppose they generate a two dimensional vector subspace. Expand a1, a2 to

a basis {a1, a2, · · · , an} of XQ. Writing xi = eai , i = 1, · · · , n, we can identify C[XQ]

with the ring of fractional Laurent series in the variables x1, · · · , xn. We claim that

the elements x1−1 and x2−1 are coprime in C[XQ]. This follows from considering the

degrees of elements along each variable xi, where the degree of an element U ∈ C[XQ]

along xi is defined as the difference between the maximum and minimum degrees in

xi of the various monomials occurring in U . It is clear that the degree of UV is the

sum of the degrees of U and V . From this it follows that any element dividing both

x1 − 1 and x2 − 1 has to be a monomial. �

Corollary 9.1. Let R = (E, Φ, ∆) be a simple based root system, and α 6= ±β be

two roots in Φ. Then for any non-zero integers k, l, the elements ekα − 1 and elβ − 1

are coprime in the group algebra C[P ].

In particular, the element S(dρ) is a separable element in the ring C[P ] (see Part

(c) of Proposition 2.1).

Proof. This follows from the previous lemma and the fact that if α and β are rational

multiples of each other in P ⊗ Q precisely when α = ±β. �

In the following corollary, if the root system is simply laced, the notation ρ̃ will

denote ρ.

Corollary 9.2. Suppose e, f are natural numbers with (e, f) = d. Assume further

that the multiplicity with which m(Φ) divides e is not greater than the multiplicity with

which it divides f . Then the elements S(eρ)/S(dρ) and S(fρ̃)/S(dρ) are coprime in

the ring C[P ].

Proof. By hypothesis, since (e, f) = d, it follows that (e,m(Φ)f) = d. By the previous

corollary, we need to bother only with the individual factors associated to a root α.
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It is clear that the elements (e2eα − 1)/(e2dα − 1) and (e2fm(Φ)α − 1)/(e2dα − 1) are

coprime in C[P ]. �

The above corollary combined with the uniqueness Theorem 2.4 gives us the fol-

lowing:

Corollary 9.3. Let R = (E, Φ, ∆) be a simple based root system, and assume that

Theorem 2.3 holds for R. Suppose λ 6= µ are dominant regular weights belonging to

m(Φ)iP such that at most one of them is in the space m(Φ)i+1P ∗. Let d be the greatest

common divisor of d(λ) and d(µ). Then S(λ)/S(dρ) and S(µ)/S(dρ) are coprime.

Proof. By Theorem 2.3, the factors C(λ) and C(µ) if non-trivial are irreducible. If

they coincide, then by the uniqueness Theorem 2.4, λ = µ. Hence we are left with

showing the Weyl denominator type of S(λ)/S(dρ) and S(µ)/S(dρ) are coprime.

Suppose λ ∈ m(Φ)iP\m(Φ)i+1P ∗. Then d(λ) = m(Φ)id′(λ) with d′(λ) coprime to

m(Φ). The corollary follows from Corollary 9.2. �

Finally, we deduce a coprimality result needed in the proof of Proposition 5.2:

Proposition 9.1. Let R = (E, Φ, ∆) be a simple based root system of rank l and

assume that Theorem 2.3 holds for any simple root system of rank less than l. Suppose

η ∈ m(Φ)iP\m(Φ)i+1P ∗. Let α be a corner root in the Dynkin diagram associated to

R. Then the elements S(ηα)/S(d(η)ρα) and S((sαη)α)/S(d(η)ρα) are coprime in the

ring C[Pα].

Proof. The multiplicity at a simple root γ ∈ ∆α of a weight µα differs from that of

µ only at the root αn connected to α in the Dynkin diagram. Suppose ηα or (sαη)α

belongs to m(Φ)i+1P ∗
α, where we have assumed Rα is not simply laced. From the

hypothesis this can happen only when both αn and α are short roots. Hence,

(sαη)α = ηα + mα(λ).

The hypothesis on η implies that at most one of ηα or (sαη)α belongs to m(Φ)i+1P ∗
α.

The proposition now follows from Corollary 9.3. �

9.2. Unique decomposition of tensor products. We now indicate a proof of

Theorem 1.1 stated in the introductory section, and our original motivation for es-

tablishing an irreducibility result. Unfortunately as the proof of Theorem 2.3 that we

have presented out here has a gap, we need to assume Assumption NMFG.
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Suppose we have an isomorphism of tensor products

V1 ⊗ · · · ⊗ Vn ≃ W1 ⊗ · · · ⊗ Wm,

as in the hypothesis of Theorem 1.1. Let (λi) (resp. µj) denote the highest weight of

the irreducible representation Vi (resp. Wj). The above hypothesis translates to an

equality of products of characters:

n
∏

i=1

S(λi + ρ)/S(ρ) =
m
∏

j=1

S(µj + ρ)/S(ρ).

By the uniqueness Theorem 2.4 and the irreducibility Theorem 2.3, if one of the

factors, say λ1+ρ is not a multiple of ρ, then there exists a j such that λ1+ρ = µj +ρ.

Cancelling these factors, we are left with an equality involving fewer characters and

we are done.

Hence, we are reduced to the case that each of these weights λi + ρ and µj + ρ

(i = 1, · · · , n, j = 1, · · · ,m) is a multiple of either ρ or ρ̃. By the coprimality result

Corollary 9.1, we have the following equalities for any root α:

n
∏

i=1

edi/2α − e−di/2α

eα/2 − e−α/2
=

m
∏

j=1

eej/2α − e−ej/2α

eα/2 − e−α/2
,

for some natural numbers di, ej (depending also on the relative length of the root).

An easy argument using roots of these expressions, establishes Theorem 1.1.

10. Reduction to the invariant case for GL(r)

In this section our aim is to extend the irreducibility result for C(λ) in the ring

C[P ]W given by Theorem 2.3 to the larger ring C[P ], when we are working with

GL(r),.i.e., to show the irreducibility of C(λ) in the polynomial ring C[x1, · · · , xr],

as claimed in Theorem 1.2.

Suppose λ is a dominant integral weight for GL(r) which is not a multiple of ρ. By

Lemma 9.1, there is at least one corner root, say α, such that the leading coefficient of

C(λ) along α is not a unit (for GL(r), this is clear: if C(λ) is monic as a polynomial in

x1, then being symmetric the constant term is of the form x
a1−rd(λ)
2 + · · ·+ x

a1−rd(λ)
r ).

Suppose λα is not a multiple of ρα. Then there exists a smallest factor U of

C(λ) in the ring C[x1, · · · , xr], such that its leading coefficient along α is divisible

by the irreducible component C(λ)α of the leading coefficient of C(λ) along α. By

construction, U is irreducible, and since the polynomials S(µ) are separable for any

regular weight µ, U will also be Wα-invariant.
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If V = C(λ)/U is monic, then by Lemma 10.1 proved below, both U and V will be

symmetric, and the irreducibility result follows by Theorem 2.3.

On the other hand, if the leading coefficient of V along α is not a unit, then just

as in reduction part of the proof of Theorem 2.3 to that of Proposition 5.1, we have

reduced the irreducibility statement to Proposition 5.1 for lower rank.

Hence, we have reduced to the case that λα is a multiple of ρα for any corner root α.

If r ≥ 4, the rank is at least 3, and this implies that λ is a multiple of ρ contradicting

our hypthesis on λ.

Thus we are in the GL(3) situation: if the factor U is irreducible and the quotient V

as above is monic, then we are through by Lemma 10.1 as argued above. Otherwise,

the leading coefficients of both U and V along α are not units. But in this case,

we observe that Proposition 6.1 or Corollary 6.1 is valid without any assumptions of

symmetry, and hence the irreduciblity follows as in the reduction of the proof of the

main Theorem 2.3 to Proposition 5.1.

This proves Theorem 1.2, modulo the following lemma:

Lemma 10.1. With the above notation, let C(λ) = UV be a factorization of C(λ) in

the ring C[x1, · · · , xr]. Assume further the following: U is irreducible, and V is either

monic or the constant coeffecient V0 of V is a monomial (considered as a polynomial

in x1). Then U and V are symmetric polynomials.

Proof. We first observe that if both the leading and constant coeffecients of C(λ, d(λ))

are trivial. then λ(1) = λ(r−1) = dρ. This implies λ = dρ and so C(λ, d(λ)) = 1. Hence

assume that the leading coeffecient of C(λ, d(λ)) is not monic, and that V is monic.

From the proof of Proposition 8.1, we get

u ≥ a1 − a2.

Since the leading coeffecients of U and C(λ, d(λ)) match, and U is irreducible, we see

that U is fixed by the subgroup Sr(1) of the symmetric group Sr of permutations of

the set 1, · · · , r fixing the element 1. Let σ be the transposition in Sr interchaning 1

and 2. If σ fixes U , then since the group generated by σ and Sr(1) is Sr, we conclude

that U is symmetric. If U is not symmetric, then since U is irreducible, Uσ must

divide V . Now the degree in x2 variable of U is at least a2 − d. Hence,

v ≥ degx1
Uσ ≥ degx2

U ≥ a2 − d.
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This yields,

degx1
(S(λ)) = a1 = u + v + 2d ≥ a1 − a2 + a2 − d + 2d > a1,

a contradiction. �
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