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§ 0. Introduction

Definition. Suppose that X is a compact simply connected

complex manifold such that 1) on X there exists a.closed holomor-
phic two form wx(Z,OJ such that at each point y € X mX(Z,O}
defines a non-degenerate skew symmetric matrix, i.e. for vy £ X

B

and wX(Z.O)]U = 2 woR dz® A dz » where U 1s an open neighbor-

hood of ¥ ,

det maB(Z)€ F(U,Og)

. 2
2) dlmmH (X,OX) = 1.

Remark. Condition 2} is equivalent to the fact that on X
we have a unique up to a constant closed holomeorphic two

form on X:, wx(Z,O) .

In this article we prove the following theorem.

Theoremn. Every holomorphic symplectic manifold admits a

Kidhler metric.

The two main points of the proof are: a) On a holomorphic

symplectic manifold there exists a real closed two form

w2’0 m1'1 + m0'2 , where w1'1 (the (1,1) part of w)

at each point is positive definite and w2,0 = aa}'o.

+

The



construction of w 1s done by checking the conditions of
theorem 38 in the beautiful paper of R. Harvey and

B. Lawson, see [6 ]. From the existence of the form w we
prove,following Bogomolov that there exists a non-singular
family x - U of symplectic holomorphic manifolds with

dimgU = dimM°(X,T) - 2 in the Kuranishi family of X

Again from the existence of w and Moilshezon-Nakai
criterium we get that in U we can find an open and every-
where dense subset W such that each point t € W corres-
pond to a Kdhler symplectic manifold. Now we come to the
second main point.

b) Using the Yau's solution of Calabi conjecture we can construct
the so called isometric deformations. From the isometric
deformation we construct two families over the unit disc D,

x =+ D and x' »+ D , where all fibres X' - D are Kihler
manifolds and more over these two families are isomorphic over
some disc D1 < D. Now from local Torelli theorem and lemma

due to D. Burus Rapoport and Siu we can conclude that the

two families are isomorphic. X 1is contained in x -+ D.
We are following the lines of Siu in [ 7 ].(?ee also [ 6 ]J

The construction of the real closed two form w such
that w1'1 is positive definite everywhere is based on the

idea of D. Sullivan to use Hahn-Banach theorem.

This article was finished during may stay in the Max-
Planck-Insitut fiir Mathematik in Bonn. I want to thank the

Max-Planck-Institut fiir excellent working conditions.



Theorem . Every symplectic holomorphic manifold admits

a Kdhler metric.

Prooof: The proof is based on the following lemma due to

R. Harvey and B. Lawson Jr. See [ 6 ].

§1. Lemma 1. Let X be a holomorphic symplectic manifold,

w2,0 m1,1 + w0'2

then X admits a real closed two form o= +

such that a) w1’1

2,0
w

is positive definite at each point yx € X

0,2
1,0 O o001 (01 T/0

b) = 3a ', =3

Proof of Lemma 1: In [6 ] R. Harvey and B. Lawson proved:

5
-

Theorem. Suppose X is a compact complex manifold, then
w2'0 w"‘ mG,Z with
ol ?

admits a real closed two form w = + +

UJT’? (1)2‘0

a) positive definite everywhere D) =3 for
some 1,0 form o if and only if X does not support a
(non-trivial) positive, d-closed current which is the bi-

dimension (1,1) component of a boundary.

So we need to check that if X is a holomorphic sympleciic
manifold then X satisfies the condition of the theorem of

R. Harvey and B. Lawson Jr..

Let p = /=1L nlj ~3§:A:§* be an exact real (1,1}
3z 3z

positive current on X. Since on X we have a closed hola-
morphic form wx(Z,O) which is non-~degenerate at each point

x € X, so we can repeat the arguments of Darboux lemma (See Ry



and we will get a local ccoordinate system (21,...,zn,...,zzn)
n ] .
such that locally mx(Z,O) = 2 dzl;«dzl*n .Now we get
i=1
immediately from p(1,1)-current, an exact (n - 1, n - 1)

curren 71 in the following way:

n=p A(mﬁ(Z,O)A...Am§(2,O) A&;(Z,O)A...AW§(2,0))

{ J L _J
T H

n-1 n-1

wher
here n

“)*(2,0) = 2 a. A ?
X i=1 9zt  az?™®

a=n S(wx(Z:th\wx(O,Z))n has distribution coefficients, where

thz,O)“ = wy (2,0} A ... Awy(2,0) (n-times)

80 a = dy

where 1y is also real 1-form on X. Ve can write

where B 1is a (1,0)~form on X. Since n is of type (1,1},

it follows

a= 3B + a8 and 38 = 0

So from a8 0 it follows that B € H1(x,0x).

Proposition 1.1. H’(X,Ox) = 0, where X is a holomorphic

symplectic manifold.



Proof: Since 31(x> = 0 it follows that Pic X is a
discrete set. This is a standard fact. We know that Hjix,ﬂxi
can be interpreted as the tangent space to the Picard variety

of X. Since it is a discrete set we get that B?(X,Ox}==0.

Q.E.D,
Now since B € Hiix,ﬂx) = 0 = B=30 for some (0,0)~-current
on X, Hence
o =/=13%1 ; where <= /=1(0 - o)
The positivety of the {1,1)-current on X implies that

T 1s a plurisubharmonic function on X. By the compactness ol

m

X and the maximum principle we get that 1 const. 8o

a =233 const = O

So we haveproved the following fact:

Fact 1. Suppose that n 4is positive (1,1) current and

n=dy , then n = 0.

Fact 2. Suppose that n is a positive closed (1,1) current (form)
and n = (cia}(1 1) {i.e. n is a (1,1} component of a boundarvj},
‘

then n 0.



= Jdaa

Proof: Since dn = 0 and n = 3o 0.1 F 1'0=—§aa1'0
0

From the regularity of the 3 operator we get that 331'

is a holomorphic two form on X. From the fact that wx(z,oy
is a closed non-degenerate form at each point we get by easy

calculations that

(*) 0 <IM3a1'°A oa ' A wy (2,00 Au oAy (2,0) Awy (2,0) A, Aw, (2,0)

L } L J
1 1

n-1 n~-1

where 2n = dimmx. On the other hand we have by Stoke's theorem

(*%) 0 = fxd(a”'ﬂ asat?0A 0 (2,0) Ay (2,0) A (2,0) A . oA (2,0))
{ g i }
Y ¥
n-1 n-1

So from (*) and (**) we get that aa1'05 0. So from here we get

that

23
o
)

From fact 1 we ge that n
Q.E.D:

g'



From fact 1 and fact 2 it follows that the conditions of

the theorem of R. Harvey and Bl. Lawson Jr. are fulfilled.

80 lemma 1 is proved.

§2. Lemma 2. et ® be the real closed 2~form constructed in

lemma 1, then

a) w defines a non-zero class [w] in Hz(x,un
b} there exists a real closed {1,1) form ¢ such that

(6] = [w] in H%(X,R) .

Proof.
Proposition 2.1. IX WA...A > 0 2n = dim X
——
Z2n
Proof. We need to compute:
{w2,0 + m?,? + wO,Z}A".A{wZ,G + m?,? . NO,E} -
L J
Y
2n
= WAL..AD = wZ,O ...AmZ‘OA mg’zn...n ma,z +
L j - _J J
H Y
2n n n
Zn-1 -~
2,0 2,0 1,1 1.1 1.1 1,1
+ ) CK@K’ z\wK’ L N R B PRt



2,0
where mi’o = w A ...sz’g and CK is a positive integer.
Y
K

From the following lemma proved in [4 1:

Lemma. Let n be a primitive form of type (p,q} , then

p-q (p*q) (p+g+1)
1 i (-1) 2 LZn—p—q n
(2n-p-q)
we get that *w§’0 = mT'TA...Amq’lm w;,ﬂ . where * 1is the

Hodge star operator with respect to the metric induced on X
by m1'1.
S0 we get:

srmeniasn

2,0 2,0 2,0 0 1,1 1,1
f wAccoaw = é w oA ¥ é C UL A *Qé’ + [ o’ Acvoan !

X 8 X
2n

!}wi’OSF * ZCK Hmi’oﬂz + vol(X) >0, where the norm

is taken with respect to the metric induced by wj'} .

Q.E.D.

From poposition 2.1. it follows immediately that w
defines a non-zero class [w] in Hzix,nu , indeed if

w = dn, then

0 = fJ dlnAava...aw) = [ wAwA...Aw
X X

l~mT J L

2n-1 2n




and we get a contradiction. This proves part a) of lemma 2.

Proof of b): Let e==m1'1 - 3&1’0 - aaﬂ’q. Remember that
m==aa1'0-+w7’1 + 3&1’0 = aa1’0 + w1'1 + aao’i. Now clearly:
ae:a«ﬁ” - 2—5&1’0 + 'é'm.;’T - .58&0’1 =
and 9-m=m1’1-—-50:1’0-m1'1-3&1’0'—300’1 =

- d(aj’a . aO,T)’
0.E.D.
Corollary 2.2. dim Hé(sz1) >0.
Proof: This follows from 2.1. b).
Q.E.D.

§3.1emma 3. Let [ywl] Dbe a non zero element of Hz(x,ER)
then [¢] = cmX(Z,G) + {m?’1} + me(Z,G), where wX{R,Gi is
the everywhere non~degenerate closed holomorphic form on X

and ¢ is a real closed form of type (1,1).

Proof: From de Rham theorem it follows that {¢] can be

realized ag a real closed 2~form . Let
(*) Q= + P + @9 7, 0 = ¢, =

From dyp = 0 we obtain:



-10-

i

caol 1 = 30972 4 soTrt - o,

20270 = 3p 912 . . ag 270

Let us denote by B1 1 currents of type (1,1) that are compo-
r

nents of boundaries and by 2, 4 d-closed currents of
¥

bidimension (1,1). Let o € Z1 15\}31 g then since a = dn
7 i

<@, 0> = <@, dn> = <d@,n> = 0

1 L . .
So ¢ ¢ (21’1(1B1’1) s Where (Z1l1f}B1'1} is the anhilator
of 2 nB in EZ(X) . R. Harvey and B. Lawson proved in
1.1 1.1 R
[ 1 that
1 a 1,1 -
By 1 = {we€ce (X) 5 | dw = 0}
Z% 7 = {w € ?1’1(x}R‘m = (da)1'1,a€ E1’D + EO'T}
¥
€K€X)R are C° K-forms on X.
Even more the roved that (Z nB }l = B“L + Zl is a
Yy P 1,17 71,1 1,1 1,1
closed subspace in '£1’1(X)R . S50 since
1,1 L L
* % ’
(**}) ] € B1’1 + 21,1

it follows that for some « ,m1'1~(da)1‘1 is a closed form

50 we get:

(x%%) a1 = 33110 o Bl o 33,000

From (*) and (**) we get
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(*xxx) 5&92"0 v 350770 = 392 4 33007 < 0
So
5927 % - 32170 =0
2,0 1,0 .
From here we get that ¢ - 3n is a holomorphic

closed two form on X. Since there is a unique up to a
constant holomorphic closed two form, which is non-degenerate

at each point ¥ € X we get that:

020 _ a1 0 - cuy (2,0)

So from here and (**} we get that

Q.1

0 0J)=cm&&ﬁn+-m3ﬂ-%a - Fa179 + G (0,2}

P~ d{af’ + 0
So

[0] = cu,(2,0) + o1 4 G (0,2)

where 61"2 = iphl - (c”:ioz}?"1 and d(@q'?)'; 0

Q»E.Ba

Corollary 3.1. If [w] € 12 (x,@¢) = n? {(X,R) o @ , then

1,1

[w] = awxf;ﬁ,i)) + W + waw,za,

where dm‘l"’i = 0 and a,bt .

Let w be the form constructed on X in lemma 1 and

let o'r] be a closed {1,1) form that represents the non-zero
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class [w] € ﬂZ(X,ﬂﬁ and let CcX be an irreducible

complex analytic subspace in X, then if dimmC =k

f [01¥ > 0 , where (5] = [0 A..AB]

C
L”‘T“—”)

k

Proof: From chapter 1 of [ ] we know that:

f01¥= § [o1¥
C C~8ing C

So from here we may suppose that C 1is a non-singular sub-
manifold. Repeating the calculations and the arguments in

Proposition 2.1. we get that:

E-1

2,0 2,0 2,0 2,0 1.1 1.1
W Ac..A W = P + ) CalT AT A 0w ALLA
le “k “k joq 44 i ) N
k k21
+ wT/iA...A Qh? K%oéim, Ci:>0} . So using the same notations
as in 2.1. we get
fo¥= 1602+ Je w012 + vol (© >0
C
here iiwi’ﬂiﬂ‘ and vol(C) are with respect to the metric

induced on C by the hermitian metric defined by m?’?.

so
from [ ok > 0 it follows that C is not homolegical to
C

zero., Indeed if C = 3B, then by Stoke's theorem:
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%f§<= J d(¢¥) = 0 and we will get a contradiction. Now it

is easy to see that [ ok = [ oF > 0.
C C

§ 5. Local deformation theory of symplectic manifolds.

{(Bogomolov's theory).
First we will make some remarks.

Remark 5.1. a) The closed holomorphic ncn—degenerate two

form wX(Z,O) induces an isomorphism:

. ~ 1
tw, (2,00 * Oy > &

and so we get an isomorphism:

. 1 ~ 1 1

>

b} The "small" deformations of the complex structure on

given by a differential form

o, = o 5(t) dz° s —¢ € T(X,2' o0

27

Using the isomorphism iw we get that:

0,1 0

i o, = G er(x,2%" o ol

“iz2,0) ¢
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¢} We have a bracket operation [ , 1 on T (X ,90’1 @ 0)
coming from a bracket operation on T (X,0). See [ ]
iw transforms the bracket operation [ , 1 into a corresponding

0,1 1,0

bracket operation [ , 1 on T(X,0 ' o Q ) . Bogomolov

proved the following lemma:

1 1,0

Lemma 5.2 {Bogomolov [ 3 1). Suppose wi,wZEZP(X,QO’ e Q')

and either

8w1 = g, 3m2=0 or dm1 = dm2 =0

Then we have respectively:
B{m1,m2} = 0 or d[wi,wz} = 0,

d} Weknow from Kodaira-Spencer deformation theory that first
order infinitesimal deformations of a complex structure are
contained in Hj(X,G) and so if X 1is a symplectic manifold

then in H(x,21) = 81(X,0).

Definition. Let Hé(x,91) = {w € HQ(X,Q1)! dw = 0 and w

defines a non-zero class I[w] in HZ(X,E)}. Let

1 = a1 1 1
Ha(X.r@) - lwx(z’c) (Hd(XIQ ))'

Remark 5.3. From lemma 3 it follows that dim Hé(X,Q‘) =

= dimmHzix,m) -2 =b, - 2.

2

Lemma 5 (Bogomolov). There are no obstructions for deformations
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of the complex structures on X that corresponds to the

elements of Hé(x,@)z H;{X,Q1}.

Remark 5.4. Lemma 5 can be stated into the following manner:

Xe—  x
There exists a subfamily + + of the Ruranishi family
g0 € U

of X with the following properties:

1) U is a non-singular manifold and dimmU = b, - 2.

2} The tangent space T0 b4 Hé(X,G) (En a natural manner.)
F

U

Proof: Let m1,mZEZHé(X,Qi}. So we suppose that dm1 = dm2 = (.
If we prove that for every 3-dimensional cycle T € H3(X,Z)

f {w?,wzi = 0

T
then we will have

! . 2 3

lugs0,1 = 0 in Hi(x,0) c8’(x,0)

We can realize each cycle T of some basis {211--.,£ 3

b A
3 .
in H3(X,Z} by a number of three dimensional real manifolds

FT,...,T3 such that Tif\T. = . This follows immediately from

3
Thom's results and since

. B 1 ..
dimp I = 3<7 dim, X 28. See [31].

Notice that HQ{Fi’%) = 0 since gigx,z) = 0 and so Hz(Fi,m) = {
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{(Poincare duality) Bogomolov proved in [ 3] the following

fact.

Proposition 5.5. For each cycle [T] in HB(X,Z) we can find

non~-singular three dimensional compact manifolds Pi ’

realizing [T] and those T, fulfill the following conditions:

a) H1(F,Z) = H2(Fi,ﬂ) = 0

b) for each T, there exists a small neighborhood U(l,),

where U(Fi) is a Stein manifold and HE(U(Ti),Eﬁ = 0.
Proof: See [ 3]. Let me outline the proof of Bogomolov.

Step 1. If J is the complex structure operator on X,
then if for each x € T, JTX(Pi) is transversal to TX(Ti).

then we can construct U(Pi) that fulfills condition b.

Step 2. By small deformation of Fi we can find Ti such
that for each Y € Fi JTX(Pi) is transversal to TX(Fi).
For the details see [3 1.

Q.E.D.

Let U(I;) are the small Stein neighborhood of T, construc-

ted by 5.5. Let w,,0,6H3(X,0'), i.e. dw, = dw, = 0, then

1
uTiF(Ui) & szU(Pi) are zero elements in HQ(U(Pi},Iu , Since

% (U(r;) ,R) =0.

Proposition 5.6. (Bogomolov [3 1). Let U be a Stein manifold and
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0 and

i

let w be a (p,q) form (p,qg > 1) and dw

[w]l = 0 in HP+q(U), then w= 53¢ for some form .

_ 1 o ATl
From 5.6. we get that w?{U(F)" Bﬁwi, wsz(Fi3 aa¢i
Now we can continue @§ and wi as form to 3; and Ni
. ~ .—N’I - - et P
on the whole X. Let wy = W, Bawi r Wy w, Bami . So

i
fon]

' = ) - _
*) “1lur;) “’é{mri) b) wi~ w,, w) ~ w, . Clearly

I
o

{m%,wé]‘u(ri) and

we have proved that

1 1 =
f {wj,wzl 0
T
We have proved that the bracket operation defines thus trivial
element in HB(X,Ei. From here we will get that the first
obstruction vanish. For this we will need the following

Proposition.

Preoposition 5.7. Let X be a symplectic holomorphic mani-

fold and let U be a Stein submanifold in X and let o
be a d-closed form of type (1,2} and {[w] = 0 in H3{X,¢)

and m[U = 0, then there exists a form ¢ such that:
a) o = 0 b) 39 = w and c) m‘U = 0,

Proof. Since w represents zero in HB{X,E} and w is of

0,2 2

type (1,2) we get that w = da + dﬁ?'}, where 5&0'“ = 831'1

m
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0,2

So we get that «o 632 {X,0

0.2

) = €lug (0,2)k since  dim HZ(X,OX)=1.

If a non—-zero element in HZ{X,GX) , then

mX(O,z) =

Since dmx{0,2) 0 we get that

30072 = —B_Bp.ﬁ"!
and so

w = aa0,2 + 583:1 = B’E—p.e"‘ + -3*81;1 - '5'(81,1 + 3}10,1)
Let P o= B“’} + 39011 , +hen a(p - 351'1+3'3u0'1 = 881,1 = 0

and 3¢9 = w.So we have proved a) and b). The condition c)
follows immediately from Proposition 5.6. So in this case

5.7. is pxoved.

If a is zZexo in HZ(X,OX), then

0,2 0,1

a =3k

Since m==381'1+930’2-f3§1’1 +B§£1’14§81’1-§B§O’1= 5(31'1"‘350’1)-

e ~B€G'1 we will get that conditions

If we define p = B
a) and b) are fulfilled. From 5.6. we will get what we need.

Q.E.D.

Next we have to prove the triviality of all obstructions.

So the deformation is given by the following formal power series
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= 2 N"I-
wit) w1t + mzt 4yt th

. »

such that

~ = 1 =
1) 3w =0 2) BJw + E{w,m]-ﬁ 3) mi]U(FjE

From 2) we get that:
1

* = -

(*) ey >

Proposition 5.7. says that we can solve (*) by the argument
we used before we proved 5.7. First we find Wy s then Wy

and so on.

So we have proved that all the obstructions vanish.
From Kuranishi existence theorem we can conclude that there
exists a family of non-isomorphic holomorphic symplectic

manifolds ¥ + U, where

. oas 1 1
1) dlmﬁﬁ = dim Ha(x,ﬂ )

g} 1
2} TO,Uizﬁd(X’ﬂ }
XG> ¥
3} 4+ +
0= U

This finished the proof of Lemma 5.
Q.E.D.

From now on we will fix  the family w:ix » U

constructed in lemma 5,
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§ 6. Lemma,

In" U {may be after shrinking} there exists an open
and everywhere dense subset U'<U such that if te€U’,
then X, = 7 (e) is a K#hler manifold.

Proof: In order to prove lemma 6 we will define the period

map
2
p:U + P (H°(X,Z) o @)

Since w3y + U as ¢® manifold is diffeomorphic to UxX, if

we fix a basis (YT""’Yb )} of Hzgx,Z} in one fibre of
2
w:yx > U

then ‘Y?""’Yb ) will be a basis of all fibres of weyx -+ U.
2
From now onw let us fix the basis (Yl""'yb } of Hz(X,Z) .
2
Notice that from lemma 3 we get a well defined Hodge structure

on HZ(X,R).

Definition 6.1. The period map

p:U + I (H?(X,Z) o)
is defined in the following way:

plt) = { ..., J 0, (2,0),...)

L£Y

where w,(2,0) is the holomorphic non-degenerate closed form

=1
on Xt = g " {t).
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Now let us fix some notations:

dlmmx = 2n

!
Y

We will suppose that | wt(Z,O}n Amt(G,Z}n = and

Xe

wx(E,O) = mO(Z,O}.

Definition 6.2. For every a € Hzgx,m) we will define

% { (mG(E,O),AwO(D,Z))n—1 A ol s
X

i

q(a)
(=) ug(2,0™  aug(0,2aa) - (Juy (2,00 auy(0,2)"  aa)

Proposition 6.3. a)The quadratic form g(a) is a non—-degenerate

quadratic form. It is defined over HZ(X,Z}. b} Let § be a

subvariety in (H?(X,E)) defined by
gla) = 0 glo + o) >0

then p(U) € R and the period map p:U »  is a local

isomorphism (See [2 1}.

Proof: The proof of b) is very easy. It is carried out in [2 ].

The proof of a) is based on the following sublemma.

Sublemma 6.3.1. The classes of cohomologies [w] of the forms

that are constructed in lemma 1 form an open and convex cone in

8V (x, ) =B (X,R) .
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Remark: From lemma 3 we know that dim!§’1(x,ﬂn = b2 - 2

and that we have a well defined Hodge structure of weight two on
Hz(X,IR) e & and so H1’1(X,ﬂu is a well defined subspace in
HZ{X,EH i.e. H1'1£X,En = {w € HgR(X,Ei)}w is a closed form

of type 1.1.1}.

Proof: Let YqteeetYp o bea basis of H"i(X;IR): then
2
if N is a positive real big enough number and E ,...,Ey _,

2
are positive real small enough numbers, then

b,~-2
1.1
Nw+] E;a, € H' (X, R)
i=1
will fulfill the properties of a closed two form stated

in lemma 1. So 6.3.1. is proved.

Q'E.D.
Notice that we have:

g (Re wo(z,o)) >0 g(Im mo{z,c)) >0 and if

w fulfills the conditions in lemma 1, then

glw) = % fx(m0(2,ﬁ}1\wo(0,2))n-1A W =

1,1 1,1

=3 S tp(2:0 700,278 20?08 07T 4 210 D nug 0,27 ! ke

LR [u] by lemma 2.

and clearly gqf(w) = q(@i’?}>0, where 0
Now proposition 6.3. a) follows from 6.3.1. For the proof of

the fact that g is defined over %, see [21] .
0.E.D.
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Definition 6.4. K(x) %8f (v ew' ' x,m) | J > 0 for

C
any K-dimensional complex analytic cycle K Ck © X }.

We will call X{X) the Kihlerconeocf X. Lemma 3 shows
that H1’1{X,ﬁﬂ is a well defined subspace in ﬂziz,mﬁ
and dimxgﬁ’T{X,IR} = b, - 2. From lemma 1 and 2 we get that

K(X) is a non-empty set,

If we repeat the arguments of 6.3.1. we will get

Proposition 6.6. K{X) is an open convex cone in Hi’Q(K,Iﬂ R

From local Torelli theorem it follows that we may suppose
that U «cQc 3>(H2(x,¢)}. Remember that Y » U was the family

constructed in lemma 5 dime = dimmﬁ.

dgf

Let W U K(X,) cH%(X,R) . From the definition of W

it follows that W is an open set in Hzix,ﬂﬁ . Here we used
also continuity argument.

Let W(@) def {2 € Wl 2 € HZ(X,Q}}. Clearly W{@) is

an open everywhere dense subset in W.

6€.7. From the definition of W{@} we get that

if 2 € W(@) there exists t€U such that & € K{Xt}. From
Nakai~Moishezon criterium we get that X, is an algebraic
variety. So since W{@) is an everywhere dense subset in W

we get immediately that the points ©€U for which W{@}{}Kixt}*ﬁ
is an everywhere dense subset in U. So we get that in U we
have an everywhere dense subset U" such that if t€U , then

X is a projective algebraic. Now lemma 6 follows from

Kodaira theorem, which says that K&hlerian property is an open

property . Q.E.D.
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Remark. From lemma 6, i.e. since there exists an open and
everywhere dense subset, it follows immediately that the
quadratic form q defined by 6.2. has singnature (3,b2- 3).

For the proof of this see [ 1].

§ 7. Review of Isometric Deformations

Definition 7.1. A K&hler metric (gdﬁ) an holomorphic

symplectic manifold will be called Calabi-Yau metric if

H
[w]

Ricei (gaﬁ} = 39log det (gag)

The existence of Calabi-Yau metric follows from the
deep work of Yau. The Calabi-Yau metric (gag induces
2

a covariant differenciation V on A“T*X o &. See [ID].

Lemma 7.2. Re wx(Z,G), Im mx(z,o) and Im (gdg) are

parallel sections of P(X,AZT*X) with respect to V.

Proof: See [ 9]1. This is the so called Bochner principle.
O.E.D.

Suppose that * is the Hodge star operator with respect to

Calabi~Yau metyic and
J Rew, (2,0) A* Rew, (2,0) = [Im wy(2,0)A * Im wy(2,0) =f1m(gg~§m * Imge=1.

Re w,{2,0), Im mxxz,e), Im {gag) define a three dimensional

2

subspace EX(L} in T'(X,A°T*X) and since
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Re wX(Z,O), Im wX(E,G) and Im gdﬁ

are harmonic forms with respect to the Calabi-Yau metric
we may censider EX(L) as a three dimensional subspace

in Hztx,}a . It is easy to see that
q{g (1) is positive definite. See [9 ].
X

Let Y = a Re w,(2,0) + b Im wy,(2,0) + c Im (g gz,

2 2

where a,b,c€ R and a”~ + b2 + ¢ = 1, S8ince vy € EX(L)f

then Vy & 0.

Locally vy can be written in the following way
= fa v
Y EYHU dx” a dx

£ ¥ Iy dx"e dx” is the Riemannian Ricci flat metric on
X defined by the Calabi-Yau metric (gdg) on X, then

J) = @ € (] Ty ) € rix, T 0 D)

T
Lemma 7.3, a) J{y) defines a new integrable complex
structure on X.
b} vy is an imaginary part of a Calabi-Yau metric with
respect to the new complex structure J{y}. The Calabi-Yau
metric defined by vy and J(y) is eguivalent as a Riemannian
metric to the Calabi~Yau metric 94E * that we started with.

c} Suppose (X’Yi""'YbZ; is a marked Hyper-Kdhlerian
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manifold and suppose that P(Xjyqr-.-rvy ) = Xq ESZCiP(Hz(X.W))»
2
There is one to one map defined by the period map between the

complex structures J(y) on X, where
= aRe w,(2,0) +b Imw,(2,0) +c Imlg ), a2 + b2 + c® = 1, a,b,c€R
Y UJX ’ Nx r aB' ! r Gy

and the points of the non~-singular plane guadric

1

X

P EX(L) » C) N Q=71
0

(L)
For the proof see [ ].

Remark a) Notice that J{Im gag) is the original complex
structure on X, so from c¢) we get that Xo € P; (n.).
0

§ 8. Construction of a special family of Kdhler manifolds.

Definition 8.1. N 98f {411 three dimensional subspaces

EC:EZIX,EH | E is spannedby Re wx(2,0),Im mx(z,O} and @ ,
where ¢ € K(X)}. K(X) is defined in 6.4. Now we suppose that
K(X) is spanned by all w€ T(X,AZT*X), where w are

constructed by lemma 1.

N as a subset is diffeomorphic to E  x K(X}, where
EX = {Re mX{Z,O),Im mx(z,ﬂ)}czﬁz(x,ll) so N is an open

subset in H2(X,R) .

Remark 8.2. a) We introduce in 6.2 a guadratic form (.
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See 6.2. Then this qudratic form has a signature (3,b, - 3).
This was proved by Beauville, See [ &]. Now let <,> the

scalar product defined by g on Hz(x,ﬂﬂ .

b} From the definition of N it follows that N is the union
of all three dimensional subspaces Ec:Hztx,HH which have

the following two properties:

1) <,> on E is strictly positive

2} E contains E where EX is spanned by

(Re wxlz,O),Im wx(2,0}}, so E is a fixed subspace in HZ(X,IR}:

In [ ] the following Proposition is proved:

Proposition 8.3. There is one to one map between the points of

2 and all oriented two planes in HE{X,IU on which <,> is

positive.

Let N(@) = {2 € N | & € B®(X,0)}. Clearly since N is an
open subset in H2{X,IR), then N{@} is an everywhere dense
subset in N, By the continuity argument we can choose L€ N{Q)
such that if L = a Re wx(Z,G) + b Im mx(z,ﬂl + ¢ wiw is

w?,?

constructed in lemma 1, i.e. is positive definite), then

a) If E_. is the orthogonal two dimensional plane to I in
the three dimensional space E = {Re wy (2,0}, Im wxiz,ﬁ),w}<:Niw)

then t € @ which corresponds to E_ by 8.3. belongs to U.

b) If wl’' is the (1,1) component of the form 2, with
1,1

respect to the complex structure Xt’ then Wy

is positive

everywhere.
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From lemma 2, lemma 4 und Nakai-Moishezon criterium we

get X is an algebraic manifold, so t€ U' defined by lemma 7.

t

Let ga—g(t) be the Yau metric on X, which corresponds to %.

t
Now we can define the isometric deformation ¥ =+ 52 of Xt
with respect to ga—git) . S0 this family is mapped by the period
map p onto P(Ee T)NQ according to 7.3. Notice that
P{Ee €} N § is a non-singular plane curve of degree two,

contained in €. (See 7.3.) On the other hand from the

definition of E, i.e. EcN(P) and 8.2.,it follows that
Un({(IrP{E o C)NQ) =D
is an open disc. Notice that the point p(X,Yys--+s7y ) = Xy €D,
2
Xp €EUN (IP(E & T) N Q)
In [ ] it is proved that for Kihler holomorphic symplectic
manifolds we have an everywhere dense subset of algebraic one
in § and all of them are in HLn {{, where
H =:{u€@ | <u,L>=0}
and L are vectors in HZ (X,@). Now sirce H;N (P(Ee €)NQ) # @
we get on D an everywhere dense subset of algebraic holomorphic

symplectic manifolds, so from here we get that

D' = U'nD (U' is defined by lemma 6)
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is an open and everywhere dense subset in D.

Over D = mi’uam €) NU we have two families miXp D
which is obtained by restriction ¥ - U on D and a family
xé + D which is obtained by isometric deformation. From local
Torelli theorem and lemma 9 our theorem follows, since we

.Hl

can prove that the families T p and xé + D are

X
D
isomorphic. Indeed remember that 3t € D such that e el .
From local Torelli theorem we conclude, that we can find a small

open disk ET <D and t€D such that there exists a

1
biholomorphic mapping f:§1 M i% and f induces the
Dy =Dy
identity on Hz(x,xﬂ . Prom lemma 9 it follows that f can
be prolonged to an isomorphism on the boundary of the disc D?
in D. So from here we get that local Torelli gives us that the two
families are isomorphic on an open subset of D. Lemma 9 says
that they are isomorphic on a closed subset, so f must be an
isomorphism. So we need to proof lemma 9 and the theorem will
be proved.
§ 9
Lemma 9. (Siu, Burns und Rapoport} Let w=:x » U and
m:x' >+ U be two holomorphic families of symylectic mani-
folds with a complex manifold U as a parameter space so
that both are diffeomorphically identified with a trivial
family UxX-+U. Let Tt be an isomorphism of Hzix,Q) which
is compatible with the gquadratic form defined in [ 1. Let

-1 -1

Xg =7 (s} and X = 7' for s€U. Let s, be a point

of U and let A be a subset of U such that Sg is an
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accumulation point of A. Assume the following two conditions.

(iy X is Kihler
50

(ii) For s€A the two symplectic manifolds X_ and Xl
are biholomorphic under a map fs which induces T on
n% (x,q).
Then X, and X! are biholomorphic. See {71 .
0 0
Proof: From lemma 1 we know that there exists a real d closed
2-form w on the underlying differentiable structure X such

1,1

that {1,1})~component w of w with respect to the complex

structure of Xéo is positive definite at every point of Xéo.
By continuity arguments there exists an open neighborhood W

of Sy in U such that for s € W the (1,1)-component w1’1(s)
of w(S) with respect to the complex structure Xé is positive
definite at every point of Xé.

Since XSO is assumed Kihler, (after shrinking W if
necessary} we have for every s €W a Kédhler form 6(S) which
depends smoofhly on s. Let n be a positive definite (1,1)-form
on W. The collection of (1,1) forms m1’1(s) on Xé , 9(s)
and n , define a Hermitian metric H on ¥ x.x'. Let H be
the (1,1) form on ¥ xyX' associated to the Hermitian metric

H. Then the pullback of H to the submanifold XS><X;

of ¥ xwx' is equal to

G(s) + wj’qis)
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where for notational complicity we use w"qts) and 0(s)
to denote also their pullbacks under the projections form

xr i 1] 3
XS><XS to X and X, Trespectively .

For s€eWnNAa let ng sz X; be the graph of the
holomorphic map f_:X_ -~ Xé. We want to compute the volume
(Tsl with repect to H on ¥ xwx' and to show that it is
bounded in s as s approaches S, SO that we can apply
Bishop's theorem to conclude the convergence of the subvariety

T in ¥ xwx' as s approaches

s So-

Proposition 4.1. Vol {rs}~:c for every s€A.

Proof: It is easy to see that:

Vol (I = f (£% w1 (s) + 0(s) ) An. A (£ 6V (g) + 0(s))
ST . }

2n

Let  o(s) %8F [ (£xu(s) + @(s))a...alftuls) + Ols))
X
s

We will prove that the following inequalities hold:
vol (FS) L@is)< C
First we will show that ¢(s) <C. Indeed

ofs) = [ (tluis) ]+ [0(s)] A...altlwis) +[0(s) ]}

s

80 from here it follows that on W
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pl{S) < C.
So we need to prove that
(*) vel (T} = ov(s).

Proof of the inequality (*)}:

2

Let frul(s) = Os) + o

’3(81 + mﬁ’z(s), then

1

(4.1.1.1 sy +w " Hs)+0 72 (5)+0(s) . . A (w2 P () +001 7 T (s) w0072 (5) 40 (s)) =

L n J
Y
2n
mz’OA“.sz'sA(AZ’OA.,;AwZ' +&&@2ﬂhﬁ%%(ml'1{s)+®(s))A”A(w1’1(s)+@(s))
H J i J £ 1 J
Y Y T
n n 2n—-2k
1,1 1.1
+ {w {s) + O(s))a...afw (s} + B(s)), where cKEZZ,cK>-Q
L . )
2n
and mi'ois} = mz’ﬂ(s)A...A m2’0€s).
’ L J
Y
k
Notice that *wz’o = wi’c A(w1'1(s) + 0{s))A...n (m1’1(s}+e(s))

L , J
H

2n-2k
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where * 1is the Hodge operator with respect to the
Hermitian metric H, where 1ImH = wT'q(s) + ©(s) on

X  x X; . S0 by integrating 4.1.1. we get

_ 2,0 2 2,0 2
4.1.2. e{s) = ihﬂn’ (s)H®+ } ckﬂmkf (s} ™ + vol(?33
So from 4.1.2. we get that

vol (I‘S) c¢i{s) <C

Q.E.D.

For a subvariety Z of pure codimension in a complex
manifold X, we denote by [Z] the current on G defined by Z.
Now We invoke Bishop's theorem [ ] and conclude that for
some subsequence {sv}c A converging to Sg the current
{Fsv} over X x. x'kconverges weakly to a current on
X *yX' of the form ‘ET mi{F%], where m; is a positive
integer and Pi is a;‘irreéucible subvariety of complex

dimension 2non X_ x X'
So S °

For any closed 4n-current 6 on X% X define a linear

map
B*:H*(XS,E) > H*{Xé,m)
of cohomology rings as follows. A cohomology c¢lass defined by

a closed p~form o on X is mapped by 0, to the cohomology

class defined by the closed p-current
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(pxz)*(B/\(pr )*a) on Xé
1 1

where pr and pr are respectively by projections of
1 ‘2

X, x X! onto the first and second factors and (pr )}, and
2

(prﬁ)* mean respectively the corresponding pushforward and
pullback maps. By reversing the rules of Xs and Xé . we

define analogously a linear map
B*:H*(XQ,E)-+ H*(XS,E)

The map [T l, defined by the 4n-current [T_] in
XS><Xé clearly agrees with the map from H*(XS,E) to
H*(Xé,ﬂ) defined by fs‘ Since fs defines an isomorphism
on HZ(X,Z), by passing to limit along the subsequence {s,}
we conclude that (‘% miiri})* is an isomorphism of

2 i=1
A BHO(X,Z).

Let mD(Zn,O} = mQ(Z,O)A...AMO(Z,D) be the non-zero

L J
i

2n

holomorphic 2n form, which has no zeroces and no poles on

K .
X, - Since ({ ) mi{rl])* is an isomorphism of AHZ{X,E) it
0 i=1

follows that the 2n~current

(px ) (tmy (171 2 (b )* wp(20.0))

on X; (which is automatically a holomorphic 2n-form on
o .
x; )} can not be zero. Hence there must be some [I? which

0
is projected both onto Xs and X; . There can only be one

0 0
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such rJd and moreover, mj = 1 and its projection maps

onto XS and onto x; are both of degree one, because
o X , K .
both (3 mi{rll)* and () mi[rlj)* must leave fixed
i=1 i=1
the class in HO(X,EQ which is defined by the function on X

with constant values. This particular r4  must be projected

biholomorphically onto both Xs and X; . then the

0 0
following two holomorphic 2n-forms, where wé(zn,O} is a

non~zero 2n-holomorphic form on X[:(p, )L (Irdl A {py, 1*(wg{2n,0))=
1 2

= (e )5 (Imy [r*1a(p, )% (uf(20,00)

. X .
€p22)*({F3}A (B, 1* 020 00] = ()l T m, (11 (2 )* 0(2,0))
1=

on XO and Xé respectively cannot be identically zero due to

K 2 K :
the fact that both ( } mi{?l])* and ( ) mi[Pl])* are
: i=1 i=1
isomorphisms of &HZ(X,E) and therefore both holomorphic

2n—-forms are nowhere zero. This can happen only when rd  are

projected biholomorphically onto both XS and Xé . Hence
0 0
X and X; are biholomorphic.

5o 0
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