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ON CLASSICAL TENSOR CATEGORIES ATTACHED TO

THE IRREDUCIBLE REPRESENTATIONS OF THE

GENERAL LINEAR SUPERGROUPS GL(n|n)

TH. HEIDERSDORF, R. WEISSAUER

Abstract. We study the quotient of Tn = Rep(GL(n|n)) by the ten-
sor ideal of negligible morphisms. If we consider the full subcategory
T +
n of Tn of indecomposable summands in iterated tensor products of

irreducible representations up to parity shifts, its quotient is a semisim-
ple tannakian category Rep(Hn) where Hn is a pro-reductive algebraic
group. We determine the connected derived subgroup Gn ⊂ Hn and
the groups Gλ = (Hλ)0der corresponding to the tannakian subcategory
in Rep(Hn) generated by an irreducible representation L(λ). This gives
structural information about the tensor category Rep(GL(n|n)), includ-
ing the decomposition law of a tensor product of irreducible representa-
tions up to summands of superdimension zero. Some results are condi-
tional on a hypothesis on 2-torsion in π0(Hn).
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1. Introduction

1.1. Semisimple quotients. The categories of finite dimensional represen-
tations Tn of the general linear supergroups GL(n|n) over an algebraically
closed field k of characteristic zero are abelian tensor categories, where
representations in this article are always are understood to be algebraic.
However, contrary to the classical case of the general linear groups GL(n),
these categories are not semisimple. Whereas the tensor product V ⊗ V ,
V ' kn|n, is completely reducible, this is no longer true for the tensor prod-
uct A = V ⊗V ∨. Indeed A defines the indecomposable adjoint representation
ofGL(n|n), hence admits a trivial one dimensional subrepresentation defined
by the center and a trivial one dimensional quotient representation defined
by the supertrace. In contrast to the classical case the supertrace is trivial on
the center, and A is indecomposable with three irreducible Jordan-Hoelder
factors 1, S1, 1 with the superdimensions 1,−2, 1 respectively defined by the
filtration z ⊆ sl(n|n) ⊆ gl(n|n), where z denotes the center of gl(n|n).

Although the irreducible representations of GL(n|n) can be classified by
highest weights similarly to the classical case, this implies that the tensor
product of irreducible representations is in general far from being completely
reducible. In fact Weyl’s unitary trick fails in the superlinear setting. While
the structure of Tn as an abelian category is now well understood [BS12a],
its monoidal structure remains mysterious.

The perspective of this article is that in order to restore parts of the clas-
sical picture two finite dimensional representations M and M ′ of GL(n|n)
should not be distinguished, if there exists an isomorphism

M ⊕N ∼= M ′ ⊕N ′

where N and N ′ are negligible modules. Here we use the notion that a
finite dimensional module is said to be negligible if it is a direct sum of
indecomposable modules whose superdimensions are zero. A typical example
of a negligible module is the indecomposable adjoint representation A. To
achieve this we divide our category Tn by the tensor ideal N [AK02] of
negligible morphisms. The quotient is a semisimple abelian tensor category.
By a fundamental result of Deligne it is equivalent to the representation
category of a pro-reductive supergroup Gred [Hei14].

Taking the quotient of a non-semisimple tensor category by objects of
categorial dimension 0 has been studied in a number of different cases. A
well-known example is the quotient of the category of tilting modules by the
negligible modules (of quantum dimension 0) in the representation category
of the Lusztig quantum group Uq(g) where g is a semisimple Lie algebra over
k [AP95] [BK01]. The modular categories so obtained have been studied
extensively in their applications to the 3-manifold invariants of Reshetikhin-
Turaev. In [Ja92] Jannsen proved that the category of numerical motives as
defined via algebraic correspondences modulo numerical equivalence is an
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abelian semisimple category. It was noted by André and Kahn [AK02] that
taking numerical equivalence amounts to taking the quotient by the negli-
gible morphisms. Jannsen’s theorem has been generalized to a categorical
setting by [AK02]. In particular they study quotients of tannakian categories
by the ideal of negligible morphisms. Recently Etingof and Ostrik [EO18]
studied semisimplifactions with an emphasis on finite tensor categories.

A general study of Rep(G)/N , where G is a supergroup scheme, was
initiated in [Hei14] where in particular the reductive group Gred given by
Rep(Gred) ' Rep(GL(m|1))/N was determined. This example is rather
special since Rep(GL(m|1)) has tame representation type. For m,n ≥ 2
the problem of classifying irreducible representations of Gred is wild [Hei14].
Therefore one should not study the entire quotient Tn/N , but rather pass
to a suitably small tensor subcategory in Tn.

1.2. The Tannaka category T n. In this article we work with the tensor
subcategory generated by the irreducible representations of positive superdi-
mension in the following sense. Recall that an irreducible representation
L(λ) of GL(n|n), defined by some integrable highest weight λ, can be re-
placed by a parity shift Xλ of L(λ) so that the superdimension sdim(Xλ)
becomes ≥ 0. This is of course ambiguous for irreducible representations of
GL(n|n) with sdim(L) = 0, but these representations are negligible in the
sense that we want to get rid of them. We therefore consider only objects
that are retracts of iterated tensor products of irreducible representations
L(λ) of GL(n|n) satisfying sdim(L(λ)) ≥ 0. The tensor category thus ob-
tained will be baptized T +

n . The tensor subcategory T +
n of Rep(GL(n|n))

has more amenable properties than the full category Rep(GL(n|n)). To mo-
tivate this, let us compare it with the tensor category of finite dimensional
algebraic representations Rep(G) of an arbitrary algebraic group G over k.
In this situation the tensor subcategory generated by irreducible represen-
tations is semisimple1 and can be identified with the tensor category of the
maximal reductive quotient of G. The tensor category T +

n however is not
a semisimple tensor category in general. To make it semisimple we proceed
as follows:

Let T n denote the quotient category of T +
n obtained by killing the negli-

gible morphisms in the maximal tensor ideal N and hence in particular all
neglegible objects, i.e. T n ∼= T +

n /N . In order to analyze these categories, we
work inductively using the cohomological tensor functors DS : Tn → Tn−1

of [HW14]. We show in lemma 5.4 that DS induces a tensor functor
DS : T +

n → T +
n−1.

1In [KrW15, p.231, 1.22ff] it was forgotten to mention the important passage to the
tensor subcategory generated by simple objects. The corresponding statement is false
without it as kindly pointed out by Y. André.
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Theorem 1.1. (1) The categories T n are semisimple Tannakian cat-
egories T n, i.e T n ∼= Rep(Hn) where Hn is a projective limit of
reductive groups over k.

(2) From DS one can construct a k-linear tensor functor between the
quotient categories

η : T +
n /N → T +

n−1/N .

These functors η = ηn induce embeddings of affine group schemes
Hn−1 ↪→ Hn. Furthermore η : Rep(Hn) → Rep(Hn−1) can be iden-
tified with the restriction functor (with respect to this embedding)
and is induced by the functor DS on objects.

If Xλ ∈ T +
n is an irreducible maximal atypical representation, we de-

note by Hλ the reductive group corresponding to the tensor subcategory
< Xλ >' Rep(Hλ) generated by the image of Xλ in T n. The derived group
of its connected component will be baptized Gλ. In order to determine the
group Hn we essentially have to identify each Hλ for maximal atypical λ. We
first determine the derived groups Gn ⊆ Hn of their connected components
H0
n which basically amounts to determine Gλ for each λ.

Any object X in T n can be viewed by the tannakian formalism as a
representation of Hn. We denote by ω the fiber functor

ω : (T n,⊗) ∼= Repk(Hn)→ veck

which associates to an object X the underlying finite dimensional k-vector
space of the representation associated to X. For the irreducible representa-
tion Xλ we use the notation Vλ simultaneously for the irreducible represen-
tation of Hλ as well as for the underlying vector space ω(Xλ). Note that
dim(Vλ) = sdim(Xλ). We distinguish two cases: Either Xλ is a weakly self-
dual object (SD), i.e. X∨λ

∼= Berr ⊗Xλ for some tensor power Berr of the
Berezin determinant; or alternatively Xλ is not weakly selfdual (NSD). In
the (SD) case Vλ carries a symmetric (the even (SD)-case) or antisymmetric
pairing (the odd (SD)-case). The dual and the superdimension of Xλ can
be easily expressed in terms of the weights λ or in terms of self-equivalences
of the irreducible objects Xλ.

Theorem 1.2. (Structure theorem for Gλ) Gλ = SL(Vλ) if Xλ is (NSD).
If Xλ is (SD) and Vλ|Gλ′ is irreducible, Gλ = SO(Vλ) respectively Gλ =
Sp(Vλ) according to whether Xλ is even respectively odd. If Xλ is (SD) and
Vλ|Gλ′ decomposes into at least two irreducibe representations, then Gλ ∼=
SL(W ) for Vλ|Gλ′ ∼= W ⊕W∨.

The group Gn can be understood from this in rather down to earth terms:
For this let X+ = X+(n) denote the set of highest weights of GL(n|n)
and X+

0 (n) the subset of maximal atypical highest weights. For a simple
equivalence relation on X+

0 (n) (two irreducible modules M,N are equivalent
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if M ∼= N or M∨ ∼= N holds after restriction to SL(n|n)) let Y +
0 (n) denote

the quotient of X+
0 (n) by this equivalence relation. Then we have

Theorem 1.3. (Structure theorem for Gn) There exists an isomorphism

Gn ∼=
∏

λ∈Y +
0 (n)

Gλ

where Gλ is as in theorem 1.2.

The representations Vλ = ω(Xλ) of the group Gn corresponding to the
irreducible representations Xλ of the group GL(n|n) factorize over the quo-
tient

prλ : Gn =
∏

λ′∈Y +
0 (n)

Gλ′ � Gλ

and correspond to the standard representation of its quotient group Gλ on
the vectorspace Vλ.

We conjecture that Vλ is always irreducible as a representation of Gλ.
This would imply the following stronger structure theorem.

Conjecture 1.4. Gλ = SL(Vλ) resp. Gλ = SO(Vλ) resp. Gλ = Sp(Vλ)
according to whether Xλ satisfies (NSD) respectively (SD) with either Xλ

being even respectively odd.

The ambiguity in the determination of Gλ is only due to the fact that
we cannot exclude special elements with 2-torsion in π0(Hn). More pre-
cisely, under some assumptions on the weakly selfdual weight λ, the cat-
egory Rep(Hλ) might contain non-trivial one-dimensional representations
which correspond to indecomposable representations I ∈ T +

n with the fol-
lowing properties:

(1) I is indecomposable in T +
n with sdim(I) = 1.

(2) There exists an irreducible object L of T +
n such that I occurs (with

multiplicity one) as a direct summand in L⊗ L∨.
(3) L⊗ I ∼= L⊕N for some negligible object N .
(4) I∨ ∼= I.
(5) I∗ ∼= I.
(6) DS(I) is 1 plus some negligible object.

We claim that this implies I ' 1 in T +
n (which would imply the conjec-

ture), but are unable to prove this at the moment. For some remarks and
special cases see appendix D.

1.3. The Picard group of T n. In order to determine Hn from Gn, we
need to determine the invertible elements in Rep(Hn), i.e. the Picard group
Pic(Hn), or in down-to-eart terms, the character group of Hn. A first
analysis of Pic(T n) can be found in section 12. We complete the deter-
mination of Hλ and Hn then in the partially conjectural big picture sec-
tion 13. If a certain integer `(λ) (defined in section 12) is non-zero, we
show in section 13 that the groups Hλ are given by GL(Vλ), GSO(Vλ) and
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GSp(Vλ). This follows from the fact that the tensor powers of the determi-

nant det(Xλ) = Λsdim(Xλ) generate a subgroup isomorphic to Rep(GL(1))
for `(λ) 6= 0, and that the character group of Hλ is therefore as large as pos-
sible. In the general case the difficult part is to rule out other 1-dimensional
representations of Hλ, e.g. those that could come from a finite abelian sub-
group. We call an indecomposable module V in T +

n with sdim(V ) = 1
special, if V ∗ ∼= V and H0(V ) contains 1. We then conjecture

Conjecture 1.5. Every special module is trivial V ∼= 1.

We use this to calculate the determinant Λsdim(Xλ)(Xλ) of an irreducible
representation Xλ. We prove in theorem 13.5 (assuming conjecture 1.5) that
the determinant is always a Berezin power

Λsdim(Xλ)(Xλ) ∼= Ber`(λ) ⊕ negligible

up to negligible modules. More generally we conjecture

Conjecture 1.6. Any invertible object I in T n is represented in Tn by a
power of the Berezin determinant.

Under this strong conjecture, by theorem 13.11, the possible Tannaka
groups Hλ are the following groups:

Hλ = SL(Vλ), GL(Vλ), Sp(Vλ), SO(Vλ), GSO(Vλ), GSp(Vλ).

This would in particular imply that the restriction of any irreducible repre-
sentation of Hn to Gn stays irreducible.

Reformulating these statements for the category of representations of
GL(n|n), what we have achieved is

• a description of the decomposition law of tensor products of irre-
ducible representations into indecomposable modules up to negligi-
ble indecomposable summands; and
• a classification (in terms of the highest weights of Hλ and Hµ) of

the indecomposable modules of non-vanishing superdimension in it-
erated tensor products of L(λ) and L(µ).

To determine this decomposition it suffices to know the Clebsch-Gordan
coefficients for the classical simple groups of type A,B,C,D. Furthermore
the superdimensions of the indecomposable summands are just the dimen-
sions of the corresponding irreducible summands of the tensor products in
Repk(Hn). Without this, to work out any such decomposition is rather
elaborate. For the case n = 2 see [HW15]. In fact the knowledge of the
Jordan-Hölder factors usually gives too little information on the indecom-
posable objects itself. In the (NSD) and the odd (SD)-case it is enough for
these two applications to know the connected derived group Gλ since the
restriction of any irreducible representation of Hλ to Gλ stays irreducible.
Therefore these results hold unconditionally in these cases. In the even
(SD)-case we need the finer (but conjectural) results of section 13 to see
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that Hλ is connected. We refer the reader to example 9.7 and section 13 for
some examples.

1.4. Structure of the article. Our main tool are the cohomological tensor
functors DS : Tn → Tn−1 of [HW14]. In the main theorem of [HW14,
Theorem 16.1] we calculate DS(L(λ)). In particular DS(L(λ)) is semisimple
and multiplicity free. We show in lemma 5.4 that DS induces a tensor
functor DS : T +

n → T +
n−1 and by lemma 5.10 one can construct a tensor

functor on the quotient categories

η : T +
n /N → T +

n−1/N .

This seemingly minor observation is one of the crucial points of the proof
since it allows us to determine the groups Hn and Gn inductively. We also
stress that it is not clear whether DS naturally induces a functor between
the quotients Tn/N and Tn−1/N on the level of morphisms. It is however
compatible with the functor η on objects. The quotient T +

n /N is equivalent
to the representation category Rep(Hn) of finite-dimensional representations
of a pro-reductive group. By a deep theorem 5.16 of Deligne the induced
DS functor determines an embedding of algebraic groups Hn−1 ↪→ Hn and
the functor DS is the restriction functor with respect to this embedding.

Hence the main theorem of [HW14] tells us the branching laws for the
representation Vλ with respect to the embedding Hn−1 ↪→ Hn. Our strategy
is to determine the groups Hn or Gn inductively using the functor DS. For
n = 2 we need the explicit results of [HW15] to give us the fusion rule
between two irreducible representations and we describe the corresponding
Tannaka group in lemma 9.2. Starting from the special case n = 2 we can
proceed by induction on n. For this we use the embedding Hn−1 → Hn along
with the known branching laws and the classification of small representations
due to Andreev, Elashvili and Vinberg [AVE67] which allows to determine
inductively the connected derived groups Gn = (H0

n)der for n ≥ 3; see section
10. The passage to the connected derived group is forced due to our lack
of knowledge about the connected components of Hn. On the other hand
this means that we have to deal with the possible decomposition of Vλ when
restricted to Gn. In order to determine Gn we first determine the connected
derived groups Gλ corresponding to the tensor subcategory generated by
the image of L(λ) in T n in theorem 6.2. Roughly speaking the strategy of
the proof is rather primitive: We use the inductively known situation for
Gn−1 to show that for sufficiently large n the rank and the dimension of Gλ
is large compared to the dimension of Vλ, i.e. Vλ or any of its irreducible
constituents in the restriction to Gλ should be small in the sense of [AVE67].
We refer to section 10 for more details on the proof.

The two final sections are devoted to the determination of Rep(Hn).
While section 12 is independent of the sections on the structure theorem,
section 13 assumes the stronger conjectural structure theorem 11.1 for Gn.
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We have outsourced a large number of technical (but necessary) results
to the appendices A B C as to not distract the reader too much from the
structure of the arguments. The other appendices D E F discuss mostly
examples and evidences for our conjectures.

Most of the results discussed here for the general linear supergroups
GL(n|n) can be rephrased for representations of the general linear super-
groups GL(m|n) for m 6= n. This will be discussed elsewhere.

A part of the motivation for our computation of the Tannaka groups Hn

comes from the relationship to the real algebraic supergroups SU(2, 2|N) for
N ≤ 4 which are covering groups of the super conformal groups SO(2, 4|N).
The complexification g of their Lie algebras are the complex Lie superalge-
bras sl(4|N), whose finite dimensional representations are related to those
of the Lie superalgebras gl(n|n) for n ≤ 4, as mentioned in the last sec-
tion above. The complexification g defines vector fields on four dimensional
Minkowski superspace M and plays an important role for string theory and
the AdS/CFT correspondence. We wonder whether there exist reasonable
supersymmetric conformal field theories whose fields ψ are defined on M
(or related spaces) and have their values not in a representation of g of
superdimension zero, but rather have values in maximal atypical basic rep-
resentations V of g. The Feynman integrals of any such theory are computed
from tensor contractions via superintegration and contractions between ten-
sor products of the fields, and hence their values are influenced by the un-
derlying rules of the tensor categories Tn. If, for some mysterious physical
reasons, in such a theory the contribution to the Feynman integrals from
summands of superdimension zero would be relatively small by supersym-
metric cancellations, hence to first order negligible in a certain energy range,
a physical observer might come up with the impression that the underlying
rules of symmetry were dictated by contractions imposed by the invariant
theory of the quotient tensor categories T = Rep(Hn), i.e. those tensor cat-
egories that are obtained by ignoring negligible indecomposable summands
of superdimension zero. Since for gl(n|n), besides U(1), the smallest quo-
tient groups of the tannakian groups Hn that arise for T = Rep(Hn) and
n = 2, 3, 4 are SU(2) and SU(3) (see the example 13.12 and also thereafter),
where the latter two are related to the representations V = S1 and V = S2,
we henceforth ask whether there may be any connection with the symme-
try groups arising in the standard model of elementary particle physics. Of
course this speculation is highly tentative. Fields with values in maximal
atypical representations V very likely produce ghosts in the associated in-
finite dimensional representations of g. In other words, such field theories
may a priori not be superunitary and it is unclear whether the passage to the
cohomology groups for operators like DS or the Dirac operator HD [HW14],
breaking the conformal symmetry, would suffice to get rid of ghosts.
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2. The superlinear groups

Let k be an algebraically closed field of characteristic zero. We adopt
the notations of [HW14]. With GL(m|n) we denote the general linear su-
pergroup and by g = gl(m|n) its Lie superalgebra. A representation ρ of
GL(m|n) is a representation of g such that its restriction to g0̄ comes from an
algebraic representation of G0̄ = GL(m)×GL(n). We denote by T = Tm|n
the category of all finite dimensional representations with parity preserving
morphisms.

2.1. The category R. Fix the morphism ε : Z/2Z→ G0 = GL(n)×GL(n)
which maps −1 to the element diag(En,−En) ∈ GL(n) × GL(n) denoted
εn. Notice that Ad(εn) induces the parity morphism on the Lie superal-
gebra gl(n|n) of G. We define the abelian subcategory R = sRep(G, ε)
of T as the full subcategory of all objects (V, ρ) in T with the property
pV = ρ(εn); here pV denotes the parity morphism of V and ρ denotes
the underlying homomorphism ρ : GL(n) × GL(n) → GL(V ) of algebraic
groups over k. The subcategory R is stable under the dualities ∨ and ∗.
For G = GL(n|n) we usually write Tn instead of T , and Rn instead of
R. The irreducible representations in Rn are parametrized by their highest
weight with respect to the Borel subalgebra of upper triangular matrices. A
weight λ = (λ1, ..., λn | λn+1, · · · , λ2n) of an irreducible representation in Rn
satisfies λ1 ≥ . . . λn, λn+1 ≥ . . . λ2n with integer entries. The Berezin deter-
minant of the supergroup G = Gn defines a one dimensional representation
Ber. Its weight is is given by λi = 1 and λn+i = −1 for i = 1, .., n. For
each representation M ∈ Rn we also have its parity shifted version Π(M)
in Tn. Since we only consider parity preserving morphisms, these two are
not isomorphic. In particular the irreducible representations in Tn are given
by the {L(λ),ΠL(λ) | λ ∈ X+}. The whole category Tn decomposes as
Tn = Rn ⊕ΠRn [Bru03, Corollary 4.44].

2.2. Kac objects. We put p± = g(0) ⊕ g(±1) for the usual Z-grading g =
g(−1)⊕g(0)⊕g(1). We consider a simple g(0)-module as a p±-module in which
g(1) respectively g(−1) acts trivially. We then define the Kac module V (λ)
and the anti-Kac module V ′(λ) via

V (λ) = Indgp+L0(λ) , V ′(λ) = Indgp−L0(λ)

where L0(λ) is the simple g(0)-module with highest weight λ. The Kac
modules are universal highest weight modules. V (λ) has a unique maximal
submodule I(λ) and L(λ) = V (λ)/I(λ) [Kac78, Proposition 2.4]. We denote
by C+ the tensor ideal of modules with a filtration by Kac modules in Rn
and by C− the tensor ideal of modules with a filtration by anti-Kac modules
in Rn.

2.3. Equivalence classes of weights. Two irreducible representations M ,
N in T are said to be equivalent M ∼ N , if either M ∼= Berr ⊗ N or
M∨ ∼= Berr⊗N holds for some r ∈ Z. This obviously defines an equivalence
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relation on the set of isomorphism classes of irreducible representations of
T . A self-equivalence of M is given by an isomorphism f : M ∼= Berr ⊗
M (which implies r = 0 and f to be a scalar multiple of the identity)
respectively an isomorphism f : M∨ ∼= Berr ⊗ M . If it exists, such an
isomorphism uniquely determines r and is unique up to a scalar and we say
M is of type (SD). Otherwise we say M is of type (NSD). The isomorphism
f can be viewed as a nondegenerate G-equivariant bilinear form

M ⊗M → Berr ,

which is either symmetric or alternating. So we distinguish bitween the
cases (SD±). Let Y +(n) denote the set of equivalence classes of irreducible
representations in Tn.

2.4. Negligible objects. An object M ∈ Tn is called negligible, if it is
the direct sum of indecomposable objects Mi in Tn with superdimensions
sdim(Mi) = 0. The collection of these objects forms an ideal. We denote
the largest proper tensor ideal of Tn by N . An object X ∈ Tn is isomorphic
to zero in Tn/N if and only if X is negligible.

Example 2.1. An irreducible representation has superdimension zero if and
only if it is not maximal atypical, see section 3. The standard representation
V ' kn|n has superdimension zero and therefore also the indecomposable
adjoint representation A = V ⊗ V ∨.

3. Weight and cup diagrams

3.1. Weight diagrams and cups. Consider a weight

λ = (λ1, ..., λn|λn+1, · · · , λ2n).

Then λ1 ≥ ... ≥ λn and λn+1 ≥ ... ≥ λ2n are integers, and every λ ∈ Z2n

satisfying these inequalities occurs as the highest weight of an irreducible
representation L(λ). The set of highest weights will be denoted by X+ =
X+(n). Following [BS12a] to each highest weight λ ∈ X+(n) we associate
two subsets of cardinality n of the numberline Z

I×(λ) = {λ1, λ2 − 1, ..., λn − n+ 1}
I◦(λ) = {1− n− λn+1, 2− n− λn+2, ...,−λ2n}.

We now define a labeling of the numberline Z. The integers in I×(λ)∩I◦(λ)
are labeled by ∨, the remaining ones in I×(λ) resp. I◦(λ) are labeled by ×
respectively ◦. All other integers are labeled by ∧. This labeling of the
numberline uniquely characterizes the weight vector λ. If the label ∨ occurs
r times in the labeling, then r = atyp(λ) is called the degree of atypicality of
λ. Notice 0 ≤ r ≤ n, and for r = n the weight λ is called maximal atypical.
A weight is maximally atypical if and only if λi = −λn+i for i = 1, . . . , n in
which case we write

L(λ) = [λ1, . . . , λn] .
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To each weight diagram we associate a cup diagram as in [BS11] [HW14].
The outer cups in a cup diagram define the sectors of the weight as in
[HW14]. We number the sectors from left to right S1, S2, . . ., Sk.

3.2. Important invariants. The segment and sector structure of a weight
diagram is completely encoded by the positions of the ∨’s. Hence any finite
subset of Z defines a unique weight diagram in a given block. We associate
to a maximal atypical highest weight the following invariants:

• the type (SD) resp. (NSD),
• the number k = k(λ) of sectors of λ,
• the sectors Sν = (Iν ,Kν) from left to right (for ν = 1, ..., k),
• the ranks rν = r(Sν), so that #Iν = 2rν ,
• the distances dν between the sectors (for ν = 1, ..., k − 1),
• and the total shift factor d0 = λn + n− 1.

If convenient, k sometimes may also denote the number of segments, but
hopefully no confusion will arise from this.

A maximally atypical weight [λ] is called basic if (λ1, ..., λn) defines a
decreasing sequence λ1 ≥ · · · ≥ λn−1 ≥ λn = 0 with the property n− i ≥ λi
for all i = 1, ..., n. The total number of such basic weights in X+(n) is
the Catalan number Cn. Reflecting the graph of such a sequence [λ] at the
diagonal, one obtains another basic weight [λ]∗. By [HW14, Lemma 21.4]
a basic weight λ is of type (SD) if and only if [λ]∗ = [λ] holds. To every
maximal atypical highest weight λ is attached a unique maximal atypical
highest weight λbasic

λ 7→ λbasic

having the same invariants as λ, except that d1 = · · · = dk−1 = 0 holds for
λbasic and the leftmost ∨ is at the vertex −n+ 1.

4. Cohomological tensor functors.

4.1. The Duflo-Serganova functor. We attach to every irreducible rep-
resentation a sign. If L(λ) is maximally atypical we put ε(L(λ)) = (−1)p(λ)

for the parity p(λ) =
∑n

i=1 λi. For the general case see [HW14]. Now for
ε ∈ {±1} define the full subcategories Rn(ε). These consists of all objects
whose irreducible constituents X have sign ε(X) = ε. Then by [HW14,
Corollary 15.1] the categories Rn(ε) are semisimple categories. Note that
sdim(X) ≥ 0 holds for all irreducible objects X ∈ Rn(ε) in case ε = 1 and
also for all irreducible objects X ∈ ΠRn(ε) in case ε = −1.

We recall some constructions from the article [HW14]. Fix the following
element x ∈ g1,

x =

(
0 y
0 0

)
for y =


0 0 . . . 0
0 0 . . . 0
. . . . . .
1 0 0 0

 .
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Since x is an odd element with [x, x] = 0, we get

2 · ρ(x)2 = [ρ(x), ρ(x)] = ρ([x, x]) = 0

for any representation (V, ρ) of Gn in Rn. Notice d = ρ(x) supercommutes
with ρ(Gn−1). Then we define the cohomological tensor functor DS as

DS = DSn,n−1 : Tn → Tn−1

via DSn,n−1(V, ρ) = Vx := Kern(ρ(x))/Im(ρ(x)).
In fact DS(V ) has a natural Z-grading and decomposes into a direct sum

of Gn−1-modules

DS(V, ρ) =
⊕
`∈Z

Π`(H`(V )) ,

for certain cohomology groups H`(V ). If we want to emphasize the Z-
grading, we also write this in the form

DS(V, ρ) =
⊕
`∈Z

H`(V )[−`].

Theorem 4.1. [HW14, Theorem 16.1] Suppose L(λ) ∈ Rn is an irre-
ducible atypical representation, so that λ corresponds to a cup diagram

r⋃
j=1

[aj , bj ]

with r sectors [aj , bj ] for j = 1, ..., r. Then

DS(L(λ)) ∼=
r⊕
i=1

ΠniL(λi)

is the direct sum of irreducible atypical representations L(λi) in Rn−1 with
shift ni ≡ ε(λ)−ε(λi) modulo 2. The representation L(λi) is uniquely defined
by the property that its cup diagram is

[ai + 1, bi − 1] ∪
r⋃

j=1,j 6=i
[aj , bj ] ,

the union of the sectors [aj , bj ] for 1 ≤ j 6= i ≤ r and (the sectors occuring
in) the segment [ai + 1, bi − 1].

In particular DS(L(λ)) is semisimple and multiplicity free.

Example 4.2. Consider the (maximal atypical) irreducible representation
[7, 7, 4, 2, 2, 2] of GL(6|6) and p(λ) = 1. Its associated cup diagram is
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Hence the cup diagram has two sectors of rank 4 and 2 respectively with
d0 = 7 and d1 = 1. Applying DS gives 2 irreducible representation, namely
[λ1] = [7, 7, 4, 2, 2] with cup diagram

Then the parity is p(λ1) = 1 = p(λ). The second irreducible represen-
tation is Π[7, 3, 1, 1, 1] (note the parity shift since p(λ2) 6= p(λ)) with cup
diagram

All in all DS[7, 7, 4, 2, 2, 2] ∼= [7, 7, 4, 2, 2]⊕Π[7, 3, 1, 1, 1].

4.2. The Hilbert polynomial. Similarly to DS we can define the tensor
functors DSn,n−m : Tn → Tn−m by replacing the x in the definition of DS
by an x with m 1’s on the antidiagonal. These functors admit again a Z-
grading. In particular we can consider the functor DSn,0 : Tn → T0 = sveck
with its decomposition DSn,0(V ) =

⊕
`∈ZD

`
n,0(V )[−`] for objects V in Tn

and objects D`
n,0(V ) in sveck where D`

n,0(V )[−`] is the object Π`D`
n,0(V )

concentrated in degree ` with respect to the Z-gradation of DSn,0(V ). For
V ∈ Tn we define the Laurent polynomial

ω(V, t) =
∑
`∈Z

sdim(DS`n,0(V )) · t`

as the Hilbert polynomial of the graded moduleDS•n,0(V ) =
⊕

`∈ZDS
`
n,0(V ).

Since sdim(W [−`]) = (−1)` sdim(W ) and V =
⊕
DS`n,0(V )[−`] holds, the

formula

sdim(V ) = ω(V,−1)

follows. For V = Berin
ω(Berin, t) = tni .

For more details we refer the reader to [HW14, section 25].

5. Tannakian arguments

5.1. The category T +
n . Let T +

n denote the full subcategory of Tn, whose
objects consist of all retracts of iterated tensor products of irreducible rep-
resentations in Tn that are not maximal atypical and of maximal atypical
irreducible representations in Rn(+1)⊕ΠRn(−1) for Rn(±1) defined at the
begining of section 4.1. Obviously T +

n is a symmetric monoidal idempotent
complete k-linear category closed under the ∗-involution. It contains all
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irreducible objects of Tn up to a parity shift. It contains the standard repre-
sentation V and its dual V ∨, and hence contains all mixed tensors [Hei14].
Furthermore all objectsX in T +

n satisfy condition T (see section 6 in [HW14])
and T +

n is rigid. For this it suffices for irreducible X ∈ T +
n that X∨ ∈ T +

n .
This is obvious since X∨ is irreducible with sdim(X∨) = sdim(X) ≥ 0, and
hence X∨ ∈ T +

n .

5.2. The ideal of negligible morphisms. An ideal in a k-linear category
A is for any two objects X,Y the specification of a k-submodule I(X,Y ) of
HomA(X,Y ), such that for all pairs of morphisms f ∈ HomA(X,X ′), g ∈
HomA(Y, Y ′) gI(X ′, Y )f ⊆ I(X,Y ′) holds. Let I be an ideal in A. By
definition A/I is the category with the same objects as A and with

HomA/I(X,Y ) = HomA(X,Y )/I(X,Y ) .

An ideal in a tensor category is a tensor ideal if it is stable under 1C ⊗ −
and −⊗ 1 for all C ∈ A. Let Tr be the trace. For any two objects A,B we
define N (A,B) ⊂ Hom(A,B) by

N (A,B) = {f ∈ Hom(A,B) | ∀g ∈ Hom(B,A), T r(g ◦ f) = 0}.

The collection of all N (A,B) defines a tensor ideal N of A [AK02].

Let A be a super tannakian category. An indecomposable object will
be called negligible, if its image in A/N is the zero object. By [Hei14] an
object is negligible if and only if its categorial dimension is zero. Any super
tannakian category is equivalent (over an algebraically closed field) to the
representation category of a supergroup scheme by [Del02]. In that case the
categorial dimension is the superdimension of a module. If A is a super
tannakian category over k, the quotient of A by the ideal N of negligible
morphisms is again a super tannakian category by [AK02], [Hei14]. More

generally, for any pseudo-abelian full subcategory Ã in A closed under tensor
products, duals and containing the identity element the following holds:

Lemma 5.1. The quotient category Ã/N is a semisimple super tan-
nakian category.

Proof. The quotient is a k-linear semisimple rigid tensor category by
[AK05, Theorem 1 a)]. The quotient is idempotent complete by lifting
of idempotents (or see [AK02, 2.3.4 b)] and by [AK02, 2.1.2] a k-linear
pseudoabelian category is abelian. The Schur finiteness [Del02] [Hei14] is

inherited from A to Ã/N . �

This in particular applies to the situation where Ã is the full subcategory
of objects which are retracts of iterated tensor products of a fixed set of
objects in A. In particular for Ã = T +

n and A = Tn this implies

Corollary 5.2. The tensor functor T +
n → T +

n /N maps T +
n to a semisim-

ple super tannakian category T n := T +
n /N .
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Proposition 5.3. The category T n is a tannakian category, i.e. there
exists a pro-reductive algebraic k-groups Hn such that the category T n is
equivalent as a tensor category to the category Repk(Hn) of finite dimen-
sional k-representations of Hn

T n ∼ Repk(Hn) .

Proof. By a result of Deligne [Del90, Theorem 7.1] it suffices to show
that for all objects X in T +

n we have sdim(X) ≥ 0. We prove this by
induction on n. Suppose we know this assertion for Tn−1) already. Then
all objects of T +

n−1 have superdimension ≥ 0 (for the induction start n = 0
our assertion is obvious). Notice that the tensor functor DS : Tn → Tn−1

preserves superdimensions, hence for the induction step it suffices that DS
maps T +

n to T +
n−1.

Lemma 5.4. The functors DSn,n−m : Tn → Tn−m and ωn,n−m : Tn →
Tn−m restrict to functors from T +

n to T +
n−m. In particular

DS : T +
n → T +

n−1 .

Proof. Since DSn,n−m and ωn−m preserve tensor products and idem-
potents, it suffices by the definition of T +

n that DSn−m(X), ωn−m(X) ∈
T +
n−m holds for all irreducible objects X in T +

n . Now theorem 4.1 implies

DS(X) ∈ T +
n−1 since any irreducible representation X maps to a semisim-

ple representation DS(X). [If X is irreducible but not maximal atypical,
then all constituents of DS(X) are irreducible and not maximal atypical.
If X ∈ T +

n is irreducible and maximal atypical, then all summands of
DS(X) are in T +

n−1.] This proves the claim for DS(X), X irreducible. But
then also for DSn,n−m(X), X irreducible, since then again DSn,n−m(X) is
semisimple by proposition 8.1 in [HW14]. The same then also holds for
ωn,n−m(X) = H∂(DSn−m(X)) by loc.cit. �

Corollary 5.5. Negligible objects X in T +
n map under DS to negligible

objects in T +
n−1.

Proof. We have shown sdim(Y ) ≥ 0 for all objects Y in T +
n−1. Therefore

sdim(DS(X)) = sdim(X) = 0 implies sdim(Yi) = 0 for all indecomposable
summands Yi of Y = DS(X), since sdim(Yi) ≥ 0. �

Remark 5.6. Since irreducible objects L satisfy condition T in the sense
that ∂ is trivial on DSn,n−m(L) [HW14, proposition 8.5], and since condition
T is inherited by tensor products and retracts, all objects in T +

n satisfy
condition T. Hence [HW14, proposition 8.5] implies the following lemma.

Lemma 5.7. On the category T +
n the functor HD(.) is naturally equiv-

alent to the functor DS : T +
n → T +

n−1. Similarly the functors ωn,n−m(.) :

T +
n → T +

n−1 are naturally equivalent to DSn,n−m(.).

Corollary 5.8. DS(X) = 0 in T +
n−1 if and only if X is a projective object

in Tn.
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Proof. Any negligible maximal atypical object in T +
n maps under DS to

a negligible maximal atypical object in T +
n−1. Furthermore DS(X) = 0 for

X in T +
n implies that X is an anti-Kac object. If X 6= 0, then X∗ is a Kac

object in T +
n . Hence HD(X∗) = 0. Since X∗ ∈ T +

n satisfies condition T,
this implies DS(X∗) = 0 and hence X∗ is a Kac and anti-Kac object. The
corollary follows since C+ ∩ C− = Proj.

Corollary 5.9. If X ∈ T +
n and X is a Kac or anti-Kac object, then

X ∈ Proj.
Corollary 5.5 implies

Lemma 5.10. The functor DS : T +
n → T +

n−1 gives rise to a k-linear
exact tensor functor between the quotient categories

η : T n → T n−1 .

Proof. We define the ideal I0 via

I0(X,Y ) = {f : X → Y | f factorizes over a negligible object.}

Obviously I0 is a tensor ideal for T +
n . As for any tensor ideal I0 ⊂ N

the quotient T +
n /I0 =: A+

n becomes a rigid tensor category and T +
n →

T +
n /I0 = A+

n a tensor functor. Under this tensor functor an indecomposable
object X in T +

n maps to zero in the quotient A+
n if and only if sdim(X) =

0. Furthermore, since the tensor functor DS maps negligible objects of
T +
n to negligible objects of T +

n−1, the functor DS induces a k-linear tensor

functor DS′ : A+
n → A+

n−1. The category A+
n is pseudoabelian since we

have idempotent lifting in the sense of [Li13, Theorem 5.2] due to the finite
dimensionality of the Hom spaces. By the definition of A+

n and T +
n , the

dimension of each object in A+
n is a natural number and, contrary to T +

n ,
it does not contain any nonzero object that maps to an element isomorphic
to zero under the quotient functor A+

n → A+
n /N . Therefore A+

n satisfies
conditions d) and g) in [AK02, Theorem 8.2.4]. By [AK02, Theorem 8.2.4
(i),(ii)] this implies that N (A+

n ) equals the radical R(A+
n ) of A+

n ; note that
N (A+

n ) = N (T +
n )/I0 and that N (A,A) is a nilpotent ideal in End(A)

for any A in A+
n by assertion b) of [AK02, Theorem 8.2.4 (i),(ii)]. Since

N always is a tensor ideal, R(A+
n ) in particular is a tensor ideal. This

allows to apply [AK02, Theorem 13.2.1] to construct a monoidal section
sn : A+

n /N (A+
n ) → A+

n for the tensor functor πn : A+
n → A+

n /N (A+
n ). The

composite tensor functor

η := πn−1 ◦DS′ ◦ sn

defines a k-linear tensor functor

η : T n → T n−1 .

SinceDS′ is additive and T n is semisimple, η is additive and hence exact. �
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Remark 5.11. The k-linear tensor functor πn−1◦DS′ : A+
n → T n−1 defines

the tensor ideal Kn of A+
n of morphisms annihilated by πn−1 ◦DS′. Obvi-

ously Kn ⊆ N . Let A+
n = A+

n /Kn be the quotient tensor category. Since
N (A+

n ) = R(A+
n ), for all simple objects S in A+

n some given morphism
f ∈ HomA+

n
(S,A) is in N (A+

n )(S,A) if and only if for all g ∈ HomA+
n

(S,A)

the composite g ◦ f is zero [AK02, Lemma 1.4.9]. Indeed all endomorphism
f ∈ N (A+

n )(S, S) are nilpotent, hence DS′(f) is nilpotent and maps to zero

in T n−1. Therefore the image f of f in N (A+
n )(S, S) is zero. Since S is a

simple object, we conclude that the endomorphisms of S in A+
n are in k · id,

hence [AK02, Lemma 1.4.9] can be applied.

Corollary 5.12. The functor DSn,0 : T +
n → T +

0 sends negligible mor-
phisms to zero. The functor DSn,1 : T +

n → T +
1 satisfies DSn,1(N ) ⊂ N .

Proof. The claim about DSn,0 follows from the commutative diagram

T +
n

DS //

��

T +
n−1

DS //

��

. . . // T +
1

DS //

��

T +
0

=

��
A+
n

DS′ //

��

A+
n−1

DS′ //

��

. . . // A+
1

DS′ //

=

��

T +
0

=

��
T +
n /N

η // T +
n−1/N

η // . . . // T +
1 /N

η // T +
0 /N

and the fact that η maps negligible morphisms to negligible morphisms and
T +

0 = A+
0 = T +

0 /N . For the T +
1 -case let f : M → M ′ be negligible

with M,M ′ indecomposable in T +
n . Since DSn,1 sends negligible objects

to negligible objects, it is clear that the claim holds if either M or M ′ are
negligible. So suppose that sdim(M) and sdim(M ′) 6= 0. The image of M
and M ′ in T +

1 is of the form⊕
i

Beri ⊕
⊕
j

P (Berj).

Since any morphism to or from P (Berj) is negligible, it suffices to consider
DSn,1(f) as a morphism in

Hom(
⊕
i

Beri,
⊕
j

Berj) =
⊕
i

End(Beri).

Such a morphism is of the form
∑

i λiidBeri and so is either trivial or not
negligible. We need to show that it is trivial. This follows from the DSn,0-
case. Indeed if there would be an i such that DSn,1(f) ∈ End(Beri) is not
negligible, then its image under DS in T +

0 would not be negligble either, in
contradiction to DSn,0(N ) = 0. �
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Corollary 5.13. The functor DSn,0 induces a super fibre functor DS :
T +
n /N → T +

0 = svec. It is isomorphic to the functor (η ◦ . . . ◦ η) defined by
iterated application of η.

Proof. Since DSn,0(N ) = 0, we obtain an induced tensor functor T +
n /N →

T +
0 . Since these categories are semisimple, DSn,0 is faithful and exact and

is therefore a super fibre functor. Since any two fibre functors over an
algebraically closed field are isomorphic, we obtain the required isomorphism
of tensor functors. �

Corollary 5.14. A nontrivial morphism f : S → A in T +
n from an irre-

ducible object S in T +
n to an arbitrary object A in T +

n is a split monomor-
phism if DSn,0(f) is nonzero. The converse also holds.

Proof. DSn,0(f) 6= 0 implies by corollary 5.12 that f is not negligible. Since
any morphism S → A between two indecomposable objects S,A with S � A
is negligible, this implies the claim. �

Remark 5.15. We do not know whether DS(N (T +
n )) ⊆ N (T +

n−1) holds.

If this were true for all n, then also DSn,n−i(N (T +
n )) ⊆ N (T +

n−i) would
hold. We consider this a fundamental question in the theory. For n = 1
observe that A+

1 = T +
1 /N . Indeed T +

1 has only one proper tensor ideal
N = I0 as can be easily seen by looking at the maximal atypical objects
Beri and P (Berj) in T +

1 . The tensor ideal I0 could be different from N for
n ≥ 2. With respect to the partial ordering on the set of tensor ideals given
by inclusion, I0 is the minimal element in the fibre of the decategorification
map of the thick ideal of indecomposable objects of superdimension 0 [Co18,
Theorem 4.1.3]. The negligible morphisms are the largest tensor ideal in this
fibre.

5.3. DS as a restriction functor. Recall from [Del90, Theorem 8.17]
the following fundamental theorem on k-linear tensor categories: Suppose
A1,A2 are k-linear abelian rigid symmetric monoidal tensor categories with
k ∼= EndAi(1) as in loc. cit. Assume that all objects of Ai have finite length
and all Hom-groups have finite k-dimension. Assume that k is a perfect
field so that A1 ⊗ A2 is again k-linear abelian rigid symmetric monoidal
tensor categories with k ∼= EndAi(1) as in [Del90, 8.1]. Suppose

η : A1 → A2

is an exact tensor functor. Then η is faithful [DM82, Proposition 1.19].

Theorem 5.16. [Del90, Theorem 8.17] Under the assumptions above
there exists a morphism

π(A2)→ η(π(A1))

as in [Del90, 8.15.2] such that η induces a tensor equivalence between the
category A1 and the tensor category of objects in A2 equipped with an ac-
tion of η(π(A1)), so that that natural action of π(A2)) is obtained via the
morphism π(A2)→ η(π(A1)).
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Suppose ω : A2 → V eck is fiber functor of A2, i.e. ω is an exact faithful
tensor functor. Then A2 is a Tannakian category and A2

∼= Repk(H) as a
tensor category. If A2 = Repk(H) is a Tannakian category for some affine
group H over k, then π(A2) = H by [Del90, Example 8.14 (ii)]. More
precisely, an A2-group is the same as an affine k-group equipped with a H
action, and here H acts on itself by conjugation. The forgetful functor ω of
Repk(G) to V eck is a fiber functor. By applying this fiber functor we obtain
a fiber functor ω ◦ η : A1 → V eck for the tensor category A1. In particular
A1 becomes a Tannakian category with Tannaka group H ′ = ω ◦ η(π(A1)).
Furthermore, by applying η to the morphism π(A2) → η(π(A2)) in A2, we
get a morphism ω(π(A2))→ (ω◦η)(π(A1)) in the category of k-vectorspaces,
which defines a group homomorphism

f : H ′ → H

of affine k-groups inducing a pullback functor

Rep(H ′)→ Rep(H) ,

that gives back the functor η : A1 → A2 via the equivalences A1 = Repk(H
′)

and A2 = Repk(H) obtained from the fiber functors.

Lemma 5.17. [DM82, Proposition 2.21(b)] The morphism f : H ′ → H
thus obtained is a closed immersion if and only if every object Y of A2 is
isomorphic to a subquotient of an object of the form η(X), X ∈ A1.

The statements above will now be applied for the tensor functor

η : A1 → A2

obtained from DS between the quotient categories A1 = T +
n /N and A2 =

T +
n−1/N . Notice that the assumptions above on k and Ai are satisfied so

that A2 is a tannakian category with fiber functor ω giving an equivalence of
tensor categories A2 = Repk(Hn−1). Obviously DS induces an exact tensor
functor between the quotient categories, since DS is additive, maps negligi-
ble objects of T +

n into negligible objects of T +
n−1 and since the categories Ai

are semisimple. As in our case k is algebraically closed, we know that up to
an isomorphism the group Hn only depends on A1 but not on the choice of
a fiber functor. As explained above, this defines a homomorphism of affine
k-groups

f : Hn−1 −→ Hn .

Theorem 5.18. The homomorphism f : Hn−1 → Hn is injective and the
functor η : Repk(Hn) → Repk(Hn−1) induced by DS : T +

n → T +
n−1 can be

identified with the restriction functor for the homomorphism f .

Proof. By lemma 5.17 it suffices that every indecomposable Y in T +
n−1 with

sdim(Y ) > 0 is a subobject of an object DS(X), X ∈ T +
n . By assumption

Y is a retract of a tensor product of irreducible modules Li ∈ T +
n−1. So it

suffices that each Li is a subobject of some object DS(Xi), Xi ∈ T +
n . We can
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assume that Y is not negligible and irreducible, hence maximal atypical and
Y = ΠrL(λ) for some r. Then L(λ) = [λ] = [λ1, ..., λn−1]. By a twist with

Berezin we may assume that λn−1 ≥ 0. Then we define [λ̃] = [λ1, ..., λn−1, 0]

so that for X = ΠrL(λ̃) we get by theorem 4.1 and [HW14, Lemma 10.2]
the assertion DS(X) = Y⊕ other summands. Notice that by construction

X = ΠrL(λ̃) is in T +
n . But this proves our claim. �

In other words, the description of the functor DS on irreducible objects
in Tn given by theorem 4.1 can be interpreted as branching rules for the
inclusion

f : Hn−1 ↪→ Hn .

We will show later how this fact gives information on the groups Hn.

5.4. Enriched morphism. Now recall that the collection of cohomology
functors H i : Rn → Rn−1 for i ∈ Z defines a tensor functor

H• : Rn → Gr•(Rn−1)

to the category of Z-graded objects in Rn−1. Using the parity shift functor
Π, this functor can be extended to a tensor functor

H• : T +
n → Gr•(T +

n−1) ,

which induces a corresponding tensor functor on the level of the quotient
categories

H• : T n = T +
n /N → Gr•(T +

n−1/N )) = Gr•(T n−1) .

Using the language of tannakian categories this induces an ’enriched’ group
homomorphism

f• : Hn−1 ×Gm → Hn .

Its restriction to the subgroup 1×Hn−1 is the homomorphism f from above.

5.5. The involution τ . Note that the category T +
n is closed under ∨ and

∗ and hence is equipped with the tensor equivalence τ : X 7→ (X∨)∗. This
tensor equivalence induces a tensor equivalence of T n = T +

n /N and hence
an automorphism τ = τn of the group Hn. Since all objects of T +

n satisfy
property T [HW14, Section 6], the involution ∗ commutes with DS. Since
this also holds for the Tannaka duality, we get a compatibility

(Hn−1, τn−1) ↪→ (Hn, τn) .

5.6. Characteristic polynomial. By iteration the morphisms f• succes-
sively define homomorphisms Hn−i × (Gm)i → Hn and therefore we get a
homomorphism in the case i = n

h : (Gm)n → Hn .

This allows to define a characteristic polynomial, defined by the restriction
h∗(VX) of the representation VX = ω(X) of H to the torus (Gm)n

hX(t) =
∑
χ

dim(h∗(VX)χ) · tχ
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where χ runs over the characters χ = (ν1, ..., νn) ∈ Zn = X∗((Gm)n). Of
course ω(X, t) = hX(t, ..., t).

6. The structure of the derived connected groups Gn

6.1. Setup. We now consider the categories T +
n for the cases n ≥ 4. We

compute the connected derived groups

GX := (H0
X)der

for irreducible objects X in T +
n . The Tannaka group generated by the object

Xλ = Π|λ|L(λ) for |λ| =
∑n

i=1 λi will be denoted Hλ and we define

Gλ := (H0
λ)der ⊆ H0

λ ⊆ Hλ .

Finally define Vλ ∈ Rep(Hλ) as the irreducible finite dimensional faithful
representation (or the underlying vector space) of Hλ corresponding to Xλ.

A normalization. By twisting with a Berezin power we may assume that
λ is a maximal atypical weight with the property λn = 0. We therefore
make the assumption λn = 0.

A priori bounds. We distinguish two cases: Either Xλ is a weakly selfdual
object (SD), i.e. X∨λ

∼= Berr ⊗ Xλ for some r; or alternatively Xλ is not
weakly selfdual (NSD). In the (SD) case Vλ carries a symmetric or anti-
symmetric pairing <,> and we can define the orthogonal similitude group
GO(Vλ) and the symplectic similitude group GSp(Vλ) as

GO(Vλ) = {g ∈ GL(Vλ) | < gv, gv >= µ(g) < v, v >, ∀v ∈ Vλ},
GSp(Vλ) = {g ∈ GL(Vλ) | < gv, gv >= µ(g) < v, v >, ∀v ∈ Vλ}

for the similitude character µ : GO(Vλ)→ k∗ respectively µ : GSp(Vλ)→ k∗.
Note that dim(Vλ) = 2m is always even by lemma C.4. In the GSp-case
det(g) = µ(g)m and GSp(Vλ) is connected. In the GO-case (det(g))2 =
µ(g)2m and we have the sign character sgn on GO(Vλ)

sgn : g 7→ g

µ(g)m
∈ µ2.

Then the connected component of 1 in GO(Vλ) is denoted by GSO(Vλ) =
ker(sgn) and sits in an exact sequence

1 // GSO(Vλ) // GO(Vλ) // µ2
// 1.

Using these notations we obtain the following bounds for the groups Hλ.
Whereas

Hλ ⊆ GL(Vλ)

in the case (NSD), we have

Hλ ⊆ GO(Vλ) , Hλ ⊆ GSp(Vλ)

in the case (NSD) for even resp. odd Xλ. In the case of a proper self duality
X∨λ
∼= Xλ the groups can be furthermore replaced by the subgroups O(Vλ)

resp. Sp(Vλ).
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6.2. The structure theorem on Gλ. Recall that two maximal atypical
weights λ, µ are equivalent λ ∼ µ if there exists r ∈ Z such that L(λ) ∼=
Berr ⊗ L(µ) or L(λ)∨ ∼= Berr ⊗ L(µ) holds. Another way to express this
is to consider the restriction of the representations L(λ) and L(µ) to the
Lie superalgebra sl(n|n). These restrictions remain irreducible and λ ∼
µ holds if and only if L(λ) ∼= L(µ) or L(λ) ∼= L(µ)∨ as representations
of sl(n|n). Let X+(n) be the set of dominant weights and let Y +(n) be
the set of equivalence classes of dominant weights. Similarly let X+

0 (n)
denote the class of maximal atypical dominant weights and Y +

0 (n) the set
of corresponding equivalence classes. If we write λ ∈ Y +

0 (n), we mean that
λ ∈ X+

0 (n) is some representative of the class in Y +
0 (n) defined by λ. If

L(λ)∨ 6∼ L(λ), λ ∈ Y +
0 (n) is of type (NSD). Otherwise it is of type (SD),

and there exists r ∈ Z such that L(λ) ∼= Berr ⊗ L(λ)∨. Hence there exists
an equivariant nondegenerate pairing

L(λ)× L(λ) −→ Berr .

This pairing is either symmetric (even) or antisymmetric (odd). The next
lemma is proven in appendix B.

Lemma 6.1. The selfdual representation [λ] = [λ1, . . . , λn1 , 0] is even.
Its parity shift Π[λ] is odd.

Theorem 6.2. Gλ = SL(Vλ) if Xλ is (NSD). If Xλ is (SD) and Vλ|Gλ′
is irreducible, then Gλ = SO(Vλ) respectively Gλ = Sp(Vλ) according to
whether Xλ is even respectively odd. If Xλ is (SD) and Vλ|Gλ′ decomposes
into at least two irreducibe representations, then Gλ ∼= SL(W ) for Vλ|Gλ′ ∼=
W ⊕W∨.

This theorem is proven in sections 7 - 10. Many examples can be found
in section 9. We conjecture that a stronger version is true: Vλ should always
stay irreducible. We refer to section 11 for a discussion of this case.

Remark 6.3. The (NSD) case is the generic case for n ≥ 4. Since SL(Vλ) ∼=
Gλ ⊂ GL(Vλ), all representations of Hλ stay irreducible upon restriction
to Gλ. Hence the derived group sees already the entire tensor product
decomposition into indecomposable representations up to superdimension
zero. The same remark is true for a selfdual weight of symplectic type.
In the orthogonal case we could have a decomposition of an irreducible
representation of Hλ into two irreducible representations of Gλ since O(Vλ)
and GO(Vλ) have two connected components.

Example 6.4. The smallest case for which Vλ could decompose when re-
stricted to Gλ is the case [λ] = [3, 2, 1, 0] ∈ T +

4 with sector structure

Then DS[3, 2, 1, 0] decomposes into four irreducible representations

L1 = [3, 2, 1], L2 = [3, 2,−1], L3 = [3, 0,−1], L4 = [1, 0,−1]
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represented by the cup diagrams

Since L1 = Ber2L4 and L2
∼= L∨3 we have two equivalence classes

{L1, L4}, {L2, L3}.

In fact

Vλ1
∼= Vλ4

∼= st(SO(6))

Vλ2
∼= st(SL(6)), Vλ3

∼= st(SL(6))∨.

If V[3,2,1,0] does not decompose under restriction to G[3,2,1,0], then Gλ ∼=
SO(24) and Vλ ∼= st(SO(24)). If it decomposes Vλ = W ⊕ W∨, then
Gλ ∼= SL(12) and Vλ ∼= st(SL(12)). Since W � W∨ this implies that
the embedding SO(6)× SL(6)→ SL(12) gives the branching rules

W 7→ st(SL(6))⊕ st(SO(6))

W∨ 7→ st(SL(6))∨ ⊕ st(SO(6)).

6.3. The structure theorem on Gn. We now determine Gn.

Lemma 6.5. Suppose a tannakian category R with Tannaka group H
is ⊗-generated as a tannakian category by the union of two subsets V ′ and
V ′′. Let H ′ and H ′′ be the Tannaka groups of the tannakian subcategories
generated by V ′ respectively V ′′. Then there exists an embedding H ↪→
H ′ ×H ′′ so that the composition with the projections is surjective.

Proof. There are natural epimorphisms π′ : H → H ′ and π′′ : H → H ′′

which induce a morphism i : H → H ′×H ′′ so that the composition with the
projections are π′ and π′′. It remains to show that i is injective. For this we
can reduce to the case where H ′ and H ′′ are Tannaka groups of tannakian
subcategories 〈X ′〉⊗ and 〈X ′′〉⊗ of selfdual objects X ′ and X ′′ of R. Then
R = 〈X ′⊕X ′′〉⊗. For the fiber functor ω the group H therefore acts faithful
on ω(X ′ ⊕X ′′) = V ′ ⊕ V ′′ = V . The operation of H on V ′ factors over the
quotient H ′ of H and the operation of H on V ′′ factors over the quotient
H ′′. Hence the kernel of i acts trivially on V . Therefore the kernel of i is
trivial by the faithfulness of V . �

We remark that the inclusion H ↪→ H ′ ×H ′′ induces an inclusion H0 ↪→
(H ′)0 × (H ′′)0 of the Zariski connected components and hence an inclusion
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of the corresponding adjoint groups H0
ad := (H0)ad and derived groups G :=

H0
der := (H0)der

H0
ad ↪→ (H ′)0

ad × (H ′′)0
ad ,

and

G ↪→ G′ ×G′′

abbreviating H0
der ↪→ (H ′)0

der × (H ′′)0
der.

We also need the following variant of Goursat’s lemma.

Lemma 6.6. Suppose H is a subgroup of the product A × B of two
semisimple affine algebraic k-groups A and B, so that the projections to
A and B are surjective. Then

(1) If A and B are connected simple k-groups, then either Had = Aad ×
Bad or Had

∼= Aad ∼= Bad.
(2) H ∼= A×B, if A and B are of adjoint type without common factor.
(3) If A and B are connected, H ∼= A×B if and only if Had

∼= Aad×Bad.
(4) Suppose A is a connected semisimple group and B is a connected

simple group. Let H be a proper subgroup H of A×B, that surjects
onto A and B for the projections. Then there exists a simple normal
subgroup C of A, such that the image H/C of H in (A/C)×B is a
proper subgroup of (A/C)×B, if A is not a simple group.

Proof. (1)-(3) are obvious. Part (4) can be reduced to the case of adjoint
groups by part (3). So we may assume that B and A are groups of adjoint
type. We now use the following fact. Any semisimple A group of adjoint
type is isomorphic to the product

∏r
i=1Ai of its simple subgroups Ai. Its

factors are the normal simple subgroups of A. These factors and hence this
product decomposition is unique up to a permutation of the factors. Any
nontrivial algebraic homomorphism of A to a simple group B is obtained as
projection of A onto some factor Ai of the product decomposition composed
with an injective homomorphism Ai → B. Since H ⊆ A × B projects onto
the first factor A and B is simple, and since H is a proper subgroup of the
connected semisimple group A×B, the kernel of the projection pA : H → A
is a finite normal and hence central subgroup of H. It injects into the center
of B, hence is trivial. Thus pA : H → A is an isomorphism so that H
defines the graph of a group homomorphism A → B. Since A is of adjoint
type and therefore a product of simple groups A ∼=

∏r
i=1Ai, the kernel of

the homomorphism A→ B must be of the form
∏
i 6=j Ai. Unless A is simple,

for C = Aj and j 6= i assertion (4) becomes obvious. �

Corollary 6.7. Let λ and µ be two maximal atypical weights and de-
note by Gλ,µ the connected derived group of the Tannaka group Hλ,µ corre-

sponding to the subcategory in T n generated by L(λ) and L(µ). If λ is not
equivalent to µ,

Gλ,µ ∼= Gλ ×Gµ.
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Proof. If Gλ and Gµ are not isomorphic, lemma 6.6 implies the claim.
Otherwise Gλ,µ ∼= Gλ ∼= Gµ (special case of lemma 6.6.1). We assume by
induction that the statement holds for smaller n. By lemma A.5 there exist
constituents L(λi) of DS(L(λ)) and L(µj) of DS(L(µ) such that λi and µj
are inequivalent maximal atypical weights (for n > 2) - a contradiction. For
n = 2 we give an adhoc argument in section 9. �

Theorem 6.8. Structure Theorem for Gn. The connected derived
group Gn of the Tannaka group Hn of the category T +

n is isomorphic to the
product

Gn ∼=
∏

λ∈Y +
0 (n)

Gλ .

Proof. This follows essentially from theorem 6.2, where the structure of
the individual groups Gλ was determined. Using lemma 6.6, one reduces the
statement of the theorem to a situation that involves only two inequivalent
weights λ and µ: By part (3) of lemma 6.6 we may replace the derived
groups by the adjoint groups. Then the assertion follows from part (4) of
the lemma by induction on the number of factors reducing the assertion to
the case of two groups Gλ, Gµ dealt with in corollary 6.7. �

Example 6.9. Consider the tensor product of two inequivalent representa-
tions L(λ) and L(µ) of non-vanishing superdimension. Then

L(λ)⊗ L(µ) = I mod N

for an indecomposable representation I. Indeed L(λ) and L(µ) correspond
to representations of the derived connected Tannaka groups Gλ and Gµ.
Since Gλ and Gµ are disjoint groups in Gn, tensoring with L(λ) and L(µ)
corresponds to taking the external tensor product of these representations.

7. Proof of the structure theorem: Overview

We determine Gλ inductively using the k-linear exact tensor functor be-
tween the quotient categories of the representation categories

η : T n → T n−1

constructed in lemma 5.10 with the help of DS : T +
n → T +

n−1. We remark
that η is compatible with DS on objects not true for the functor DS :
Tn → Tn−1. Recall that the category T n is equivalent to the representation
category of a pro-reductive group Hn. By a deep theorem of Deligne on
tensor categories (theorem 5.16), one can use the functor η : T n → T n−1 to
construct an embedding of affine group schemes Hn−1 → Hn. By definition
of Hλ, L(λ) defines an irreducible faithful representation of Hλ which we
denote by Vλ. By the main theorem on DS (theorem 4.1), the restriction of
Vλ to the subgroup Hn−1 is a multiplicity free representation. We assume
by induction that theorem 6.2 and theorem 6.8 hold for Hn−1 and Gn−1.
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We have inclusions

Gλ′ ↪→ Gλ ↪→ H0
λ ↪→ Hλ

where Gλ′ denotes the image of the natural map (H0
n−1)der → Gλ = (H0

λ)der.
The restriction of Vλ to Gλ′ decomposes

Vλ ∼=
k⊕
i=1

Vλi

where the Vλi are the irreducible representations in the category T +
n−1 cor-

responding to the irreducible constituents L(λi), i = 1, .., k, of DS(L(λ)).
By induction we obtain

Gλ′ ∼=
∏
λi/∼

Gλi

where the Gλi are described in theorem 6.2.

In a first step we discuss the situation in the n = 2 and the n = 3 case
as well as the Tannaka groups Gλ for L(λ) = Berr ⊗ [i, 0, . . . , 0], r, i ∈ Z.
The n = 2-case is needed for the start of the inductive determination of Gn.
In this case we can use the known tensor product decomposition between
irreducible modules in T2 to determine G2 and H2. In order to get a clear
induction scheme in the proof of the structure theorem, we need to rule out
certain exceptional cases which can only occur for n ≤ 3 and for the modules
Berr ⊗ [i, 0, . . . , 0]. This will allow us to assume n ≥ 4 in section 10.

In the next step we show that Gλ is simple. By induction all the Vλi are
standard representations for simple groups of type A,B,C,D or Vλi |Gλi =

W ⊕ W∨ for Gλi
∼= SL(W ). The representation Vλ decomposes under

restriction to Gλ in the form W1 ⊕ . . . ⊕ Ws (we later show that s is at
most 2). If we restrict these Wν to Gλ′ , they are meager representation of
Gλ′ in the sense of definition 10.2. The crucial lemma 10.3 shows then that
Gλ is simple. This allows us to use the classification of small representations
due to Andreev-Elashvili-Vinberg.

Our aim is then to show that the dimension of the subgroup Gλ′ is large
compared to the dimension of Vλ (given by the superdimension formula for
L(λ) in [HW14]) as in lemma 8.1 or corollary 8.2. A large rank and a large
dimension of Gλ′ implies that the rank and the dimension of Gλ must be
large, forcing Vλ to be a small representation of Gλ in the sense of lemma
8.1 and corollary 8.2. If we additionally know that Gλ is simple and that
also r(Gλ) ≥ 1

2(dim(Vλ−1) , corollary 8.2 will immediately imply that Gλ is
of type SL(Vλ), SO(Vλ) or Sp(Vλ). However the strong rank estimate will
not always hold and we will be in the less restrictive situation of lemma 8.1.

Here the (NSD) and the (SD) case differ considerably. In the (NSD) case
each irreducible representation Vλi (corresponding to L(λi) in DS(L(λ)))
gives a distinct direct factor in the product Gλ′ ∼=

∏
λi/∼Gλi since all irre-

ducible representations of DS(L(λ)) are inequivalent in the (NSD) case by
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lemma A.2. The dimension estimate for Gλ so obtained then implies that
Vλ is a small representation. In the (SD) case however two representations
Vλi , Vλj will contribute the same direct factor Gλi ' Gλj if λi ∼ λj . This
decreases the dimension and rank estimate of the subgroup Gλ′ in Gλ and
therefore of Gλ.

To finish the proof we need to understand the restriction of Vλ to Gλ. The
group of connected components acts transitively on the irreducible con-
stituents Vλ = W1 ⊕ . . . ⊕ Ws of the restriction to H0

λ and Gλ. Using
that the decomposition of Vλ to Hn−1 is multiplicity free in a weak sense
(obtained from an analysis of the derivatives of L(λ) in section A), we show
finally in section 10.3, using Clifford-Mackey theory, that Vλ can decompose
into at most s = 2 irreducible representations of Gλ.

8. Small representations

Our aim is to understand the Tannaka groups associated to an irre-
ducible representation by means of the restriction functor DS : T +

n → T +
n−1.

We have a formula for the superdimension of an irreducible representation
[HW14] and we know inductively the ranks and dimensions of the groups
arising for k < n. This gives strong restrictions about the groups in the
T +
n -case due to the following list of small representations.

List of small representations. For a simple connected algebraic group
H and a nontrivial irreducible representation V of H the following holds
[AVE67]

Lemma 8.1. dim(V ) = dim(H) implies that V is isomorphic to the
adjoint representation of H. Furthermore, except for a finite number of
exceptional cases, dim(V ) < dim(H) implies that V belongs to the regular
cases

R.1 V ∼= st, S2(st),Λ2(st) or their duals in the Ar-case,
R.2 V = st (the standard representation) in the Br, Dr-case,
R.3 V ∼= st in the Cr-case,
R.4 V ↪→ Λ2(st) in the Cr-case

where the list of exceptional cases is

E.1 dim(V ) = 20, 35, 56 for V = Λ3(st) and Ar in the cases r = 5, 6, 7.
E.2 dim(V ) = 4, 8, 16, 32, 64 for the spin representations of Br in the

cases r = 2, 3, 4, 5, 6.
E.3 dim(V ) = 8, 8, 16, 16, 32, 32, 64, 64 for the two spin representations

of Dr in the cases r = 4, 5, 6, 7.
E.4 dim(V ) = 27, 27 for E6 with dim(E6) = 78 (standard representation

and its dual).
E.5 dim(V ) = 56 for E7 with dim(E7) = 133.
E.6 dim(V ) = 7 for G2 with dim(G2) = 14.
E.7 dim(V ) = 26 for F4 with dim(F4) = 52.
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In particular dim(V ) ≥ r + 2 holds, except for G = Ar in the cases V ∼= st
or V ∼= st∨.

Corollary 8.2. Let V be an irreducible representation of a simple con-
nected group H such that 4 ≤ dim(V ) < dim(H) and

2r(H) ≥ dim(V )− 1

holds. Then H is of type Ar, Br, Cr, Dr and V = st the standard represen-
tation of this group of dimension r + 1, 2r + 1, 2r, 2r for r ≥ 3, 2, 2, 2
respectively, or H = D4 and V is one of the two 8-dimensional spin repre-
sentations.

Note that D4 has an automorphism of order three so that the spin rep-
resentations of D4 can be obtained from the standard representation by a
twist. From the classification in lemma 8.1 one also obtains

Lemma 8.3. For a simple connected grous H with an irreducible root
system of rank r we have dim(H) ≥ r(2r − 1) except for H ∼= SL(n) with
dim(H) = r(r + 2). Furthermore r ≤ dim(V ) holds for any nontrivial
irreducible representation V of H.

9. The cases n = 2, 3 and the Si-case

In the next sections we determine the group Gn and the groups Gλ. Since
we will determine these groups inductively starting from n = 2, we need to
start with this case. We also discuss the n = 3 case separately since we
have to rule out some exceptional low rank examples in the classification of
[AVE67] in section 8.

Warm-up. Suppose n = 1. Then H1 is the multiplicative group Gm.
Indeed the irreducible representations of it correspond to the irreducible
modules ΠiBeri for i ∈ Z.

9.1. The case n = 2. Suppose

Xi := Πi([i, 0])

for i ≥ 1. Then X∨i
∼= Ber1−i ⊗Xi, hence X∨1

∼= X1. We use from [HW15]
the fusion rule

[i, 0]⊗ [j, 0] = indecomposable ⊕ δji ·Ber
i−1 ⊕ negligible

for 1 ≤ i ≤ j together with Berr ⊗ [i, 0] ∼= [r + i, r] for all r ∈ Z.

Lemma 9.1. If HXi denotes the Tannaka group of Xi, then

HXi '

{
SL(2) i = 1

GL(2) i ≥ 2.
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Proof. Since H1 ↪→ H2 � HXi can be computed from DS we see that
H1 injects into H = HXi and the two dimensional irreducible representation
V = VXi of HXi attached to Xi decomposes into

V |H1 = det−1 ⊕ deti .

corresponding to DS(Xi) = Ber−1 ⊕Beri. If H0
Xi
∼= Gm, the finite group

π0(H) acts on H0. By Mackey’s theorem the stabilizer of the character
Ber−1 has index two in HXi and acts by a character on V . Since the only
automorphisms of Gm are the identity and the inversion, this would imply
i = 1. Hence V ⊗ V would restrict to Gm with at least three irreducible
constituents det−2 ⊕ det2 (corresponding to Ber−2 ⊕ Ber2) and a two di-
mensional module W with an action of π0(H) such that a subgroup of index
two acts by a character. But X∨1

∼= X1 implies that V is self dual, and hence
W contains the trivial representation. This contradicts the fusion rule from
above. Hence H0 6= Gm and the same argument as above shows that H0

can not be a torus. Hence the rank r of each irreducible component of the
Dynkin diagram of (H0

der)sc is r ≥ 1 and hence dim(H) ≥ 3. By lemma 8.3
we know r ≤ dim(V ) = 2 and accordingly dim(H) = 3 by lemma 8.1. There-
fore (H0

der) = SL(2) and V |H0
der

is the irreducible standard representation.

Since H acts faithful on V

SL(2) ⊆ H ⊆ GL(2) .

Now we use V ∨ ∼= Beri−1 ⊗ V , which implies H = GL(2) for i > 1. Indeed
Λ2(V ) is the character Beri−1 by the fusion rules above. For i = 1 the
isomorphism V ∨ ∼= V implies that det(V ) is trivial on H, hence

H = SL(2)

in the case i = 1. �

9.2. The H2-case. We discuss the Tannaka group generated by all irre-
ducible representations. First consider the Tannaka group H of 〈Xi, Xj〉⊗
for some pair j > i. The derived groups of the Tannaka groups H ′ resp. H ′′

of 〈Xi〉⊗ and 〈Xj〉⊗ are SL(2).

We claim that Hder
∼= H ′der ×H ′′der. If this were not the case, then Hder

∼=
SL(2) (special case of lemma 6.6.1). But then the tensor product Xi ⊗Xi

considered as a representation of H corresponds to the tensor product of
two standard representation and hence is a reducible representation with
two irreducible factors. However this contradicts the fusion rules stated
above. This implies Hder

∼= SL(2)× SL(2) and hence Had
∼= H ′ad ×H ′′ad.

Now consider the Tannaka group H of 〈Xi1 , ..., Xik〉⊗ for k > 2. We claim
that H is connected and that it is the product

Hder
∼=

k∏
ν=1

Hder(Xiν )
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of the derived Tannaka groups of the 〈Xiν 〉⊗. This is an immediate conse-
quence of lemma 6.6

So the Tannaka group H2 of the category T +
2 /N sits in an exact sequence

0→ lim
k

k−1∏
ν=0

SL(2)→ H2 → Gm → 0 .

The derived group of H2 is the projective limit of groups SL(2) with a copy
for each irreducible object Xν+1 for ν = 0, 1, 2, 3, .... The structure of the
extension is now easily recovered from the following decription:

Lemma 9.2. H2 ⊂
∏∞
ν=0GL(2) is the subgroup defined by all elements

g =
∏∞
ν=0 gν in the product with the property det(gν) = det(g1)ν . The

automorphism τ2 is inner.

We usually write GL(2)ν for the ν-th factor of the product
∏∞
ν=0GL(2).

Using the description of the last lemma, the torus H1
∼= Gm embeds into

H2 as follows

H1 3 t 7→
∞∏
ν=0

diag(tν+1, t−1) ∈ H2 ⊂
∞∏
ν=0

GL(2)ν .

Defining det(g) = det(g1) for g =
∏∞
ν=0 gν in H2, the representation of the

quotient group Gm of H2 defined by the Berezin determinant Ber ∈ T2,
corresponds to the character det(g) of the group H2.

We continue with two special cases: The Si-case for any n, and the case G3.

9.3. The Si-case. Consider the modules Xi = Πi([i, 0, 0]) in T +
3 . They

have superdimension 3 for i ≥ 2. Let H (or sometimes HXi) denote the
associated Tannaka group and V the associated irreducible representation
of H.

Lemma 9.3. We have HX1 = SL(2) and GXi ' SL(3) for any i ≥ 2
and HXi ' GL(3) for any i ≥ 3.

Proof. The natural map H2 → H3 → H allows to consider V as a
representation of H2, and as such we get

V |H2
∼= det−1 ⊕Xi

for i ≥ 2 (here Xi on the right is the irreducible 2-dimensional standard
representation of GL(2)i−1, restricted to H2). Hence dim(A) ≥ 3 for at
least one simple factor A of H0 and every irreducible summand W of V |A
has dimension ≤ dim(A). By lemma 8.1 therefore W either has dimension
3 and Asc = SL(3), W = st or W = st∨, or Asc = SL(2) and W =
S2(st). If H0

der is not simple, we replace it by its simply connected cover
and write (H0

der)sc = Asc×A′ (where A′ is a product of simple groups). The
representation V is then an external tensor product

V = W �W ′
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of irreducible representations W,W ′ of Asc and A′. Since V is a faithful
representation of H, the lift of V (again denoted V ) to (H0

der)sc has finite
kernel. Since it has finite kernel, dim(W ) > 1, dim(W ′) > 1 holds. Hence
dim(W ) = 3 implies (H0

der) = A and V |H0 and V |H0
der

remain irreducible

by dimension reasons. If Asc = SL(2) and W = S2(st), the image of H2

surjects onto Hder. This contradicts the fact that V is irreducible but V |H2

decomposes, and excludes the case Asc = SL(2). Hence

H0
der
∼= SL(3) .

Since H acts faithfully on V , we also have H ⊆ GL(V ) = GL(3). The
restriction of V to H2 has determinant det−1 · det(Xi) ∼= det−1deti−1 =
deti−2. Hence

H ∼= GL(3)

for all i ≥ 3. �

For j > i ≥ 2 let H denote the Tannaka group of 〈Xi, Xj〉⊗ and H ′, H ′′

the connected components of the Tannaka groups of 〈Xi〉⊗ resp. 〈Xj〉⊗.
Then we claim

H0
der
∼= H ′der ×H ′′der ,

since otherwise H ′der
∼= H ′′der by lemma 6.6.1. But this is impossible since

then the morphisms H2 → H3 → H would induce the same morphisms
(H2)der → Hder → H ′der and (H2)der → Hder → H ′′der, which contradicts
theorem 4.1. Indeed the factor SL(2)i−1 maps nontrivially to H ′der but
trivially to H ′′der. Since H acts faithfully on the representation associated to
the object Xi ⊕Xj on the other hand H ⊆ GL(ω(Xi))×GL(ω(Xj)).

The same arguments enable us to determine the connected derived groups
for any n ≥ 3:

Lemma 9.4. The Tannaka group H of the modules Πi([i, 0, .., 0]) ∈ T +
n

satisfies H0
der
∼= SL(n) and H ⊆ GL(n) for all i ≥ n − 1, and H = GL(n)

for all i ≥ n. For i < n− 1 we get H0
der
∼= SL(sdim(Li)).

Proof. Indeed we have in H0
der a simple component A of semisimple rank

r ≥ n − 1 by induction. Obviously A contains SL(n − 1) and cannot be of
Dynkin type Ar unless A = SL(n) by lemma 8.1.

Notice that dim(A) ≥ r(2r − 1) ≥ (n − 1)(2n − 3) > n or dim(A) ≥
r(r + 2) ≥ (n − 1)(2n) > n, for n ≥ 3 by lemma 8.3. The restriction of V
decomposes into irreducible summands W,W ′, ... of dimension dim(W ) ≤
n, and the dimension of all these representations is ≤ r. So the possible
representations are listed in lemma 8.1. None of them has dimension ≤ r+1
except for the case where A is of type Ar and V ∼= st or V ∼= st∨. �

9.4. The n = 3-case. We analyse the remaining n = 3-cases.

Lemma 9.5. The derived connected group G3 = (H3)0
der of H3 is

G3
∼=
∏
λ

Gλ ,
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where λ runs over all λ = [λ1, λ2, 0] with integers λ1, λ2 such that

0 ≤ 2λ2 ≤ λ1

and Gλ ∼= 1, SL(2), SL(3), Sp(6), SL(6) according to whether λ is 0, [1, 0, 0]
or [2 + ν, 0, 0], for ν ≥ 0, or λ = [2λ2, λ2, 0], for λ2 > 0, or 0 < 2λ2 < λ1.

Remark 9.6. We discuss the general case in the next section assuming
n ≥ 4. The assumption n ≥ 4 is only relevant because we want to have
a uniform behaviour regarding derivatives. Essentially all the arguments
regarding simplicity of Gλ and Clifford-Mackey theory apply to the n = 3
case at hand. In the proof we discuss [2, 1, 0] in detail and sketch the key
inputs for the other cases.

Proof. Let us consider X = Π([210]). The associated irreducible repre-
sentation Tannaka group H = HX admits an alternating pairing, hence HX

is contained in the symplectic group of this pairing

HX ⊆ Sp(6) .

We claim that H0
der is simple. If not, we replace it by its simply connected

cover and write it as a product

(H0
der)sc = G1 ×G2.

The faithful representation VX of HX has finite kernel when seen lifted to
a representation of (H0

der)sc. Therefore Vλ as a representation of (H0
der)sc is

of the form V1 �V2 with dim(Vi) > 1. The representation Vλ restricts to the
subgroup SL(2)× SL(2) = Gλ′ as

Vλ|Gλ′ ∼= 2 · (st� 1)⊕ (1 � st).

This is easily seen using

DS(Π[2, 1, 0]) ∼= Π[2, 1]⊕Π[2,−1]⊕Π[0,−1].

Since Π[2, 1] ∼= Ber−2 ⊗ [0,−1] they both give a copy of the standard rep-
resentation of the same SL(2). Hence the restriction of Vλ to the first
SL(2)-factor is of the form

Vλ|SL(2)
∼= 2st⊕ 2 · 1

and
Vλ|SL(2)

∼= st⊕ 4 · 1
for the second SL(2)-factor. Now consider the restriction to any of the two
SL(2)-factors

V |SL(2) = V1|SL(2) ⊗ V2|SL(2).

Since dim(V1) = 2 and dim(V2) = 3, their restriction to SL(2) is either st
or 2 · 1 for V1 and st⊕ 1 or 3 · 1 for V2. The Clebsch-Gordan rule for SL(2)
shows that V |SL(2) = V1|SL(2) ⊗ V2|SL(2) is not possible, hence H0

der must

be simple. The image of H2 in H contains two copies of SL(2). Since H0
der

is not SL(2) × SL(2), we get dim(H0
der) ≥ 7 and the representation V is

small. Since Vλ restricted to the subgroup SL(2)× SL(2) has 3 summands
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of dimension 2 each, the restriction to H0
der can decompose into at most 3

summands: either Vλ stays irreducible, or decomposes in the formW⊕W∨ or
in the form W1⊕W2⊕W3 with dim(Wi) = 2. But the latter implies Wi

∼= st
for the standard representation of SL(2). This would mean rang(H0

der) ≤ 6,
a contradiction. The case W⊕W∨ cannot happen either since the restriction
of W ⊕W∨ to SL(2) × SL(2) would have an even number of summands.
Therefore Vλ|H0

der
is irreducible. Since it is selfdual irreducible of dimension

6 and carries a symplectic pairing, we conclude from lemma 8.1 or lemma
8.2 that H0

der = Sp(6) and V is the standard representation. But then

HX
∼= Sp(6) .

Similarly consider X = Π(Ber1−b ⊗ [2b, b, 0]) for b > 1. Then X∨ ∼= X.
Then either H ⊆ O(6) or H ⊆ Sp(6) for H = HX . The image of H2

in H contains SL(2)2. Hence dim(H0
der) ≥ 6 and r ≥ 2. Furthermore

H0
der 6∼= SL(3). If r = 2, then we get a contradiction by Mackey’s lemma.

Hence r ≥ 3 and the restriction of the 6-dimensional representation V =
ω(X) of H to H0

der remains irreducible. By the upper bound obtained
from duality therefore the semisimple rank is r = 3. Hence V is a small
irreducible representation of H0

der of dimension 6. Hence by lemma 8.1 we
get H0

der = SO(V ) resp. Sp(V ), since H0
der 6∼= SL(3). In the second case then

H = Sp(6). In the first case it remains to determine whether H = SO(6)
or H = O(6).

Finally the case X = Πa+b([a, b, 0]) for a > b > 0 and a 6= 2b. In
this case X∨ 6∼= Berν ⊗ X for all ν ∈ Z. The image of H2 in H = HX

contains SL(2)3, hence the restriction of V = ω(X) to H0
der remains again

irreducible and defines a small representation of dimension 6. This now
implies H0

der = SL(6), since SL(2)3 ⊂ H0
der now excludes the two cases

SO(6), Sp(6). On the other hand we know that det(V ) is nontrivial on the
image of H1, and hence

HX
∼= GL(6) .

The structure of G3 follws from theorem 6.8. �

Example 9.7. For Π[2, 1, 0] the associated Tannaka group is HX = Sp(6).
Furthermore X corresponds to the standard representation of Sp(6) and
decomposes accordingly. Hence

X ⊗X = I1 ⊕ I2 ⊕ I3 mod N

with the indecomposable representations Ii ∈ R3 corresponding to the irre-
ducible Sp(6) representations L(2, 0, 0), L(1, 1, 0) and L(0, 0, 0). Now con-
sider the tensor product I1⊗ I1. For I1 corresponding to L(2, 0, 0) it decom-
poses as

I1 ⊗ I1 =

6⊕
i=1

Ji mod N
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with the 6 indecomposable representations Ji corresponding to the 6 irre-
ducible Sp(6)-representations in the decomposition

L(2, 0, 0)⊗2 = L(4, 0, 0)⊕L(3, 1, 0)⊕L(2, 2, 0)⊕L(2, 0, 0)⊕L(1, 1, 0)⊕ 1 .

In this way we obtain the tensor product decomposition up to superdi-
mension 0 for any summand of nonvanishing superdimension in such an
iterated tensor product. Furthermore these indecomposable summands are
parametrized by the irreducible representation of Sp(6). Although n = 3
and the weight [2, 1, 0] are small, it is hardly possible to achieve this result
by a brute force calculation.

10. Tannakian induction: Proof of the structure theorem

10.1. Restriction to the connected derived group. Recall that Hλ

denotes the Tannaka group of the tensor category generated by Xλ and
Vλ = ω(Xλ) is a faithful representation of Hλ. We have inclusions

Gλ′ ↪→ Gλ ↪→ H0
λ ↪→ Hλ

where Gλ′ denotes the image of the natural map (H0
n−1)der → Gλ = (H0

λ)der.
Similarly we denote by Hλ′ the image of Hn in Hλ. The restriction of Vλ to
Hn−1 (or Hλ′) decomposes

Vλ ∼=
k⊕
i=1

Vλi

where Vλi are the irreducible representations in the category Rep(Hn−1)
corresponding to the irreducible constituents L(λi), i = 1, .., k of DS(L(λ)).
To describe Gλ′ we use the structure theorem for T +

n−1 (induction assump-
tion). Therefore it suffices to group the highest weight λi for i = 1, .., k into
equivalence classes. Using the structure theorem for the category T +

n−1 and
theorem 4.1, we then obtain

Gλ′ ∼=
∏
λi/∼

Gλi

Again using the structure theorem for Gn−1, each Vλi is either irreducible on
Gλi or it decomposes in the form Wi ⊕W∨i and Gλi

∼= SL(W ). The groups
Gλi are independent in case (NSD). For (SD) the only dependencies between
them come from the equalities Gλk+1−i = Gλi for i = 1, ..., k by section A.

Using these strong conditions let us consider Vλ as a representation of H0
λ.

Since an irreducible representation of H0
λ is an irreducible representation of

its derived group Gλ, the decomposition of Vλ into irreducible representation
for the restriction to H0

λ resp. Gλ coincide. Let

Vλ =
s⊕

ν=1

Wν

denote this decomposition. We then restrict each Wν to Gλ′ .
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Vλ_

��

Hλ

Gλ
⊕s

ν=1Wν_

��

⊕k
i=1 Vλi Hλ′

Gλ′
⊕t

l=1W
′
l

By induction each W ′l can be seen as the standard representation or its
dual of a simple group of type A,B,C,D.

10.2. Meager representations. If we use by induction the structure the-
orem for Gn−1, we see that the representations Wi in Vλ|Gλ are meager in
the sense below. We analyze in this section the implications of Wi to be
meager.

Definition 10.1. A finite dimensional representation V of a reductive group
H will be called small if dim(V ) < dim(H) holds.

Definition 10.2. A representation V of a semisimple connected group G
will be called meager, if every irreducible constituent W of V factorizes over
a simple quotient group of G and is isomorphic to the standard represen-
tation of this simple quotient group or isomorphic the dual of the standard
representation for a simple quotient group of Dynkin type A,B,C,D.

If a representation V of H is small resp. meager, any subrepresentation
of V is small resp. meager.

Suppose G′ is a semisimple connected simply connected group and V is a
faithful meager representation of G. Each irreducible constituent of V then
factorizes over one of the projections pµ : G′ → G′µ. We then say that the
corresponding constituent is of type µ.

Lemma 10.3. Suppose V is an irreducible faithful representation of the
semisimple connected group G of dimension ≥ 2. Suppose G′ is a connected
semisimple group and ϕ : G′ → G is a homomorphism with finite kernel
such that

(1) The restriction ϕ∗(V ) of V to G′ is meager and for fixed µ every
(nontrivial) irreducible constituents of type µ in the restriction of V
to G′ has multiplicity at most 2.

(2) If an irreducible constituent W ′ occurs with multiplicity 2 for a type
µ in V |G′ (such a µ is called an exceptional type), then either
(i) W ′ is the standard representation of Gµ ∼= SL(2), or

(ii) there is a unique type µ = µ2 such that W ′ is the direct sum of
the standard representation and its dual W ′ = W ⊕W∨ as a
representation of the quotient SL(W ) of G′ or
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(iii) there is a unique type µ = µ0 with G′µ
∼= Sp(W ′) or (G′µ)sc =

Spin(W ) such that the standard representation st of G′µ occurs
twice.

(3) No irreducible constituent of the restriction of V |G′ is a trivial rep-
resentation of G′.

(4) The semisimple group G′ has at most one simple factor isomorphic
to SL(2). The index, if it occurs, will be denoted µ1.

Under these assumptions G is a simple group or G′ is a product of excep-
tional types.

Proof. We may replace G and G′ by their simply connected coverings
without changing our assumptions, so that we can assume that G and G′ =∏
µG
′
µ decompose into a product of simple groups. Then V is not faithful

any more, but has finite kernel. The restriction of the meager representation
V to G′ decomposes into the sum

⊕
µ Jµ of representations Jµ such that Jµ

is trivial on
∏
λ 6=µG

′
λ

V |G′ =
⊕
µ

Jµ ,

hence Jµ can be considered as a representation of the factor G′µ of G′. Fur-
thermore Jµ is either an irreducible representation of G′µ, or the direct sum
Jµ ∼= W ⊕ W∨ (as a representation of G′µ

∼= Sl(W )) by the assumption
1) and 2) or there exists a unique type µ of Dynkin type B,C,D where
Jµ = st⊕ st for the standard representation st of this group G′µ.

If G is not simple, G = G1 ×G2 is a product of groups and the irreducible
representation V is a external tensor product

V = V1 � V2

of irreducible representations V1, V2 of G1 resp. G2. Since V has finite
kernel, dim(Vi) > 1 holds. For each factor G′µ ↪→ G′ =

∏
µG
′
µ consider the

composed map

G′µ → G1 ×G2 .

This map is either trivial, or defines an isogeny.

We claim that there exists at least one index µ such that both compositions
G′µ → Gi with the projections G → Gi (i = 1, 2) are nontrivial except
when G′ has only exceptional types. To prove the claim, suppose G′µ → G2

would be the trivial map. Then the restriction of V to G′µ ⊆ G′ is V |G′µ =
dim(V2)·V1|G′µ . Hence dim(V2) ≤ 2, since otherwise we get a contradiction to

assumption 1. Indeed, V1|G′µ also contains at least one nontrivial irreducible

constituent by assumption 3), and this constituent can occur at most with
multiplicity two in V |G′ . Hence dim(V2) ≤ 2. If dim(V2) = 2, then there
exists a nontrivial irreducible constituent Iµ ⊆ V1|G′µ of G′µ by assumption

3). Hence V |G′µ contains Iµ⊕Iµ both of type µ and we are in an exceptional
type.
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We assume now that {µ} is not an exceptional type. We may therefore
choose µ so that both G′µ → Gi are nontrivial. Then

V |G′µ = V1|G′µ ⊗ V2|G′µ
is the tensor product of two nontrivial representations V1|G′µ and V2|G′µ of

G′µ. Since V |G′ is a meager representation of G′, all irreducible constituents
of the restriction of V |G′ to G′µ are trivial representations of G′µ except for at
most two of them, which are standard representations up to duality. Since
Vi are irreducible representations of G and V has finite kernel, the restriction
of V to G′ν has finite kernel. Hence both of the representations Vi|G′µ have

finite kernel, hence contain an irreducible nontrivial representation of G′µ.
Otherwise the restriction V |G′µ would be trivial contradicting that G′µ → Gi
is an isogeny for both i = 1, 2 and Vi both have finite kernel on Gi. For
every nontrivial irreducible representations I1 ⊆ V1|G′µ and I2 ⊆ V2|G′µ of

G′µ the representation

I1 ⊗ I2

only contains trivial representations and standard representations st up to
duality by assumption 2). Since the trivial representation occurs at most
once in the tensor product of two irreducible representations, this implies
I1⊗I2 ⊆ Jµ⊕1 ⊆ st⊕st∨⊕1. Hence dim(I1) dim(I2) ≤ 1+2 ·dim(st) < 1+
2 ·dim(st) + dim(st)2. Hence min(dim(Iν)) < 1 + dim(st). In particular, the
corresponding representation with minimal dimension, say I1, has dimension
≤ dim(st) and hence I1 is a small representation of G′µ. Since it satisfies
dim(I1) ≤ dim(st), it belongs to the list of lemma 8.2. Therefore I1 is the
standard representation of G′µ or its dual, unless the group G′µ is of Dynkin
type D4 and I1 is a spin representation. In the first case, considering highest
weights it is clear that st⊗ I2 ⊆ st⊕ st∨⊕ 1 is impossible. In the remaining
orthogonal case G′µ of Dynkin type D4, the representation I1⊗I2 must have

dimension ≥ 82. But this contradicts dim(I1) dim(I2) ≤ 1 + 2 · dim(st) =
1 + 8 + 8 = 17, and finally proves our assertion. �

Corollary 10.4. In the situation of lemma 10.3, the restriction of the
representation V to the group G′ is multiplicity free unless G′ contains an
exceptional type (in which case the irreducible constituent has multiplicity
2). If G′ has at least one non-exceptional type, then the restriction contains
at least one constituent with multiplicity 1.

Proof. If the restriction of V to G′ contains an irreducible summand I
of G′ with multiplicity ≥ 2, then the restriction of I at least under one
map G′µ → G contains a nontrivial constituent of G′µ with multiplicity > 1.
Hence the restriction of I contains Jµ by the assumption 1) and 2) of the
main lemma such that Jµ ∼= Iµ ⊕ Iµ and we are in an exceptional type. �

Definition 10.5. Let G, G′ be semisimple connected groups and ϕ : G′ →
G a homomorphism with finite kernel. The restriction of the irreducible
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representation V of G to G′ is called weakly multiplicity-free if at least one
irreducible constituent has multiplicity 1.

10.3. Mackey-Clifford theory. Let H be a reductive group and H0 its
connected component. We assume that G is the connected derived group of
H0. Let V be a finite dimensional irreducible faithful representation of H
and let

V |H0 = W1 ⊕ · · · ⊕Ws

be the decomposition of V into irreducible summands (Wν , ρν) after re-
striction to H0. The restriction of each Wν to G remains irreducible (this
follows from Schur’s lemma and the fact that the image of H0 in GL(Wν)
is generated by the image of G in GL(Wν) and the image of the connected
component of the center of H0, whose image is in the center of GL(W )).
By Clifford theory [Cl37] π0(H) = H/H0 acts on these subspaces Wν for
ν = 1, .., s permuting them transitively; i.e. ρν(g) = ρ1(hgh−1) for certain
h ∈ H. We define the isotypic part of an irreducible Wν to be the sum of all
subrepresentations of V |H0 which are isomorphic to Wν . Since π0(H) acts
transitively on the Wν , the multiplicity of each isotypic part is the same.

Representations (Wν , ρν) from different isotypic parts are pairwise non-
isomorphic representations of H0 (in our application later this also re-
mains true for the restriction to G by the G′-multiplicity arguments). But
ρ1(h1gh

−1
1 ) ∼= ρ1(h2gh

−1
2 ) as representations of g ∈ H0 (or g ∈ G) holds

if h−1
1 h2 ∈ H0 (resp. h = h−1

1 h2 ∈ H0). Therefore the automorphism
inth : H0 → H0 acts trivially and the Wν are permuted transitively by
Out(H0) = Aut(H0)/Inn(H0). If a finite group acts transitvely on a set X,
this implies that the cardinality of the set divides the order of the group.
Therefore

s ≤ |Out(H0)|.

If H = Hλ is the Tannaka group of an irreducible maximal atypical module
L(λ) ∈ T +

n and V = Vλ = ω(L(λ)) is the associated irreducible representa-
tion of H and W1, ...,Ws are the irreducible constituents of the restriction
of V to H0, then the following holds

Theorem 10.6. Suppose that L(λ) is not a Berezin twist of Si for some
i or its dual, and suppose n ≥ 4. Then for G = H0

λ and G′ = Gλ′ the
irreducible representations W1, ...,Ws of G satisfy the conditions of lemma
10.3 and G′ has at least one non-exceptional type µ. In particular G is a
connected simple algebraic group and V is a weakly multiplicity free repre-
sentation of H0.

Proof. The irreducibility and faithfulness is a tannakian consequence of the
definitions. Condition 1) and 2) follow from induction on n and the classifi-
cation of similar and selfdual derivatives λi of λ in section A. Condition 3)
is seen as follows: The trivial representation of G′ is attached to a derivative
λµ of λ only if L(λ) isomorphic to Si⊗Berj for some i ≥ 1 and some j ∈ Z



CLASSICAL TENSOR CATEGORIES 39

by lemma C.3. Concerning condition 4): A factor G′µ of G′ of rank 1 (i.e.
with derived group SL(2)) is attached to some derivative λµ of λ only if
L(λ) = S1 or λ has only two sectors, one sector S of rank 1 and the other
sector S′ corresponds to S1 on the level n − 1. In other words ∂SS′ resp.
S′∂S gives S1 and the corresponding group SL(2), but not the other deriv-
ative unless n ≤ 3. Hence by our assumptions, the group G′ has at most
one simple factor SL(2). If an irreducible constituent of the restriction of
V to G′ has multiplicity 2, it comes from a derivative of type (SD). Hence
if all types of G′ are exceptional, all derivatives of L(λ) would have to be
selfdual. This can only happen for n ≤ 3 by the analysis in section A. Hence
lemma 10.3 and corollary 10.4 imply the last statement. �

Theorem 10.7. The simple group G is of type A,B,C,D and W1|G is
either the standard representation of G or its dual.

Proof. We suppose that L(λ) is not a Berezin twist of Si for some i and
suppose n ≥ 4. We distinguish the cases NSD and SD. In the NSD-case
we claim that we have

r(Gλ) ≥ (dim(Vλ)− 1)/2

and that for n ≥ 4 and dim(Vλ) ≥ 4

dim(Gλ) > dim(Vλ)

holds (note that dim(Vλ) ≤ 3 for n ≥ 4 implies k = 1 and dim(Vλ) =
dim(Vλ1)). For all i = 1, .., k the superdimension formula of [Wei10][HW14,
Section 16] implies by lemma C.5 that

dim(Vλ) ≤ n · dim(Vλi)/ri

where ri = r(Vλi) ≥ 1 is the rank of λi. Obviously dim(Gλi) ≤ dim(Gλ).

Since we excluded the Si-case, no Vλi has dimension 1 by lemma C.3. At
most one of the representations Vλi is selfdual by lemma A.6. We make
a case distinction on whether there exists one Vλi that splits in the form
W ′i ⊕ (W ′i )

∨ upon restriction to Gλ′ or not. In the latter case we know
r(Gλi) ≥ 1

2 dim(Vλi) by theorem 6.2 and the induction assumption. Now by
proposition A.2 and the assumption (NSD) all λi in the derivative of λ are
inequivalent for i 6= j. Hence we get

r(Gλ) ≥
∑
i

r(Gλi) ≥
∑
i

1

2
dim(Vλi) ≥

1

2
(dim(Vλ)) .

Since dim(Gλi) ≥ 3r(Gλi), this implies dim(Gλ) ≥ 3
2(dim(Vλ)−1) and hence

dim(Gλ) > dim(Vλ) (note that we have at least one SL factor Gλi for which
r(Gλi) >

1
2 dim(Vλi)). If Vλ splits Vλ = W1⊕ . . .⊕Ws we may replace Vλ by

any Wν for an even better estimate. Therefore lemma 8.2 implies that Vλ
(or Wν) is the standard representation or its dual of a simple group of type
A,B,C,D. If Vλ stays irreducible, then we obtain Gλ ∼= SL(Vλ) since Vλ is
not self-dual.
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If Vλi splits, Gλi
∼= SL(Wi) for Vλ ∼= Wi ⊕W∨i by induction assumption.

If the dimension of Vλi is 2di, we then have r(Gλi) = di − 1 and therefore
have to replace the estimate r(Gλi) ≥ 1

2 dim(Vλi) by the estimate r(Gλi) ≥
1
2(dim(Vλi − 2)). Since Vλi can only decompose if it is of type SD, L(λ)
has more than one sector. All the other k − 1 ≥ 1 derivatives L(λi) are
of type NSD and define inequivalent SL(Vλi). For each of these we obtain
r(Gλj ) = dimVλj − 1. Summing up we obtain

r(Gλ) ≥
∑
i

r(Gλi) ≥
1

2
(dim(Vλi)− 2) +

∑
j 6=i

dim(Vλj )− 1 .

This implies again the necessary estimates to apply lemma 8.2.

We now consider the SD-case. If Vλ decomposes

Vλ|Gλ ∼= W1 ⊕ . . .⊕Ws

then we can assume by reindexing that dim(W1) ≤ 1
s dim(Vλ). Note that

dim(W1) > 1 follows from the induction assumption.

In the SD case we proceed as follows: We first show that Vλ or W1 is small.
Since we cannot prove the strong rank estimates for r(Gλ) as in the NSD
case, we work through the list of exceptional cases in lemma 8.1.

The list of superdimensions in the n=4 and n=5 case in sections 13 C.2
along with the induction assumption shows in these cases that Vλ is small.
Therefore we can assume n ≥ 5. We use the known formulas dim(SL(n)) =

n2 − 1, dimSO(n) = n(n−1)
2 and dim(Sp(2n)) = n(2n+ 1).

We recall from the analysis in lemma A.6 that L(λ) can only have more
than one selfdual derivative if it is completely unnested, i.e. it has n sectors
of cardinality 2. In this case it has 2 selfdual derivatives coming from the
left and rightmost sectors and, if n is odd, another derivative coming from
the middle sectors. If λ is not of this form, then the unique weakly selfdual
derivative comes from the middle sector (of arbitrary rank).

We want to show dim(Gλ) ≤ dim(Vλ). By inductionGλi is either SO(Vλi),
Sp(Vλi), SL(Vλi) or SL(Wi) for Vλi = W ′i ⊕ (W ′i )

∨. We estimate the dimen-
sion of Gλi via

∑
dim(Gλi). We claim that we can assume that we have

more than one sector because otherwise dim(Vλ) = dim(Vλ1) implies that
Vλ is small using the induction assumption. If Vλ1 is an irreducible rep-
resentation of Gλ′ the claim is clear by induction assumption. If it splits
Vλ1 = W ′1⊕ (W ′1)∨, then dim(Vλ1) < dim(SL(W ′1)) provided sdim(L(λ1)) ≥
3. Now sdim(L(λ1)) = 2 can only happen for L(λi) ∼= Ber...⊗S1 (and then
Vλ1 is an irreducible representation of Gλ′). We therefore assume k > 1. The
worst estimate for the dimension is obtained if all Vλi split as W ′i ⊕ (W ′i )

∨

and therefore Gλi
∼= SL(Wi). This case can only happen if either n = 2

or n = 3. For n ≥ 4 the lowest estimate for the dimension of Gλ oc-
curs if λ is completely unnested with 2 selfdual derivatives coming from the
left and right sector and we have n/2 equivalence classes of derivatives (or
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bn/2c + 1 for odd n). The left and right sector then contribute a single
SL(W ′1) = SL(W ′k) and if n is even for all other derivatives Gλi

∼= SL(Vλi)
with Vλi ∼ Vλk−i and therefore same connected derived Tannaka group. If
n = 2l+1 is odd the middle sector can contribute another derivative of type
SD with Tannaka group SL(W ′l+1). The dimension estimate works as in the
case above and we therefore ignore this case.

We show now that dim(Gλ) > dim(Vλ) provided we have two SD derivatives
coming from the left- and rightmost sector. Denote by di the dimension of
Vλi . For i = 1, k it is even d1 = 2d′1 = 2d′k by lemma C.4. We then obtain
for the dimension of Gλ′

dim(Gλ′) =
1

2
((d′1)2 − 1 + (d′k)

2 − 1) +
1

2

∑
j 6=1,k

d2
j − 1.

It is enough to show 2 dimVλi < dimGλi for each i. The smallest possible
superdimensions for a selfdual irreducible representation are 2, 4, 12, . . .. The
dim = 2 case can only happen for L(λi) ∼= Ber...⊗S1 which is not possible by
assumption. Hence d′1 ≥ 3. This case occurs for [2, 1, 0] for n = 3, [2, 2, 0, 0]
for n = 4 and all their counterparts for larger n by appending zeros to the
weight (e.g. [2, 1, 0, 0]). These are not derivatives of a selfdual representation
L(λ) unless L(λ) has one sector (which we excluded). Therefore we can
assume d′1 ≥ 6. Then

2 dim(Vλ1) = 4d′1 < (d′1)2 − 1 = dim(Gλ1).

For the NSD derivatives we can exclude the case di = 2 since this only
happens for L(λi) ∼= Ber... ⊗ S1. For di ≥ 3 we obtain 2di < d2

i − 1,
hence again 2 dim(Vλi) < dim(Gλi). Clearly this estimates also hold if we
have more than n/2 equivalence classes of weights or if we have SO(Vλi) or
Sp(Vλi) in case of SL(Wi).

Hence dim(Vλ) < dim(Gλ). If Vλ is an irreducible representation of Gλ, it
is a small representation of Gλ and lemma 8.1 applies. If it decomposes
Vλ ∼= W1 ⊕ . . .⊕Ws, then each Wν is an irreducible small representation of
Gλ.

Assume first that Vλ ∼= W1⊕ . . .⊕Ws with s ≥ 3 and dim(W1) ≤ 1
s dim(Vλ).

Again the smallest rank estimate for the subgroup Gλ′ occurs for n ≥ 4 if λ
is completely unnested with 2 selfdual derivatives coming from the left and
right sector and we have n/2 equivalence classes of derivatives (we assume
here n even. In the odd case we can have another derivative from the middle
sector. The estimate below still holds). Then

r(Gλ) ≥ r(Gλ′) ≥
1

2
(d1/2− 1 + dk/2− 1 +

∑
j 6=1,k

dj − 1)

=
1

2
(dim(Vλ)− k − d1/2− dk/2).
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In the completely unnested case this equals

1

2
(n!− n− (n− 1)!).

We need r(Gλ) ≥ 1
2(dim(Vλ) − 1) to apply lemma 8.2. We replace now

Vλ by W1 with dim(W1) ≤ 1/s dim(Vλ). For n ≥ 4 and s ≥ 2 we obtain
n!/s−1 ≤ n!−n−(n−1)!, hence lemma 8.2 can be applied to the irreducible
representation W1.

If λ is not completely unnested, it can have at most one SD derivative
coming from the middle sector for k = 2l + 1 odd. Then we obtain

r(Gλ) ≥ r(Gλ′) ≥
1

2
(dl+1/2− 1 +

∑
j 6=l+1

dj − 1)

=
1

2
(dim(Vλ)− k − dl+1/2).

As above we replace Vλ with W1 with dim(W1) ≤ 1
sVλ and show dim(Vλ/s−

1) ≤ dim(Vλ) − k − dl+1/2. For s = 2 this is equivalent to dim(Vλ) ≥
dl+1 + 2(k − 1). This follows easily from dim(Vλ) = dim(Vλl+1

) n
rl+1

(lemma

C.5). For s > 2 the estimates are even stronger. The cases where the SD
derivative occurs and contributes SO(Vλl+1

) or Sp(Vλl+1
), or the case in

which no SD derivative occurs, can be treated the same way.

We can therefore assume that either a) Vλ is an irreducible representation
of Gλ or it splits in the form Vλ = W ⊕W∨. The analysis of small superdi-
mensions in section C.2 shows that the possible superdimensions of weakly
selfdual irreducible representations less than 129 are

1, 2, 6, 12, 20, 24, 30, 42, 56, 70, 72, 80, 90, 110, 112.

Except for the numbers 20 and 56 none of the exceptional dimensions in
lemma 8.1 is equal to either the superdimension or half the superdimen-
sion of an irreducible weakly selfdual representation in T +

n . It is easy to
exclude these two cases (see section C.2) since in this case Vλ or W would
be either a symmetric or alternating square of a standard representation
(which would give a contradiction to the induction assumption) or the ir-
reducible representation of minimal dimension of E7 which is impossible by
rank estimates. �

Theorem 10.8. Either the restriction of Vλ to H0 and Gλ is irreducible,
or G ∼= SL(W ) and V |G ∼= W ⊕W∨ for a vectorspace W of dimension ≥ 3.
If V |G ∼= W ⊕W∨, then

Vλ ∼= IndHH1
W

for a subgroup H1 of index 2 between H0 and H. In particular Vλ is an
irreducible representation of Gλ if L(λ) is not weakly selfdual.
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Proof. As in the statement of theorem 10.6 we can assume that n ≥ 4
and that L(λ) is not a Berezin twist of Si (or its dual) since these cases were
already treated in section 9.

We claim that the representation V |H0 = W1 ⊕ . . . ⊕Ws is multiplicity
free. Since the restriction of V to G′ is weakly multiplicity free, at least
one irreducible constituent occurs only with multiplicity 1 for some (non-
exceptional) µ. By Clifford theory the multiplicity of each isotypic part in
the restriction of V to H0 is the same (since π0 acts transitively). If the
multiplicity of each isotypic part would be bigger than 1, the restriction of
V to G′ could not be weakly multiplicity free. Therefore the multiplicity of
each isotypic part is 1. Any Wν restricted to Gλ is irreducible (restriction
to the derived group). Since Gλ is a normal subgroup of H, H still operates
transitively on the set {Wν |Gλ}. Fix any Wν |Gλ . Its H-orbit has s′ elements
where s′ divides s and s/s′ is the multiplicity of each Wν |Gλ in Vλ|Gλ . Hence
the argument from Clifford theory explained preceding theorem 10.6 shows

s′ ≤ |Out(G)| .

But a nontrivial outer automorphism of G that does not fix the isomorphism
class of the standard representation W1 of G exists only for the groups G of
the Dynkin type Ar for r ≥ 2. For the special linear groups G = SL(Cr+1)
the nontrivial representative in Out(G) it is given by g 7→ g−t. The twist
of the standard representation by this automorphism gives the isomorphism
class of the dual standard representation W∨1 . This implies s′ = 1 or s′ = 2.
If s′ = 2, then Vλ|Gλ ∼= W ⊕W∨ where W is the standard representation of
SL and Gλ ∼= SL(W ). Since Vλ|Gλ′ is weakly multiplicity free and Gλ′ ⊂ Gλ,
Vλ|Gλ is weakly multiplicity free as well. Accordingly s/s′ = 1 and we also
obtain s = 1 or 2. If s = 2, Clifford theory further implies that

Vλ ∼= IndHH1
W

for a subgroup H1 of index 2 between H0 and H. �

Remark 10.9. Since W ⊕W∨ is selfdual, this implies in particular that
Vλ can only decompose if L(λ) is weakly selfdual. If Vλ decomposes, its
restriction to Gλ′ is of the form

⊕
iWi⊕W∨i . This leads to some restrictions

on SD weights λ such that Vλ decomposes in the form W ⊕W∨. Consider
for an instance the weakly selfdual weight [n− 1, n− 2, . . . , 1, 0] for odd n =
2l + 1. Then Vλ can only decompose if the irreducible representation Vλl+1

associated to the middle derivative L(λl+1) decomposes upon restriction to
Gλ′ in the form W ′l+1 ⊕ (W ′l+1)∨.

11. A conjectural structure theorem

According to the structure theorem 6.2 we need to consider the case where
Vλ|Gλ ∼= W ⊕W∨. We conjecture that this case does not happen. If this
would be true, the following stronger variant of the structure theorem would
hold.
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Conjecture 11.1. Gλ = SL(Vλ) resp. Gλ = SO(Vλ) resp. Gλ = Sp(Vλ)
according to whether Xλ satisfies (NSD) respectively (SD) with either Xλ

being even respectively odd. The dimension of Vλ is even unless Vλ has
dimension 1.

11.1. Applications. The conjectural structure theorem would have the fol-
lowing consequences.

Corollary 11.2. For given L = L(λ) in Rn and r ∈ Z there can exist at
most one summand M in L⊗(Berr⊗L∨) with the property sdim(M) = ±1.
If it exists then M ∼= Berr.

Proof of the corollary. We can assume that L is maximal atypical. Then
1 is a direct summand of L ⊗ L∨ and hence Berr is a direct summand of
L⊗ (Berr⊗L∨). Hence it suffices to show that 1 is the unique summand M
of L⊗L∨ with sdim(M) = ±1. Equivently it suffices to show that Vλ ⊗ V ∨λ
contains no one-dimensional summand except 1. This now follows from
conjecture 11.1 using the well known fact that st ⊗ st∨ for the standard
representation st of SL(V ), SO(V ), Sp(V ) contains only one summand of
dimension 1. �

Since the groups Hλ always satisfy Hλ ⊆ GL(Vλ) resp. Hλ ⊆ GO(Vλ)
resp. Hλ ⊆ GSp(Vλ) according to whether Xλ satisfies (NSD) respectively
(SD) with either Xλ even respectively odd, another immediate consequence
of conjecture 11.1 is

Proposition 11.3. The groups Hλ/Gλ are abelian.

11.2. A criterion for irreducibility. We analyze the consequences of
Vλ|Gλ ∼= W ⊕ W∨ further and show that this can happen only if there
exists special indecomposable modules I 6= 1 of superdimension 1 in the
tensor product L(λ)⊗ L(λ)∨.

If

Vλ|Gλ ∼= W ⊕W∨

decomposes,Gλ = SL(W ) is a maximal proper semisimple subgroup in
Sp(2m) resp. SO(2m) depending on the parity of the underlaying pair-
ing. This implies that Hλ is contained in the normalizer of Gλ in GSp(2m)
resp. GO(2m). So Hλ is contained in

0→ GL(W )→ G→ Z/2Z→ 0

and Hλ itself contains

0→ SL(W )→ G→ Z/2Z→ 0

as a subgroup. The irreducible representation of Hλ on Vλ = W ⊕ W∨

becomes st ⊕ (detr ⊗ st∨), when restricted to the subgroup GL(W ). Then
it is easy to see that both

Sym2(Vλ) and Λ2(Vλ)
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contain a unique one dimensional representation of Hλ. These one dimen-
sional representations define two nondegenerate Hλ-equivariant pairings

Vλ ⊗ Vλ −→ detr

Vλ ⊗ Vλ −→ ε⊗ detr

for the nontrivial character ε : Hλ → π0(Hλ) ∼= Z/2Z. One of these pairings
has to be symmetric and the other one has to be skew symmetric. These
Hλ-modules detr and ε⊗detr correspond to nonisomorphic indecomposable
objects I of T +

n (represented by ε maybe up to a parity shift) such that for
I the following holds.

Lemma 11.4. Properties of I. The module I has the following prop-
erties:

(1) I is indecomposable in T +
n with sdim(I) = 1.

(2) There exists an irreducible object L of T +
n . such that I occurs (with

multiplicity one ) as a direct summand in L⊗ L∨.
(3) L⊗ I ∼= L⊕N for some negligible object N .
(4) I∨ ∼= I.
(5) I∗ ∼= I.

(6) DS(I) is Ĩ⊕ negligible for an indecomposable object Ĩ concentrated

in degree 0 of superdimension 0 satisfying Ĩ∨ = Ĩ and Ĩ∗ ∼= Ĩ. If we
assume the stronger structure theorem for n−1 by induction, DS(I)
is 1 plus some negligible object.

Proof. 1) is obvious. For 2) notice that for L = L(λ) we have L∨ ∼=
Ber−r ⊗ L so that we get a nondegenerate pairing L ⊗ L∨ → I. By the
representation theory of the semidirect product G from above any one di-
mensional representation in L ⊗ L∨ must have multiplicity one. In fact
there occur exactly two nonisomorphic one dimensional summands, namely
those corresponding to the pairings. This fact implies property 3) and
4). Indeed I is one of the two one dimensional retracts of L ⊗ L∨. Since
(L⊗L∨)∨ ∼= L⊗L∨, this implies I∨ ∼= I, and similarly (L⊗L∨)∗ ∼= L⊗L∨
implies I∗ ∼= I. Property 6) follows since I is selfdual of superdimension
1, and so its cohomology is concentrated in degree 0. By definition I is a
retract of L⊗ L∨, so DS(I) is a retract of DS(L)⊗DS(L)∨. If we assume
that the stronger structure theorem holds for n− 1, the only summands of
superdimension 1 in a tensor product L(λi)⊗L(λi)

∨ are Berezin powers by
corollary 11.2, hence DS(I) ∼= 1⊕N . �

Conjecture 11.5. I ' 1.

We are unable to prove this result at the moment. For some special cases
see the appendices D E. This conjecture immediately implies that Vλ stays
irreducible under restriction to Gλ and therefore would prove the stronger
version of the structure theorem.



46 TH. HEIDERSDORF, R. WEISSAUER

12. The Picard group of T n
We analyze the invertible elements in Rep(Hn), i.e. Pic(Hn), or in down-

to-eart terms the character group of Hn.

12.1. Invertible elements. For a rigid symmetric k-linear tensor category
C an object I of C is called invertible if I⊗I∨ ∼= 1 holds. The tensor product
of two invertible objects of C is an invertible object of C. Let Pic(C) denote
the set of isomorphism classes of invertible objects of C. The tensor product
canonically turns (Pic(C,⊗) into an abelian group with unit object 1, the
Picard group of C.
Suppose that the categorial dimension dim is an integer ≥ 0 for all indecom-
posable objects of C. The objects of categorial dimension 0 define a thick
tensor ideal of C. An indecomposable object I of C is an invertible object
in C = C/N if and only if sdim(I) = 1 holds. In fact dim(I) = 1 implies
dim(I∨) = 1 and hence dim(I ⊗ I∨) = 1. Hence I ⊗ I∨ ∼= 1 ⊕ N for some
negligible object N . Note that the evaluation morphisms eval : I ⊗ I∨ → 1
splits since dim(I) 6= 0.

12.2. Pic(T n) and the determinant. We are interested in the Picard
group of the tensor category T n = T +

n /N . Since T n ∼ Repk(Hn), to deter-
mine the Picard group Pic(T n) is tantamount to determine the character
group of Hn. Hence Hab

n = Hn/Gn is determined by Pic(T n). The elements
of Pic(T n) are represented by indecomposable objects I ∈ T +

n with the
property

I ⊗ I∨ ∼= 1⊕ negligible .

The category T n is generated by the images of the objects Xλ, where λ is a
maximal atypical weight and Xλ is the irreducible module of highest weight
λ in T +

n . Recall sdim(Xλ) ≥ 0. So we can define det(Xλ) = Λsdim(Xλ)(Xλ).
Notice

det(Xλ) = Iλ ⊕ negligible

is the sum of a unique indecomposable module Iλ in T +
n and a direct sum

of negligible indecomposable modules in T +
n . Furthermore I∗λ

∼= Iλ and
sdim(Iλ) = 1 holds, and if Xλ is selfdual, then Iλ is selfdual. In particular,
det(Xλ) in T +

n has superdimension one, hence its image defines an invertible
object of the representation category T n ∼ Repk(Hn). By abuse of notation
we also write

det(Xλ) ∈ Repk(Hn) .

12.3. The invariant `(λ). As one easily shows, for any object X of Tn
det(Berm ⊗X) = Berm·sdim(X) ⊗ det(X) .

Hence to determine Iλ we may assume λn = 0. So let us assume this for
the moment. Then, for a maximal atypical weight λ with the property
λn = 0, let S1, ..., Sk denote its corresponding sectors, from left to right.
If i = 1, .., k − 1 let di = dist(Si, Si+1) denote the distances between these
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sectors and r(Si) denotes the rank of Si, then
∑k

i=1 r(Si) = n. Furthermore

d =
∑k

i=1 di = 0 holds if and only if the weight λ is a basic weight. Recall,
if we translate S2 by shifting it d1 times to the left, then shift S3 translating
it d1 + d2 to left and so on, we obtain a basic weight. This basic weight is
called the basic weight associated to λ. The weighted total number of shifts
necessary to obtain this associated basic weight by definition is the integer

`(λ) :=

k∑
i=1

sdim(Xλi) · (
∑
j<i

dj)

where L(λi) ∈ Rn−1 denote the irreducible representations associated to
the derivatives S1....∂Si....Sk. By [Wei10] [HW14, Section 16] sdim(Xλi) =
ri
n · sdim(Xλ) holds for rν = r(Sν), which allows to rewrite this in the form

`(λ) =
sdim(Xλ) ·D(λ)

n
,

where D(λ) is the total number of left moves needed to shift the support of
the plot λ into the support of the associated basic plot λbasic, i.e. the integer

D(λ) :=
k∑
ν=1

rν · (
∑
µ<ν

dµ) .

Now, to remove our temporary assumption λn = 0 and hence to make the
formulas above true unconditionally, we have to introduce the additional
terms d0 = λn (for µ = 0) in the formulas above. For further details on this
see [HW14, Section 25]. We remark that in the following we also write D(L)
instead of D(λ) for the irreducible representations L = L(λ) and similarly
`(L) instead of L(λ).

12.4. Pic0. We return to indecomposable objects I ∈ T +
n representing in-

vertible objects of T n.
Since I ⊗ I∨ ∼= 1⊕ negligible objects, we obtain

ω(I, t)ω(I∨, t) = ω(I ⊗ I∨, t) = 1.

Indeed, the functor ω annihilates negligible objects. For the Laurent poly-
namial ω(I, t) this now implies

ω(I, t) = tν

for some integer ν ∈ Z which defines the degree ν(I) = ν. Obviously this
degree ν(I) induces a homomorphism Pic(Rn) → Z of groups by I 7→ ν =
ν(I) ∈ Z and gives an exact sequence

0 // Pic0(T n) // Pic(T n)
ν // Z

with kernel Pic0(T n). Clearly ν(Ber) = n, hence the next lemma follows.

Lemma 12.1. The intersection of Pic0(T n) with the subgroup generated
by I = Ber is trivial.
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Lemma 12.2. For any irreducible object L in T +
n the invertible element

det(L) ∈ Tn has the property

ν(det(L)) = sdim(L) ·D(L) = `(L) · n.
In particular, the image of the homomorphism ν is n · Z.

Proof. The functor ω : Tn → gr − veck is a tensor functor. Hence
ν(det(L)) = ν(det(ω(L)). Hence

ν(det(L)) =
∑
i

i · ai (∗)

for ω(L, t) =
∑

i ait
i. By [HW14, Lemma 25.2] we obtain the formula

ω(L, t−1) = t−2D(λ)ω(L, t) and hence ω(Lbasic, t) = ω(Lbasic, t
−1), the latter

because of D(Lbasic) = 0. So the formula (*) implies

ν(det(Lbasic)) = 0.

From ω(L, t) = tD(L)ω(Lbasic, t) and sdim(Lbasic) = sdim(L), again by (*)
we therefore obtain for ω(Lbasic, t)

t−D(λ)
∑
i

ait
i = t

∑
i(i−D(λ))ai

= t
∑
i iai−D(λ) sdim(L)

= ω(det(L), t)t−D(λ) sdim(L) ,

and hence
ω(det(L), t) = tD(λ) sdim(L) · ω(det(Lbasic, t)).

The second factor being t0, the result follows. �

Since ω(L(λ), t)t−D(λ) is invariant under t 7→ t−1, we also obtain

Corollary 12.3. d log(ω(L, t))|t=1 = D(L).

Corollary 12.4. We have det(L)⊗Ber−`(L) ∈ Pic0(T +
n ), i.e.

det(L) ∈ Pic0(T n)×BerZ

for irreducible L ∈ T +
n .

Example 12.5. For GL(2|2) we obtained (up to parity shifts) in [HW15]
the formula Si⊗Si = Beri−1⊕M for some module M of superdimension 3.
Since sdim(Si) = 2, det(Si) = Beri−1⊕ negligible. Indeed for Si we obtain
`([i, 0]) = r1d0 + r2d1 where ri denotes the rank of the i-th sector. Clearly
r1 = r2 = 1 and d0 = 0 and d1 = i− 1, hence `([i, 0]) = i− 1.

13. The Picard group of T n and the group Hn

We discuss in this section the groups Hλ and Hn. We assume throughout
that the stronger structure theorem 11.1 on Gλ and Gn holds (although some
results hold without this assumption). Parts of this section are conjectural
and hence the purpose of this section is to give the big picture.
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13.1. The groups Hλ for `(λ) 6= 0. If the integer `(λ) is non-zero, it is
easier to determine the groups Hλ since they are as large as possible.

Lemma 13.1. For `(λ) 6= 0, the Tannaka groups Hλ of Xλ are the fol-
lowing:

(1) NSD: Hλ = GL(sdim(Xλ)).
(2) SD, sdim(L(λ) > 0: Hλ = GSO(sdim(Xλ)).
(3) SD, sdim(L(λ) < 0: Hλ = GSp(sdim(Xλ)).

In each case the representation Vλ of Hλ coming from Xλ corresponds to the
standard representation. In the GSO and GSp cases the similitude character
is given by a Berezin power.

Proof. By corollary 12.4 we have

det(L)⊗Ber−`(L) ∈ Pic0(T +
n ),

or equivalently
det(L) ∈ Pic0(T n)×BerZ

for irreducible L ∈ T +
n . In particular the determinant powers of L(λ) give

a subcategory equivalent to Rep(GL(1)) in Rep(Hλ). By section 6 and the
structure theorem on the Gλ we have the estimates

SL(Vλ) ⊆ Hλ ⊆ GL(Vλ)

in the case (NSD) and

SO(Vλ) ⊆ Hλ ⊆ GO(Vλ),

Sp(Vλ) ⊆ Hλ ⊆ GSp(Vλ)

in the case (SD) for even respectively odd Xλ. The additional GL(1) factor
implies then immediately that we get GL(Vλ) in the (NSD) case and the
groups

GSp(sdim(L(λ))) ∼= (Sp(sdim(L(λ)))×Gm)/Z2

in the odd SD case and either

GO(sdim(L(λ))) ∼= O(sdim(L(λ)))×Gm or

GSO(sdim(L(λ))) ∼= (SO(sdim(L(λ)))×Gm)/Z2

(where Z2 is diagonally embedded in the centres) in the even SD case. Notice
that for the groups GSO(2m) and GSp(2m) the determinant character is
given by det = µm for the similitude character. Therefore to show that
µ and hence det is a Berezin power we may use the same argument as in
section 6: Indeed the object I in T +

n corresponding to µ (up to a parity
shift) defines a nondegenerate pairing

L(λ)⊗ L(λ)→ I .

Since L(λ)∨ ∼= Ber−r⊗L(λ) there exists on the other hand a nondegenerate
(SD) pairing

L(λ)⊗ L(λ)→ Berr .
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Therefore Ber−r ⊗ I is an indecomposable constituent of L(λ) ⊗ L(λ)∨ of
superdimension ±1. However by proposition 6.2 the module L(λ) ⊗ L(λ)∨

contains a unique indecomposable constituent of superdimension±1, namely
the trivial representation 1. In fact this is a well known property of the
standard representations of the groups SO(V ) and Sp(V ). This implies
Ber−r ⊗ I ∼= 1 and therefore µ = Berr. But this also implies that Hλ

∼=
GSO(Vλ) instead of GO(Vλ). �

13.2. Special modules and determinants. We now calculate the deter-
minants det(L(λ)) under the assumption that special modules (see below)
are trivial.

Consider modules V ∈ T +
n with the property V ∗ ∼= V such that sdim(V ) =

1. Then, up to negligible summands, V has a unique indecomposable sum-
mand with nonvanishing superdimension. So we may assume that V is
indecomposable.

Definition 13.2. An indecomposable module V in T +
n with sdim(V ) = 1

will be called special, if V ∗ ∼= V and H0(V ) contains 1 as a direct summand.

For special modules V the assumption sdim(V ) = 1 implies that special
modules are maximal atypical modules, i.e. contained in R0

n. Furthermore
for special modules

DS(V ) ∼= 1⊕N
holds for some negligible module N , since sdim(DS(V )) = sdim(V ). Recall
that the assumption V ∈ T +

n implies that HD(V ) = DS(V ). Hence for
special V also

HD(V ) = 1⊕N .

Lemma 13.3. Suppose V ∼= V ∗ ∼= V ∨ and DS(V ) ∼= 1 ⊕ N holds for
some negligible module N . Then V is special.

Proof. The assumptions imply that there exists a unique integer ν for
which Hν(V ) is not a negligible module. Since Hν(V )∨ ∼= H−ν(V ∨), the
assumption V ∼= V ∨ implies ν = 0. HenceH0(V ) = 1⊕N for some negligible
N . �

Conjecture 13.4. Up to a parity shift, any special module V in T +
n is

isomorphic to the trivial module 1.

Assuming this conjecture we now prove the following theorem. We refer
to section 12 for the definition of the determinant and the integer `(λ). In
fact we would only have to prove the (NSD)-case of the following theorem
as explained in lemma 13.7.

Theorem 13.5. Assume that the derived connected groups Gλ are as in
proposition 6.2 for the degrees ≤ n and assume conjecture 13.4. Then for
any maximal atypical weight λ defining Xλ in T +

n , for λn = 0 the module
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det(Xλ) satisfies

det(Xλ) = Ber`(λ) ⊕ negligible.

In particular, for λn = 0 we have det(Xλ) = 0 if (and only if) the maximal
atypical weight weight λ is a basic weight.

Lemma 13.6. If for all i < n the last theorem holds for the categories
T +
i , then for all Xλ in T +

n we have DS(Iλ) = Ber`(λ).

Proof of lemma 13.6. Since

det(A⊕B) ∼= det(A)⊗ det(B)⊕ negligible

holds using

ΛN (A⊕B) ∼=
⊕

p+q=N

Λp(A)⊗ Λq(B),

it is enough to show

`(λ) =
sdim(Xλ)

n
·D(λ) =

k∑
i=1

`(λi) ,

using induction on n. By section 12

`(λi) =
sdim(Xλi)

n− 1
·D(λi) =

sdim(Xλ) · ri
n(n− 1)

·D(λi) .

So it suffices to verify

(n− 1) ·D(λ) =
k∑
i=1

ri ·D(λi) .

Notice D(λ1)−D(λ) = r2 + ...+ rk. For i ≥ 2 we get the slightly different
formula

D(λi) −
(
D(λ)−

∑
j<i

dj
)

= −(n− 1) + (ri − 1) + 2 · (ri+1...+ rk) .

Indeed, the term −D(λ) is obtained from moving n labels to the left, where
for λi the deleted point ai ∈ Si is omitted, which gives the modification by∑

j<i dj on the left side of the formula. The term −(n− 1) on the right side
appears in the cases i ≥ 2 only. It comes from the normalization condition
for the last coordinate of the weight vectors. For i ≥ 2 the last coordinate
of λi is −n+ 1. It has to be normalized to −(n− 1) + 1 by a Berezin twist.
Finally the ri − 1 labels within ∂Si, if compared to λ, need to be moved to
the left by an additional distance +1, whereas the labels within Sj for j > i,
if compared to λ, need to be moved by an additional distance +2. Hence

D(λi) = D(λ) −
∑
j<i

dj +
i∑

j=1

εij · rj
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for εji = −εij and εij = 1 for i < j. Since
∑

i

∑
j εijrirj = 0,

k∑
i=1

ri ·D(λi) = (

k∑
i=1

ri) ·D(λ)−D(λ) = (n− 1) ·D(λ) .

�

The last lemma 13.6 implies that

Ber−`(λ) ⊗ Iλ
is a special module. Hence Ber−`(λ) ⊗ Iλ ∼= 1 by conjecture 13.4. This
proves theorem 13.5.

We remark that it is sufficient to prove the determinant formula in the
(NSD)-case as shown in the next lemma.

Lemma 13.7. Assume that det(L) = Ber`(λ) ⊕ negligible for L non-
basic of type (NSD). Then the same formula for det(L) is true for any
maximal atypical L.

Proof. Assume det(L) = Ber`(λ) ⊕ negligible holds for (NSD) non-basic.
Let us assume that L(λ) = L(λ1, . . . , λn) is an arbitrary maximal atypical
representation in T +

n . Choose a large number λ0 and consider the maximal
atypical irreducible representation

L̃ = L(λ̃) = [λ0, λ1, . . . , λn]

in Tn+1. For large enough λ0 this representation is of type NSD non-basic.
For the NSD case the induction step from n to n+ 1 of section 6 works and
shows Gλ̃ = SL(sdim(Xλ̃) and therefore Hλ̃ = GL(sdim(Xλ̃).

Assuming the NSD-case, we have

det(Xλ̃) = Ber`(λ̃) ⊕ negligible

Since the tensor functor DS commutes with det and furthermore since
det(A⊕B) = det(A)⊗ det(B)⊕ negligible holds, we obtain

DS(det(sdim(Xλ̃))) ∼= ΠBer`(λ̃) ⊕ negligible

and

Ber`(λ̃) ⊕ negligible ∼=
r⊗
i=1

det(L(λ̃i))⊕ negligible.

Except for L(λ̃1) = L(λ) all other summands of DS(L̃) contain the number
λ0 which prevents them from being of basic type or NSD type. Hence their
determinant is a Berezin power and we obtain

Ber`(λ̃) ⊕ negligible ∼= det(L(λ))⊗
r⊗
i=2

Ber`(λ̃i) ⊕ negligible.

Hence det(L(λ)) is a Berezin power, and the computations of lemma 12.2

show det(L(λ)) = Ber`(λ). �
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13.3. Hλ and its character group. In order to determine Hλ, we need to
understand its character group, i.e. the invertible elements in Rep(Hλ). In
particular we would like to rule out a nontrivial group of connected compo-
nents.

Conjecture 13.8. Any invertible object I in T n is represented in T +
n by

a power of the Berezin determinant.

Remark 13.9. The same assertion cannot hold for Rn, since there exists
a nontrivial extension V between 1 and S1 with sdim(V ) = −1. Hence
V ⊗ V ∨ ∼= 1 ⊕ N for some object N in Rn of sdim(N) = 0. Note that
EndRn(V )→ EndRn(1) has kernel of dimension at most one, since

HomRn(S1,1) = HomRn(1, S1) = 0.

Thus EndRn(V ) = EndRn(N)⊕EndRn(1) and EndRn(N) = k ·idN . Hence
N is indecomposable and negligible.

Remark 13.10. From I ⊗ I∨ ∼= 1 in T n we conclude dim(I) = 1. Every
character is the determinant of a faithful representation, but this represen-
tation might not be irreducible. If it is not, we can decompose it and can
use det(X1 ⊕ . . .⊕Xr) = det(X1)⊗ . . .⊗ det(Xr). However these Xi could
come from indecomposable modules Ii in T +

n , and we don’t have a formula
for their determinants even under the assumption that special modules are
trivial.

This conjecture allows us to determine the possible Tannaka groups.

Theorem 13.11. The Tannaka groups Hλ of Xλ are the following:

(1) NSD non-basic: Hλ = GL(sdim(Xλ)).
(2) NSD basic: Hλ = SL(sdim(Xλ)).
(3) SD, proper selfdual, sdim(L(λ) > 0: HλSO(sdim(Xλ)).
(4) SD, proper selfdual, sdim(L(λ) < 0: Hλ = Sp(sdim(Xλ)).
(5) SD, weakly selfdual, sdim(L(λ) > 0: Hλ = GSO(sdim(Xλ)).
(6) SD, weakly selfdual, sdim(L(λ) < 0: Hλ = GSp(sdim(Xλ)).

In each case the representation Vλ of Hλ coming from Xλ corresponds to
the standard representation. In the GL case the determinant comes from
a (nontrivial) Berezin power. In the GSO and GSp cases the similitude
character is given by a Berezin power.

Note that a basic representation of SD type always satisfies L ∼= L∨. In
the (SD) case `(λ) = 0 if and only if L(λ) ' L(λ)∨. In the (NSD)-case
`(λ) = 0 if and only if λ is basic.

Proof. For `(λ) 6= 0 we have seen this in lemma 13.1. Assume therefore
`(λ) = 0. In the (SD)-case this implies L(λ) ∼= L(λ)∨, and we get the
a-priori estimates

SO(Vλ) ⊆ Hλ ⊆ O(Vλ),

Sp(Vλ) ⊆ Hλ ⊆ Sp(Vλ).
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To distinguish between O(Vλ) and SO(Vλ) we need to rule out nontrivial
indecomposable representations J satisfying J⊗2 ∼= 1, J ∼= J∗ ∼= J∨ and
J 6' 1. But such a representation is special, therefore trivial and therefore
Hλ
∼= SO(Vλ). In the (NSD) case every character is given by a Berezin

power according to conjecture 13.8. Therefore a nontrivial character means
Pic(Hλ) ' Z and therefore Hλ ' GL(Vλ). But then det(Vλ) 6= 1, in
contradiction to det(Xλ) ' 1 ⊕ negligible according to theorem 13.5 for
`(λ) = 0. �

The structure of Hn can now be recovered from the Hλ as in the GL(2|2)-
case.

Example 13.12. The GL(3|3)-case. For n = 3 the structure theorem on the
Gλ holds unconditionally. Here is a list of the nontrivial basic representations
and their Tannaka groups. We automatically consider the possible parity
shifted representation with positive superdimension here.

(1) [2, 1, 0], , sdim = 6, Hλ = Sp(6).
(2) [1, 1, 0], sdim = 3, Hλ = SL(3).
(3) [2, 0, 0], sdim = 3, Hλ = SL(3).
(4) [1, 0, 0], sdim = 2, Hλ = SL(2).

Twisting any of these with a nontrivial Berezin power gives the GL, GSO
or GSp version. The appearing groups exhaust all possible Tannaka groups
arising from an L(λ).

Example 13.13. The GL(4|4)-case. Here the structure theorem for Gλ
(and therefore the determination of Hλ) holds unconditional except for the
case where L(λ) is weakly selfdual with [λbasic] 6= [3, 2, 1, 0] by the following
lemma:

Lemma 13.14. For the basic representations of (SD) type

[3, 1, 1, 0], [2, 1, 0, 0], [2, 2, 0, 0]

we have I ∼= 1.

Proof. For [2, 2, 0, 0] this follows from appendix D and example D.5. It is
enough to verify that DS([2, 2, 0, 0]) does not contain a summand L(λi) with
(λi)basic = [2, 1, 0]. The irreducible representations [3, 1, 1, 0] and [2, 1, 0, 0]
have k = 3 sectors each. However Vλ can only decompose under the restric-
tion to Gλ if k is even. Alternatively note that we have embedded subgroups
Sp(6) and Sp(6)× Sl(3) in G[2,1,0,0] and G[3,1,1,0] respectively which implies
that Gλ cannot be SL(3) or SL(6). �

For n = 4 there are 14 maximal atypical basic irreducible representations
in R4, the self dual representations

1 = [0, 0, 0, 0], S1 = [1, 0, 0, 0], [2, 1, 0, 0], [2, 2, 0, 0], [3, 1, 1, 0], [3, 2, 1, 0]

of superdimension 1,−2,−6, 6,−12, 24 and the representations

S2 = [2, 0, 0, 0], S3 = [3, 0, 0, 0], [3, 1, 0, 0], [3, 2, 0, 0]



CLASSICAL TENSOR CATEGORIES 55

of superdimension 3,−4, 8,−12 and their duals

[1, 1, 0, 0], [1, 1, 1, 0], [2, 1, 1, 0], [2, 2, 1, 0] .

Here is a list of the nontrivial basic representations and their Tannaka
groups. We automatically consider the possible parity shifted representa-
tion with positive superdimension here. Note that the result for the first
example [3, 2, 1, 0] assumes that Gλ ∼= SO(24) (a consequence of the conjec-
tural structure theorem 11.1).

(1) [3, 2, 1, 0], sdim = 24, Hλ = SO(24).
(2) [3, 2, 0, 0], sdim = 12, Hλ = SL(12).
(3) [3, 1, 1, 0], sdim = 12, Hλ = Sp(12).
(4) [3, 1, 0, 0], sdim = 8, Hλ = SL(8).
(5) [3, 0, 0, 0], sdim = 4, Hλ = SL(4).
(6) [2, 2, 1, 0], sdim = 12, Hλ = SL(12).
(7) [2, 2, 0, 0], sdim = 6, Hλ = SO(6).
(8) [2, 1, 1, 0], sdim = 8, Hλ = SL(8).
(9) [2, 1, 0, 0], sdim = 6, Hλ = Sp(6).

(10) [2, 0, 0, 0], sdim = 3, Hλ = SL(3).
(11) [1, 1, 1, 0], sdim = 4, Hλ = SL(4).
(12) [1, 1, 0, 0], sdim = 3, Hλ = SL(3).
(13) [1, 0, 0, 0], sdim = 2, Hλ = SL(2).

Twisting any of these with a nontrivial Berezin power gives the GL, GSO
or GSp version. The appearing groups exhaust all possible Tannaka groups
arising from an L(λ).

Theorem 4.1 implies the following branching rules (the lower index indi-
cates the superdimensions up to a sign):

(1) DS([3, 2, 1, 0]24) ∼= [3, 2, 1]6 ⊕ [1, 0,−1]6 ⊕ [3, 0,−1]6 ⊕ [3, 2,−1]6
(2) DS([3, 2, 0, 0]12) ∼= [3, 2, 0]6 ⊕ [1,−1,−1]3 ⊕ [3,−1,−1]3
(3) DS([3, 1, 1, 0]12) ∼= [3, 1, 1]3 ⊕ [3, 1,−1]6 ⊕ [0, 0,−1]3
(4) DS([3, 1, 0, 0]8) ∼= [3, 1, 0]6 ⊕ [0,−1,−1]2
(5) DS([3, 0, 0, 0]4) ∼= [3, 0, 0]3 ⊕ [−1,−1,−1]1
(6) DS([2, 2, 0, 0]6) ∼= [2, 2, 0]3 ⊕ [2,−1,−1]3
(7) DS([2, 1, 0, 0]6) ∼= [2, 1, 0]6
(8) DS([2, 0, 0, 0]3) ∼= [2, 0, 0]3
(9) DS([1, 0, 0, 0]2) ∼= [1, 0, 0]2

(10) DS([1, 1, 1, 1]1) ∼= [1, 1, 1]1
and DS([n, 0, 0, 0]4) ∼= [n, 0, 0]3 ⊕ [−1,−1,−1]1 for all n ≥ 4. We also have
to consider the dual representations in the cases (2), (4), (5) and (8).

Example 13.15. Consider L(λ) = [6, 6, 1, 1]. It is weakly selfdual with dual
[1, 1,−4,−4] = Ber−5⊗ [6, 6, 1, 1, ]. Its superdimension is 6. Since `(λ) 6= 0,
the associated Tannakagroup is therefore Hλ = GSO(Vλ) ' GSO(6). This
does not depend on the conjecture I ' 1. Indeed DS([6, 6, 1, 1]) does not
contain an irreducible summand L(λi) with (λi)basic = [2, 1, 0] and one can
argue as in lemma 13.14.
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Appendix A. Equivalences and derivatives

Recall that two weights λ, µ are equivalent λ ∼ µ if there exists r ∈ Z
such that L(λ) ∼= Berr⊗L(µ) or L(λ)∨ ∼= Berr⊗L(µ) holds. We denote the
equivalence classes of maximal atypical weights by Y +

0 (n). The embedding
Hn−1 → Hn induces an embedding Gn−1 → Gn. Since inductively Gn−1 =∏
λ∈Y +

0 (n)Gλ, we need to understand the equivalence classes of weights and

their behaviour under DS.

A.1. Plots. We use the notion of plots from [HW14, Section 13] to describe
weight diagrams and their sectors. A plot λ is a map

λ : Z→ {�,�}
such that the cardinality r of the fiber λ−1(�) is finite. Then by definition
r = r(λ) is the degree and λ−1(�) is the support of λ. The fiber λ−1(�)
corresponds to those vertices of the weight diagram which are labeled by a
∨. An interval I = [a, b] of even cardinality 2r and a subset K of cardinality
of rank r defines a plot λ of rank r with support K. We consider formal
finite linear combinations

∑
i ni · λi of plots with integer coefficients. This

defines an abelian group R =
⊕∞

r=0Rr (graduation by rank r). In [HW14]
we defined a derivation on R called derivative. Any plot can be written as a
product of prime plots and we use the formula ∂(

∏
i λi) =

∑
i ∂λi ·

∏
j 6=i λj

to reduce the definition to the case of a prime plot λ. For prime λ let (I,K)
be its associated sector. Then I = [a, b]. Then for prime plots λ of rank
n with sector (I,K) we define ∂λ in R by ∂λ = ∂(I,K), I = [a, b] with
∂(I,K) = (I,K)′ = (I ′,K ′) for I ′ = [a + 1, b − 1] and K ′ = I ′ ∩ K. The
importance of ∂ is that it describes the effect of DS on irreducible repre-
sentations according to theorem 4.1: If L(λ) has sector structure S1 . . . Sk,
L(λi) has sector structure S1 . . . ∂Si . . . Sk.

A.2. Duality. If L = L(λ) is an irreducible maximal atypical representa-
tion in Rn, its weight λ is uniquely determined by its plot. Let S1...S2...Sk
denote the segments of this plot. Each segment Sν has even cadinality
2r(Sν), and can be identified up to a translation with a unique basic weight
of rank r(Sν) and a partition in the sense of [HW14, Lemma 20.3]. For the
rest of this section we denote the segment of rank r(Sν) attached to the
dual partition by S∗ν , hoping that this will not be confused with the con-
travariant functor ∗. Using this notation, Tannaka duality maps the plot
S1..S2...Sk to the plot S∗k ...S

∗
2 ..S

∗
1 so that the distances di between Si and

Si+1 coincide with the distances between S∗i+1 and S∗i . This follows from
[HW14, proposition 20.1] and determines the Tannaka dual L∨ of L up to a
Berezin twist.

A.3. Equivalent weights. Let λ be a maximal atypical highest weight in
X+(n) with the sectors S1....Sk. The constituents λi (for i = 1, .., k) of the
derivative have the sector-structure S1...∂Si...Sk. Recall that two irreducible
representations M,N in Tn are equivalent M ∼ N , if either M ∼= Berr ⊗N
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or M∨ ∼= Berr ⊗ N holds for some r ∈ Z. Assume that λi and λj are
equivalent for i 6= j. Then

S1...(∂Si)...Sj ...Sk ∼ S1...Si...(∂Sj)...Sk

define equivalent weights of T +
n−1. Passing from L(λ) to Beri⊗L(λ) involves

a shift of the vertices in the weight diagram by i. We refer to this as the
translation case. Applying the duality functor L(λ) 7→ L(λ)∨ is described
in terms of the cup diagram as a kind of reflection, see section ??. We refer
to this as the reflection case.

Lemma A.1. For a maximal atypical weight λ assume that there exists
an equivalence λi ∼ λj for some i 6= j between two constituents λi, λj of the
derivative of λ. Then Sν ≡ S∗k+1−ν holds for all ν = 1, .., k and dk−ν = dν
holds for all ν = 1, .., k.

Proof. 1) Translation case. We first discuss whether this equivalence can
be achieved by a translation and show that this implies

r(Sν) = 1 for all ν, i = 1 and j = k.

To prove this we first exclude 1 < i, j. Indeed then the starting sector is
S1 in both cases and a translation equivalence different from the identity is
impossible. Now assume i = 1. Again an equivalence is not possible unless
∂S1 = ∅, since otherwise S1 and ∂S1 would be starting sectors of different
cardinality and hence they can not be identified by a translation. So the
only possibility could be i = 1 and r(S1) = 1 (so that ∂S1 = ∅). The
equivalence of S2....Sk with S1...∂Sj ...Sk then implies ∂Sj = ∅, since both
plots must have the same number of sectors. But then the only equivalence
comes from a left shift by two. Hence it is not hard to see that this implies
r(Sν) = 1 for all ν, i = 1 and j = k. Furthermore d1 = ... = dk must
hold. But then we see that this translation equivalence is also induced by a
reflection equivalence.

2) Reflection case. Let us consider equivalences between S1...(∂Si)...Sj ...Sk
and S1...Si...(∂Sj)...Sk involving duality as in section A.2.

The case r(Si) > 1. Notice that r(Si) > 1 is equivalent to ∂Si 6= ∅.
Furthermore notice that r(Si) > 1 implies r(Sj) > 1, since equivalent plots
need to have the same number of sectors. To proceed let us temporarily
ignore the distances between the different sectors Sν ; we write ≡ to indicate
this. Then for all ν 6= i, j, k + 1− i, k + 1− j we get

S∗ν ≡ Sk+1−ν

(equality up to a shift). The easy case now is j = k + 1 − i, where we get
the further condition (*)

S∗i ≡ Sk+1−i and hence ∂S∗i ≡ ∂Sk+1−i .

We also then conclude

dν = dk−ν for all ν = 1, .., k .



58 TH. HEIDERSDORF, R. WEISSAUER

We now show that the more complicated looking case i 6= j and i 6=
k + 1 − j, where we also have j 6= k + 1 − i, can not occur. In this case
[HW14, proposition 20.1], implies, from comparing

... ∂Si ... Sk+1−j ... Sj ... Sk+1−i ...

and the reflection of

... Si ... Sk+1−j ... ∂Sj ... Sk+1−i ...

the following assertions

∂Si ≡ S∗k+1−i , ∂Sj ≡ S∗k+1−j ,

Si ≡ S∗k+1−i , Sj ≡ S∗k+1−j .

However this is absurd, since it would imply r(Si) = r(S∗k+1−i) = r(Si)− 1.

So now r(Si) = 1. Then ∂Si = ∅ and hence also ∂Sj = ∅ since the
cardinality of sectors of equivalent plots coincide. First assume j = k+1− i.
In the case of a reflection symmetry this implies

Sν ≡ S∗k+1−ν for all ν 6= i, k + 1− i .
Furthermore it implies

dk−ν = dν , ν = 1, ..., k .

This follows by comparing

S1 ...d... ∂Si di Si+1 .... Sk+1−i ...d... Sk

with the reflection of

S1 ...d... Si di Si+1 ....Sk−i ∂Sk+1−i ...d... Sk .

Then d1 = dk+1−i, ..., di−1 = dk−i+1, by a comparison of the lower left side
and the upper right side, and then also di = dk−i and so on till dk−i−1 = di+1,
but then also dk−i + d = di + d for d = d1 + ... + di−1. Hence we conclude
that dν = dk−ν holds for all ν = 1, ..., k. Similarly we see Sν ≡ S∗k+1−ν for
ν 6= i, k + 1 − i. But taking into account r(Si) = r(Sk+1−i) the assertion
Sν ≡ S∗k+1−ν also holds for ν = i, k + 1− i.

Finally we want to show that we have now covered all case. This means
that again for r(Si) = 1 the case j 6= k + 1 − j is impossible. To show this
we can assume min(i, k+ 1− i) < min(j, k+ 1− j) by reverting the role of
i and j and we can then assume i < k + 1− i by left-right reflection. Then
we have to compare the reflection of

S1 ...d... ∂SiSi+1 ... Sk+1−j ... Sj ... Sk+1−i ...d.... Sk

with

S1 ...d... SiSi+1 ... Sk+1−j ... ∂Sj ... Sk+1−i ...d... Sk .

We claim that an equivalence is not possible by a reflection! (We could
easily reduce to the case where i = 1 by the way). In fact, by comparing
the left side of the second plot with the right side of the first plot, then
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Si ≡ S∗k+1−i and the distance d = d1 + ... + di−1 between S1 and Si must
be the same as the distance dk+1−i + ... + dk−1 between Sk+1−i and Sk.
However, by comparing the left side of the first plot with the right side of
the second plot, then Si+1 ≡ S∗k+1−i and the distance d+ 2 + di between S1

and Si+1 must be the same as the distance d between Sk+1−i and Sk. In
fact this follows from the fact ∂Si = ∅ and #Si = 2r(Si) = 2. This implies
2 + di = 0. A contradiction! �

From lemma A.1 we easily get

Proposition A.2. Suppose for the k irreducible constituents L(λi) of
DS(λ) there are two different integers i, j ∈ {1, ..., k} such that λi ∼ λj.
Then there exists an integer r such that L(λ)∨ ∼= Berr ⊗ L(λ) holds. The
converse also holds.

Proof. By the last lemma we conclude Sν ≡ S∗k+1−ν and dk−ν = dν for
all sectors Sν , ν = 1, .., k of λ. By proposition [HW14, Proposition 20.1] or
section A.2 this implies L(λ)∨ ∼= Berr ⊗ L(λ) for some integer r. �

Another conclusion of the considerations above is

Lemma A.3. For fixed i between 1 and k the plot S1...∂Si...Sk can only
be equivalent to at most one of the plot S1...(∂Si)...Sj ...Sk for j 6= i.

Corollary A.4. Every equivalence class of the constituents λi of the de-
rivative of λ can contain at most s = 2 representatives.

Lemma A.5. Suppose λ, λ̃ are maximal atypical weights in X+
0 that are

inequivalent λ 6∼ λ̃. Then there exist constituents L(λi) of DS(L(λ)) and

L(λ̃j) of DS(L(λ̃)) such that λi and λ̃j are inequivalent maximal atypical
weights except for the case where k = 2 and n = 2.

Proof. This is obvious if for λ and λ̃ the number of sectors is different.
If these numbers coincide assume that ∂S1....Sk and S̃1∂∂S̃k are equivalent.
Then λ and λ̃ are equivalent unless r(S1) = r(S̃k) = 1. Then go on and

assume that S1∂S2....Sk and S̃1...∂S̃k−1Sk are equivalent. Then λ and λ̃ are

equivalent unless r(S2) = r(S̃k−1) = 1 and so on. Hence we can assume

r(Si) = r(S̃i) for all i. But then the assertion is immediate except for the
case where k = 2. But then n = r(S1) + r(S2) = 2. �

A.4. Selfdual derivatives.

Lemma A.6. Suppose the maximal atypical weight λ has a weakly selfd-
ual derivative λi for some i = 1, ..., k. Then λi is the unique weakly selfdual
derivative except in the case where λ is weakly selfdual and has equidistant
sectors all of cardinality two.

Proof. Suppose λ is a maximal atypical weight such that one of its deriva-
tives λi is weakly selfdual. Let S1, ..., Sk denote the sectors of λ. Then there
are the following cases
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(1) k = 2m+ 1 is odd and S1, ..., ∂Sm+1...., Sk is weakly selfdual.
(2) S1, ..., ∂Sν ...., Sk is weakly selfdual such that ∂Sν = ∅ and not of

type 1).
(3) S1, ..., ∂Sν ...., Sk is weakly selfdual and we are in neither of the two

cases above.

In the first case λm+1 = S1, ..., ∂Sm+1...., Sk is the unique selfdual de-
rivative of λ. This immediately follows from lemma A.1. Furthermore, if
S1, ..., ∂Sm+1...., Sk is weakly selfdual, S1, ..., Sm+1...., Sk is weakly selfdual
in this first case.

In the second case we change notation and we can suppose that

λ = S1, S2, ....., Sν , [a, a+ 1], Sν+1, ......, S
∗
2 , S

∗
1

where we also allow the the sector [a, a+ 1] to be at the left or right. Then
it is immediately clear that there does not exist a weakly selfdual derivative
λj different from λi except if [a, a+ 1] is the rightmost or leftmost sector of
λ. Without restriction of generality we may assume it is the leftmost sector
of λ, i.e. λ = S0, S1, S2, ..., S

∗
2 , S

∗
1 for S0 = [a, a+ 1] holds, i.e. S∗ν = Sk+1−ν .

If λj is obtained by Sj 7→ ∂Sj , we distinguish two cases: The first is where
j = min(j, k + 1 − j) and the second is where j = max(j, k + 1 − j). In
the first case we obtain S∗0 = Sk = S∗1 , S

∗
1 = Sk−1 = S∗2 , ..., S

∗
j−1 = S∗j

and it is immediately clear that ∂Sj = ∅. It is then clear, that there is
a conflict with the symmetry of distances at j unless j = k. In this case
j = max(j, k + 1− j). So let us turn to this case now, where it follows in a
similar way that the only possible case is j = k. Then we can easily show
that all distances of λ are the same and all sectors have length two. Hence
in the second case again λ is weakly selfdual.

In the third case λi is the unique weakly selfdual derivative of λ. �

Corollary A.7. Suppose a maximal atypical weight λ that is not weakly
selfdual admits a weakly selfdual derivative λi for some i = 1, ..., k. Then λi
is unique with this property and we are in case 3 above.

Appendix B. Pairings

Selfdual objects L(λ) will give rise to groups of type B, C,D according to
section 6. In order to distinguish between the orthogonal and the symplectic
case we check whether these representations are even or odd in the sense
defined below.

B.1. Strong selfduality. We say that an object M is strongly selfdual, if
there exists an isomorphism ρ : M → M∨ such that ρ∨ = ±ρ holds and
call it even or odd depending on the sign. Here ρ∨ : M → M∨ is the
dual morphism of ρ. Here we use the canonical identification M = (M∨)∨,
since a priori we only have ρ∨ : (M∨)∨ → M∨. Note that any selfdual
irreducible object is strongly selfdual in this sense. Slightly more general: If
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L is an invertible object in a tannakian category and ρ : M ∼= M∨⊗L, then
(ρ∨⊗ idL)◦ (idM ⊗coevalL) = ±ρ. Furthermore any multiplicity one retract
of a strongly selfdual object is strongly selfdual. Finally, if F is a tensor
functor between rigid symmetric tensor categories, then F (M) is strongly
selfdual if M is strongly selfdual. We remark that we can define the similar
notion of strong selfduality for ∗-duality.

By [Sch79, (4.30)] a supersymmetric invariant bilinear form on a repre-
sentation (V, ρ) in T defines a skew-supersymmetric invariant bilinear form
on the representation Π(V, ρ).

Suppose L ∼= L∨ in R is a maximal atypical self dual representation. We
consider now irreducible representations of the form [λ] = [λ1, . . . , λn−1, 0].
We call these positive. For general λ we can twist with an appropriate
Berezin power to get this form. We will induct on the degree

∑
λi, hence

we start with the case S1.

Lemma B.1. S1 is an even selfdual representation.

Proof. Obviously S1 ∼= (S1)∨, and therefore there exists a nondegenerate
super bilinear form

B : S1 ⊗ S1 → 1 = k .

Note that the adjoint representation of Gn on A := gn carries the nonde-
generate invariant Killing form

K : gn ⊗ gn → 1 = k .

This bilinear form is supersymmetric: K(S(x ⊗ y)) = K(x ⊗ y) for the

symmetry constraint S : gn ⊗ gn ∼= gn ⊗ gn, or K(x, y) = (−1)|x||y|K(y, x).
Let g0

n denote the kernel of the supertrace gn → 1. Then S1 = g0
n/z, where

z is the center of Gn. The Killing form K restricts to a supersymmetric
form on g0

n which becomes nondegenerate on S1 = g0
n/z. Hence S1 carries

a nondegenerate supersymmetric bilinear form. �

We now treat the general [λ] = [λ1, . . . , λn−1, 0]-case. Recall that the direct
summands of V ⊗r⊗ (V ∨)⊗s are called mixed tensors. The maximal atypical
mixed tensors are parametrized by partitions λ satisfying k(λ) ≤ n for an
integer k(λ) defined in [BS12b, 6.17] [Hei14, Section 4]. We furthermore
recall from [Hei14, Theorem 12.3]: For every such [λ] the mixed tensor
R(λ) contains [λ] with multiplicity 1 in the middle Loewy layer. [λ] is the
constituent of highest weight of R(λ). If we define deg [λ] =

∑n
i=1 λi, then

[λ] has larger degree then all other constituents. We denote the degree of a
partition by |λ|. We recall further: If λ and µ are two partitions of length
≤ n, the tensor product R(λ)⊗R(µ) splits in Rn as

R(λ)⊗R(µ) =⊕
|ν|=|λ|+|µ|,k(ν)≤n

(cνλµ)2R(ν)⊕
⊕

|ν|<|λ|+|µ|,k(ν)≤n

dνλµR(ν)
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for some coefficients dνλµ ∈ N, the Littlewood-Richardson coefficients cνλµ
and the invariant k(λ) [Hei14, Lemma 14.4].

Proposition B.2. Let [λ] be positive of degree r. Then R(λ) occurs as
a direct summand with multiplicity 1 in a tensor product A ⊗ R(λi) where
l(λi) ≤ n, |λi| = r − 1 and R(λi) is a direct summand in A⊗r−1. The
constituent [λ] occurs with multiplicity 1 as a composition factor in the tensor
product A⊗R(λi).

Proof. For λ, µ of length ≤ n we know that

R(λ)⊗R(µ) =
⊕

|ν|=|λ|+|µ|,k(ν)≤n

(cνλµ)2R(ν)⊕ R̃

where R̃ are the terms of lower degree. We apply this for λ = µ = (1) (i.e.
A⊗A) and then to tensor products of the form R(λ)⊗A. Since every sum-
mand in a tensor product of the standard representation of SL(n) with any
other irreducible module has multiplicity 1, A⊗r decomposes as the standard
representation of SL(n) modulo contributions of lower degree and contribu-
tions of length l(ν) > n. Since every irreducible SL(n)-representation with
highest weight λ of degree deg(λ) =

∑
λi = r occurs as a summand in st⊗r,

every mixed tensor R(λ) with l(λ) ≤ n and deg(λ) = r occurs as a direct
summand in A⊗r. Hence there exists in A⊗r−1 a mixed tensor R(λi) of
length ≤ n and degree deg(λi) = r − 1 with

A⊗R(λi) = R(λ)⊕
⊕

R(νi)

and νi 6= λ for all i. R(λ) contains the composition factor [λ] with multiplic-
ity 1 and no other mixed tensor in this decomposition contains [λ]. Indeed
if deg(νi) < r, its constituent of highest weight has degree < r. If R(νi) has
degree r and l(νi) ≤ n, its constituent of highest weight is [νi] 6= [λ] and
if R(νi) has degree r and l(νi) > n, its constituent of highest weight has
degree < r by [Hei14, Section 14]. �

This applies in particular to positive [λ] which are (Tannaka) self-dual.
Every such [λ] occurs as a multiplicity 1 constituent in a multiplicity 1
summand in a tensor product A ⊗ R(λi) for |λi| = r − 1 which in turn
appears as a multiplicity 1 summand in a tensor product A ⊗ R(λi2) with
|λi2 | = r − 2 etc.

Corollary B.3. The selfdual representation [λ] = [λ1, . . . , λn1 , 0] is even.
Its parity shift Π[λ] is odd.

Proof: The parity is inherited to super tensor products (look at the even
parts) and to multiplicity 1 summands. �

If the representation L(λ) is only selfdual up to a Berezin twist, we can
simply restrict to SL(n|n).
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Appendix C. Technical lemmas on derivatives and
superdimensions

C.1. Derivatives.

Lemma C.1. Suppose L is a simple module and suppose the trivial mod-
ule 1 is a constituent in H0

D(L), then L ∼= 1.

Proof. Suppose H0
D(L) contains 1 and suppose L 6∼= 1. Then theorem 4.1

implies that L has two sectors with sector structure [−n+ 2, ..., 0, 1, ..., n−
1]S1 and r(S1) = 1, hence

L ∼= Ber ⊗ Si

for some i ≥ n− 1, or has sector structure S2[−n+ 2, ..., 0, 1, ..., n− 1] with
r(S2) = 1 and hence

L ∼= (Ber ⊗ Si)∨

for some i ≥ n − 1. However Hν
D(Ber ⊗ Si) ∼= Ber ⊗ Hν−1

D (Si) vanishes

unless ν − 1 = 0 with H0
D(Si) = Si or ν − 1 = i − (n − 1) ≥ 0, as follows

from the next lemma C.2. Hence this implies H0
D(Ber ⊗ Si) = 0. Similarly

then also H0
D((Ber ⊗ Si)∨) = 0 holds by duality. This contradiction proves

our claim. �

Lemma C.2. Suppose i ≥ 1. Then for Si in Rn the cohomology is
Hν(Si) = Si for ν = 0 and Hν(Si) = Ber−1 for ν = max(0, i− n+ 1), and
Hν(Si) is zero otherwise.

Proof. An easy consequence of theorem 4.1 and [HW14, Proposition 22.1].
�

The following lemma is an immediate consequence of theorem 4.1 or
lemma C.1.

Lemma C.3. DS(L(λ)) has a summand of superdimension 1 only if
L(λ) ∼= Berr ⊗ Si for some r, i.

Recall that an irreduble representation is weakly selfdual (or of type (SD))
if L(λ)∨ ∼= Berr ⊗ L(λ) for some r ∈ Z.

Lemma C.4. A (weakly) selfdual irreducible object L = L(λ) with odd
superdimension sdim(L) is a power of the Berezin determinant.

Proof. For (weakly) selfdual maximal atypical irreducible objects L =
L(λ) of odd dimension their plot has sectors S1, · · ·Sk from left to right of
lengths say 2r1, ..., 2rk that must satisfy

rk+1−i = ri

and hence in particular r1 = rk. By [Wei10][HW14] the superdimension is
divisible by the multinomial coefficient n!/(

∏
i ri!) for n =

∑
i ri. Hence, in

case k ≥ 2, the superdimension is divisible by the integer (r1 + rk)!/(r1!rk!),
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which is (2r1)!/(r1)!(r1)! and hence even. Therefore sdim(L) /∈ 2Z implies
k = 1, i.e. the associated plot only has a single sector. For this sector, we
may continue with the same argument using the recursion formula for the
superdimension given in [Wei10][HW14]. �

Lemma C.5. Let L(λ) be a maximal atypical weight with k sectors of
rank r1, . . . , rk and derivatives L(λj), j = 1, . . . , k. Then for all j = 1, .., k

sdim(L(λ)) = sdim(L(λj)) ·
n

rj
.

Proof. By the superdimension formula [HW14]

sdim(L(λ)) =

(
n

r1, ..., rk

)
· T (S1, ..., Sk)

for a term T (S1, ..., Sk) that only depends on the sektors Sj such that

T (S1, ..., Sk) = T (S1, ..., ∂Sj , ..., Sk) .

Since

sdim(Vj) =

(
n− 1

r1, ..., rj − 1, ..., rk

)
T (S1, ..., ∂Si, ..., Sk) ,

this implies for all j = 1, .., k

sdim(L(λ)) = sdim(L(λj)) ·
n

rj
.

�

C.2. Small superdimensions. According to lemma 8.1 a small represen-
tation belongs to one of four infinite families of regular cases or to a finite
list of exceptional cases. The largest dimension occuring in the exceptional
cases is 64 (the spin representations of D7). Assume that Vλ restricted to Gλ
splits as Vλ = W1 ⊕ . . .⊕Ws. We may assume dim(W1) ≤ 1

s dim(Vλ). The
rank estimates in section 10.3 show that W1 belongs to the regular cases of
lemma 8.1 if s ≥ 3. We therefore consider here the case where Vλ restricted
to Gλ splits into at most two representations Vλ = W ⊕W∨. We want to
rule out that W or W∨ is one of the exceptional cases. The dimension of
W is dim(Vλ)/2. Therefore we compute all superdimensions of irreducible
weakly selfdual representations up to superdimension 128. Except for the
numbers 20 and 56 none of the exceptional dimensions is equal to either the
superdimension or half the superdimension of an irreducible weakly selfdual
representation in T +

n .

Lemma C.6. If [λ] is a basic representation of T +
n , then [λ, 0] is a basic

representation of T +
n+1 of the same superdimension. Every basic representa-

tion of T +
n+1 with one sector is of this form.

Therefore we can always assume that the irreducible representations have
at least two sectors. Note also that a weakly selfdual representation cannot
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have an even number of sectors if n is odd. For a list of the basic repre-
sentations in the case n = 3 and n = 4 we refer to the examples in section
13.

C.2.1. Basic selfdual weights for n = 5.

[4, 3, 2, 1, 0], sdim 120; [3, 3, 2, 0, 0], sdim 30

[4, 1, 1, 1, 0], sdim 20; [1, 0, 0, 0, 0], sdim 2

[2, 1, 0, 0, 0], sdim 6; [3, 2, 1, 0, 0], sdim 24

[2, 2, 0, 0, 0], sdim 6; [3, 1, 1, 0, 0], sdim 12

C.2.2. Basic selfdual weights for n = 6. By lemma C.6 we can focus on the
case of two or more sectors. These basic weights are listed below.

[5, 4, 3, 2, 1, 0], sdim 720; [3, 3, 3, 0, 0, 0], sdim 20

[4, 3, 3, 1, 0, 0], sdim 80; [5, 1, 1, 1, 1, 0], sdim 30

[4, 4, 2, 2, 0, 0], sdim 120; [3, 3, 2, 2, 0, 0], sdim 180

[5, 3, 3, 1, 1, 0], sdim 180; [0, 1, 2, 2, 3, 4], sdim 360

C.2.3. Basic selfdual weights for n = 7. By lemma C.6 we can focus on
the case of two or more sectors. Since n is odd, a weakly selfdual weight
cannot have an even number of sectors. If the weight has ≥ 5 sectors, its
superdimension exceeds 128. Therefore we list the basic SD weights with 3
sectors.

[4, 4, 4, 3, 0, 0, 0], sdim 140; [4, 4, 2, 2, 2, 0, 0], sdim 210

[6, 1, 1, 1, 1, 1, 0], sdim 30; [6, 3, 3, 1, 1, 1, 0], sdim 252

[6, 4, 3, 2, 1, 1, 0], sdim 1008

C.2.4. Basic selfdual weights for n ≥ 8. If the weight has 2 sectors for n ≥ 8,
then the biggest possible superdimension is ≥ n!/((n/2)!(n/2)!). This equals
the case [λ] = [n/2, n/2, . . . , n/2, 0, 0, . . . , 0] (each n/2 times). For n = 8 the
superdimension is then 70, for n = 9 it is already 252. All other weights
with 2 sectors have superdimension > 128.

If the weight has 3 sectors for n ≥ 9, the smallest superdimension is
given by the hook weight [n − 1, 1, . . . , 1, 0] of superdimension n(n − 1).
The next smallest superdimension is given by the irreducible representation
[n− 1, 2, 1, . . . , 1, 0] of superdimension 2 ·n(n− 1). For n = 8 these superdi-
mensions are 56 and 112. For n ≥ 9 the second case has superdimension
larger than 128. In the first case the superdimensions are 72 (n = 9), 90
(n = 10), 110 (n = 11) and exceed 128 otherwise.

If n ≥ 8 and the weight has ≥ 4 sectors, its superdimension exceeds 128.
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C.2.5. Comparison with the exceptional cases. We compare the superdimen-
sions above with the dimensions of the exceptional cases in lemma 8.1. Ex-
cept for the cases where the superdimension is 20 or 56 the dimensions are
different. If the dimension is 20, then the irreducible representation is Λ3(st)
for SL(6). If the dimension is 56, then the irreducible representation is ei-
ther Λ3(st) for SL(8) or the irreducible representation of minimal dimension
of E7.

If Vλ or W is of the form Λ3(st), then so is its restriction Res(W ) to Gλ′
since Λ3 commutes with Res, in contradiction to the induction assumption.

In the dim = 56-case with Vλ irreducible upon restriction to Gλ, the corre-
sponding L(λ) is the hook weight [n − 1, 2, 1, . . . , 1, 0, . . . , 0] for n ≥ 8. For
n = 8

DS(L(λ)) ∼= Ber ⊗ S6 ⊕ (Ber ⊗ S6)∨ ⊕ [7, 1, 1, 1, 1, 1, 0].

The connected derived Tannaka group of [7, 1, 1, 1, 1, 1, 0] is either SO(42),
Sp(42) or SL(24) and doesn’t embed into E7. If n ≥ 9, the hook weight
[n− 1, 2, 1, . . . , 1, 0, . . . , 0] has one sector and therefore one derivative, hence
the corresponding Tannaka group contains either SO(42), Sp(42) or SL(24).

If Vλ decomposes as W ⊕W∨ and dim(W ) = 56, then dim(Vλ) = 112. This
happens for L(λ) ∼= [n− 1, 2, 1, . . . , 1, 0] for n = 8. In this case

DS(L(λ)) ∼= [7, 2, 1, . . . , 1]⊕ [7, 2, 1, . . . , 1]∨.

Since this weight is NSD, its connected derived Tannaka group is SL(56)
which doesn’t embed into E7.

C.2.6. The regular cases. We can now assume that we are in one of the
regular cases of lemma 8.1. If V is either S2(st), S2(st∨), Λ2(st), Λ2(st∨)
or the nontrivial irreducible representation of Λ2(st) in the Cr-case, we get a
contradiction to the induction assumption since restriction commutes with
Schur functors. Therefore the representation is a standard representation or
its dual for type A,B,C,D.

Corollary C.7. If the selfdual irreducible representation Vλ is irreducible
upon restriction to Gλ or splits in the form W⊕W∨, the group Gλ is a simple
group of type ABCD and Vλ and W are its standard representation (or its
dual.)

Appendix D. Clean decomposition

The ambiguity in the determination of Gλ is only due to the fact that
we cannot exclude special elements with 2-torsion in π0(Hn). We show that
I ∼= 1 if I⊗I∨ ' 1⊕Proj holds. We then discuss the occurence of projective
summands in tensor products of irreducible modules and show that I ∼= 1
in some cases for n = 4.
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D.1. Endotrivial modules. Our condition I⊗2 ' 1 ⊕ N resembles the
definition of an endotrivial representation.

Lemma D.1. The following conditions are equivalent:

(1) I⊗2 ' 1⊕ Proj.
(2) DS(I) = 1.

Proof. If DS(I) = 1, then sdim(I) = 1, hence I⊗2 ' 1⊕negl. But ker(DS)
(restricted to T +

n ) is Proj. �

Modules M with the property M⊗M∨ ' 1⊕Proj are called endotrivial.
If I satisfies I⊗2 ' 1 ⊕ Proj or equivalently DS(I) ' 1, I is endotrivial
(since I∨ ' I).

Theorem D.2. [Tal15] All endotrivial modules for Tn are of the form
Berj ⊗ Ωi(1) ⊕ Proj or Π(Berj ⊗ Ωi(1)) ⊕ Proj for some i, j ∈ Z where
Ωi(1) denotes the i-th syzigy of 1.

We remark that we can split the projective resolution defining the Ωi(M)
into exact sequences

1→ Ωi(M)→ P → Ωi−1(M)→ 1

with some projective object P . It follows sdim(Ωi(M) = − sdim(Ωi−1(M)
since sdim(P ) = 0.

Lemma D.3. If I⊗2 ' 1⊕ Proj with I as above, then I ' 1.

Proof. By restricting to SL(n|n) we can ignore Berezin twists. By the classi-
fication of endotrivial modules I ' ΠjΩi(1)⊕Proj for some i, j ≥ 0. Hence
according to our list of properties of I

L⊗ΠjΩi(1)⊕ Proj ∼= L⊕ Proj.

On the other hand

Ωi(M)⊗N ' Ωi(M ⊗N)⊕ Proj

holds for all N and i. Hence for M ' 1 we would have (using ΠΩi(M)) =
Ωi(ΠM))

L⊗ΠiΩi(1) ' Ωi(ΠjL)⊕ Proj ' L⊕ Proj

which is absurd since Ωi(ΠjL) � L⊕Proj for i > 0. In fact using the short
exact sequences

1→ Ωi(M)→ P → Ωi−1(M)→ 1

and DS(Proj) = 0 we obtain

H l(Ωi(L)) ' H l+i(L).

Hence i = 0 and so I ' Ω0(1) ' 1. �
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D.2. Clean decomposition. We say a direct sum is clean if none of the
summands is negligible. We say a negligible module N in Tn is potentially
projective of degree r if DSn−r(N) ∈ Tr is projective and DSi(N) is not for
i ≤ n− r.

Now consider the special representations Si. Then we proved in [HW15]
the surprising fact that the projection of Si⊗Sj or Si⊗(Sj)∨ on the maximal
atypical block is clean. To prove the result we establish the n = 2-case by
a brute force calculation. The theory of mixed tensors [Hei14] then shows
that the Loewy length of any summand in Si⊗Sj is less or equal to 5. This
implies the result since the Loewy length of a projective cover is 2n+ 1.

Lemma D.4. Every maximal atypical negligible summand in a tensor
product L(λ)⊗ L(µ) is potentially projective of degree at least 3.

Proof. The decomposition of Si ⊗ Sj in R2 is clean. Further DS sends
negligible modules in T +

n to negligible modules in T +
n−1 and the kernel of DS

on T +
n consists of the projective elements. Since DSn−2(L(λ)⊗ L(µ)) ∈ T2

splits into a direct sum of irreducible representations of the form BerjSi for
some i, j ∈ Z by the main theorem of [HW14], DSn−2(N) = 0. �

We show below that the decomposition of the tensor product L(λ)⊗L(µ)
is also clean in the case n = 3 unless λbasic = µbasic = (2, 1, 0) and that
projective summands can occur only under strong restrictions in the case
n = 4.

Question. Let L(λ), L(µ) be maximal atypical. Is the projection of the
decomposition of L(λ)⊗ L(µ) on the maximal atypical block always clean?

An affirmative answer would immediately imply I ' 1. To prove that de-
compositons are always clean, it would be enough to prove that the tensor
product of two irreducible maximally atypical representations never contains
a maximally atypical projective summand since repeated applications of DS
to a negligible representation results in a direct sum of projective represen-
tations. A positive answer to this question would also imply that the tensor
product decomposition of two maximal atypical irreducible representations
behaves classically after projection to the maximal atypical block (and not
just modulo vanishing superdimension).

Example D.5. If I is a direct summand in [2, 2, 0, 0]⊗2 as above, then I ∼= 1.
This follows from the Si-computations. Consider L = [2, 2, 0, 0] ∈ Rn. Then
DS(I) ' 1. In fact DS(L) = [2, 2, 0] +B−1S3. Hence DS(L)⊗DS(L) is a
tensor product involving only Si’s and their duals (or their Berezin twists).
Their decomposition is clean according to [HW15] (or use appendix E).
Hence any negligible module in [2, 2, 0, 0] ⊗ [2, 2, 0, 0] maps to zero under
DS. In particular DS(I) = 1 and hence I ' 1.
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Appendix E. The depth of a representation

Due to the results of appendix D it is important to know when a maximal
atypical projective module P occurs in a tensor product of two irreducible
modules L(λ), L(µ). Some conditions can be obtained from a restriction of
L(λ) and L(µ) to g0 as we show in this appendix.

E.1. Depths. The restriction of a maximally atypical module L of g =
gl(n|n) to the classical subalgebra g0 decomposes completely into a direct
sum of irreducible g0-modules. We write ρ � ρ̃ for these. An irreducible
representation ρ of gl(n) is described by a highest weight vector (λ1, ..., λn)
with λ1 ≥ ... ≥ λn, and we define the degree deg(ρ) of ρ to be the sum∑n

i=1 λi.

• Let a be the maximal degree deg(ρ) for all ρ� ρ̃ in the restriction of
L(λ) to g0, and
• let b be the minimal degree deg(ρ) for all ρ� ρ̃ in the restriction of
L(λ) to g0.

Define the depth to be depth(L) = a− b or

depth(L) = deg(highest g0-weight of L)− deg(lowest g0-weight of L)

We often write depth(λ) for depth(L(λ)). Rather obviously we have

depth(A⊗B) = depth(A) + depth(B) .

and A ↪→ B implies depth(A) ≤ depth(B). Two remarks are in order:

• For every weight µ of the Cartan algebra in the representation space
of the irreducible representation space of gl(n) defined by the highest
weight ρ the degrees deg(µ) = deg(ρ) (defined as above) coincide.
• For any irreducible representation ρ � ρ̃ of g0 in the restriction of

an irreducible max. atyp. representation L of g one has deg(ρ̃) =
−deg(ρ).

If we consider the restriction of L = L(λ), the maximal degree deg(ρ) for
all ρ� ρ̃ in the restriction is a =

∑n
i=1 λn = deg(L). One easily shows

depth(L) = a− b = deg(L)− (−deg(L∨)) = deg(L) + deg(L∨) .

For any highest weight submodule W = W (τ) ↪→ L⊗ L∨ we therefore get

deg(τ) ≤ depth(L) .

Indeed deg(τ) ≤ deg(L) + deg(L∨); here deg(L) denotes the degree of the
highest weight of L. We also conclude

depth(L(τ)) ≤ 2 · depth(L) .

If we consider W = L ⊗ L∨ for L = L(λ), then the highest weight in W
has degree deg(λ) + deg(λ∨) = depth(λ) = depth(L). Since depth(W ) =



70 TH. HEIDERSDORF, R. WEISSAUER

depth(L) + depth(L∨) = 2depth(L), therefore all weights in W have degrees
within

[−depth(L), depth(L)] .

The weights λ0 and λc. We recall the definition of the weight λ0 attached
to λ from [BS10a]. In the weight diagram of λ add n cups to the diagram
by repeatedly connecting ∧∨-pairs of vertices that are neighbours in the
sense that there are no vertices in between not yet connected to cups. Then
λ0 is the weight whose associated cup diagram is the cup diagram just
constructed.

Example E.1. If depth(L) = n(n− 1), then L(λ0) = L(λ)⊗Ber−1.

Example E.2. If depth(L) = 0, then L(λ0) = L(λ)⊗Ber−n.

The assignment of weights
λ 7→ λ0

has a unique inverse
µ 7→ µc ,

where µc is obtained from µ by a total left move (in the language of cup
diagrams). Hence µc is the weight attached to the complementary plot of
the plot corresponding to µ (for the notion complementary plot we refer to
[HW14]; i.e. one passes from the plot to the complements in each sector of
the plot).

Lemma E.3. depth(L) = deg(L)+deg(L∨) = depth(Lbasic) = 2deg(Lbasic)
holds for irreducible g-modules L.

Proof. Consider the Kac module V (ρλ) or V (λ) for short. Its irreducible
socle (as a g-module) is L(λ0); see [BS10a, Theorem 6.6]. The restriction of
L(λ) to g0 contains the weight λ = (λ1, . . . , λn) of maximal degree, whereas
the restriction of λ0 to g0 contains the weight

τ = λ⊗ det−n

where τ is the minimal highest weight of g0 in the restriction of L(λ0).
We also write (λ0)min instead of τ = λ ⊗ det−n. Indeed the lowest g0-

representation τ in V (λ)|g0 ∼= ρλ⊗Λ•(g/p) is ρλ⊗Λn
2
(g/p), that corresponds

in our notation to the representation ρλ ⊗ det−n. We conclude deg(λ) −
deg(λ0) + depth(λ0) = deg(detn) = n2. In terms of µ = λ0, we conclude
from the above arguments

Lemma E.4. The maximal degree resp. minimal degree for the highest
g0-weights of the restriction of the irreducible g-module L(µ) are the degrees
of the extremal highest weights µ resp. µmin = µc − (n, ..., n) and

depth(λ) = deg(λ)− deg(λc − (n, ..., n)) = deg(λ)− deg(λc) + n2 .

Furthermore µmin is the unique irreducible g0-constituent in L(µ) of minimal
degree.
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Note that deg(λ) is the same as S(λ) +n(n− 1)/2 where S(λ) is the sum
of the points x in the support of the plot λ(x). Since S(λ) − S(λc) only
depends on the associated basic weight λbasic, we find that

depth(λ) = depth(λbasic) .

Since λ∨ = λ∗, we have depth(λ) = deg(λ) + deg(λ∗) for basic weights
λ = λbasic. Since deg(λ∗) = deg(λ), we obtain for basis weights λ = λbasic
the formula

depth(λbasic) = 2 · deg(λbasic) .

This proves lemma E.3. �

Corollary E.5. For all weights λ = (λ1, ..., λn) we have

0 ≤ depth(λ) ≤ n(n− 1) .

Proof. Obvious from deg(λbasic) ≤ deg((n− 1, ..., 1, 0)) = n(n− 1)/2. �

Note that V (λ)∨ again is a Kac-module whose cosocle now is the dual
L(λ0)∨ of L(λ0). Hence V (λ)∨ = V ((λ0)∨). Its highest weight is the highest
weight (λ0)∨ of L((λ0)∨).

We also remark that Ber−nV (λ∨)∨ = V (λmin) for L(λ∨) := L(λ)∨ and
λmin = λcdet−n. Indeed we can replace λ by λ0. Then V (λ∨)∨ becomes
V (λ) and λmin becomes τ = λdet−n.

E.2. Projectives in tensor products. Let L′ and L′′ be irreducible g =
gl(n|n)-modules that are maximal atypical. Let us assume that P is an
irreducible projective maximal atypical module with the property

P ⊆ L′ ⊗ L′′ .

We assume L′ = L(ρ′) resp. L′′ = L(ρ′′). In P there exists a Kac module
V = V (ρ) ⊂ P whose socle L(τ) = L(ρ0) is the socle of P = P (τ). Its precise
structure will be not important at the moment, except that the anti-Kac
module V (τ)∗ is also a g-submodule of P with cosocle L(τ0). Indeed, V (τ) is
a quotient module of P (τ) and hence V (τ)∗ is a submodule of P (τ)∗ ∼= P (τ).
Consider the inclusion

i : V = V (ρ) ↪→ L(ρ′)⊗ L(ρ′′)

and its restriction to the subalgebra g0 = gl(n) × gl(n) and similarly for
V (τ)∗.

As a representation of g0 the module V ′ = V (ρ′) becomes

V ′|g0 ∼= ρ′ ⊗W •

where W • =
⊕

µ ρ−µ � ρ−µ∗ holds for the irreducible representations ρµ
of gl(n) with highest weights µ = (µ1, .., µn) running over all µ such that
n ≥ µ1 ≥ ... ≥ µn ≥ 0; here µ∗ denotes the weight with the transposed
Young diagram of the weight µ. In particular, the degree deg(µ) =

∑n
i=1 µi
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varies between 0 and n2. In particular, in the degree grading of W • we have
deg(W i) = −i and

L′|g0 ⊆ ρ′ ⊗
depth(L′)⊗
i=0

W i.

Similarly for L′′ instead off L′.

The projective module P = P (τ) contains the irreducible g-modules L(ρ),
L(τ) = L(ρ0) and L(τ0) = L((ρ0)0).

P (τ)

L(τ0) V (τ)∗oooo V (ρ) // // L(ρ)

σ L(τ) = L(ρ0)

ρ⊗ det−n

The restriction of P to g0 contains then the irreducible g0-modules

ρ, τ, ρdet−n, τ0, σ

for the lowest g0-weight σ = τ ⊗det−n of τ0. Note that σ = (τ0)c⊗det−n ∼=
τ ⊗ det−n. Furthermore

deg(σ) = deg(τ0)− depth(τ0)

deg(τ)− depth(τ) = deg(ρ)− n2

and so

deg(τ)− deg(τ0) = n2 − depth(τ0) .

These equations imply

depth(P ) = deg(ρ)− deg(σ) = 2n2 − depth(τ) ≥ n(n+ 1) .

Note that P ↪→ L ⊗ L∨ implies depth(P ) ≤ depth(L) + depth(L∨) =
2depth(L), and hence

2n2 ≤ depth(L(τ)) + 2depth(L) .

In particular, we then obtain

2n ≤ depth(L(τ)) , n(n+ 1)/2 ≤ depth(L) .

From the above we get
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Proposition E.6. If the tensor product of maximally atypical irreducible
g-modules L(ρ′) and L(ρ′′) contains a maximal atypical projective module
P = P (τ), then the irreducible gl(n)- representations defined by τ, τ0 and
τ c = ρ and τ ⊗ det−n = σ and τ c ⊗ det−n = ρ⊗ det−n are constituents of

ρ′ ⊗ ρ′′ ⊗
depth(ρ′)⊕
i=0

W i ⊗
depth(ρ′′)⊕
j=0

W j

and

(ρ′)c ⊗ (ρ′′)c ⊗ det−2n ⊗
depth(ρ′)⊕
i=0

(W i)dual ⊗
depth(ρ′′)⊕
j=0

(W j)dual .

Since the degrees in this tensor product are between deg(ρ′) + deg(ρ′′)
and deg(ρ′) + deg(ρ′′) − depth(ρ′) − depth(ρ′′), in the situation of the last
proposition the following holds

deg(ρ)− deg(σ) ≤ depth(ρ′) + depth(ρ′′) .

Hence we get

Corollary E.7. L(σ′)⊗L(σ′′) can not contain a projective maximal atyp-
ical g-module unless

deg(ρ′basic) + deg(ρ′′basic) ≥ n(n+ 1)/2 .

E.3. The case n = 3. . Let us assume first n = 3. Here the condition
deg(ρ′basic) + deg(ρ′′basic) ≥ 6 may be only satisfied for ρ′basic = ρ′′basic =
(2, 1, 0). Consider P (τ) ⊆ L′ ⊗ L′′. From depth comparison with projective
modules we get depth(P (τ)) = 2n2 − depth(τ) ≤ depth(L′) + depth(L′′).
Hence depth(τ) ≥ 6 and therefore depth(τ) = 6 resp. τbasic = (2, 1, 0).
Hence

depth(P (τ)) = 2n2 − depth(τ) = 18− 6 = 6 + 6 = depth(L′) + depth(L′′) .

This implies that the highest weight of L′ ⊗ L′′ must have the same degree
as the highest weight of P (τ), i.e.

deg(λ′ + λ′′) = deg(ρ),

where ρ0 = τ . Note that ρ cannot be the highest weight λ′ + λ′′ because of
the next lemma.

Lemma E.8. The highest weight constituent in a tensor product of two
irreducible representations L(λ′) ⊗ L(λ′′) is never contained in a projective
module.

Proof. We can assume that L(λ′) = [λ′1, . . . , λ
′
n−1, 0] and likewise for

L(λ′′). Then the result follows from [Hei14, corollary 13.11]. �

Corollary E.9. For n = 3 a projective maximal atypical module P can
not be contained in the tensor product L′ ⊗ L′′ unless L′basic = L′′basic =
[2, 1, 0].
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Remark E.10. We note that this implies that I ∼= 1 for I as above if I is
a direct summand in L(λ) ⊗ L(µ) with λbasic = µbasic = (2, 2, 0, 0). Indeed
none of the direct summands of DS([2, 2, 0, 0]) is of basic type (2, 1, 0).

Example E.11. A brute force computations shows that R(2, 1)⊗2 only con-
tains R(3, 2, 1) = P [2, 1, 0] as a maximal atypical projective summand. Since
[2, 1, 0]⊗2 is a subquotient of R(2, 1)⊗2 this means that the only possible
maximal atypical projective summand in [2, 1, 0]⊗2 is P [2, 1, 0].

Appendix F. Determinants

F.1. Determinants in Deligne categories. Following Deligne [Del07] we
define for δ ∈ Z the following triples (G, ε,X) where G is a supergroup, ε
an element of order 2 such that int(ε) induces on O(G) its grading modulo
2 and X ∈ Rep(G, ε):

• δ = m ≥ 0 : (O(m) = OSp(m|0), id, V ), (V will always denote the
standard representation)2

• δ = −2n < 0 : (Sp(2n) = OSp(0|2n),−id, V seen as odd),
• δ = 1− 2n < 0 : (OSp(1|2n), diag(1,−1, . . . ,−1), V ).

By the universal property [Del07, Proposition 9.4], the assignmentR(1) 7→
X (see below for notation) defines a tensor functor Fδ : Rep(Oδ)→ Rep(G, ε).

Theorem F.1. [Del07, Théorème 9.6]. The tensor functor Fδ induces
an equivalence of categories

Rep(Oδ)/N → Rep(G, ε)

where N denotes the tensor ideal of negligible morphisms.

Recall that the indecomposable objects in Rep(Oδ) are classified by par-
titions and we denote by R(λ) the corresponding indecomposable object.
Then R(0) = 1 and R(1) is the distinguished element in Deligne’s category
(the analogue of the standard representation). For an object X of dimension
d 6= 0 we write det(X) for Λd(X).

Theorem F.2. The following hold in Rep(Oδ) for δ ∈ 2Z:

Sym|δ|(R(1)) = 1⊕ negligible if δ < 0,

Λδ(R(1)) = J ⊕ negligible if δ > 0

for indecomposable J 6= 1 of dimension 1 such that J⊗2 ∼= 1.

Proof. For δ < 0 Rep(Oδ)/N ∼= Rep(Sp(δ)). In the latter we have

Λ|δ|(V ) ∼= 1. Since Λ|δ|(V ) ∼= Sym|δ|(ΠV ) and Fδ(R(1)) ∼= ΠV , we obtain

Fδ(Sym
|δ|(R(1)) = 1.

2For the case δ = 0, O(0) is the trivial group, V = 0, and Rep(G, ε) is equivalent to
the category of finite dimensional k-vector spaces.
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Since Fδ induces a bijection between the isomorphism classes of non-negligible
indecomposable elements in Rep(Oδ) and the isomorphism classes of irre-
ducible elements in the quotient, this implies

Sym|δ|(R(1)) = R(0)⊕ negligible.

For δ > 0 Rep(Oδ)/N ∼= Rep(O(δ)) and R(1) maps to the (even) standard
representation V . The classical result

Λδ(V ) ∼= J ( sign representation)

implies now as in the δ < 0-case

Λδ(V ) ∼= J ⊕ negligible

where J = R(.) is indecomposable, J 6= 1, J⊗2 ∼= 1⊕ negligible. �

Theorem F.3. In Rep(Glδ), δ ∈ Z+

Λδ(R(1)) ∼= R⊕ negligible

for some indecomposable R 6= 1 of dimension 1. If we denote its dual R∨

by R−1 and the i-fold tensor product R⊗R⊗ . . .⊗R by Ri and likewise for
R−1, we obtain

Ri ⊗Rj ∼= Ri+j ⊕ negligible

for all i, j ∈ Z (using the convention R0 := 1).

Proof. Use the functor Fδ : Rep(Glδ)→ Rep(Gl(δ)). Now

Fδ(Λ
δ(R(1)) = Λδ(V ) = det = L(1, . . . , 1)

and the result follows from the usual properties of the determinant as in the
Rep(Oδ)-case. �

F.2. Determinants in Tn. We apply this now to compute the top exterior
power det(L) := Λδ(L) where L is irreducible in T +

n and sdim(L) = δ.
We use the following notation: With Sn and S+

n we denote the analogous
categories to Tn and T +

n in the SL(n|n)-case.
If L is irreducible in Tn and FL is the corresponding functor from the

Deligne category to Tn, we can typically say very little about FL(X) for some
indecomposable element X, even if dim(X) = 1. The situation changes if
we know that the image of FL is in T +

n ! The positivity of the latter implies
then in case dim(X) = 1 that

FL(X) = R⊕ negligible

where R is indecomposable with sdim(X) = 1.
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F.2.1. Case 1: odd SD-case. Consider L = L(λ) irreducible and maximal
atypical such that L∨ ∼= L⊗Berr in Tn for some r ∈ Z and therefore L∨ ∼= L
in Sn. The symmetric pairing

e : L∨ ⊗ L→ 1

commutes with the symmetry-constraint of Sn. This defines a functor

F = FL : Rep(Oδ)→ Sn

such that F (R(1)) = L for δ = sdim(L). Now apply F to

Sym|δ|(R(1)) = R(0)⊕ negligible if δ < 0.

Then FL(Sym|δ|(R(1))) = Sym|δ|(L). Since sdim(L) < 0 we replace it by

its parity shift ΠL to be in S+
n . Using Sym|δ|(L) = Λ|δ|(ΠL), R(1) 7→ L and

Sym|δ|(R(1)) = 1⊕ negligible we obtain

Λδ(ΠL) ∼= 1⊕ negligible in Sn

and therefore

Λδ(ΠL) ∼= Berr ⊕ negligible in Tn.

Remark F.4. If L is proper selfdual L ∼= L∨, then we can actually consider
the functor FL : Rep(Oδ) → T +

n instead to S+
n . Then we obtain at once

Λ|δ|(L) ∼= 1⊕ negligible (and not just some Berezin power).

Remark F.5. Note that the specific Berezin power was computed in section
12.

F.2.2. Case 2: even SD-case. If L has positive superdimension it is even.
As before we compute

Λδ(L) ∼= Λδ(FL(R(1)))

∼= FL(Λδ(R(1)))

∼= FL(J ⊕ negligible)
∼= J ⊕ negligible

where J in T +
n is indecomposable of superdimension 1 and J⊗2 ∼= 1 ( J 6= 1

might not hold in Sn). To explain the notation: FL(J) is the direct sum of
an indecomposable module of superdimension 1 (called again J by abuse of
notation) and a bunch of negligible ones. In the last step we used again the
positivity of superdimensions in S+

n .

F.2.3. Case 3: NSD-case. Let L be of type NSD. Without loss of generality
we consider the case sdim(L) > 0. We denote by FL the functor

FL : RepGlδ → Tn or T +
n .
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Then we compute

Λδ(L) ∼= Λδ(FL(R(1)))

∼= FL(Λδ(R(1)))

∼= FL(R⊕ negligible)
∼= R⊕ negligible .

To explain the notation: FL(R) ∼= R ⊕ negligible where R denotes again
(by abuse of notation) an indecomposable module of superdimension 1. The
properties of R (as an element in Rep(Glδ)) from theorem F.3 carry over.
Here we use the following notation: FL(Ri) is a direct sum of an indecom-
posable module of superdimension 1 and a direct sum of negligible modules.
The summand of superdimension 1 will again be called Ri. Then

(1) Ri is indecomposable in T +
n of superdimension 1 for any i.

(2) (Ri)∨ = R−i.
(3) Ri is ∗-dual.
(4) Ri ⊗Rj ∼= Ri+j ⊕ negligible.
(5) If we assume by induction that determinants are given by Berezin

powers, we obtain also DS(Ri) = ΠsBeri ⊕ negligible for some
s ∈ Z.

Remark F.6. A priori R might be trivial (even though it is not in the
Deligne category). If we know already that the determinant is nontrivial in
Tn−1, then R has to be nontrivial as well.

Remark F.7. We remark that DS(R) = ΠsBeri would imply that R ∼=
ΠsBer using the classification of endotrivial modules. For this we would re-
strict to Sn and obtain DS(R) ∼= 1. Then use R⊗R∨ ∼= 1⊕negligible. Since
ker(DS) = Proj the negligible part must therefore be projective, hence R
is endotrivial. The endotrivial modules in Sn are of the form ΠsΩi(1) for
some i, s ∈ Z. These modules are not ∗-invariant unless i = 0.
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[Del07] Deligne, P., La catégorie des représentations du groupe symétrique St, lorsque t
n’est pas un entier naturel., Mehta, V. B. (ed.), Algebraic groups and homogeneous
spaces. Proceedings of the international colloquium, Mumbai, India, January 6–14,
2004. 209-273 (2007)., 2007.

[Dro09] Drouot, Francois, Quelques proprietes des representations de la super-algebre der
Lie GL(m,n), PhD thesis, 2009.

[DS05] Duflo, M. and Serganova. V., On associated variety for Lie superalgebras.,
arXiv:math/0507198v1, 2005.

[EO18] Etingof, P. and Ostrik, V., On semisimplification of tensor categories, ArXiv e-
prints, 1801.04409, 2018.
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