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ABSTRACT. We apply theory of p-adic periods, the funetor field of norms and Witt
explicit reciprocity law in characteristic p > 0, to obtain Brückner- Vostokov type
explicit formulae for the Hilbert symbol of a formal group over Witt veetors.

o. Introduction.
0.1. Let W(ko) be Witt vectors ring with coefficients in a perfect field ko of

characteristic p > 2. Let G be a commutative formal smooth group functor over
W( ko) of finite dimension n = n(G). This Ineans existence of a commutative formal
group law on B = lV(ko)[[XI, ... , X n ]] with an isomorphism of group funetors
G ~ SpfB.

Assume that G has finite height h = h(G), i.e. the isogeny pida induces
injective morphism p* : B ----? B of degree ph. Therefore, for any M E N,
G[M] = I(er(pM ida) is a finite Hat commutative group scheIne over W(ko) of
order pMh.

Fix an algebraic closure f< of the fraction field K o of the ring W( ko). If C
is completion of j{ alld mc is the maximal ideal of its valuation ring, then the
group homomorphism pM ida : G(mc) ---+ G(mc) is surjective, and its kernel
G[M](mc) ~ (71/pM Z)h.

Let K be a finite extension of K o in k. Deuote its residue field by k and its
maximal ideal by mK. Assume that all points of order pM of the group G(mc)
are defined over K, i.e. G[M](mc) = G[M](mK). Under this assumption for
1 E G(mK), 7 E Gal(I( / K) one can define the formal group symbol (f,7]0 with
values in the group G[MJ(mK) by the relation

(/, 7]a = T/1 -011,

where 11 E G(mC) is such that (pM ida )(/)) = /. If the residue field k of K is
finite and 'l/JK : K* --+ r~ is the reciprocity map of class field theory, then we
obtain the Hilbert symbol (1, gJa = (/,7]0, where 9 E K* and 'lj;[{(g) is the image
f . raho 7 In ](.

Let 011, ... ,o~ be a Z/pM-basis of G[MJ(mK), then
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where A(f, g) = t(A1, ... , Ah) E (Z/pMZ)h is vector columll with coordinates in
Z/pMZ (for any module E we reserve notation En for the module of vector columns
of order n with coordinates in E). The problem of explicit description of the syrnbol
( , ]e is the problem of obtaining of some analytic expression for A(!, g). This
expression should involve information about the structure of the formal group G
and of elements f E G(rnK) and 9 E K*.

0.2. In our setting this expression contains elernents of some WQp (k )-algebra Lk,i

of Laurent series in variable t with coefficients in WQp (k). To define Lk,l' let a E

Q, a > p - 1 and let L~ j(a) be W (k)-algebra of formal Laurent series I: u EZ w u tU ,
where W u E WQp (k) an'cl v(w u ) 2:: -u/(ae) for u 2:: 0, v(wu ) 2:: -u/((p - l)e) for
u ::; 0 (here v is a p-adic valuation, such that v(p) = 1, and e is the absolute
ramification index of the field J{). Let L~ l be the p-adic closure of U ,C~ l(a).

I a>p-l '

Then Lk,! = .c~,t 0Zp Qp.

If f = L: wuiu E Lk,l' we set (J(f) = I: (J(wu)tUP , if this expression has sense in
uEZ uEZ

'ck,i, i.e. if (J(f) E 'ck,j (here (JlwQp(k) is usual Frobenius morphisrn ofWitt vectors).

Remark, that a is certainly defined Oll the WQp (k)-subalgebra ,Ct,l of 'cklt' which

consists of i-integral senes L: W u tU.
u~o

0.3. We can fix a structure of the forulal group G by taking into consideration its
filtered module of p-adic periods M (G) = (MO (G), M 1 (G)). If T(G) is Tate mod
ule of G and r o = Gal(K/Ko), then MO(G) = HomrO(T(G),A::ris) with induced
filtration and action of Frobenius a. The structure of M (G) can be given in terms of
fixed W(ko)-basis 11, ... , In of M1(G) and its cornplement ml, ... ,rnh-n E MO(G)
to a W(ko)-basis of MO(G). If T= t(ll,"" In), il1 = t(rnl,'" , mh-n) are vector
columns, the structure of M (G) is given by matrix relation

where & E GLh(W(ko)). We use this matrix E to define for aU u E N auxillary
matrices Fu and F~ (of orders n x n and n x (h - n), resp.), such that

a) If GA is n-dimensional formal group over W(ko) giyen by the functional
equation

for its logarithm vector power series lA(X) = t( lA,l (X), . .. ,IA,n(X)), then G ~

GA·
b) H 8k, ... ,8tt E rnk,l = tW(k)[[ t]] C Lk,l are such that 8ht ~ ok under

substitution l ~ 1T, where 7r is fixed uniformizer of the field K, then we set
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for 1 ::; i :::; h, to create modulo pM approximation

of the matrix of values of the p-adic periods pairing T( G.A) X MO (G.A) ----4 Acris .

0.4. The first exp1icit formu1a fOT (I, g]CA'

Let f E GA(mK) and ß= ß(t) E m~ l be such that ß(7r) = f· Consider 9 E ](*,

such that there exists 8 = 8(t) E W(k)[[ i ]][l-1], such that a8/SP E 1 + mk,l,

(1/p)log(a8/SP ) = L:: Qele with all Qe E W(k), and 8(7r) = g. Equivalently,
(c,P)=1

8 = [O'o]la o TI E( (te, le),
(c ,P)=l

where 0'0 E k*,ao E Z, a1l O'e E W(k) and

E(a,X) = exp(aX +... + (asQ)XP~ /ps +... ) E Zp[[X]].

Such elements 9 E ]{* create subgroup of ]{* of index p1o, where 10 is the maxinlal
integer, such that K contains a primitive root of unity of degree p1o.

Under above assumptions we prove the following explicit forulula

where Tl' ; W (k) ----4 Z p is trace map, Res t=O is residue and A* = L: Pu a U
•

u;::1

This formula is obtained as a result of interpretation of the formal group sym-
bol via Witt symbol in characteristic p. These symbols are related by auxillary
construction· of some "cristalline" symbol. In fact, this method is straight general
ization of our aproach in [Ab3], where we study the case G = Gm.

0.5. The second exp1icit formu1a for (f, g]CA'

The above formula (*1) is not good enough, because 9 is not arbitraryelement
of ](* and one should relate to 9 the special power senes 8 = Sei). In the case
G = Gm Brückner-Vostokov explicit formulae, c.f. [Br], [Vo1], are free from these
restrietions. By purely formal arguments we transform the above formula (*1) to
the formula of Briickner-Vostokov type. This result can be stated as follows.

Let f E GA(mK), ß = ß(l) E m; i' A* = 2: Fua u and the matrix Vi be as
, u;::l

above. For 9 E K* let b = bel) E W(k)[[ l ]][1-1
] be such that 8(7r) = 9 and

8 = [ao]la o(1 + 81 ), where 0'0 E k*, ao E Z, 81 E mk t. Let
I

and assume that K contains a primitive root of umty (M of degree pM. Then
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This formula is obtained from the formula (*1) by taking into consideration pM_
priInary elements of the group Kilt< to avoid restriction on 9 E K*, by proving that
values of (*2) do not depend on a choice of 8(l) and that (*l) and (*2) have the
same value under special choice of 8(t) from n.OA.

The formula (*2) does not contain information about (Ai E ](. Now we don't
have an answer to the following question: is the fonnula (*2) valid without asslunp
tion (M E K?

The formula (*2) can be considered as a generalization of the result from [B-V] ,
wher·e the case of 1-dimensional formal group symbol modulo p (i.e. M = 1) was
studied.

0.6. As it was mentioned earlier, our arguments are based on Fontaine's theory
of p-adic periods for p-divisible groups (also, Fontaine-Wintenberger functor field
of norms and Fontaine's interpretation of Witt reciprocity law play very important.
rale). It seems, one can apply Fontaine's theory for formal groups over arbitrary
local fields K~ to obtain explicit formulae at least modulo some finite defect sub
group in G[M](mK) (which is trivial, if absolute ramification index of ](~ is less
than p - 1), cJ. [Fo1]. All our argumellts can be directly applied in the case of
A-modules over Aur , one should use parallel theory of ?TA-adic periods (in par
ticular, this gives explicit formula in thc Lubin-Tate case frorn [Vo2]) , c.f. [De],
[F-L]. Dur method is ajusted also to study the case of "p-adic rllotives" appearing
in Fontaine-Laffaille theory, but oue should clarify the concept of p-adic points for
these motives. It would be also interesting to develop this theory by 11lethods of
[Ka], where the most natural and general interpretation of explicit formulae for the
group Gm is given.

Finally, we remark, that there is another way to obtain explicit formulae for the
Hilbert sYlnbol, which is presented by Coates-Wiles formulae in the cases of nltuti
plicative and Lubin-Tate groups, and by I(olyvagin's ideas [Ko] for I-dimensional
groups. Recently, D. Benois (private communication) obtained in this way explicit
description of I<olyvagin 's normalized relations and formulae of Artin-Hasse type
for the Hilbert symbol in the case of formal groups over arbitrary local field. These
formulae also involve information about matrix of values of p-adic periods pairing.

This paper was written during my stay in the "Arbeitsgruppe Algebraische Geo
metrie und Zahlentheorie" (Max-Planck-Gesellschaft, Berlin). I express lny grati
tude to this organization for hospitality.

1. p-adic periods of a formal group over Witt vectors.

Let K o be the fraction field of Witt vectors ring l'V(ko), where ko is a perfect
field of characteristic p > 2. Fix an algebraic closure k of ](o, and denote by C a
p-adic completion of i? Let me be the maximal ideal of the valuation ring Oe of
the field C and r o = Gal(I? / ](0)'
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1.1. Fontaine'3 ring Aeris, [Fo3].
Let R = { (x(n»n~o I x(n) E Oc, x(n+1)p = x(n) } be a ring with opera

tions (x(n» + (y(n» = (z(n», (x(n»(y(n» = (w(n», where z(n) = lim (x(n+m) +
m-+oo

y(n+m»pm, w(n) = x(n)y(n). The ring R is compiete with respect to the valuation
VR given by VR((X(n») = v(x(O», where v is a p-adic valuation on C, such that
v(p) = 1. Residue fields of Oe and of Rare canonically identified, in particuIar,
there is a canonical inclusion ofWitt vectors rings W(ko) C W(R). We use notation
mR for the maximal ideal of R.

If w = 2: pn[rn] E W(R), then w ~ L pnr~O) gives epinlorphism of W(ko)-
n~O n~O

aigebras T : W(R) ~ Oc, and W1(R) := Ker, is a principal ideal in W(R).
One can take as its generator any ~ E Wl(R), such that vn(ro) = 1, where 1'0 =
~modpW(R) E R. Remark, that I{er(, : lV(mR) ---4 n~c) := W 1 (mR) equals to
~W(mR)' Aeris is the p-adic completion of the divided powers envelope of W(R)
\vith respect to the ideal Ker ,. ~ris has induced continuos fa-action and A~ris =
W (ko). A bsolu te Frobenius u of W (ko) has a natural prolongation 1;0 to Aeris.

There is a decreasing filtration Fili Acris, i ~ 0, of divided powers of the ideal Ker ,.
If Teris : Aeris ~ Oe is a natural prolongation of " then Fil l

Acris = Ker ,eris'

One has 1;0 Fil1 A eris C pAeris , so ~1 = 1;o/P is well-defined u-linear morphism
fronl Fil1Aeris to A.cris. Sonletimes we denote 1;0 and 4>1 simply by u anel u /p,
respectfully.

H M E N, denote by Aeris,M the quotient Acris/pM A.cria with induced fa-action,
filtration and mappings ~o : Aeris,M ~ Aeris,M, <P1 : Fil1

Acria,M ~ Acria,M.

1.2. p- adic periods pairing, [Fo1], [F-L] .
Denote by MFw(ko) the abelian category of admissible filtered modules with

fil tration of length 1. Its ob j ects are quadrupIes M = (MO 1 lvI1
, <Po, <P1 ), where 1\1Io

is a W(ko)-module, M 1 is its submodule, 4>0 : MO ~ MO and 4>1 : M1 ~ MO
are a-linear morphisms, such that for any m E Mt one has ~o(m) = p<P1(1n), and
M = <po(MO) + ~1(Mt). Morprnsms of this category are morphisms of filtered
modules, which commute with <Po and <P1.

Let Gbe a p-divisible group over W(ko) of finite height h(G). H T(G) is Tate
,... 0 - - 1 - ,... ·1

module of C, let M (G) = Homro (T( G), Acris) and M (G) = H01llro(T(G), Fl1 Acris).

Then tPOIAcri. and <P1IFiJl Acri" induce ~o : MO(G) ~ MO(G) and ~1 : M1(G) ~
MO(G) and M(G) = (MO(G), M1(G), <Po, 4>1) is the object of the category MFw(ko)'

The correspondence G ~ M (G) gives fnlly faithfull functor from the category of
p-divisible groups over W (ko) (of fini te height) to the category NIFW (k o)' The essen-

tial image of this functor consists of M(G), such that MO(G) is free W(ko)-rllodnle
of finite rank. We have rkw(ko) MO(G) = h(G), and dinlension n(G) of G is equal

to rkw(ko) M 1 (G).
If Gis a formal smooth group over W(ko) offinite height and G[m] = Kerpffi id a ,

then G= {G [m] } m ~o is a p-divisible graup over W (ko). The correspondence G ~ G
gives fuHy faithfull functor from the category of formal smooth groups of finite
height to the category of p-divisible groups over W( ko). Corresponding objects
M(G) = M(G) can be completely characterized by one additional property: <Po is
topologically nilpotent on MO (G).
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The above description of p-divisible groups G can be interpreted as the p-adic
periods pairing

- ° -T( G) x M (G) ---t Acris .

This pairing is Zp-bilinear, nondegenerate and cornpatible wi th additional struc
tures, i.e. with structures of fo-modules on T( G) and on Acris , anel with filtrations
and Frobenius actions on MO(G) and on A.cris' We remark, that if G is a formal
group, then this pairing has values in A~~is := {a E ~ris 1 4>g( a) ----+ 0, if n ---7 CXJ }.

The above description of p-divisible groups exists also on the level of finite group
schemes. We use it to obtain for any M E N non-degenerate pairing

- ° - MG[M](Oe) x (M (G)modp )~ Acris,M,

where G[M] - Ker(pM idä ). As earlier, this pairing is also compatible with all

additional structures. In particular, fo-rnodule G[M](Oe) can be identified with

° - 1 - 1{7] E Homw(ko)(M (G), Acris,A1) I 7](M (G» C Fil Acris,M

and 7]</>0 = 4>0"', "'</>1 = l/J17] }.

1.3. Structure 01 M(G).
Let G be a p-divisible group over W( ko) of finite height h and of diInension 'n.

If M (G) = (MO, M I , </>0, 4>1), then W( ko)-module MI is a direet summand of MO.
So, we can choose lV(k o)-basis of NIl and elenlents 1n], . .. ,1nh-n E MO, such that
{Z], . .. ,Zn, m], . .. ,mh-n} is W(ko)-basis of MO.

Consider vector-columns I = t(l], ... , Zn), m = t(ml"'" mh-n). Then to give
on M(G) the structure of an object of the category MFw(ko) is equivalent to giving
the relation

( 4>1(~) =E(~)
cPo(m) m

for some invertible matrix E E GLh(W(ko».

Let E= (A] B]) be a block fonn of E, such that the relation (*1) ean be
C] D]

rewri t ten in a form
cP 1(1) = Al l + B I 1n

cPo(m) = Cl r+ D 1ih

Now we restrict ourselves to the case of p-divisible groups arising from formal
groups G. This means, that l/Jo acts nilpotentlyon MO = MO(G). One can easily
verify, that this additional property is equivalent in terms of the matrix E to the
property

lirn a U (D1 ) ... D 1 = O.
tI.-OO

Let &-1 = (~ ~) be a block form, such that

- aI
Z= A- +Bam

p

aI
ih=C-+Dam

p
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- _ "F' a
U

[m-LJ u ,

u~1 P

(now we use notation '(f and er j p instead of <Po and <Pd. One can use topological
nilpotency of alMo to replace the above relations (*2) to equivalent relations

_ a U [

l= LFu-,
u~1 p

where F1 = A, F2 = B(ae), ... ,Fu = B( 0'D) ... (a U
-

1 D)(a U C) for u ~ 3, and
F{ = C, F~ = D ... (a u - 2 D)(a U

-
1 C) for u 2:: 2 (we use, that in = (id -Da)-l C(al)jp

and (id -Da)-l = id+Da + ... + D(aD) ... (a U
-

1 D)aU + ... ).
1.4. Formal group GA.
Let B = W(ko)[[X]] be apower series ring with coefficients in W(ka) and vari-

ables X}, , X n, BQp = 13®Qp' Let 6. be a 0'-linear operator on BQp, such that

6(WX:l X~n) = a(W)Xi i1
... X~in, where w E W( ko), i 1 , ••. ,in ~ O. Denote

by BQ, the space of vector-columnes of order n with coordinates in BQp. Clearly,

6. acts on B~ .
Introduce Zp-lineax operator A = 2:u2::1 Fu6 u on 8(1, where Fu , u 2:: 1, are

n X n- matrices from n.1.3.
Consider T(X) = \IA,l (XI, ... , X n ), ... ,lA,n(X1 , .•• ,Xn)) E 13(1, such that

ZAC-K) = (id - A) -1 (X) = X + L Am~x)
p m~l p

(here X = t(X}, . .. ,Xn ) E Ba). Clearly, l(X) is the urnque solution in Ba of the
functional equation

TA(X) = X + ~ L Fu(a:[A)(XP
u

), TA(O) = 0
P u~l

(here a* : Ba ---4- B(A, is action of a on coeffieients of power series).

By [Ha], power series TA(X) can be taken as the logarithm map of same n

dimensional commutative formal group law GA over W(ko). Namely, GA = Spf 13
with coaddition given by the relation ~A(X) = z,:;/(TA(X)01 + l<fuTA (X)).

In fact, formal groups G and GA are isomorphie. This follows from comparison
of Fontaine's and of Honda's theories, c.f. [Fo1, Ch.5]. In n.1.5 below we use more
precise version of this statement.

1.5. Con8truction 0/ p-adic periods pairing.

1.5.1. Lemma. TA induces injective continuos homomorphism of ra-modules

TA : GA(W(mR))~ A~ris ® Qpo

Proof.
Let w E GA(W1(mR) + pW(mR)), then lA(w) E A~ris' Divided powers of the

ideal W1 (mR) +pW(mn) give basis of topology on Acris . Therefore, TA is injective
on GA(W1(mR) + pW(mR)). If w E G.A(W(mR)), then W1 = (pnidGA)(w) E
W1(m R) + PW (m R) for sorne n 2:: 0, because p ido A is topologically nilpotent on
GA(mR).

Now IA(W) = (ljpn)TA (w1) and injectivity of IAIGA(W(mR)) is a formal conse-
quence of the above injeetivity of TA!GA(HTl(mR)+PW(mR))'
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Corrolary. For any M E N

is injective continuos bomomorphism oI r 0 -modules.

Proof.
Any w E GA(W(mR)) can be written as W = Wl +CA (pM W2), where w], w2 E

W(mR)n and wl moclpMW(mR) is uniquelly cleterminecl. The statement follows,
because for any m E None has TA(GA(pmW(mR))) C pmlV(mR)n, TA is iclentical
on pmW(mR) modpm+J W(mR) and, therefore, TA induces bijection

1.5.2. Let 0 = (os)s>o E T(GA). Here all o~ E GA(mc), (piclcA)(os+l) = o~

and 00 = O. For every s choose Os E W(mn), such that ,(os) == Os modpmc.
In this notation one has

s+1-1 (" ) - s-l (") cl s F'll A s+lW()P A 0s+1 == P A Os mo p 1 cris +P 111.R .

Indeed, ,((pidcA)(oS+l)) - (pidcA)(os+d == Os =,(os)modpmc, therefore,
(pidGA)(Os+l) - Os lnod W1(mR) +pW(1nn), and

pTA(oS+1) == lA((pidcA)(Os+l)) =IA(os) mod Fil1
Acris + pW(mn).

Let o~ E GA(lV(mR)), where ,(o~) == Os modpmc, s 2:: 1, be another system of
liftings. Then

~-1 ("')- ~-1 (") cl sF'11 A ~+lW()P A Os = P A Os mo p 1 cris + p mR .

This equivalence follows because Ott == O~ mod W1(mR) +pW(mR)'
If we choose Os E W(mR), such that ,(os) == Os, then pSTA(O~) E (Fil] Acris)n,

because ,((pS idGA)(os)) == (pS idGA)(o~) == 00 = O.
The above reasoils give the following lelnma, c.f. also [Co],

Lemma. The correspondence 0 == (0 8 )8>0 ~ lim p8TA(os) gives well-defined ele-
- s--+oo

ment I E HomrO(T(GA),(FiI1 Acris)n).

~ A A " r 1
We remark, that if I == t(Il, ... ,ln ), then all 1i E Horn O(T(GA),Fil Acris ) ==

M1(GA).

Let m= L:u>l F~(JuI/p, where F~ are the matrices fronl n.1.3. Thell m==

t(r111,.'" mh-n)~ where al1 ri~i E HomrO(T(GA), Acris) and m(o) == lim pSrrlA(o.'l),
s-oo

where mA(Ott) == (1/p) 2: F~(JU(TA(O.'l))' The functional equation for TA fronl n.1.4
u~l

gives the relation
~ .A"'-::L
1= -I,

p
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where A* = L:u>l Fuuu is Zp-linear operator on MO(GA). This equality cau be
rewritten as, c.f. TI.lo3,

A .

Therefore, the correspondence r 1-+ 1, r11 1-+ mgives morphism in the category
MFw(ko)

7rA : M(G) ~ M(GA).

Clainl. 1rA is isomorphism in MFw(ko) and tbereforc, gives rise to tbe isomorpbism
1JA : G ~ GA.

This is ll10re precise version of the mentioned in n.lA existence of an isomorphism
between G and GA. This fact follows from Fontaine's descriptiün of points of
a formal group in terms of its Deudonne module, c.f. [Fül], and from relation
between covectors and Acris, c.f. [F-L] .

1.5.3. From now on we use the isomorphism 1JA to identify G aud GA, in particu
lar, points of the fonnal group G cau be given by coordinates. We can use leU1Dla of
TI.l.5.2 to express values ( , ) of the p-adic periods pairing T(GA) ®Zp MO (GA)~
Acris:

if 0 = (os),,>o E T(GA) and lt, ... ,ln,mt, ... ,mh-n is the W(ko)-basis of
MO(GA) from n~1.3, then

a) (0,1) = t( (0,11 ), ... , (0, Zn)) = lim pS1A(os), where 0" E G(W(mR)) are such
,,-+-lX>

that ,(os) = Os modpmc;
b) (o,m) = t((o,m1), ... ,(o,mh_n)) = limpS mA(8,,) - L:F~uU((o,r))/p,

"-00 u~1

where F~ are matrices frorn n.1.3.
Values of the modulo pM p-adic perioels pairing

can be given as follows
if 0 E GA[M](mc), then
a) (0, rmodpM) = pMlA(8), where 8 E G(W(mR)) is such that ,(8) =omodpmc;
b) (0, m IDOdpM) = LU~1 F~ tPl ((0,1 fiod pM)).

1.5.4. Consider Zp-linear operator A* = :EU>1 Fuuu on Acris' Claim of n.1.5.2

gives injectivity of I :T(GA)~ (Fi11 Acris)n an-cl the equality

Im1= {x E (Fil1 Acri.)n I x = ~. x} .

Remark. In the modulo pM situation we have induced identification of GA[M](mc)
with {x E (FHI

Acris,M)n I x = (A* jp)x}.

Let 0 = (os)s~o E T(GA) and 8!J E GA(W(mR)) are such that ,(8,,) = os' Then
lim (p" idcA )(8,,) exists, doesn't depend on the above choice of liftings Os and is

!J-OO
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an element of the group GA (H/1
( m R) ). The correspondence 0 ~ lim (pS ida.A )(8S)

s-oo
gives rise to injective homolllorphism of ro-modules

such that joTA = T.
So, we have the following characterization of the imag~ of j:

1.6. Some lemmas.

1.6.1. Lemma. A* = Lu~l FuO' u is mvertible on W(mn)n.

Proof.

If [-1 = (~ ~), then A* = Au + Bu(E - Du)-1Cu.

Let 10 E W(mR)n. It is easy to see, that if (X,101) E W(mR)h is a solution of
the system

where x E W(mR)n,1OI E W(mR)h-n, then A*(x) = 1O. To prove solvability ofthe

system (*1) multiply both sides of it by the matrix [ = (~: ~:) to obtain an

equivalellt system

O'x == A)w + B1W1

O'WI =C11O+D1Wl

Let

This expression has sense, because

c.f. n.1.3. Clearly, O'w~ = Cl w+D11O~. Therefore, (xO, w~), where xO == 0'-1 (Al 10)+
0'-1 (BI 1O~) gives a solution of the system (*1).

Prove that KerA* == O. Let x E W(mR)U be such that A*(x) == o. Again, this is
equivalent to existence of 101 E W(mR)h-n, such that (X,W1) is a solution of (*1)
with 10 = O. Then relations (*2) give

and, therefore, 101 == (0'-1 D 1 )(0'-2 D1 ) . .. (O'- U D1 )101 for any n E N. But thc right
hand side of this equality tends to 0, if u --+ 00. So, 101 == 0 and, therefore, x == O.
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1.6.2. Lemma. GA(mR) is uniquelly p-divisible.

Proo/.
Let r = t(r1,'" rn) E GA(mR) be such that (pielG... )r = O. Then for [T] =

\[r1], .. " [rn]) E GA(W(mR)), one has pIA([r]) = IA(pido... ([r])) E pW(7nR)n,
and functional equation for IA gives

Now lemma of n.1.6.1 gives /A([r]) E pW(mR)n. But IA : GA(mR) --t A~lris 0
Qp modpW(mR) is injective, c.f. n.1.5.1. Therefore, r = 0, and pielG... IG... (mR) is
injective.

Let ro E GA(7nn). Take r E mR, such that A*(r) = ro. Then A*([r]) =
[ra] +p[r1] + ... + pn[rn ] + ... anel

pIA([7']) = p[r] + (A'" +... + A*u+1/pu +... )([r]) =

= p[r] + [A([ro]) +pIA([rl]) +... pn[A([rn ]) +....
Therefore, lA([ro]) =plA([h]) ll10dpW(mR), where h = r-c... (r1 +G (pidcA )(r2)+
... +G... (pn idGA )(Tn+l) +... ). By n.1.5.1 we conclude ro = (pidG )h. Lemma is
proved.

1.6.3. Lenlma. Foranyg E GA(W(mR)) thereexists theuniqueh E GA(IV(7nn)),
such that A"'IA(h) = [A(g).

Proo/.
ExiBtence. We can assume, that 9 = gl +G... w, where 91 = [r], r E n7,n., and

w E GA(pW(mR)). Let h~ E W(mR)n be such that A"'(h~) = 91, c.f. lemma 1.6.1.
If h; = 2:~~0 pS[r~], take h1= 2:G... (pS iclGA )[r~] E GA(W(mR)).

Then A*TA(h1) = 2:s~o p~ A"'/A([r~]) =

= LPS(id+A*/p + ... + A",m/pm + ... )(A*[r~]) = (id-A"'/p)-lA*(LPS[rs ]) =
s~o ~~o

= (id-A"'/p)-lA*(h~) = (id-A*/p)-l([r]) = [A(91)'

Because A'" and lA are invertible on pW(mR)n, there exists W1 E GA(pW(m,n)),
such that A*lA(Wl) = TA(w). Therefore, A*IA(h1+G... wI) = 9.

Uniquiness. It is sufficient to prove, that for h E GA (W (m R)) the equality
A"'/A(h) = °implies h = O. Let h = [7'] +G... (pw), where r E m R,w E W(mR)n.
Then A"'lA([r]) E pW(mR) and functional equation for TA gives pIA([r]) E pW(mR).
Therefore, (pidGA)(r) = 0 in GA(mR) (c.f. n.1.5.1) and r =°(c.f. n.1.6.2). So,
A"'IA(pw) = 0, but A* and TA are inversible on pW(mR), c.f. n.1.6.1.

1.7. Same properties 0/ A cris .

1.7.1. Let <GI be one dimensional formal group over IV(ko) with logarithm

XP X P'
IG (X) = X + - + ... + - + ...

1 P p~

11



GI is isolnorphic to the multiplicative formal group Gm. Therefore, Tate module
T(tG1 ) has Zp-rank 1 and r o acts on T(tG1 ) via cyclotomic character X : f o -----7

Z;. Filtered module M(tG!) = (MO (GI), M] (GI )), where MO(GI ) = MI (GI) =
HomrO(T(G]), Fil! Acris) has W(ko)-rank 1, and there exists W(ko)-generator y of
MO(GI ), such that <Pl(Y) = y.

Fix Zp-generator ° = (o~)~~o of the Tate module T(G]). Here all o~ E GI (rnc),
(pici(;l )(08 +1) = O~, 00 = 0,01 i- O. Then we can fix W( ko)-generator y of MO(G1)
by relation

(0, y) = y(o) = Ern pSlGt (os),
3-CO

where Os E WeR) are such that ,(os) _ o~ modpmc. This element y(o) has the
following properties: y(0) E Fil! A cris \ P Fil! Acris, <PI y(0) = y(0), and for any
r E f 0 one has TY(0) = X(T)y(0), where X is cyclotomic character of ro. So, y(0)
generates additive Tate submodule Z p(1) = {a E FH I

A cris I 4> 1( a) = a} of Acris ,

and we can use standard notation t+ = y( 0) from [Fo3].

1.7.2. Let 'l/J = lim (p~ id(;t )(os), where 0 = (0 3 ) E T(IG1) and Os were defined in
8-00

n.1.7.1. Then 7/J E W 1(mR) and t+ = IGt (7/J). Let 7/Jl = (J-l'1j; E W(mR). Then

(pidG1 )(7/;1) = lim (p~+1 i~ )((J-l0~) = Ern (p" id(h )(pidGt )(cr-10s ) = 'l/J,
~-oo s-co

because (pidGt )(cr-l0~) =(cr-1os)P - Os 1110d Wl(mR) + pW(mR)'

Remark. We use, that if 7' E mR, then (pidGt )(r) = rP in GI (mR)' Indeed,

so, pidGt ([Tl) =[r]P modpW(mR) by n.1.5.1.
Therefore,

'l/J = ptJ;] + 7j;f + :L Ci1f~+ 1,
i~O

where all Ci E pW(IFp ). This gives t = 7/;/7/;1 E WI (mR) = Kerf' One can easily
see, that t generates the ideal WI(R) of WeR). In particular, W 1 (mR) = tW(mR)'

1.7.3. Remark, that Acris is a p-adic c0l11pletion of the ring IV(R)[t], . .. ,ts , . •• ],

where t 1 = t P/p, . .. ,t8 +1 = t~/p, .. .. Therefore, the power series ring W(R)[[tP /p]]
can be identified with p-adic closure of W(R)[tI, . .. 1 pp.-2+'''+lts , .. . ] in A cris .

Lemlna. W(R)[[t P /p]] = W(R)[[7/;p-l/p]]

Proof·
The equation (*) of 0.1. 7.2 gives 7/; = P'l/Jl + e;7/;f, where € = 1 + 2:i>O ci1Pf E

W(1nn)*. Therefore, tP /p = e; P1ff(P-l) /p + tu, where 1.0 E W(mR) + pW(R). This
gives 1f;f(P-I) /p is topologically nilpotent element of Acris and

W(R)[[tP /p]] = W(R)[[7/;i(p-J) /p]].

12



On the other hand, 'ljJp-l/p = eP-1'IjJi(p-1) /p +Wb where Wl E W(mR). There
fore, 'ljJp-1/p is topologically nilpotent element of Acris and

W(R)[['ljJi(p-1) /p]] = W(R) [['ljJp-l /p]J.

1.7.4. From topological nilpotency of 'ljJp-1/p it follows, that 1J = t+ /'IjJ = 1 +
'ljJp-1/p + ... + 'ljJP'-l /p8 + ... is invertible element of the ring W(R)[['ljJP-1/p]].
Therefore, t+ and 'IjJ are associated elements of W(R) [['ljJP-1 /p]].

Lemma. a/p acts llilpotently on the ideal 'ljJp-1 /pW(R) [['ljJp-l /p]] of the ring
W(R)[[lf'P-1/p]].

Proof.
The above property t+ = 'ljJTJ, 1] E W(R)[['ljJP-1 /p]]"', gives

'ljJp-1 /pW(R)[[1jJP-1 /pJ] == (t+)P-] /pW(R)[[(t+)P-1 /p]].

But (a/p)((t+)P-1/p) == pp-2((t+)p-l /p), q.e.d.

1.7.5. Let G be a p-divisible group over W(ka) and let M(G) E MFw(ko ) be
given in notation of n.1.3. Then we have identification of ra-modules

T(G) = { (n E A~'i,1 a E (Fil
l

Ac'i.)n, (:~n = E(n }.
Let Tl (G) be ra-module cosisting of all (:~ ) E (W(R)[[,pP-I /plJ)h, such that

al E (WI(R) + (,pP-I jp)W(R) [[,pp-I plJ)n and (:~::) = E (:: ) .

Clearly, a natural inclusion W(R)[['ljJp-1/p]] ---? Acris gives ra-morphism L1
T](G) ~ T(G).

The relation (*) of n.1.7.2 can be rewritten as at = p + 'ljJp-1 Cl, where C] 

1 + LtCi'IjJi. If WE W1(R), let ~l(W) = (aw/at) E W(R).
i~l

Then

aw _ 'ljJp-l _ 1jJp-l
<P1(W) = - == <p](w)(l +-cl) =rPl(w)mod -W(R)[['ljJP-1 /p]].

P p P

Let T2(G) be ra-module, which consists of all (::) E W(Rt, such that a2 E

W1(R)n and

- (a3
)Let T3 ( G) be ra-module of all b

3
E (W(R) fiod 'ljJp-l W(R))h, such that a3 E

(Hf l (R) fiod 'ljJp-l W(R))n, and
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(here Jl = ~l mod'lj;p-l : W 1 (R)mod7,bP- 1W(R) ~ W(R) mod 7,bP-11V(R)).
Clearly, projections W(R)[[1/Jp-1 /pJJ ~ WeR) nlod 7,bp-l WeR) f- WeR) in

duce ro-morphislllS
T1 (G)~ T3 (G)~ T2 (G).

In (Ab1J lemma of n.1. 7.4 and the above relation (*) between tP 1 and tP2 were
used to prove the following

Proposition. The above maps 1,1, "2 and 1,3 are isomorpmSlns OfrO-lnodules.

Remark. In particular, values of the p-adic periods pairing belong to the SUbrillg
W(R)[(7j;P-1 /p]].

1.7.6. Lemmas of nn. 1.7.3 and 1.7.4 give the following

Lenuna. Let TA be logarithm vector power series [rom n.l.3. If w E Hf] (mR),
then

Remark. It follows from this lemma, that values of the p-adic periods pairing of
the formal group GA belong to W(n~R)+ ('ljJp-1 /p)W(R)[['ljJP-1 /p]).

1.8. Duality.
1.8.1. Let G= limGA[s] be the p-divisible group associated to the fornlal group

---+
,'l~1

GA. Consider the dual p-divisible group GD = limG~[s], where G~[s] are Cartier
---+
"~1

duals for the group schemes GA [s]. If T(GD) is Tate module of GD, then Cartier
duality gives nondegenerate pairing of rO-Illodules

Fix /lp-basis 0 1 , ... , ah of T(GA) and denote by 0.1 , . .. , o*h Zp-basis of T(GD),
such that (ai, o·j)r = DijO, where 0 is the generator of T(G1 ) chosen in n.1.7.

1.8.2. Let M(GD) = (MO(GD),Ml (GD)) E MFW(k o) be filtered module of the

p-divisible group GD. One cau use functorial properties of tensor product in the
category of admissible filtered lllodules of length of filtration 2, c.f. [F-L], [Fo2], to
express Cartier duality as a morphism in this category

If 11, ... ,ln,ml, ... ,mh-n is a special basis of MO(G,A), chosen in n.1.3, and
y E M 1 (G1 ) is the element from n.1. 7.1, then

a) ßM(Y) = 110 mi +... + In 0 m~ +7nl e> Ir +... +mh-n e> lh_n E MO(G,A) e>
MO(G D

), where l~, ... , lh-n is lV(ko)-basis of M 1(G D
) and mr, ... ,m~, Ir,···, I'h-n

is W(ko)-basis of MO(GD)j
b) ßM (<P1 y) = <PI (I1) 0 tPo(mr) + ... + tPl (In) 0 tPo(m~) +tPo(m1) 0 tPl (Zr) + ... +

<PO(7nh-n) 0 <PI (I'h-n)'
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These properties of the copairing ßM give the following structure of the filtered
module M(C D ). If mD = t(mT 1'" ,m~), TD = t(I~, ... , I'h-n)' then

where E E GLh(lV(ko» gives structure of the filtered module M(GA), c.f. n.1.3.

Indeed, we have (/JIeT) = All+ Blm, 4>om = CII+ D I m, where E = (~: ~:)
(c.f. n.1.3). In evident notation we have

!J.M(f/JIY) = L f/JI(ld (9 4>0 (mi) + L f/Jo(mj) (9 f/JI(lj) =
I~i~n l~j~h-n

= f/Jl(f)®<I>o(m D)+1Jo(m)®1JI(TD) = (Al1+Blm)01Ja(mD)+(Cl1+Dlm)®1Jl (TD) =
- t D t -D t D t -D=10( AI<Po(m )+ Cl <PI (I »+m0( B1<po(m )+ DI <Pl(I ».

Now the equality ßM (4)1 y) = !J. M (y) =T0 mD +in ® lD gives the relation (*):

1.8.3. Let [11' .. ,ln, 1nl, ... 1mh-n and mi, ,m~, l~, . .. ,I'h-n be above special

basises of ll/Jo (GA) and MO (G D), and let 0 1 , , 0h and 0*1, ... , o*h be special
basises of T(GA) allel T(G D ) from n.1.8.1.

Consider matrices of values of the p-adic periods pairing in these basises

(
( *1 - D)

V D - 0 '''!! ...
- (*1 ID)0, ...

Then compatibility of the p-adic periods pairing with tensor product gives

Proposition.
tvDv = t+ Eh,

where Eh is the unity matrix oE order h.

Remark. In evident notation matrices V and V D satisfy the following properties

1.8.4. In notation of n.1.7.5 denote by iä the isomorphism of fa-modules iä =
i-I 0 i3 0 i 21

: T(G) --+ T2(G). For 1 ~ i ~ h we have
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1( )n d (~1 ai ) co (ai)where ai E W mR an abi = C b
i

.

Similarly, for 1 ~ i ~ h, we have

( abP ) (b
P

)where ap E W 1(m R)h-n and ~1 ~p = t S-l ap .
For the fornlal group G1 froln n.1.7.1 we have iGl (t+) = '1/;.
Introduce matrices of order h

By construction we have the following properties

( ~ ) i>D = ( ~bP.DtPl tPl at

and proposition of n.1.8.3 gives

2. Crystalline synlbol and its relation to the fornlal gr0!-IP synlbol.

2.1. Recall, c.f. n. 1.5.4, that

is injective morphism of ra-modules, and

Let
'lj; : GA(W(mR)) ~ A~ris 0 Qp

be r a-morphism defined by the correspondence 9 ~ plA(g) - A*LA (g) for any
9 E GA(W(mR)).

Proposition. JE 'ljJl = 7P1C•.dW1(mR))' tben Im 7P 1 ~ pW(mR)fl and, tllerefore, we
have exact sequence of fa-modules

Proof.
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2.2.1. Lemma. Let, E GA(mR), and for sEN let '8 E GA(mR) be such that
(pS idCA )('s) = ,. Tben

a) tbere exists lim (p~ idcA )(['s]) := 8(r) E GA(W(mR»;
S-+OO

b) r = 8(r)modpIV(mR);
e) 'IjJ(8(r» = O.

Proof.
a) and b) ean be proved by arguments of n.1.5.2.
e) follows, because for any 8 E None has

pIA((p~ idcA )([r~]) - A"'TA((P~ idcA )([rs ]) =

= pS (plA ([r s ]) - A"'TA([r~]) = ps+l[r] E W~+l(mR).

2.2.2. 'IjJ(GA(W(mR») = 'IjJ(GA(pW(mR»)'
This follows from the above lemma, because if w E G.A(W(mR» and , =

wmodpW(mR) E GA(mR), then w = 8(r) +CA Wl, where Wl E GA(pW(mR»'

2.2.3. 7ft(G(pIV(mR») = pW(mn)71.
Indeed, let 9 E GA(piW(mR» for some i 2:: 1. Then IA(g) == gmod pi+lIV(mR)

and
'ljJ(g) == -pi A*(r)rnod pi+lW(mR),

where , E m R is such that 9 _ pi[,] mod pi+l W(mR)'
By n.1.6.1 the operator A'" Im ~ is invertible, therefore, for every i 2:: 1 the map

'IjJ induces bijection of piW(mR) mod p i+l1V(mR).

2.2.4. Lemma. Forany a E GA(mc) there exists r E G.A(mR), such that
,(8(r» = a.

Proof.

Choose a sequence {a 8 },,>o of a~ E G.A(rnc), such that an = a and (pidcA )(a"+1) =
a~ for all s 2:: O. Let,~ E-GA (m R) be such that ,(7'~) = a s , Then Olle can use
arguments of n.l.5.2 to verify the following properties

a) there exists lim (p"idc.... )([r~]):= w E G.A(W(mR».
s-+oo

b) if wmodpW(mn) = r E GA(mR), then w = 8(r).
Now lemma is proved, because ,(w) = Ern (pS idcA)(a,,) = a.

s-+oo

2.2.5. 1jJl(GA(W1(mR») = pW(mn)n.
Indeed, if w E pW(mR)n and 9 E GA(W(mR» is such that 'ljJ(g) = w, take, E

GA(mR), such that ,(8(r» = ,(g) E GA(mc). Then g' -GA 8(1') E G.A(W1(mR»
and 'ljJI (g') = 7/J(g) = w.

Proposition is proved.

2.3. Crystalline symbol.
2.3.1. Fix a natural number M. Let ]( be a finite extension of K o in J{, such

that all geometrie points of the group scheme G.A [M] = Ker(pM idGA ) are defined
over K. This means, that
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where m K is the maximal ideal of the valuation ring of the fielcl K.
"Ve use explicite description of the structure of the filtered ll10dule M(GA) from

n.1.3 and nondegenerancy of the p-adic periods pairing modulo pM to identify

GA[M](mc) with the group UM(M(GA)) of vector-columns (;) modpM Acris E

A~ris, M' such that y E (Fil! Acris )n , Z E A~risn and (::~~D= t: (n.
In these terms the equality G.A[M](mc) = GA[M](mK) means, that for any

(;) modpMAcris E UM(M(G)) and any TE fK = Gal(KjK) one has

2.3.2. Let t+ be a generator of the additive Tate module in Acris from TI.l. 7.1, anel
A~~fs be the maxilnal subring in Acris , where action of a is topologically nilpotent.
Take

take T E r K and define the value of crystalline symbol (a, T Jcris E GA [M]( r71 K) as
follows:

if (~) E A~ris is such that Y E (Fil! Acris )" and

(Y) = E- 1 (4)1 (Y)) + (a)
Z 4>o(Z) 0'

then (a,T]cris is the element (~) modpMAcri• of GA[MJ(mK) = UM(M(GA)),

such that

T (~) - (~) _ (~ ) mod t+ A~~fs'

Remark. This symbol is related to the filtered module M(GA), 01' equivalently,
to the formal group GA. When this dependance is importallt for us, we write
(Q, T JGA ,cris'

2.3.3. Lemma. Tbe above defini tion oE (0:', T Jcris is correct.

Proof.

Solvability of the equatiol1 (*) of n.2.3.2 cau be deduced froln 11.5 of [F-L] (where
it is considered a ease of more general filtered modules). In fact, we apply below
crystalline symbol only for a E W(mR)n, where sohrability of the equation (*)
follows from proposition of n.2.1.

Exi3tence of (;).
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If (~) = T (~) - (~). then

(A) _[-1 (<P1(A)) + (ar)
B - 4>o(B) 0'

where a T E (t+ A~~fs)n. But the operator

is nilpotent on (t+ A~~fs)h, therefore, we can define

(~~) = ~ {[-I (:~) }' ((>0 ) E (t+ A~~is)h.

Cleaxly, (~~) = [-1 (::~~:D+( (>0 ). and we can take (n = (~) - (~~ ).

Uniquiness of (;).

If T (~) - (~) =(;~) mod t+ A~~fs, then ( ~ ) = (;) - ( ~~) E (t+ A~~fs)h
. and satisfies the relation

(n =[-1 (:~) (~).

Therefore, (~) = {[-I (t)r(n N-=:'oo (~) , because [-1 (:~) 1S

topologically nilpotent on (t+ A~~fs)h.

Independence of the choice of (~).

If (~~) E A~'is can be taken instead of (~), then (~:) = (~) + (~),

where (~) modpM Aais E UM(M(G)). But T E fJ( and, therefore, T (~) ==

( ~ ) modpM A~'is, c.f. n. 2.3.1.

2.4. Symbol (a, r Jcris in terms 01 operator A *.

Use notation from the above definition of (C>, Tlc ';,. Then vector (~) appears

a.s a solution of the system

aY
Y=A-+BaZ+a

p
aY

Z = C- + DaZ.
p
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One can easily verify, that the correspondence (~) t-t Y, where Y E (Fil] Acris)n,

Z E A~risn, gives one-to-one correspondence between solutions (~) of the above

system (*) and solutions Y E (Fie Acris)n of the relation

A*
Y--Y=a.

p

So, calculation of the value 0M E G[M](mK) of (Q', T]cris can be done as follows:
a) find Y E (Fil! .Acris)n, such that Y - A*Y/p = a;
b) find y E (Fil! Acris)n, such that y = A*y/p and TY - Y =y fiod t+ A~~isj

c) find C!M E G[M](mK), such that y == pMTA(OM) nl0d pM Acris, where DM E
W(1nR) and ,(OM) - 0M modp1nc.

2.5. Homomorphi3m BGA.'
2.5.1. Fix same uniformizer 7r E K and denote residue field of K by k. Fix

to E mR, such that t~O) = 1r (it is equivalent to choosing of a sequence 7r8 E rn·c,

such that 7I"o = 7r and 7r:+ 1 = 7r8 for all s 2:: 0).
Let 0k,t = W( k )[[~] C W( R), where I = [to], and let mk,i = [W( k )[[ I]] =

0k,t n W(mR)' Remark, that ,(i) = 7I" and, therefore, ,(Ok,t) = OK, ,(mk,i) =
ffiK·

As usually, denote by 1n~ t the space of vector-columns of order n with coordi-

nates in mk,l' We use the following abbreviated form for elelnents of m~ 1,

L WiTi = t( L Wi l ii l
1 ••• , L Wi n [in ),

'EN" i t EN in EN

where w, = t ( W i 1 , ••• , W in) E W (k)n and z= t ( i), ... , in) E Nn.

2.5.2. Let L: wzi' be some element of 1n~,l' If Wi = L:,,~o p"[a1,,,], where O'i,8 =
t(ai l ,8, ... 1ai n ,8) E kn and [a",!!] = t ([ai1Js], ... 1rain ,8])' set

8 1 ( L Will) = L (pi' idGA. )([a,,8]i1)
lENn (in., GA)

1,8

(here the right hand Sunl is the sunl of points in the group GA(1nk,i))'

So, we obtained the map eGA,1 = 8 1 : rn~,t --t GA(mk,l)'

Lenuna. 8 1 is group isomorphism.

Proof.

(8 1 0 lA)( L Will) =!A( L (p8 idGA. )([a1,,,][I)) =
IEN" (in GA.)

",1
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(
A*) -1 _"

= icl-- (L W1t l
).

P lEN"

SO, 8 1 0 TA is Zp-linear map m~; -----+ A~riB and, therefore, 8 1 is group honlomor
phism. This formula shows also, that 8 1 is isomorphism and the correspondence

- A*-
9 ~ 1.A(g) - -1.A(g)

P

gives inverse homomorphism e~l : G.A(mk,;) -----+ m~J'

Remark.
In the above proof we obtained the identity

for any a E rn~ t',

2.5.3. Define the homomorphislll 80A = G : 711~ t -----+ G.A(mK) as a composition

of 8 1 and of f : GA(rnk,;) ----t G.A(mK). Clearly, eis surjection.

A relation between vector power series J(l) E m~ l and n-vector ß = G(/(l)) E

m K can be explained in a following way. '

Take any presentation of ß in a form ß = I:IE~ 1.Vt1rt, define vector power series

ß(l) = I:iEN" w.tI, then for

- - - A* - -
J(t) = l.A(ß(t)) - -l.A(ß(t)),

P

one has f(l) E m~,i and G(f(l)) = ß.

2.6. Lemnla. Let a E m~; C W(mR)' HT E fK, then Ta - a E (t+ A~~iB)n.,

Proof·
It is sufficient to check that Tl -l E t+ A~~f8'

One can take a generator of the additive Tate submodule in Acris in a form
t+ = log[e], where e = (e(.9)).9>o E R is such that e(O) = 1, e(1) =f. 1. Remark,
t+ = ([6] - 1)77, where ry invertible in Acris.

There exists a = ar E ZPl such that Ti = t[e]a. This gives Tl-l = l([e]a - 1) =
t+w, where w = t([e]a - 1)([6] - 1)-1 E IV(mR) C A~~fs'

Remark. Because, t+A~~fsnW(R) = 7jJW(n1.R), the above proposition gives TQ'-Q' E
1fW(7nR)n.

2.7. Let f E G.A (711]() and T E r K. 0 ne can consider the formal graup syrnbol
as a paulng

G.A(mK) x fK --t G.A[M](mK).

Namely, (/,T]OA = Tl1 -GA I}, where 11 E G.A(mc) is such that (pM idGA)(fl) =
f·
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Proposition. H Cl' E m ~ i and T E r K, then
l

Remark. According to n.2.5.3, this statement can be reformulated in a following
way. If f E GA(mK) and J(t) E m~ i is a vector power series, such that f(7r) = f,
then for any T E r K '

2.8. Proo/ 0/ proposition 2.7.
2.8.1. The exact sequence of n.2.1 gives a solution Y E (Fi11 Acris)n of the

equation
A'"

Y--Y=a
p

in a form Y = TA(g) for some 9 E GA(Wl(mR)).
By the definition of the crystalline symbol

TY = Y +X + [a,T,

where 1a ,T E (Fi11 Acris)n 1 [a,T = (A* /p )1a,1' , [a,T modpM Acris = (a, T]cris (under
identification UM(M(GA)) = GA[M](mK) from n.2.3.1) and X E (t+ A~~fs)n is
such that X - (A* jp)X = Ta - 0'.

We can use nilpotency of (A* Ip)I(t+ A~~i~)n and the identity from remark of n.2.5.2
to express X as follows

(here 8 1 = 80.... ,1 is the isomorphism from n.2.5.2).

2.8.2. Ey lelnmaofn.1.6.3 take h, y E GA(W(mR)), such that A*M[A(h) = T.A(g)
and A*MTA(y) = TA(8 1 (a)).

Now the relation A*Y = pY - pa gives

A*My A*M-Iy A",M-l=p -p a=···=

=pMy _ (pM id+pAl-1 A* +... + pA*M-l)a =
= A*M (p A1 ZA (h) _ (pM A*-M +... +pA*-l )a).

Ren1ark, that we can cancell trus relation by A·M because of the uniquiness
property of lemma 1.6.3.

Applying the identity from relnark of n.2.5.2, we obtain

M *-M *-1 M .-M . . A* A·o!(p A +···+pA )a=(p A -ld)(ld+-+···+-+ ... )a=
p po!
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Therefore, for h' = h -CA Y E G.A(W(mR)), we have the relation

Using this formula and the expression for X fronl n.2.8.1, we obtain

2.8.3. Apply morphism /: G.A(mk,l) ----+ G.A(mK) to both sides of the relation
(*1) and use that g E GA (W1 (mn)). We obtain

where h = ,eh') E G(me).
Let ° = (o,,)s~o E T(GA) be such that Ta,T = 1.A(j(o)), c.f. n.2.1. From 1.5.3, it

follows that

where DM E W(mR) is such that ,(DM) =0M modpmc.
Therefore, the relation (*2) gives

So, DM = rh' -CA h' + 8, where 8 E GA(W1(mR) + plV(mR))' Applying f' we
obtain

DM rh-cA hmodpmc.

But 0M, rk -CA h E G[M](mc), G[M](mc) n pmc = 0, and, therefore, 01\1 

rh -GA h.
But 0M = (a,r]cris, and (8cA(a),r]cA = (-idcA)(r(k) -CA k).
Proposition is proved.

3. Relation between crystalline and Witt symbols.

3.1. Let Ra be the fraction field of the ring R. Denote by Q the set of fonnal
sums

Clearly, 9 :::> W(Ra) 0Zp Qp = {En>_oopn[r n ] I rn E Ra} aud can be identified
with completion of W(Ro) 0 Qp in vR-adic topology. So, Q has a natural structure
of a W(R)-module, continuos action of the Galois group r a = Gal(K / !(o) and
absolute Frobenius (10 : Epn [rn] 1---4 L: pn [r~] is Zp-linear ro-morphism. Clearly,
Qluc=id = W(IFp ) Q9 Qp = Qp.
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Let

Then 9(mR) is fo-invariant W(R)-submodule of 9, a"I"(mR) is tüpologically nilpo
tent morphism. Clearly, 9(mn)l q c=id = o.

Let a, b E Q, a > b ~ O. Denote by 9; b the subset of 9, which consists of
Lpn[rn], such that vR(rn) ~ -bn für n ~ '0, and vR(rn) ~ -an für n :::; O. It
is easy to see, that the W(R)-algebra structure on WQ, (Ro) induces the W(R)
algebra structure on 9; b' This structure is compatible with fo-action and t7e
induces semilinear isom~rphismof fo-modules ae : 9;,b -----7 9;a,pb'

If a, b E Q, a ~ b ~ 0, let 9~+,b be a p-adic closure of U 9~,b' Then 9;+,b is
c>a

W(R)-algebra with continuos fo-action. We set 9a + b = 9 0 + b 0 Qp C 9., a I

"Remark, Acris can be naturally identified with fo-submodule in 9. Clearly, if
a E Acris , then aa = aga.

3.1.1. Lelnma.

a) Acris C 9(p-l)+,O;

b) every element of B~is = Acris 0 Qp C 9(p-I)+,O is invertible in 9(p-l)+ ,p-1;

c) if t+ E A.cris is a generator oE tbe additive Tate module Zp(l) C A cris (e.!.

n.1. 7.1) and Xo E R is such that x~O) = p, then (t+)-l E [xoJ-p/(P-1)9~,l C 9(P-l)+,1

(and, tllere[ore, B cris = B~is[llt+J C 9(P-l)+,d·

Proof.
a) Acris is a p-adic closure of the ring vV(R)[{[xo]n In! I n ~ I}], where xo E R is

such that x~O) = p. So, it is sufficient to prove, that [xoJn In! E Q(p-l)+,O' But this
follows from the inequality

VR(X~) n
n! = [nip] + ... + [nip!J] +... > P - 1.

b) This follows from the fact, that in p-adic topology any element of B~is is linlit
offinite sums Lpn[rn] E 9.

c) t7t+ = pt+ irnplies t+ = L pn[rP-
n

] for some r E mR. FrOlll the definition of
nEZ

t+ it follows, that vR(r) = pl(p - 1). Therefore,

[r-1]t+ = 1 + L pn[rnL
nEZ\{O}

where vR(rn ) ~ -n for n > 0, and vR(rn ) ~ -pn for n < O. Now remark, that

(1 + L pn[rn ])-l = 1 +L(-l)!J( L pn[1'u]Y E 9~,1'
nEZ\{O} 8~1 nEZ\{O}

24



Remark. One must be carefull about compatibility of Frobenius morphisms a on
Bcris and ag on Q with respect to defined in n.b) indusion of the field of frac
tions FracBtis into Y(P-l)+,p-l- For example, a(l/t+) = l/(pt+), but aa(l/t+) f/:.
Y(p-l)+,l' Compatibility of a and aa Can be formulated as follows:

ij bE B cris iJ such thai aa(b) E g(p-l)+,p-lJ then ab = O"a(b).

3.1.2. The above lemma gives existence of a natural indusion of the field of
fractions Frac Acris into Y(p -1) +,p -1 . Let 'ljJ be the element of W (R) defined in
n.1.7.2, and Xo be the element of R from n. c) of lemma 3.1.1.

Lemma.

Proof. If t is a generator of W 1(R) from n.1.7.2, one can easily check, that W(R)[[t P /p]] =
W(R)[[ [xo]P /p]]. Therefore, W(R) [['ljJp-l /p]] = W(R)[[ [xo]P /p ]] = y~,O by lemma
of n.1.7.3. So, t+ and ?jJ are associated elelnents of the ring g~,o and, therefore,

~W(R)[[,pP-1 /p]J c [xorp/(p-l)g~,lg~,o = [xorp/(p-l)g~,I'

3.2. Let 00 = '(al, ... ,an) E m~,i' Let (~) E A~ris be such that Y E

(~) =&-1 (~:t~D + (~)
(we use all notation from the definition of the crystalline symbol, c.f. n.2.3). Re
mark (c.f. n.1.7.6)

Y E (W1(mR ) + ,p:-l W(R) [[,pP-I fp]J) n ,

Z E (w(m R ) + ,p:-I W(R)[[,pP-1 /p]J) h-n

Choose some Zp-basis of T(GA). Let

be the matrix of values of the p-adic periods pairing with respect to the special
W(ko)-basis {h, ... ,ln, ml, ... ,mh-n} of MO(GA) and the above chosen Zp-basis af
T(GA). All elements ofthe matrix V belang to the subring W(R)[[1jJP-l /p]] C Acris ,
c.f. n.l.7.6.

By TI .1.8 the matrix V is nondegenerate in the field of fractions Frac Acris of Acris .

Therefore, there exist unique vector-columns X, T E (FracAcris)h, such that

vX = (~), VT = (~)
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3.3. Leuuna.

a) X, T E (~W(R)[["pP-1 /pllf c ([xo]-p/(P-l)g~,I) h;

b) aQT E 9(p-l)+,1 and, therefore, aoT = aT;
c) T - aT = X ;

d) H Tl E ([XO]-p/(P-l)g~,I) h is such tbat Tl - ugTI = X, tben VTI = (~:) E

A~risl Yi E (Fil1
Acris)n and

(in other words, (~: ) CäJJ be taken instead oE (~) in computation oE (0', T]o<;.)'

Proof.
a) This follows because tvDv = t+ Eh, t+ and 7j; are associated elements of the

ring W(R)[["pP-I/pll, and ( ~) , (~) E (W(R)[[,pP-I/pll(

b) One can use nilpotency of cPl on 7j;p-l /pW(R)[[7j;p-1 /p]] and of ~l = a/at

on ,pP-IW(R) (compare with n.1.7.5) to prove existence of the unique (~) E

W(mn)h, such that YE W1(mR)h-n,

(~) mode,pp-l /p)W(R)[[,pp-1 /pll = (~) mod ,pP-1WeR)

and (f:) = [-1 (~1(?)) + (er)
Z a(Z) O'

If V is the matrix from n.1.8.4, there exist the unique X, T E (1/1.jJ )vV(R)h C

9(P-1)+,1' such that

"" (0')VX= 0 l
"" (Y)VT= Z .

It is easy to see, that Tmod(7/;p-2/p)W(R)[[7/;P-l /p]] = Tmod7/;P-2 W(R).
Consider the above equalities (*) in the ring W(Ro) (where Ra is the field of

fractions of the ring R). Then aW(Ro) = 0"0 IW(Ro) and we have

( u:tt ) (VI') = (:~ ) (V)ugT = [VugT

( :~) (~) = [ (~) - [ ( ~) = [vI' - [VX.

Therefore, aoT = T - X E (I/7/; )W(R)h c [xo]-p/(p-1)(9~,1)h. If T = T+Tl,
where Tl E ('lj;p-2/p)W(R)[[7/;p-1/p]], then

lOh h
Tl E -(9p 0) c (9p ,o)p ,
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and lYaTI E (9P,o)h C (9(P-l)+,d h
. So, lYaT = lYaT + a(iT1 E 9tP-l)+,1 and

aaT = aT.

c) Because of the above n.b) we can apply operator (::) to both sides of the

equality VT = (~). We obtain

This equality can be rewritten as

EVaT = E (~) - (~) = EVT - EVX.

So, aT = T- X.

d) If t = Tl - T, then t E 9tP-I)+,1 and aat = agT1 - aaT = Tl - T = t. This
gives

t E (Qp n [xorp/(p-l)g~.l) h = Z;.
If t = t(al,"" ah), then

( Yl ) (Y) '" ( (ai, T) )
Zl =VT1=VT+Vt= Z +lfuh ai (oi,m) .

So, Y1 = Y + L ai(oi, T) E (Fil l Acris)n and
I :::;i:::;h

Remark. The correspondence T ~ VT gives one-to-one correspondence between
the sets

{ T E ([xorp/(p-l)g~,l) hiT - aQT = X }

and

3.4. Lemma. For any T E rK coordinates 01 tbe vector T X - X belong to
W(mR)[[7/tp-l/p]] + (pM /7/t)W(mR)[[7f p- 1 /p)].

Proof.
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From VX = (~) it folIows, that t+ X = tvD
( ~ ). Coeflicients of the matrix

'V D are elements of the ring W(R) [[t/Jp-l Ip]], (~) E W(mR)h, therefore,

Rewrite the relation r(VX) - VX = (ra;; Cl') as

a) All coefficients of the matrix t VD(rV - V) belong to pM Z pt+ C Acris. Indeed,
for 1 :s i ::; hone has

where all aij E Zp. Therefore,

(

1 1-
rV _ V = (TO - 0 ,1)

(r0
1

- 0
1

, m)

and

( r oh - 0\ T) ) M

( h h -) = Vp ((ajd)l<i,j<h,ra - 0 ,m - -

tVD(TV - V) = pM t+((aji))l::;i,j::;h.

b) ro: - 0: E (7j;W(mR))h, c.f. n.2.6, therefore,

Clearly, lemma follows from the above relation (*) and properties a) and b).

Corollary. Let T E ([xo]-p/(P-J)Q2,1)h be such tl1at T - agT = X, tl1en for any
rE rK

a) TT - T =Amod Q(mR) +pMW(Ro), where A = t(A1 ) ... , Ah) E Z;;
b) H a E m ~ i' tllen,

Proof. If t = iT - T, then t E [xo]-P/(P-l)(Q~,l)h C (Q(mR) + lV(Ro))h and
all coordinates of the vector t - Ggt = X-iX belang to W(mR)[[7j;p-l/p]] +
(pM /7j;)W(mR)[[1j;p-l /p]] c Q(mR) + pMW(Ro).

Let X-iX = X) + p M X 2l where Xl E Q(mn)h and X 2 E W(Ro)h. If t) =
L:,,>o a"Xl E Q(mR)h l then t) - aot) = Xl. Take t 2 E W(Ro)h, such that t 2 -

Got; = X 2. Then A = t - (tl + pMt2) E (Q(mn) + W(RO))Zg=id = Z;.
Part a) of corollary is proved.
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Let (~) = VT, then (c.f. n.3.3) (~) E A~ris' Y E (Fie Acris)n and

(Y) = [-1 (ePl (Y)) + (0:')
Z ePo(Z) O'

By definition of the crystalline symbol, there exist a}, ... , ah E Z p and b E

(A~~fs)h, such that

(
Y ) ( y ) ,,( (oi, I) ) + b

l' Z = Z + 1~ h (oi , m.) ai + t .

In this notation (0', r]cris = alolt + ... + aho~.

H a = t(a!, . .. ,ah) E Z~, then we cau rewrite the above equatioIl as

Multiplying the both sides by the matrix tvD we obtain in notation from proof
of the above lemma

therefore,
rT - T = a + CVDb) + pM c,

where c E ([xo]-p/(P-l)Q~,l) h C (Q(mR) +W(~))h. Now

and Em uNb! =Oimplyb1 EQ(mR)h.
N-oo

Therefore, a =AmodpMZp , q.e.d.

3.5. Matrix Vi'
3.5.1. Recall, K is a fini te extension of the field K 0 in [(, such that GA [M] (m e) =

GA(M](mK), where mK is the maximal ideal of the valuation ring OK of K.
In n.2.5.1 there was fixed uniformizer 7r E K and to E mR, such that t~O) = 1r.

If k is the residue field of K, then 0k i = W(k)([ t]] C W(R), where l = [ta]. The,
structural morphism , : lV(R) ---+ Oe induces epimorphislll of rings f : 0k i ---+

OK. If mk,l = lW(k)([ t ]], then ,(mk,l) = mK· Clearly, I(er,lok,i = g(t)Ok,l
and Ker,lmkJ = g(l)mk,!' where 9 E W(k)[X] is irreducible polynom, such that
g(7r) = O.

Denote by O~J p-adic closure of the divided power envelope of 0k,i with respect

to the ideal (g(l)). Clearly, Off C Acris and can be identified with p-adic closure af

ok,l [{ jen / n! I n ~ I}J, where 'e is absalute ramification index of the field [( (use,
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that g(l) = Fe +alte- l +... +ae, where a}, ... ,ae E pW(k), v p ( ae) = 1 and equality
of ideals (g(l),p) = ([e,p) in the ring 0k,l)'

3.5.2. Letal = (o~)8~o, ... ,oh = (O:)8~O beZp-basisofT(GA). Thenolw,""O~
give ZjpMZ-basis of GA[M](mK)' Let 1A be logarithnl vector power series from
n.1.3. For 1 ::; i ::; h fix ok E 1nkJ, such that ,(o~) = o~. Then

M-1 (Ai) F'l] oDPP A 0M E I k,i'

Use matrices F~ froln n.1.3 to set

mA(O~) = 2::F:t((]u/P)/A(O~).
u~]

Then
M - (Ai) oDPpmAoME k,i'

In fact (compare with n.1. 7.6),

t-ep
M-' 1 -

p lA(OM) E m k t- + -Ok i[{i ep jp]],
l P I

lep

pMmA(ok) E mkJ + -Ok,t([lep /p]].
p

From n.1.5 it follows

Lemnla. FOT 1 ::; i ::; hone bas

(oi,l) =pMTA ( ok) mod pM ( W1(mn) + t/J~l W(R)[[t/JP-l fp]])

(oi,m) =pMmA(ok )modpM (w(mR) + t/J:-l W(R)[[t/Jp-1 fpn) .

3.5.3. Consider matrix of order h

V- = ( pM/A(0Ä1) pMTA(oir) )
t pM mAColt) pM mA(Dir) .

This matrix has coefficients in O~1 (c.f. n.3.5.2) and can bc considered as
approximation of the matrix V of valu~s of the p-adic periods pairing from n.1.8.3.

Lemma of the above n.3.5.2 gives the equivalence

(

~p-l )tv D
0 Vi =t+ Eh modpM W I (1nR) + -p-W(R){[~P-l /p]] .

Therefore, one cau write

tv D 0 Vi = t+(Eh _ pM ~),

where ~ is some matrix of order h with coefficients from

~W1(mR) + t/J:-2 W(R) [[t/JP-l fp]].

3.5.4. Let t be a generator of W 1 (R) from n.1.7.2.
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Lemlua.
n = ~W(R) [[PtNJl + t/>p-2W(R) [[t/>p-l /p)J

is lV(R)-subalgebra of 9(p-l)+,1'

Proo/.
As topological W(R)-module R is generated by elements (ptJ'ljJ)m+l, where m 2::

0, and 'ljJp-2 (7.jJp-l JP)1, where l 2:: 0. It is sufficient to prove for any m, l 2:: 0, that

( )
m+l (""P-l) I~ t/>p-2 _'fI_

p
_ = pm+l-ltm+17.jJp-2+(p-l)I-(m+l) E n.

If m + 1 - l = s > 0, then this product is equal to

(~) • t't/>p-2+(p-I)' E n.

If m + 1 - l = -8 ~ 0, then this product can be rewritten as

Proposition. In notation oE n.3.5.3 one has

wbere ßl is matrix of order h witb coeffl.cients from

!.n = .~, W(R)[[PtNJl + t/>p-2 W(R) [[t/>p-l /pJl.
P 'fI P

Proof. We have

~l = LpMs~.!I+l = ~ LP.!l(M-l)(p~).!I+l
"'2:0 P 8'2:0

has coefficients in (1/p )R, because pß has coefficiellts in Rand R is a ring.

Corollary.
Tbe matrix Vi is invertible in the neld of fractions Frac O~~ C 9(p-l)+,P-l',

3.5.5. Proposition.

Proo/. We have
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Coefficients of the matrix (l/t+)tV D belang to

~W(R)[[",P-l/p]] = ~W(R) + ",:-2 W(R)[(..pP-l/p]].

By proposition of n.3.5.4 it is sufficient to prove, that

t ~p-2 1
~ IV(R) [[Pt/1/J]] -p-W(R)[[1,bP-I /p]] C plj; R.

For m, 1~ 0 take the product of generators

~ (~)m ",:-2 (",:-1)' = pm -1-1 t Hm",p-J+(p-l)I-m .

If m - 1- 1 = 8 ~ 0, then it can be presented as

~ (~rt l
+I",P-J+(P-2)1 E ~W(R)[[Ptf,p]].

If m - 1 - 1 = -8 ::; -1, then 8 + m = 1+ 1 and the above product can be
rewritten as

1,bp-3 (1,bp-t) s-] tJ+m",(p-2)m E ",p-3 W(R)[[",P-l/p]].
p p p

Corollary. Coeflicients of the matrix ViI belong to

~ W(R)[(..pP-l/p]] + pM C~R ) .

3.6. In W (Ro)-module 9 any expresion af a form Ls EZ W sps, where Ws E 1V(Ho)
and w& ~ 0 in vR-adic topology has sense, i.e. gives some element of 9.

8--00

Let

Then 0k i C 9k i, 9k i is c10sed 0k t-submodule in 9.
Üne can 'easily ~ee, that '
a) Any element of 9k,t can be tuliquelly presented in a fonn L[a8 ,u]tU p8 frolll

its definition.

b) 0rJ c 9k ,i n 9(P-l)+,O'

c) Any element of 0fJ is invertible in 9k ,t n 9(P-l)+,P-I'

Let Lk,l = 9 k ,l n 9(p-l)+,P-l' Then Lk,i is WQp(k)-algebra, every element of
.ck,l can be uniquelly expressed as :L: wutU

, where all W u E WQp (k). It is easy to
uEZ

see, that this WQp (k)-algebra coincides with denoted by the same symbol WQp (k)-
algebra trom introductioll.

3.7. Consider the matrix V.:- 1 from n.3.5. Clearly, all elenlents of V.:- 1 belang to
t t

12k,t. So, they are Laurent series in variable i with coefficients in WQp ( k), i. e. they

can be written as LuEZ wutU
, where all W u E WQp (k).

32



Proposition. Let V l 1 = ((Vij ))l$i,i.::;h and Vij = LUEZ tvuijt
U

, where a11 tvuij E

W(k) (9 tQp. H u < 0, tben Wuij E W(k) (i.e. all coefficients oE the lnatrix Vl ) bave
p-integral principal parts).

Proof.
By corollary of n.3.5.5 for any 1 ~ i, j :::; h we have

3.7.1. Lemma.
~R c [x ]-2 p/(p-l)rO
p'lj; 0 ~p,l'

Proof of lemma.
We have t E [xo]W(R).+ pW(R) c [xo]Q~,) and 'IjJ-l E [xo]-p/(p-1)Q~,), c.f.

n.3.1.2. Therefore, pt/7/J E p[XO]-I/(P-1)Q~11 C Q~,l (because p[XO]-I/(p-l) E Q~,l)'

and (t /'lj;2 )W(R)[[Pt /7/']] C [xo] -2P/(P-l)g~,1'
As it was proved earlier (c.f. n.3.1.2), l1V(R) [['lj;p-l /p]] C Q~,). vVe have 'lj;p-3 E

[xO]P(P-3)/(P-l)go because ~/, E [xo]p/(p-1)go l' Therefore
p,l' If/ p, 1

because [xo]P /p E 9~,1' So,

~R = .!-W(R) [(Pt/VJ]] + 7j;p-3 W(R)[[VJ P- I /p]] C [XO]-2P/(P-t)gO .
p'lj; 7/'2 P p,I

Leluma is proved.

Clearly, our proposition is implied by the following lemma.

3.7.2. Lemma. Any Laurent series from [xoJ-PQ~'P-l n Lk,'i has p-integral prin
cipal part.

Proof.
If v E [xo]-Pg~,P_l n L:k,i, then

s~-l

u~-ep(s+l)

where all Q'8, U E k and e is absolute ramification index of the field !(. Let Q' so, u 0 =f. 0
for some 80 ~ -1. Then

u ~ - ep( 8 + 1) ~ O.

Lemma is proved.

3.8. Let Xi = Vi 1 ( ~ ) = LUEZ wutU
, where W ll E WQ" (k)h
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Proposition.
a) Xl =X lTIoclpM (llp1/' )'RW(mR);
b) iE u ::; 0, tben 'W u E W( k)h, i.e. "nonnegative" part Xl = L: 'WutU of the

u~o

vector Laurent series Xl has p-integral cocfB.cients;

c) if Vi-I) is the matrix oE principal paTts of elements of tlle matrix Vi], then

"nonnegative" part of the vector vi-I) ( ~) equaJs to Xl;

cl) ?jJXl E W(mR) +pMW(Ro).

Proof.
a) 0' E m~ 1 C W(mR)n gives by proposition 3.5.5

I

Xl = ViI (~) - V-I (~) = XmodpM C~n) W(mR)'

b) and c) follow fronl proposition of TI. 3.7.
d) follows from corollary of n.3.5.5.

3.9. Now wc can state the lllain result of this section.

Proposition. In tl1e above notation let Tl E W(Ro)h be sud] that Tl - aTr= Xl-
" "M hHT E r K , then rTi-Ti =amod W(mn)+p W(Ro), where a = t(al, ... ,ah) E Zp

and
(a, r]cris = al 07w + ... + aholt·

Proof.
Let Xl = X + pM 'W, where X has coordinates in [xo]-p/(p-I)9~,J anel 'W has

coordinates in [xo]-2pl(p-1)9~,1W(mR), c.f. nn.3.8 a) und 3.7.l.

By corollary of n.3.4, if T E [xo]-p/(p-I)(9~,1)h is such that. T - (JoT = X, then

rT - T =Amod9(1nR) + pMW(Ro),

where A = t(A I , •.• ,Ah ) E Z; and (a, r]cris = A10k + ... + Ahot.
It is easy to see, that [xO]-2P/(P-l)9~,1W(mR) C 9(mR) + W(Ro). Therefore,

one can take 'WI E 9(mR) +W(Ro), such that WI - (JQWI = w.

Then for Ti = T + pMWl one has Tl E (9(mR) + W(Ro))h, Ti - aoTl = '-Yi and
TTl- Ti =Amod9(mR) + pMW(Ro).

Let Xl = Xl +)(I, where Xl = L:u<o wutU is thc "nonnegative" part of Xi.
Then Xl E Q(rnR) and for Ti = Ti - L:.9~O a.9Xl one has Tf E (Q(rnn) +W(Ro))h,

Ti - (JoTi = Xi anel rTf - Ti- Amod(9C,nR) + pMW(Ro)).

Therefore, Ti - Ti has coordinates in (Q(1nR) + W(RO))O"Q=id = Zp, rTF - Tl =
rTf - Tl has coordinates in

and a =AmodpM.
Proposi tion is proved.
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4. Explicit formulae for the formal group synlbol.

We use all previous notation. When reciprocity map of dass field theory 'l/JK :
K· ---+ r ab is considered, we assurne that the residue field k of J( is finite.

4.1. Preliminaric3.

4.1.1. Functor ficld 0/ norm3, [Wtb].
Let {rrß } S >0 be the sequence of elements of R chosen in n.2.5.1. This means,

that rro = rr-is fixed uniformizer of J( and rr:+1 = 7T' S for all s E Z,8 2 o. Let

k = UK(8), where K(O) = K and J«(8) = J«(7T's). The field i( is infinite APF-
-,?::o

extension, and the functor field of norms X gives equivalence of the category of
algebraic extensions of the field k and of the category of separable extensions
of the discrete valuation field K = X(K) of characteristic p. The residue field
of K cau he canonically identified with the residue field k of J(. By definition
K* = lim!«(8)* with respect to norm maps. This gives fixed unifomllzer to = lim rrs

+-- +--
-'

in IC, so IC = Frac k[[to]] = k((to)). One can fix a separable closure ICsep of K by
JCsep = X(K) and the functor X gives identification

t: rx: = Gal(Ksep/K) = Gal(J(/J<) c rK = Gal(J(/J().

4.1.2. Homomorphism N: Je* ---+ K*.
Let N be the projection Je* = limJ«(s)'" ---+ K(O)* = J{*. Clearly, N(to) = 7T'.

t--

If a E k c K, then N(a) = [a] E K*, where {a] is Teichmuller representative of a
considered as element of the residue field of K.

Let UIC and UK be Zp-modules of principal units in 1C and K, respectfully. Then
N (Ux:) c UK and can be described explici tly as follows.

Let a E W(k) and

E(a,X) = exp(aX + ... + (O"a)XP /p +... ) E Zp[[X]]

be power series from [Sh]. Any element 1L E UK, can be uniquelly presented in a
form

U= TI E(O:a,t~),
(a,p)=l

where all aa E W( k). With respect to this decomposition the hOlllomorphisln N is
uniquelly defined by the property, c.f. [Ab3],

N(E(a,tg)) = E(a,rr a
),

where a E N, (a,p) = 1, a E W(k).
It cau be easily showll, that K"" / N(K.*) is cyclic group of order pio , where 10 is

maximal integer, such that K contains prinlitive pio-root of unity (this fact is well-
knowll modulo K*p1o, c.f. [Sh], then one should use, that p-completion of J{*p1o is

generated by 1r
PIO and all E(pioa , rr a ), where a E W(k), a E N, (a,p) = 1).
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The group K* /N(JC*) is generated by the iInage of any plo-primary eleluent.

These elements appear as principal units Elo E UK, such that K(Efo-
IO

) is unram

ified extension of K of degree p1o. Equivalently, if 'IjJ K : 1(* ~ rj~ is reciprocity
map of dass field theory, then 'l/Jg(Elo)(1rP-IO) = (7rp -

10
for SOlne primitive plo-root

of unity C, and 'l/JK(Elo)(UP-
10

) = u p -
10

for all u E UK. Explicit constructions
of primary elements were considered in [A-H], [Sh], [Voll. In n.4.3 below we give
Vostokov's construction of primary elements.

4.1.3. Compatibility 0/ class field theoriesJ [La].
The homomorphism N' relates dass field theories for the fields Je and ]{. Narnely,

let VJK, : JC* ~ rt and 'l/JK : ](* --+ rt be reciprocity maps of dass field theory.
Then for any a E JC* we have "ab('l/JK(a)) = 'l/JK(.IV(a)), where "ab: rK:b --+ rj~ is
induced by imbedding " : r K, --+ rK from n.4.l.

4.1.4. Witt explicit reciprocity lawJ [F04].
The uniformizer to of the field JC gives p-basis for any separable extension f, of

the field JC. One can use to to define functorial by M E N and by f, c JCscp system
of liftings OM(E) of the field E modulo pM. By definition 0/1.1(E) is flat Z/pMZ
algebra, such that OM(E)/POM(E) = E. These liftings can be given explicitly
as

where i = [to] is Teichmuller reprcsentative of to in WM(E) (this version of general
construction from [B-1vI] we use also in [Ab2]).

11ultiplication by p induces epimorphisms of W(k )-algebras 0/11+1(E) ---* 0 M (E).
If O(E) = limOM(E) with respect to these epimorphisms, then O(E) is the valuation

~

M
ring of absolutely unrauufied field of characteristic 0 with residue field E. Clearly,
OM(JC) is WM(k)-algebra of Laurent series lVM(k)((i)) = lVM(k)[[i ]][[-1] with
coefficients in WM (k), and O(JC) is p-adic cOlnpletion W( k)((l)) of WM (k )[[l]] [i-I].

Absolute Frobenius morphism of Witt vectors induces cOlnpatible systeln of
Frobenius morphisms er = erE: : O(E) ~ O(E). We have O(JCsep)u=id = W(IFp ).

Action of r K on JCsep induces action of r K, on O( JCsep ). If 1t c r Je is open subgroup
and K~p = &, then O(Ksep )1l = 0(&).

Let Col : K* -)0 O(K)* be Coleman's multiplicative section of the projection
pr : O(JC) --t /C, c.f. [Fo4]. In our situation, the hOlllomorphism Col can be
described explicitly in terms of generators of the group JC* !roln n.4.2. Namely,
Col(to) = i and Col(E(a,tö)) = E(a,ia

), where a E lV(k),a E N,(a,p) = 1. This
property gives the following simple explicit description of the hOlnomorphism
(N 0 pr)lcolx- : CoIJC* --+ K* :

if 9 = g(l) E CoIJC*, then N(pr(g)) = g(1r).

One can easily prove the following characterization of the image Col(K:*) In
O(JC)* .

Leluma. Let 9 E O(JC)*. Tben 9 E Col(Je*) jf alld only iE
a) gE W(k)[(l]][l-l];
b) (erg/gP ) E 1 + lW(k)([l ]];

36



c) ~ log(O'g/gP) = L:(C,P)=I O:CtC , where a11 O:c E vV(k).

Let! E O(IC), 9 E K*, and let (!,g]w E W(lFp ) be Witt pairing given by

(!,g]w = TT - T,

where T E O(Ksep ) is such that O'T - T = ! and T = 'l/JK(g) E rK:b .

Then Witt explicit reciprocity law can be given by Fontaine formula, [Fo4]

(
d COI9)

(f, g]w = (Resl=a 0 Tl') ! Col 9 ,

where Tl': W(k) ~ W(IFp)"is the trace map and Rest=a is residue at l = O.
Finally, we remark, that trus construction can be made in W(Ro), where Ra =

FraeR. We have a natural identification of the field lC with same subfield of Ra
by the correspondence: ta H-. (1r.9).9~a E Ra, c.f. n.2.5.1, and if 0: E k C lC, then

Cl' ~ ([aP-·]).9>o E Ho, where [ ] denotes Teichrnuller representative for elements
of the residue field of K. This embedding is a particular case of compatible system
of embeddings E C Ra, where IC C E c ICsep , given in [vVtb]. So, we have a natural
imbedding ICsep C Ra compatible with Galois action (with respect to the incIusion
f., : rx: ~ rK from n.4.1). Then by universal property of Witt vectors there
exists the unique compatible with given Frobenius morphisms system of erubeddings
O(E) C W(Ra). So, one ean compute the value (!,g]w of Witt symbol in the ring
W(Ra).

Remark. Under the above embedding 01(, = W(k)« t» C W(Ro) notation ta and
f from this n. agree with notation ta and f from n.2.5.1.

4.2. Fir3t explicit formula.
Let G = GA be the formal group with vector logarithm power series lA(X)

from seetion 1. If M is fixed natural number, choose Z/pMZ-basis ok, ... ,oiJ. of
GA[M](mK) = GA[M](mc), take liftings of its elements aJvr,"" at- in mn

k - -
, t

iW(k)n C OJ:,1f' with respect to the epiIuorphism I : mk,tr ~ mK given by i H- 7f

and construct the matrix from n.3.5

This matrix is invertible in the Wn. (k )-algebra .c k l and denote by vi -1) the matrix
'QJ , t

obtained from ViI by taking principal parts of its elements.
If ! E GA(mK), g E K*, then the value (f, g]CA of the formal group symbol

modulo pM can be expressed as

(!,g]CA = AI(f,g)ok + ... + Ah(!,g)o'M,

where A(J,g) = t(AI(!,g), ... ,Ah(!,g» E (Z/pMZ)h.
Now propositions of nn.2.7, 3.9 and Witt explicit reciprocity law from n.4.1.4

give the following theorem
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Theorem A. Let ß(l) E 7n~ l' GoA ,! : 7n~,t -----+ GA(mk,l) be the isomorplJism
from n.2.5, and 51 E K*. The~

We cau use explicit description of eä~,1 from n.2.5.2 to give equivalent forUl of
the above theorem

Theorem Al. Let f E GA(mK) == 7n'K, 9 E K*. Take ß(i) E mk1T such tllat,
ß(1r) == f and assume that there exists 5 == 5(i) E ColK:* c O(lC) == W(k)((l)),
such that 5(1r) == 9 (e.f. lemma of 1l.4.1.4). Then

Remarks.
a) In the above theorems one can replace matrix Vi -1) by V["I, because one can

compute residue also in the algebra .ck i and the above replacement does not affect,
the value of residue.

b) Theorems A and Al give almost all information about values of the fornlal
group symbol. The only restriction is that the second argtunent cau be taken only
from the subgroup N(K:*). If!( does not contain p-roots of unity, then )V(K:*) ==
K*, and our fOfffiula gives complete description of symbol. If K contains primitive
pM -root of unity, one should involve in cOllsideration pM -primary elements of }(*,

c.f. n.4.3 below.
c) Another inconvenience of the above formul?-e is related to the special choice

of the power series Col51 (i) == 5(i) to obtain 9 E K* as a result of substitution
i f-4 7r. In the case G == Gm Brückner-Vostokov fonnula is free from this restriction.
In n.4.4 below, we give similar expression for the formal group symbol.

4.3. pM -primary elements.
Assurue, that K contains a primitive pM -root of unity (.
4.3.1. Let G:1 be the formal group from n.1. 7.1. If Gm is thc formal TIlul tiplicative

group, then 7] : X f-4 E(l, X) == exp(lGt (..rY)) gives isomorphism of fonnal groups

7] : G] --4 Gm. In particular, GI (mJ() ~ Gm(mJ() == UI( and DM == 1]-1(() is
generator of GI [M](mc) == GI [M](mK ).

In notation of n.1.7.2 the matrix of values of the p-adic periods pairing VGt
for the formal group GI equals ((t+)), where t+ == hit ('ljJ). If DM E 7nk,t is such
that ,(DM) == DM (Le. DM f-4 0M by substitution i f-.-4. 1r), consider SM(i) =
(pM ic4;l )(DM). Then V~_ l == (( [G l (SM(i)) )), and one can casily see, that V~-l) ==

~, '7},t

(( SM(i)-l )).
Let 00 E W(k) be such that Troo E Z; C Zp, where Tr : W(k) ---+ Zp is the

trace map. Take Ti E W(k) c W(R{)), such that

Ti - aTi = 50.
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If 7 Erg, let AT = 7Ti - Ti E Zp C W(k). Clearly, the correspondence 7 f-+ AT
gives epimorphisln j : r K ---40 Zp, I<er j is the inertia subgroup of r]( and j induces
isomorphism Gal(I{ur/K) ~ Zp, where Kur is maxilnal unramified extension of K.

If 8 = 8G1 , c.f. n.2.5.2, then by nn.2.7, 3.9 for any 7 E r K we have

If 11 E GI (me) is such that (pM id(h )(/1) = 8Gt (008 M (l», then the above fonnula
(*) gives K(/l) C Kur and [K(/l) : K] = pM. Therefore, we obtain pM -priluary

element E M == 7](8~ (00 8 M ( t)» by applying isomorphisrn 'Tl : GI ---40 Gm.
4.3.2. The above considerations give the following explicit construction of pA1_

primary element from [Vo1].

Proposition. H 8M(l) = L:u>o wulu, where a11 Wu E lV(k), and

EM(t) == rr E(oow u , tU) E 1 + mk,b
u>o

then ,(EM(t» = EM( 'Tr) = EM·

Proof. If OOWu = L:~~o[Q',.'l,u]p~, where all Q',.'l,U E k, then

8Gl ,t(008M(l» = L (p~ ide1 )([O,.'l,u]lU),
in GI,.'l,tt

EM = 7](8Gt (OOSM(l)) == ,(t](8<h,1 (008A1(i)) ==

== ,( rr E(p,.'l[Q"s,u], tU» == ,( rr E(OOWn, tU» == ,(EM(i).
,.'l~O u>o
u>o

The following corollary is also well-known.

Corollary. H E M E K* is a pM -primary element, then there exists power series
EM(l) E 1 + mk,i, sud] that E M (7f) = EM and d10g EM(i) E pMfl~1: c'.
Proof. Indeed, take EM(l) from the above proposition. Then

4.3.3. Let E M E K* be a pM -primary element and GAbe the fornlal group from
section 1.
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Proposition. For any f E GA (mK) one has

(f, EM ]GA = O.

Proof. Choose some TM E r K, such that 'ljJ K ( E M ) is the image of TM in rJl, where
'ljJK : j(* ---+ ri? is reciprocity map of dass field theory. We IUUst prove, that
(/, T]CA = O.

The statement of proposition holds for the formal group Gm (c.f. nA.1.2) and,
therefore, it holds for the formal group G1 •

Take sM(l) E mk i from nA.3.l. If 0'0 E mk 1 and T E lV(Ro) is such that
T - aT = 0'0/sM (i), 'the equality (GGl (0'0) , TM JG,. I = 0 is equivalent to the relation

Let Vi be approximation of the matrix of values of the p-adic periods pairillg

for the formal group GA from n.3.5, and let Xi be nonnegative part of ViI ( ~),

c.f. n.3.8. By the part d) of proposition 3.8 vector-colulnn 7jJXi has coordinates in
lV(1nR) + pMW(Ro). It is easy to see, that 7jJ =sM(i) lllOdpMlV(R), therefore,

" 1 n M
Xl E -(",)mk imodp W(Ro).

SM t I

Now the above relation (*) gives:
if Ti E WeHe) is such that Ti - aTi = Xl, then TMTr - Ti has coordinates in

W(1nR) +pMW(Ro). By propositions of TI.3.9 and n.2.7 this is equivalent to the
statement of our proposition.

4.4. Second explicit formula.

404.1. AgreementJ.
As earlier, G ~ GA is the fonnal group over W(ko) fro111 section 1. In particular,

we use description of the structure of filtered module M (G) from section 1 given
by the relation

(10(~)) = &(~) ,

Z/pM-basis oÄt, . .. ,Dir of GA[M](mK) and the matrix Vi, c.f. nA.2. All appeared
Laurent series L:UEZ wutU

, W u E TVQp (k), are elements of the TVQp (k )-algebra (k,i =
Qk,l n Q(p-l)+,P-b adenotes absolute Frobenius of Qk,i given by restriction of a(i,

i.e. al = tP and aIH7(k) is usual Frobenius of Witt vectors.
If ß E GA(mk,i) and lA(X) is vector logarithm power series of thc fonnal group

GA, then IA(ß) has coordinates in Lk,l n gp,o, so for auy 'U E N aUTA(ß) has
sense in (k,l' 'Ve use matrices Fu , F~ from n.lo3 to define Zp-linear operator A* =
LU>l Fua u and to define for any ß E GA(mk [) vector Laurent series_ I
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An easy consequence of the definition of these matrices F u and F~ is the following
formal identity for any ß E mk 1,

We denote by HK multiplicative subgroup in 0k l[l-11 c .c k I' such that
I I

So, the group 'HK is generated by elements of 1 + mk,l' by i and by [0'], where
a E k*. Remark, that Col(K*) c 'HK and by lemma of n.4.1.4 we have

8(t) E Col(1C*) <===} 8(t) E 'HK and

where a11 W c E W( k).
As earlier, ., : G(mk,iJ -----+ G(rnK) and .,

substitution l f-t 7L

HK -----+ ](* are morphisms of

4.4.2. M ain theorem.
Assume, that ]( contains a primitive pM -root of unity.
If ß == ß(t) E GA(mk I)' let,

q,l(ß) = Vl 1 CA(ß) - ~. lA(ß)) E (L:k,i)h ,

cI>2(ß) = V.=-1 [-1 d ( i!A(ß) ) E (nI _)h.
t aTTlA(ß) '/tot

Theorem B. Let ß E GA(mk,i),8 E HK, and B(ß,5) = t(B), ... , Bh) =

=(Resi=o 0Tr) ( q,l (ß) dlog .5+ ~ log (~~) q,2(ß)) E Q; ,

where Tr : W(k) 0 tQp -----+ Qp is trace map, and Resi=o is residue. Tben B(ß, 8) E
Z; and

Remark. We can use formal identity from n.4.4.1 to express the right-hand side of
the above expression for B(ß, 5) in a form, which is very dose to Brückner-Vostokov
formulae

B(ß,5) = t(B I , ... ,Bh) =

(Res 0 Tr) {V~-I) [eid - ( ~. )) ( !A(ß) ) d10 5 _ .!.log a5 (~. ) d ( !.A(ß) )] }
t ld m.A(ß) g p 5p Id mA(ß)

41



4.5. Proof of theorem B.
Consider the pairing

given for ß E G.A(mk,l),' E 'HK by the expression

This pairing has the foHowing properties.
4.5.1. For any ß E GA(mk,i), 8 E HK, one has (ß, 8h,l E Z;.
Indeed, all elements of the Inatrix Vr- I have principal parts with eocffieients fronl

W(k),
TA(ß) - (A* /p)TA(ß) = eä~,I(ß) E m~,i = (iltV(k)[[i ]))n,

cl ( !~~~~~) E (n~V(k)[[~]) h ,

dlag 8 E i-I W(k)[[lj] cl i and (l/p) log(a8/8P ) E mk,t.

4.5.2. The pairing ( , ]k,i is Zp~linear by both argument~.

This property is obvious from the definition of pairing.

So, this pairing ean be eonsidered as homomorphisln

( , h,t: GA(mk,l) 0Zp HK ---t Z;.
4.5.3. Proof of the following proposition will be given in n.4.6 below.

Proposition. _
H,(o) == 1, then for any ß E G.A(mk,l) one has (ß,8h,i == OmodpM.

4.5.4. Theorem B holds for any ß E GA(mki) and b E CoIK* C HK.
By theorem Al of n.4.2 it is suffieient to pr~ve, that

1 ab M h
Res( -log -:c<P2(ß» E p Zp.

P v P

[ ] -2p/(p-l)rO n I"
Xo ~p,p/(p-l) J....k,i·

Proof 0/ lemma. From definition of Vi it is clear, that aH eoefficients of cl(Vt} belang
to pM ntv(k)[[i Ir By un. 3.5.5, 3.1.2 and 3.7.1 the Iuatrix Vi has coefficients in
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Then the equality
d(Vi1

) = - vi.1 d(Vr)Vi J

gives d(Vi l
) = pMWt cl l, where W t has coefficients in

[xo] -2P/(p-1)9~,1 [p[xo]-P/(P-I)] c [xo] -2p/(p-l )9~,p/(P-I)'

Lemma is proved.

Now from lemma of n. 3.7.2 it follows, that principal parts of elements of Wr
have p-integral coefficients. Therefore, if ViI = ((vij(l) )h~i,j~h, and vij(l) =
L: wuijlu, where all Wuij E WQp (k), then UWuij E pM1V(k) if u < 0. In particular,
uEZ

if u < 0, (u,p) = 1, then Wuij E pMW(k).
Now remark, that there exists vector power series F(l) E (W (k )[[i ]])h, such that

d ((a/p)T.A(ß)) = F(tP ) d_i
am.A(ß) t '

and-b E Col Je c 'HK implies

where a c E W(k), c.f. n.4.1.4.
Therefore, the expressions for coordinates of the residue of

1 1 ab V-1p(-P) d l- og- - t ~
P bp t t

are linear combinations of Wuij, (u,p) = 1, with coefficients from W(k). Eut all
such Wuij E pMW(k).

4.5.5. Theorem B holds for b = EM(i) E 1+ ffik t /rom proposition 4.3.2 and any

ß E G.A(mk,l)· '
By proposition 4.3.3 it is sufficient to check up, that B(ß, b) E pMZ~. By

corollary of n.4.3.2 dLog b E pM!1tv(k)[[t 1]' principal parts of coordinates of ~l (ß)

have p-integral coefficients. So, Res( ~1 (ß) d10g b) E pM Z~.

From construction of E M (t) it follows, that (1/p ) logeab / bP ) = boS M ( l), c.f.
nA.3.l.

If sM(l) = 'lj; + pM Wo, then Wo = tWI E W1(mR) = tW(7nn) and corollary of
n.3.5.5 gives

SM(i)Vi l E (1 +pM t~l )W(R)[[,pP-I /p]J + pM (1 +pM t~l )~R. C

C 9~,O + pM [xoJ-p/(p-l)9~,1'

Therefore, principal parts of coefficients of SM(l)Vi
1 have coefficients in pMW(l;;).

This gives

Clearly, the above properties 4.5.1-4.5.5 give the proof of theorem B.
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4.6. Proof 0/ proposition 4.5..9.
We can calculate in Q(p-l)+,p-l 0c/c,t nl/c,t ~ n1.l:,t·
4.6.1. 'Y(8) = 1 implies existence of log 8 E g~,o n Lk,t. Now we have

Lemma of n.4.5.4 gives

cl <P (ß) = V.:- 1 cl (TA(ß) - ~. lA(ß)) moclpM[x ]-2p/(p-l)gO cl i
1 - t 0 0 p,p/(p-I)'

Now we can apply lemma of n.3.7.2 ancl the formal iclentity fronl the beginning
of n.4.4 to obtain the following equivalence

Res(<1>1 (ß) d10g 0) =- Res(log 0 Vi I
d ( ~~fJ))+

+R (1 ~ V-I c-l cl ( ~TA(ß)) cl Al
es og U t e- amA(ß) mo p .

4.6.2. 8 E 1 + mk l implies (1/p)log(a8/8P ) = (a/p) log 8 -log8. Now we can
use the last equivale~ce of n.4.6.1 to write

Lemma.
a) ao(log 8 w(ß)) E nl . and, tberefore,/c.t

aQ(log 8 w(ß)) = a(log 8 w(ß))j

b) (a / p )(log 8 w(ß)) - (a / p )(1og 8)<1>2 (ß) = pMY cl t, wl1ere Y has coordinates in
r n [ J-2p/(p-l)1!
J....k,t Xo ~p,p/(p-l)'

Remark. Generally, aaw(ß) is not defined in nl .'
.,t

Proof·
a) We can write, c.f. nn.3.5.4 and 3.5.5,
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The matrix ~l has coefficients in (t/7/; )W(R) [[Pt/7/;]] +7/;p-2 /pW(R)[[7/;p-l /p]],
c.f. n.3.5.4. By construction of t, c.f. n.1. 7.2, t / 7/; = 1J(a -1 'IjJ), therefore, ag (t J7/;) =
lJ7/; E [xo]-p/(p-l)9~,1·

This gives

aa ( (t/7/;)W(R)[[pt/7/;]]) C [xo]-p/(P-l)g~,l [ p[xo]-p/(p-n ] C [xo]-p/(p-1)9~'P/(P_l).

Clearly,

a (7j;p-2 /pW(R) [[7j;p-1 /p]]) C 7j;p-2 /pW(R)[[7j;p-l /p]] c [xo]-p/(p-ngZ ,1 .

So, aa6.1 has coefficients in [xo]-p/(p-1)9~,p/(P_1) and aO(.6.1 ) = a.6. 1 .

8 E 1 + m~,i implies

1~~8 E ~WeR) + t/l:-2 W(R)[[t/lp-l /pll.

By above arguments

Remark, this gives

aa (log <5) = a (log 8) = ~(log <5)~
t+ t+ P t+'

because a(log <5) = a (l~~6)at+ and at+ = pt+ .

Clearly, aoeV D ), aa(lA(ß)), ao(ffiA(ß)) have coordinates in 9~,O. SO, aaClog <5 w(ß))
has coordinates in

([ ] -2p/(p-l)rO n r ) dt"" 111
x 0 'dP IP / (p -1) 'd kJ ' C J.L C Je,i •

b) Calculations of n.a) give

o-(log 8 w(ß)) = (~log 8) t: t(o-VD)(Eh +pM o-ßI) cl ( :k;f))) .
Consider vector differential form

Then estimates of n.a) give WI =pY1 cl i, where Y1 E [xot 2p
/(p-l) (g~'P/()'-l))h,

(
alA(ß)) (1 )n

because d amACß) E pnW(k)[[m .
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If ~ is the matrix from n.3.5.3, then by the same reasons

W2 = (~ logS) t. t~ t(I7V
D

)d (:~A;f))) = pY2 d t,

where Y2 has coordinates in [xo]-2 p /(p-1)g2,l'

Therefore, O'(log b w(ß)) =

= (; logS)(Eh - pMt.)t~ t(I7V D )d (:~f)))+pM+I(Y1 - l'i)dt.

Now we use properties of the matrix V D froln n.1.8.

From definition of the matrix ~ it follows, that (Eh - pM ~)V-l = Vi l
, so, we

obtained

O'(log 8 w(ß)) = a(log 8)V:-1S-l cl ((J /~TA(ß)) + pA1+1 Y cl i
t O'mA(ß) ,

where Y E [XO]-2P/(P-l)g~,p/(P_l) n .ck,l'

Lemma is provecl.

4.6.4. The vector Y from the above lenuna has p-integral principal part, there
fore,

Res(~ logS <lJ 2(ß)) '= Res (; (logS W(ß))) = uRes(logS w(ß))modpM.

So, the equivalence of n.4.6.2 gives

(ß, 8h l - - Tr(Res(1og 8 w(ß))) + Tr(0' Res(log 8 w(ß))) = 0 mod pM .,

Proposition is proved.
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