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1 Introduction.

It is well-known that knot tables turned to be very useful in knot theory as
sources of different examples and conjectures. The tables provide also a conve-
nient way to identify knots and make references. They are usually composed
in order of increasing crossing numbers, see [Ro76]. In this paper we present
similar tables of closed irreducible orientable 3-manifolds. The crucial question
here is the choice of filtration in the set M of all compact manifolds. It would
be desirable to have a finite number of 3-manifolds in each term of the filtra-
tion, each term containing manifolds that are in some sense simpler than those
in the following terms. A useful tool here would be a measure of “complexity”
of a 3-manifold. Given such a measure, we might hope to enumerate all “sim-
ple” manifolds before moving on to more complicated ones. There are several
well-known candidates for such a complexity function. For example, take the
Heegaard genus g(M), defined to be the minimal genus over all Heegaard decom-
positions of M . Other examples include the number of simplices in a minimal
triangulation of M and the crossing number in a minimal surgery presentation
of M .

Each of these measures has shortcomings. The Heegaard genus is additive
with respect to connected sums of 3-manifolds but for g ≥ 1 there are infinitely
many distinct manifolds of Heegaard genus g, and already for g = 2 one can
hardly expect a simple classification. The same defect has the surgery complex-
ity (because of framings). The number of simplices in a minimal triangulation
is not a “natural” measure of complexity because the simplest possible closed
manifold, S3, already would have non-zero complexity, and we would have no
chances to get the additivity.

In Section 2 we construct an integral non-negative function c:M → Z, called
complexity function, which has the following properties:

1. c is additive, that is, c(M1#M2) = c(M1) + c(M2).
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2. For any k ∈ Z, there are only finitely many irreducible manifolds M ∈ M
with complexity c(M) = k.

3. c(M) is relatively easy to estimate.

Section 3 is devoted to description of simplification moves on spines.
Section 4 contains a brief description of a computer program that enumerates

3-manifolds, descriptions of tables, and examples. The tables are presented in
the Appendix. The table of spines was prepared with a help of M. Ovchinnikov.

The author wishes to thank the Russian Fund of Basic Research for financial
support, and the Max-Planck-Institute in Bonn, where the paper was written.

2 What is the Complexity of a 3-Manifold?

Denote by ∆(1) the complete graph with 4 vertices. Clearly, it is homeomorphic
to the 1-dimensional skeleton of the standard 3-simplex.

Definition 2.1 A compact 2-dimensional polyhedron P is called almost simple
if the link of each of its points can be embedded in ∆(1). The points whose links
are homeomorphic to ∆(1) are said to be vertices of P .

Definition 2.2 The complexity c(M) of a compact 3-manifold M equals k if
M possesses an almost simple spine with k genuine vertices and has no almost
simple spines with a smaller number of vertices.

It turns out that the notion of complexity introduced above is naturally
related to practically all the known methods of presenting manifolds and ade-
quately describes complexity of manifolds in the informal sense of the expression.
The following properties of the complexity are proved in [Ma].

Finiteness property. For any integer k there exists only a finite number
of distinct closed irreducible orientable 3-manifolds of complexity k.

Additivity property. The complexity of the connected sum of compact
3-manifolds is equal to the sum of their complexities.

Definition 2.3 A compact polyhedron P is called simple if the link of each of
its points is homeomorphic to one of the following 1-dimensional polyhedra:

(a) a circle;
(b) a circle with a diameter;
(c) a circle with three radii.

Typical neighborhoods of points of a simple polyhedron are shown in Fig. 1.
Probably it would be illuminating to present the vertex singularity in different
forms, see Fig. 2. The second model is the cone over the 1-dimensional skeleton
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Figure 1: Allowable neighborhoods in a simple polyhedron

Figure 2: Equivalent ways of looking at vertices

∆(1) of a regular ⁀on. The third model is placed into the regular tetrahedron
to emphasize that the singularity is totally symmetric. It can be viewed as
the union ∪ | lk(vi,∆

′) | of links of vertices of the tetrahedron ∆ in the first
barycentric subdivision ∆′.

Definition 2.4 The set of singular points of a simple polyhedron (that is, the
union of vertices and triple lines) is called its singular graph and is denoted by
SP .

In general, SP is not a graph in the usual sense since it can contain closed
triple lines without vertices. If there are no closed triple lines then SP is a
regular graph of degree 4, i.e. every vertex of SP is incident to exactly four
edges.

Let us describe the structure of simple polyhedra in detail. Each simple poly-
hedron is naturally stratified. In this stratification each stratum of dimension
2 (a 2-component) is a connected component of the set of non-singular points.
Strata of dimension 1 consist of open or closed triple lines, and dimension 0
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Figure 3: Bing’s House and Abalone

strata are vertices. Sometimes it is convenient to imagine vertices as transverse
intersection points of triple lines.

It is natural to want each of the strata to consist of cells — that is, we would
like P to be cellular. We will make this a demand of our future considerations,
as can be seen in the following definition:

Definition 2.5 A simple polyhedron P is called special if
(1) each 1-stratum of P is an open 1-cell;
(2) each 2-component of P is an open 2-cell.

Remark 2.1 If P is connected and contains at least one vertex, then the con-
dition (1) in the above definition follows from condition (2).

Definition 2.6 A spine of a 3-manifold is called simple or special if it is a
simple or special polyhedron, respectively.

Two examples of special spines of the 3-ball are shown in Fig. 3: Bing’s House
with Two Rooms and the Abalone (a marine mollusk with an oval, somewhat
spiral shell). It is known ([Ca65, Ma73] that any homeomorphism between
special spines can be extended to a homeomorphism between the corresponding
manifolds. It means that a special spine P of a 3-manifold M may serve as a
presentation of M . Moreover, M can be reconstructed from a regular neigh-
borhood N(SP ) of the singular graph SP of P : starting from N(SP ), one
can easily reconstruct P by attaching 2-cells to all the circles in ∂N(SP ), and
then reconstruct M . If M is orientable, then N(SP ) can be embedded into R3.
This gives us a very convenient way for presenting 3-manifolds: we simply draw
pictures, see Fig. 4.

Theorem 2.1 ([Ma90]) Suppose M is a compact orientable irreducible 3-mani-
fold with incompressible boundary (possibly empty) and without essential annuli.
Then any minimal almost simple spine of M is special, except for the manifolds
S3, RP 3, L3,1 having complexity 0.
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Figure 4: Bing’s House with Two Rooms and the Abalone presented as regular
neighborhoods of their special spines

It should be noted that the number of vertices of a special spine as a measure
of complexity of 3-manifolds was implicitly used by numerous authors. H. Ikeda
proved that any simply-connected manifold having a simple spine with ≤ 4
vertices is homeomorphic to S3 [Ik84]. Together with I. Yoshinobu [IkYo85] he
listed all closed 3-manifolds which in our terminology possess complexity ≤ 2.
A complete list of all closed orientable irreducible 3-manifolds of complexity
≤ 5 was obtained by means of a computer as early as 1973 by S. Matveev and
V. Savvateev [MaSa74]. D. Gillman and P. Laszlo, who were interested only
on homology spheres [GiLa83], proved by a computer that among manifolds of
complexity ≤ 5 only S3/P120 and S3 have trivial homology, which actually
easy follows by looking through the Matveev and Savvateev list. A list of
closed orientable irreducible 3-manifolds of complexity 7 was obtained by M.
Ovchinnikov [Ov97]. It consists of about 150 manifolds and is too large to be
presented here.

3 Simplification Moves on Spines

We describe here two main types of moves. The moves have the following
advantage: it is extremely easy to determine whether or not one can apply
them to a given special spine. For a description of other moves see [Ma98].

Definition 3.1 Let P be a special polyhedron and c a 2-component of P . Then
we say that the boundary curve of c has a counterpass if it passes along one of
the edges of P twice in opposite directions. We say that the boundary curve is
short if it passes through no more than 3 vertices of P and through each of them
no more than once.

For instance, Bing’s House contains two 2-components with boundary curves
of length 1 while the boundary curve of the third 2-component has a few coun-
terpasses (see Fig. 3 and Fig. 4).

Proposition 3.1 Suppose P is a special spine of a 3-manifold M and suppose
at least one of the following conditions hold:

(1) P has a 2-component with a short boundary curve;
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(2) M is closed and the boundary curve of one of the 2-components of P has
a counterpass.

Then M possesses an almost simple spine with a smaller number of vertices.

Proof. Assume that P has a 2-component c with a short boundary curve.
Then a regular neighborhood of Cl(c) in P may be presented as a lateral surface
of a cylinder with k ≤ 3 wings and the 2-component c as a middle disc. Attach
to P a 2-cell parallel to c and make a hole in a lateral face of the cylinder thus
obtained, see Fig. 5. Collapsing the resulting polyhedron, we get a new almost
simple spine of M . It has a smaller number of vertices, since the attaching of
the 2-cell creates k new vertices, and the piercing through the lateral face and
collapsing destroys at least four of them if k > 1, and at least two if k = 1.

Figure 5: Attaching a new 2-cell and making a hole decreases the number of
vertices

Assume now that M is closed and the boundary curve of a 2-component c
of P has a counterpass on an edge e. Then there exists a simple closed curve
l ⊂ Cl(c) that intersects e transversely at exactly one point. It decomposes c
into two 2-cells c′, c′′. Since M is closed, one can easily find a disc D2 ⊂ M
such that D2 ∩ P = ∂D2 = l (to construct D2, one may push l by an isotopy
to the boundary of a regular neighborhood of P and span it by a disc in the
complementary ball). The polyhedron P ∪ D2 is a special spine of the twice
punctured M , that is, of M with two removed balls. To get a spine of M , we
make a hole in c′ or c′′ depending on which of them is a common face of these
balls. After collapsing we get an almost simple spine of M having a smaller
number of vertices.

Remark 3.1 Suppose P has a 2-component such that its boundary curve visits
four vertices, and each of them exactly once. If we apply the same trick (glue in
a parallel 2-cell and puncture a lateral one), we get another spine of M having
the same number of vertices. We used this transformation for recognition of
duplicates.
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Figure 6: The minimal spine of the complement to figure eight knot has coun-
terpasses

Figure 7: A decomposition of N(SP ) into copies of EV

Remark 3.2 The assumption M is closed in item (2) of Proposition 3.1 can be
replaced by the requirement that ∂M consists of spheres. If ∂M contains tori
or surfaces of a higher genus, in general the counterpass simplification does not
work. For example, the special spine of the complement to the figure eight knot
shown in Fig. 6 has counterpasses but can not be simplified since it is minimal.

4 Manifolds of small complexity

The simplification moves proved to be very effective and useful for enumerating
of 3-manifolds. For example, the number of special spines with ≤ 6 vertices is
very large (several millions) but no more than 200 of them cannot be simplified
by the moves. The computer works in the following way. It first looks through
all the regular graphs of degree 4 with a given number of vertices. The graphs
are considered as work-pieces for singular graphs. The vertices of each graph
are replaced by copies of the standard vertex singularity as it is shown in Fig.7.

Then the computer enumerates all possible gluings together of the copies
and produces corresponding special spines. Each spine P was tested for the
following questions.

1. Is there a short boundary curve?
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2. Is there a counterpass?

3. Is the corresponding manifold closed and orientable ?

By a positive answer to one of the first two questions, or a negative answer
to the third question, the computer refuses to consider P and goes on to the
next spine. In the converse case, the result is printed out. The final composing
of tables was made by hand.

The list of all closed orientable irreducible 3-manifolds up to complexity
6 contains 135 manifolds, see the tables and in Appendix. Each manifold is
presented by a regular neighborhood of the singular graph of minimal special
spine. If the manifold has several minimal spines, we draw all of them. Let us
comment the results of the enumeration.

1. All closed orientable irreducible 3-manifolds up to complexity 6 are Seifert
manifolds. All the manifolds of complexity ≤ 5 and many manifolds of complex-
ity 6 have finite fundamental groups. They are elliptic, that is, can be presented
as quotient spaces of S3 by free linear actions of finite groups. Groups which
can linearly act on S3 without fixed points are well known (see [Mi57]). They
are:

1. the finite cyclic groups;

2. the groups Q4n, n ≥ 2;

3. the groups D2k(2n+1), k ≥ 3, n ≥ 1;

4. the groups P24, P48, P120, and P ′

8(3k), k ≥ 2;

5. the direct product of any of these groups with a cyclic group of coprime
order.

Lower indices show the orders of the groups. Presentations by generators and
relations, and abelian quotients of the groups are the following:

1. Q4n =< x, y:x2 = (xy)2 = y2n >; Z2⊕Z2 if n is even, and Z4 if it is odd.

2. D2k(2n+1) =< x, y : x2k = 1, y2n+1 = 1, xyx−1 = y−1 >; Z2k .

3. P24 =< x, y : x2 = (xy)3 = y3, x4 = 1 >; Z3.

4. P48 =< x, y : x2 = (xy)3 = y4, x4 = 1 >; Z2.

5. P120 =< x, y : x2 = (xy)3 = y5, x4 = 1 >; 0.

6. P ′

8(3k) =< x, y, z : x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3
k

= 1 >;

Z3k .
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2. The list contains representatives of all the five series of elliptic manifolds.
In particular, the manifolds S3/P24, S

3/P48, and the Poincaré homology sphere
S3/P120 have complexities 4,5, and 5, respectively. The first manifold with
non-abelian fundamental group is S3/Q8, where Q8 is the group of quaternion
units. It has complexity 2. More generally, for 2 ≤ n ≤ 6 the manifolds S3/Q4n

have complexity n. The simplest manifold of the type S3/D2k(2n+1), that is,
S3/D24, has complexity 4 while the simplest manifold of the type S3/P ′

8(3k),

that is, S3/P ′

72, has complexity 5. There also occur quotient spaces of S3 by
actions of direct products of the above-mentioned groups with cyclic groups of
relatively prime orders. The simplest of these (the manifold S3/Q8 × Z3) has
complexity 4.

3. All five flat closed orientable 3-manifolds have complexity 6, among them
the torus S1 × S1 ×S1 and the Whitehead manifold obtained from S3 by Dehn
surgery on the Whitehead link with trivially framed components. The last two
are the only closed orientable irreducible manifolds of complexity ≤ 6 having
the first homology group of rank ≥ 2. Recall that the Whitehead manifold
coincides with the mapping torus of a homeomorphism S1×S1 → S1×S1 that
induces multiplication by −1 in H1(S

1 × S1;Z).
4. Among the manifolds of complexity ≤ 6 there is just one non-trivial

homology sphere S3/P120. It has a unique minimal special spine with 5 vertices.
The singular graph of the spine is the complete graph on 5 vertices.

5. If the complexity of the lens space Lp,q with p > 2 does not exceed 6,
then it can be calculated by the formula c(Lp,q) = S(p, q)− 3, where S(p, q) is
the sum of all complete quotients in the expansion of p/q as a regular continued
fraction. Must probably, the formula holds for all lens spaces, but we know how
to prove only the inequality c(Lp,q) ≤ S(p, q) − 3: it follows from the proof of
Proposition 4.1. In practice, it is more convenient to calculate c(Lp,q) by the
following empirical rule: if p > 2q, then c(Lp,q) = c(Lp−q,q) + 1. For example,
c(L33,10) = c(L23,10) + 1 = c(L13,10) + 2 = c(L13,3) + 2 = c(L10,3) + 3 =
c(L7,3) + 4 = c(L4,3) + 5 = c(L4,1) + 5 = c(L3,1) + 6 = 6 since c(L3,1) = 0
(we have used twice that lens spaces Lp,q and Lp,p−q are homeomorphic). This
shows ones again how natural the notion of complexity is. It is interesting to
note that not all regular graphs can be realized as singular graphs of minimal
special spines of 3-manifolds. Let us try to single out several types of graphs
that produce the majority of 3-manifolds up to complexity 6.

Definition 4.1 A regular graph G of degree 4 is called a non-closed chain if
it contains two loops, and all the other edges are double. G is a closed chain
if it has only double edges. At last, G is called a triangle with a tail if it is
homeomorphic to a wedge of a closed chain with 3 vertices and a non-closed
chain such that the common point of the wedge lies in a loop of the non-closed
chain. See Fig. 8.

We will say that a special spine of a closed orientable 3-manifold is pseudo-
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Figure 8: Three useful types of singular graphs: a closed chain, non-closed chain,
and a triangle with a tail

minimal if it has no counterpasses and short boundary curves. In particular,
any minimal special spine is pseudo-minimal. For brevity we will say that a
special spine P is modeled on a graph G if G is just the singular graph of P .

Proposition 4.1 (See [Ma75]) A closed orientable 3-manifold M has a pseudo-
minimal special spine modeled on a non-closed chain ⇐⇒ M is a lens space
Lp,q with p > 3.

Let us describe a simple method for calculating parameters of a lens space
presented by a picture that shows a regular neighborhood of the singular graph of
its pseudo-minimal special spine. The method can be easily proved by induction
on the number of vertices of the spine. Assign to each double edge and to each
loop of the singular graph a letter ℓ or r as shown in Fig. 9. We get a string w of
letters that we will consider as a composition of operators r, ℓ:Z ⊕ Z → Z ⊕ Z
given by r(a, b) = (a, a + b) and ℓ(a, b) = (a + b, b). Then the lens space has
parameters p = m+n, q = m, where (m,n) = w(1, 1). For example, for the lens
space shown in Fig. 9 we have w = rrrrℓℓℓ, (m,n) = (4, 17), and (p, q) = (21, 4),
since by our interpretation of r, ℓ we have

(1, 1)
ℓ
→ (2, 1)

ℓ
→ (3, 1)

ℓ
→ (4, 1)

r
→ (4, 5)

r
→ (4, 9)

r
→ (4, 13)

r
→ (4, 17).

The same method can be used for construction a pseudo-minimal special
spine of a given lens space Lp,q: one should apply to the pair (p−q, q) operators
r−1, ℓ−1 until we get (1, 1), and then use the string of letters r, ℓ thus obtained
for constructing the spine.

Proposition 4.2 [Ov97] A closed orientable 3-manifold M has a pseudo-minimal
special spine modeled on a triangle with a tail ⇐⇒ M is an orientable Seifert
fibered manifold of the type (S2, (2, 1), (2,−1), (n, β)), including the case n = 1.
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Figure 9: How to write down the developing string for a non-closed chain

Figure 10: How to write down the developing string for a tail

Let us describe a simple method for calculating parameters (n, β) starting
from a pseudo-minimal special spine modeled on a triangle with a tail. The
method can be easily proved by induction on the number of vertices of the
tail. Assign to the loop and the double edges of the tail, and to the pair of
edges adjacent to it, letters ℓ and r as shown in Fig. 10. We get a string
w of letters that, as above, can be considered as a composition of operators
r, ℓ:Z ⊕ Z → Z ⊕ Z given by r(a, b) = (a, a + b) and ℓ(a, b) = (a + b, b). Then
(n, β) = w(1, 1). For example, for the spine shown in Fig. 10 we have w = ℓrℓℓ
and w(1, 1) = (n, β) = (7, 4).

The same method can be used for construction a pseudo-minimal special
spine of a given Seifert fibered manifold (S2, (2, 1), (2,−1), (n, β)): one should
recover the string of r, ℓ by transforming (n, |β|) into (1, 1), and then use it for
choosing the correct tail.

Note that for any pair of coprime positive integers (n, β) with n ≥ 1 the
fundamental group of the manifold Mn,β = (S3, (2, 1), (2,−1), (n, β)) is finite
and has the presentation



4 MANIFOLDS OF SMALL COMPLEXITY 12

Figure 11: The unique pseudo-minimal special spine modeled on a closed chain
with n vertices is a spine of S3/Q4n

< c1, c2, c3, t|c
2
1 = t, c22 = t−1, cn3 = tβ , c1c2c3 = 1 >

The order of the homology group H1(Mn,β;Z) is equal to 4β. Using this, it
is not hard to present Mn,β as the quotient space of S3 by the linear action of
one of the groups listed above. It turns out that the following is true:

1) if n > 1 and β is odd, then Mn,β = S3/Q4n × Zβ;

2) if n > 1 and β is even, then Mn,β = S3/D2k+2n × Z2m+1, where k and m
can be found from the equality β = 2k(2m+ 1);

3) if n = 1 then Mn,β = L4β,2β+1.

If n = 1 or β = 1, the pseudo-minimal special spine of Mn,β modeled on
the triangle with a tail is not minimal. An easy way to see this is to apply
the transformation described in Remark 3.1. This is possible since the spine
possesses a boundary curve that passes through 4 vertices, and visits each of
them exactly once. After the transformation we get a spine that has the same
number of vertices but possesses a boundary curve of length 3. Therefore, one
can simplify the spine. In the case n = 1 we get a spine of the lens space
modeled on a non-closed chain with smaller number of vertices. If β = 1, we
get a simple spine of the manifold S3/Q4n.

Proposition 4.3 [Ma80] A closed orientable 3-manifold M has a pseudo-minimal
special spine modeled on a closed chain with n ≥ 2 vertices ⇐⇒ M is S3/Q4n.

The following conjectures are motivated by Propositions 4.1 – 4.3 and the
results of the computer enumeration.
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Figure 12: The developing strings are ℓ, rℓ, and ℓrr. Thus M =
(S2, (2, 1), (2, 3), (4, 3), (1,−1))

Conjecture 4.1 Any lens space Lp,q with p ≥ 3 has a unique minimal special
spine. This spine is modeled on a non-closed chain.

Conjecture 4.2 For any n ≥ 2 the manifold S3/Q4n has a unique minimal
special spine. This spine is modeled on a closed chain with n links.

Conjecture 4.3 Manifolds of the type S3/Q4n×Zβ, β 6= ±1 and S3/D2k+2n×
Z2m+1 have minimal special spine modeled on triangles with a tail.

Table of minimal spines (see Appendix) shows that the conjectures are true
for manifolds of complexity ≤ 6.

One can prove that any pseudo-minimal special spine modeled on a triangle
with 3 tails is a spine of a Seifert fibered manifold M over S2 with 3 exceptional
fibers. Let wi, 1 ≤ i ≤ 3 be the developing rl-strings of the tails. Then M =
(S2, (n1, β1), (n2, β2), (n3, β3), (1,−1)), where (ni, βi) = wi(1, 1) for 1 ≤ i ≤ 3.
We have inserted the non-exceptional fiber (1,-1) to preserve the symmetry of the
expression. Certainly, one may write M = (S2, (n1, β1), (n2, β2), (n3, β3 − n3)).
The formula works also for triangles with < 3 tails, if we adopt the convention
that the developing word for the empty tail is ℓ and produces the exceptional
fiber of type (2,1). See Fig. 12.

Remark 4.1 Recall that the manifoldM = (S2, (n1, β1), (n2, β2), (n3, β3), (1,−1))
with ni > 1 has a finite fundamental group if and only if the triple (n1, n2, n3) is
one of the following exceptional triples: (2, 2, n), (2, 3, 3), (2, 3, 4), and (2, 3, 5).
The following rules my be useful for calculating π1(M), where (n1, n2, n3) is one
of exceptional triples and the triple (β1, β2, β3) has the from (1, 1, β).

a) Let (n1, n2, n3) = (2, 2, n), where n is even. Then

π1(M) = Q4n × Zβ ;
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Figure 13: A Heegaard diagram of the manifold S3/(P24 × Z5)

b) Let (n1, n2, n3) = (2, 2, n), where n is odd. Then

π1(M) = D2k+2n × Z2m+1, where β = 2k(2m+ 1) ;

c) Let (n1, n2, n3) = (2, 3, 3). Then

π1(M) = P ′

8(3k+1) × Z2m+1, where 3km = 2β − 1 and m = ±1 mod 3;

d) Let (n1, n2, n3) = (2, 3, 4). Then

π1(M) = P48 × Z3β−2;

e) Let (n1, n2, n3) = (2, 3, 5). Then

π1(M) = P120 × Z6β−5.

We present an example of using the table for practical recognition of 3-
manifolds. Let a 3-manifold M be given by the Heegaard diagram shown on
Fig. 13.

Note that the union of the boundary of the handlebody with its meridional
discs and with the ones of the complementary handlebody is a special spine
of twice punctured M . The spine possesses 13 vertices. An almost special
spine of M is obtained from it by puncturing one of the domains into which
the meridians of the handlebodies decompose the surface. If we puncture the
domain β, then (after collapsing) 7 vertices disappear (they are shown by white
dots). Therefore c(M) ≤ 6. It is easy to calculate that the homology group
H1(M) is isomorphic to the group Z15, while a presentation of the fundamental
group π1(M) is of the form

〈a, b, c | ab2 = ac−1bc−1ac−1 = ab−1c2 = 1〉.
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Adding the relation c2 = 1 yields a presentation of a non-abelian group 〈b, c |
b3 = (bc)3 = c2 = 1〉. Therefore π1(M) is non-abelian. One can easily show
that M is irreducible. It follows from looking through the table that the only
manifold which differs from a lens space and has complexity ≤ 6 and homology
group Z15 coincides with the quotient space of S3 by a linear action of the group
P24 × Z5.

5 Appendix

5.1 Tables of 3-manifolds up to complexity 6

There are 7 tables that contain all closed orientable irreducible 3-manifolds of
complexity c, where 0 ≤ c ≤ 6. The number N(c) of manifolds of complexity c
can be tabulated as follows:

c 0 1 2 3 4 5 6
N(c) 3 2 4 7 14 31 74

Our notation for manifolds is similar to the one for knots: we write ci for the
manifold number i among manifolds of complexity c. S3/G denotes the quotient
space of S3 by a free linear action of a non-abelien finite group G taken from the
list on page 8. Lp,q denotes the lens space with parameters p, q. Let hA : T → T
be a homeomorphism of the torus T = S1 × S1 onto itself corresponding to an
unimodular integer matrix A of order 2. Then T × I/A is the mapping torus of
hA. In other words, T × I/A is obtained from the manifold T × I by identifying
the boundary tori by hA. Clearly, conjugated matrices produce homeomorphic
manifolds.

Recall that the boundary of the orientable I-bundle K×̃I over the Klein
bottle K is a torus. Choose a coordinate system µ, λ on it such that µ projects
onto a non-trivial orientation-preserving circle on K, and λ double covers an
orientation-reversing circle on K. Then K×̃I ∪ K×̃I/A denotes the manifold
obtained by pasting together two copies of K×̃I by the homeomorphism hA.
Finally, (F, (p1, q1), . . . , (pk, qk)) is the orientable Seifert manifold with the base
surface F and k exceptional fibers with unnormalized parameters (pi, qi), 1 ≤
i ≤ k. In two cases we use also regular fibers with p1 = 1 in order to describe
manifolds fibered into circles without exceptional fibers. We do not present
Seifert structures and homology groups of lens spaces since they are well known.



5 APPENDIX 16

Table 1: Complexity 0

ci M

01 S3

02 RP 3

03 L3,1

Table 2: Complexity 1

ci M

11 L4,1

12 L5,2

Table 3: Complexity 2

ci M

21 L5,1

22 L7,2

23 L8,3

ci M Seifert structure H1(M ;Z)

24 S3/Q8 (S2, (2, 1), (2, 1)(2,−1)) Z2 ⊕ Z2
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Table 4: Complexity 3

ci M

31 L6,1

32 L9,2

33 L10,3

ci M

34 L11,3

35 L12,5

36 L13,5

ci M Seifert structure H1(M ;Z)

37 S3/Q12 (S2, (2, 1), (2, 1), (3,−2)) Z4

Table 5: Complexity 4

ci M

41 L7,1

42 L11,2

43 L13,3

44 L14,3

45 L15,4

ci M

46 L16,7

47 L17,5

48 L18,5

49 L19,7

410 L21,8

ci M Seifert structure H1(M ;Z)

411 S3/Q8 × Z3 (S2, (2, 1), (2, 1), (2, 1)) Z2 ⊕ Z6

412 S3/Q16 (S2, (2, 1), (2, 1), (4,−3)) Z2 ⊕ Z2

413 S3/D24 (S2, (2, 1), (2, 1), (3,−1)) Z8

414 S3/P24 (S2, (2, 1), (3, 1), (3,−2)) Z3
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Table 6: Complexity 5

ci M

51 L8,1

52 L13,2

53 L16,3

54 L17,3

55 L17,4

56 L19,4

57 L20,9

58 L22,5

59 L23,5

510 L23,7

ci M

511 L24,7

512 L25,7

513 L25,9

514 L26,7

515 L27,8

516 L29,8

517 L29,12

518 L30,11

519 L31,12

520 L34,13

ci M Seifert structure H1(M ;Z)

521 S3/Q8 × Z5 (S2, (2, 1), (2, 1), (2, 3)) Z2 ⊕ Z10

522 S3/Q12 × Z5 (S2, (2, 1), (2, 1), (3, 2)) Z20

523 S3/Q16 × Z3 (S2, (2, 1), (2, 1), (4,−1)) Z2 ⊕ Z6

524 S3/Q20 (S2, (2, 1), (2, 1), (5,−4)) Z4

525 S3/Q20 × Z3 (S2, (2, 1), (2, 1), (5,−2)) Z12

526 S3/D40 (S2, (2, 1), (2, 1), (5,−3)) Z8

527 S3/D48 (S2, (2, 1), (2, 1), (3, 1)) Z16

528 S3/P24 × Z5 (S2, (2, 1), (3, 2), (3,−1)) Z15

529 S3/P48 (S2, (2, 1), (3, 1), (4,−3)) Z2

530 S3/P ′

72 (S2, (2, 1), (3, 2), (3,−2)) Z9

531 S3/P120 (S2, (2, 1), (3, 1), (5,−4)) 0
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Table 7: Complexity 6

ci M

61 L9,1

62 L15,2

63 L19,3

64 L20,3

65 L21,4

66 L23,4

67 L24,5

68 L24,11

69 L27,5

ci M

610 L28,5

611 L29,9

612 L30,7

613 L31,7

614 L31,11

615 L32,7

616 L33,7

617 L33,10

618 L34,9

ci M

619 L35,8

620 L36,11

621 L37,8

622 L37,10

623 L39,14

624 L39,16

625 L40,11

626 L41,11

627 L41,12

ci M

628 L41,16

629 L43,12

630 L44,13

631 L45,19

632 L46,17

633 L47,13

634 L49,18

635 L50,19

636 L55,21

ci M Seifert structure H1(M ;Z)

637 S3/Q8 × Z7 (S2, (2, 1), (2, 1), (2, 5)) Z2 ⊕ Z14

638 S3/Q12 × Z7 (S2, (2, 1), (2, 1), (3, 4)) Z28

639 S3/Q16 × Z5 (S2, (2, 1), (2, 1), (4, 1)) Z2 ⊕ Z10

640 S3/Q16 × Z7 (S2, (2, 1), (2, 1), (4, 3)) Z2 ⊕ Z14

641 S3/Q20 × Z7 (S2, (2, 1), (2, 1), (5, 2)) Z28

642 S3/Q24 (S2, (2, 1), (2, 1), (6,−5)) Z2 ⊕ Z2

643 S3/Q28 × Z3 (S2, (2, 1), (2, 1), (7,−4)) Z12

644 S3/Q28 × Z5 (S2, (2, 1), (2, 1), (7,−2)) Z20

645 S3/Q32 × Z3 (S2, (2, 1), (2, 1), (8,−5)) Z2 ⊕ Z6

646 S3/Q32 × Z5 (S2, (2, 1), (2, 1), (8,−3)) Z2 ⊕ Z10

647 S3/D56 (S2, (2, 1), (2, 1), (7,−5)) Z8

648 S3/D80 (S2, (2, 1), (2, 1), (5,−1)) Z16

649 S3/D96 (S2, (2, 1), (2, 1), (3, 5)) Z32

650 S3/D112 (S2, (2, 1), (2, 1), (7,−3)) Z16

651 S3/D160 (S2, (2, 1), (2, 1), (5, 3)) Z32

652 S3/P24 × Z7 (S2, (2, 1), (3, 1), (3, 1)) Z21

653 S3/P24 × Z11 (S2, (2, 1), (3, 2), (3, 2)) Z33

654 S3/P48 × Z5 (S2, (2, 1), (3, 2), (4,−3)) Z10

655 S3/P48 × Z7 (S2, (2, 1), (3, 1), (4,−1)) Z14

656 S3/P48 × Z11 (S2, (2, 1), (3, 2), (4,−1)) Z22

657 S3/P120 × Z7 (S2, (2, 1), (3, 1), (5,−3)) Z7

658 S3/P120 × Z13 (S2, (2, 1), (3, 1), (5,−2)) Z13

659 S3/P120 × Z17 (S2, (2, 1), (3, 2), (5,−3)) Z17

660 S3/P120 × Z23 (S2, (2, 1), (3, 2), (5,−2)) Z23

661 S3/P ′

216 (S2, (2, 1), (3, 2), (3, 1)) Z27

662 (S2, (3, 2), (3, 1), (3,−2)) Z3 ⊕ Z3

663 (S2, (3, 2), (3, 2), (3,−2)) Z3 ⊕ Z6

664 (S2, (3, 2), (3, 2), (3,−1)) Z3 ⊕ Z9
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Table 7: Complexity 6 (continued)

ci M Seifert structure H1(M ;Z)

665 T × I/

(

1 − 1
1 0

)

(S2, (2, 1), (3, 1), (6,−5)) Z

666 T × I/

(

0 1
−1 0

)

(S2, (2, 1), (4, 1), (4,−3)) Z2 ⊕ Z

667 T × I/

(

0 1
−1 − 1

)

(S2, (3, 1), (3, 1), (3,−2)) Z3 ⊕ Z

668 T × I/

(

−1 0
−1 − 1

)

(K, (1, 1)) Z4 ⊕ Z

669 T × I/

(

1 0
1 1

)

(T, (1, 1)) Z ⊕ Z

670 T × I/

(

−1 0
0 − 1

)

(S2, (2, 1), (2,−1), (2, 1),
(2,−1))

Z2 ⊕ Z2 ⊕ Z

671 T × I/

(

1 0
0 1

)

T × S1 Z ⊕ Z ⊕ Z

672 K×̃I ∪K×̃I/

(

−1 0
−1 1

)

(S2, (2, 1), (2, 1), (2, 1),
(2,−1))

Z2 ⊕ Z2 ⊕ Z4

673 K×̃I ∪K×̃I/

(

0 1
1 0

)

(RP 2, (2, 1), (2,−1)) Z4 ⊕ Z4

674 K×̃I ∪K×̃I/

(

−1 1
−1 0

)

(RP 2, (2, 1), (2, 1)) Z4 ⊕ Z4



5 APPENDIX 21

5.2 Minimal spines of 3-manifolds up to complexity 6

For any manifold ci, 0 ≤ i ≤ 6, we present all minimal almost simple spines.
Recall that for c > 0 all of them are special. The spines are presented by regular
neighborhoods of their singular graphs.
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