Explicit formulae for the Hilbert symbol of a formal group over Witt vectors

Victor A. Abrashkin

Max-Planck-Gesellschaft zur Förderung	Max-Planck-Institut
der Wissenschaften e.V.	für Mathematik
Arbeitsgruppe "Algebraische Geometrie	Gottfried-Claren-Str. 26
und Zahlentheorie"	53225 Bonn
Jägerstr. $10 / 11$	GERMANY
10117 Berlin	
GERMANY	

EXPLICIT FORMULAE FOR THE HILBERT SYMBOL OF A FORMAL GROUP OVER WITT VECTORS

Victor A. Abrashkin
Arbeitsgruppe "Algebraische Geometrie und Zahlentheorie"
Jägerstraße 10/11, 10117 Berlin, Germany

Abstract

We apply theory of p-adic periods, the functor field of norms and Witt explicit reciprocity law in characteristic $p>0$, to obtain Brückner-Vostokov type explicit formulae for the Hilbert symbol of a formal group over Witt vectors.

0. Introduction.

0.1. Let $W\left(k_{0}\right)$ be Witt vectors ring with coefficients in a perfect field k_{0} of characteristic $p>2$. Let G be a commutative formal smooth group functor over $W\left(k_{0}\right)$ of finite dimension $n=n(G)$. This means existence of a commutative formal group law on $\mathcal{B}=W\left(k_{0}\right)\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ with an isomorphism of group functors $G \simeq \operatorname{Spf} \mathcal{B}$.

Assume that G has finite height $h=h(G)$, i.e. the isogeny $p \mathrm{id}_{G}$ induces injective morphism $p^{*}: \mathcal{B} \longrightarrow \mathcal{B}$ of degree p^{h}. Therefore, for any $M \in \mathbb{N}$, $G[M]=\operatorname{Ker}\left(p^{M} \mathrm{id}_{G}\right)$ is a finite flat commutative group scheme over $W\left(k_{0}\right)$ of order $p^{M h}$.

Fix an algebraic closure \bar{K} of the fraction field K_{0} of the ring $W\left(k_{0}\right)$. If C is completion of \bar{K} and m_{C} is the maximal ideal of its valuation ring, then the group homomorphism $p^{M} \mathrm{id}_{G}: G\left(m_{C}\right) \longrightarrow G\left(m_{C}\right)$ is surjective, and its kernel $G[M]\left(m_{C}\right) \simeq\left(\mathbb{Z} / p^{M} \mathbb{Z}\right)^{h}$.

Let K be a finite extension of K_{0} in \vec{K}. Denote its residue field by k and its maximal ideal by m_{K}. Assume that all points of order p^{M} of the group $G\left(m_{C}\right)$ are defined over K, i.e. $G[M]\left(m_{C}\right)=G[M]\left(m_{K}\right)$. Under this assumption for $f \in G\left(m_{K}\right), \tau \in \operatorname{Gal}(\bar{K} / K)$ one can define the formal group symbol $(f, \tau]_{G}$ with values in the group $G[M]\left(m_{K}\right)$ by the relation

$$
(f, \tau]_{G}=\tau f_{1}-_{G} f_{1}
$$

where $f_{1} \in G\left(m_{C}\right)$ is such that $\left(p^{M} \operatorname{id}_{G}\right)\left(f_{1}\right)=f$. If the residue field k of K is finite and $\psi_{K}: K^{*} \longrightarrow \Gamma_{K}^{\text {ab }}$ is the reciprocity map of class field theory, then we obtain the Hilbert symbol $(f, g]_{G}=(f, r]_{G}$, where $g \in K^{*}$ and $\psi_{K}(g)$ is the image of τ in $\Gamma_{K}^{a b}$.

Let $o_{M}^{1}, \ldots, o_{M}^{h}$ be a \mathbb{Z} / p^{M}-basis of $G[M]\left(m_{K}\right)$, then

$$
(f, g]_{G}=A_{1} o_{M}^{1}+\cdots+A_{h} o_{M}^{h}
$$

where $A(f, g)={ }^{t}\left(A_{1}, \ldots, A_{h}\right) \in\left(\mathbb{Z} / p^{M} \mathbb{Z}\right)^{h}$ is vector column with coordinates in $\mathbb{Z} / p^{M} \mathbb{Z}$ (for any module B we reserve notation B^{n} for the module of vector columns of order n with coordinates in B). The problem of explicit description of the symbol (, $]_{G}$ is the problem of obtaining of some analytic expression for $A(f, g)$. This expression should involve information about the structure of the formal group G and of elements $f \in G\left(m_{K}\right)$ and $g \in K^{*}$.
0.2. In our setting this expression contains elements of some $W_{\mathbb{Q}_{p}}(k)$-algebra $\mathcal{L}_{k, i}$ of Laurent series in variable \tilde{t} with coefficients in $W_{\mathbf{Q}_{\mathbf{p}}}(k)$. To define $\mathcal{L}_{k, \tilde{t}}$, let $a \in$ $\mathbb{Q}, a>p-1$ and let $\mathcal{L}_{k, \tilde{t}}^{0}(a)$ be $W(k)$-algebra of formal Laurent series $\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u}$, where $w_{u} \in W_{\mathbb{Q}_{p}}(k)$ and $v\left(w_{u}\right) \geq-u /(a e)$ for $u \geq 0, v\left(w_{u}\right) \geq-u /((p-1) e)$ for $u \leq 0$ (here v is a p-adic valuation, such that $v(p)=1$, and e is the absolute ramification index of the field K). Let $\mathcal{L}_{k, i}^{0}$ be the p-adic closure of $\bigcup_{a>p-1} \mathcal{L}_{k, i}^{0}(a)$. Then $\mathcal{L}_{k, i}=\mathcal{L}_{k, i}^{0} \otimes \mathbf{z}_{p} \mathbb{Q}_{p}$.

If $f=\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u} \in \mathcal{L}_{k, \tilde{i}}$, we set $\sigma(f)=\sum_{u \in \mathbf{Z}} \sigma\left(w_{u}\right) \tilde{t}^{u p}$, if this expression has sense in $\mathcal{L}_{k, i}$, i.e. if $\sigma(f) \in \mathcal{L}_{k, i}$ (here $\left.\sigma\right|_{W_{\mathbf{Q}_{p}}(k)}$ is usual Frobenius morphism of Witt vectors). Remark, that σ is certainly defined on the $W_{\mathbf{Q}_{p}}(k)$-subalgebra $\mathcal{L}_{k, \tilde{t}}^{+}$of $\mathcal{L}_{k, \tilde{i}}$, which consists of \tilde{t}-integral series $\sum_{u \geqslant 0} w_{u} \tilde{t}^{u}$.
0.3. We can fix a structure of the formal group G by taking into consideration its filtered module of p-adic periods $\mathcal{M}(G)=\left(M^{0}(G), M^{1}(G)\right)$. If $T(G)$ is Tate module of G and $\Gamma_{0}=\operatorname{Gal}\left(\bar{K} / K_{0}\right)$, then $M^{0}(G)=\operatorname{Hom}^{\Gamma_{0}}\left(T(G), A_{\text {cris }}\right)$ with induced filtration and action of Frobenius σ. The structure of $\mathcal{M}(G)$ can be given in terms of fixed $W\left(k_{0}\right)$-basis l_{1}, \ldots, l_{n} of $M^{1}(G)$ and its complement $m_{1}, \ldots, m_{h-n} \in M^{0}(G)$ to a $W\left(k_{0}\right)$-basis of $M^{0}(G)$. If $\bar{l}={ }^{t}\left(l_{1}, \ldots, l_{n}\right), \bar{m}={ }^{t}\left(m_{1}, \ldots, m_{h-n}\right)$ are vector columns, the structure of $\mathcal{M}(G)$ is given by matrix relation

$$
\binom{(\sigma / p) \bar{l}}{\sigma \bar{m}}=\mathcal{E}\binom{\bar{l}}{\bar{m}}
$$

where $\mathcal{E} \in \mathrm{GL}_{h}\left(W\left(k_{0}\right)\right)$. We use this matrix \mathcal{E} to define for all $u \in \mathbb{N}$ auxillary matrices F_{u} and F_{u}^{\prime} (of orders $n \times n$ and $n \times(h-n)$, resp.), such that
a) If $G_{\mathcal{A}}$ is n-dimensional formal group over $W\left(k_{0}\right)$ given by the functional equation

$$
\bar{l}_{\mathcal{A}}(\bar{X})=\bar{X}+\frac{1}{p} \sum_{u \geq 1} F_{u}\left(\sigma_{*} \bar{l}_{\mathcal{A}}\right)\left(\bar{X}^{p^{u}}\right)
$$

for its logarithm vector power series $\bar{l}_{\mathcal{A}}(\bar{X})={ }^{t}\left(l_{\mathcal{A}, 1}(\bar{X}), \ldots, l_{\mathcal{A}, n}(\bar{X})\right)$, then $G \simeq$ $G_{\mathcal{A}}$.
b) If $\hat{o}_{M}^{1}, \ldots, \hat{o}_{M}^{h} \in m_{k, \tilde{i}}=\tilde{t} W(k)[[\tilde{t}]] \subset \mathcal{L}_{k, i}$ are such that $\hat{o}_{M}^{i} \mapsto o_{M}^{i}$ under substitution $\tilde{t} \mapsto \pi$, where π is fixed uniformizer of the field K, then we set

$$
\bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right)=\frac{1}{p} \sum_{u \geq 1} F_{u}^{\prime} \sigma^{u}\left(\bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right)\right)
$$

for $1 \leq i \leq h$, to create modulo p^{M} approximation

$$
\mathcal{V}_{\bar{i}}=\left(\begin{array}{ccc}
p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \ldots & p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right) \\
p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \ldots & p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right)
\end{array}\right)
$$

of the matrix of values of the p-adic periods pairing $T\left(G_{\mathcal{A}}\right) \times M^{0}\left(G_{\mathcal{A}}\right) \longrightarrow A_{\text {cris }}$.

0.4. The first explicit formula for $(f, g]_{G_{\mathcal{A}}}$.

Let $f \in G_{\mathcal{A}}\left(m_{K}\right)$ and $\beta=\beta(\tilde{t}) \in m_{k, i}^{n}$ be such that $\beta(\pi)=f$. Consider $g \in K^{*}$, such that there exists $\delta=\delta(\tilde{t}) \in W(k)[[\tilde{t}]]\left[\tilde{t}^{-1}\right]$, such that $\sigma \delta / \delta^{p} \in 1+m_{k, \tilde{t}}$, $(1 / p) \log \left(\sigma \delta / \delta^{p}\right)=\sum_{(c, p)=1} \alpha_{c} \tilde{t}^{c}$ with all $\alpha_{c} \in W(k)$, and $\delta(\pi)=g$. Equivalently,

$$
\delta=\left[\alpha_{0}\right] \tilde{t}^{a_{0}} \prod_{(c, p)=1} E\left(\alpha_{c}, \tilde{t}^{c}\right)
$$

where $\alpha_{0} \in k^{*}, a_{0} \in \mathbb{Z}$, all $\alpha_{c} \in W(k)$ and

$$
E(\alpha, X)=\exp \left(\alpha X+\cdots+\left(\sigma^{s} \alpha\right) X^{p^{0}} / p^{s}+\ldots\right) \in \mathbb{Z}_{p}[[X]]
$$

Such elements $g \in K^{*}$ create subgroup of K^{*} of index $p^{l_{0}}$, where l_{0} is the maximal integer, such that K contains a primitive root of unity of degree $p^{t_{0}}$.

Under above assumptions we prove the following explicit formula
(*1) $\quad A(f, g)=\left(\operatorname{Res}_{\tilde{i}=0} \circ \operatorname{Tr}\right)\left\{\mathcal{V}_{\tilde{t}}^{-1}\binom{\bar{l}_{\mathcal{A}}(\beta)-\left(\mathcal{A}^{*} / p\right) \bar{l}_{\mathcal{A}}(\beta)}{0} \mathrm{~d}_{\log } \delta\right\} \bmod p^{M}$,
where $\operatorname{Tr}: W(k) \longrightarrow \mathbb{Z}_{p}$ is trace map, $\operatorname{Res}_{\tilde{\imath}=0}$ is residue and $\mathcal{A}^{*}=\sum_{u \geq 1} F_{u} \sigma^{u}$.
This formula is obtained as a result of interpretation of the formal group symbol via Witt symbol in characteristic p. These symbols are related by auxillary construction of some "cristalline" symbol. In fact, this method is straight generalization of our aproach in [Ab3], where we study the case $G=\mathbb{G}_{m}$.

0.5. The second explicit formula for $(f, g]_{G_{\mathcal{A}}}$.

The above formula ($*_{1}$) is not good enough, because g is not arbitrary element of K^{*} and one should relate to g the special power series $\delta=\delta(\tilde{t})$. In the case $G=\mathbb{G}_{m}$ Brückner-Vostokov explicit formulae, c.f. [Br], [Vo1], are free from these restrictions. By purely formal arguments we transform the above formula ($*_{1}$) to the formula of Brückner-Vostokov type. This result can be stated as follows.

Let $f \in G_{\mathcal{A}}\left(m_{K}\right), \beta=\beta(\tilde{t}) \in m_{k, \tilde{t}}^{n}, \mathcal{A}^{*}=\sum_{u>1} F_{u} \sigma^{u}$ and the matrix $\mathcal{V}_{\hat{t}}$ be as above. For $g \in K^{*}$ let $\delta=\delta(\tilde{t}) \in W(k)[[\tilde{t}]]\left[\tilde{t}^{-1}\right]$ be such that $\delta(\pi)=g$ and $\delta=\left[\alpha_{0}\right] \tilde{t}^{a_{0}}\left(1+\delta_{1}\right)$, where $\alpha_{0} \in k^{*}, a_{0} \in \mathbb{Z}, \delta_{1} \in m_{k, \tilde{i}}$. Let

$$
\bar{m}_{\mathcal{A}}(\beta)=\frac{1}{p} \sum_{u \geq 1} F_{u}^{\prime}\left(\sigma^{u} \bar{l}_{\mathcal{A}}(\beta)\right)
$$

and assume that K contains a primitive root of unity ζ_{M} of degree p^{M}. Then

$$
\begin{equation*}
A(f, g)= \tag{2}
\end{equation*}
$$

$$
(\operatorname{Res} \circ \operatorname{Tr})\left\{\mathcal{V}_{\hat{i}}^{-1}\left[\binom{\bar{l}_{\mathcal{A}}(\beta)-\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(\beta)}{0} \mathrm{~d}_{\log } \delta-\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}} \mathrm{~d}\binom{\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}\right]\right\} \bmod p^{M}
$$

This formula is obtained from the formula $\left(*_{1}\right)$ by taking into consideration $p^{M_{-}}$ primary elements of the group K^{*} to avoid restriction on $g \in K^{*}$, by proving that values of $\left(*_{2}\right)$ do not depend on a choice of $\delta(\tilde{t})$ and that $\left(*_{1}\right)$ and ($*_{2}$) have the same value under special choice of $\delta(\tilde{t})$ from n.0.4.

The formula $\left(*_{2}\right)$ does not contain information about $\zeta_{M} \in K$. Now we don't have an answer to the following question: is the formula ($*_{2}$) valid without assumption $\zeta_{M} \in K$?

The formula ($*_{2}$) can be considered as a generalization of the result from [B-V], where the case of 1 -dimensional formal group symbol modulo p (i.e. $M=1$) was studied.
0.6. As it was mentioned earlier, our arguments are based on Fontaine's theory of p-adic periods for p-divisible groups (also, Fontaine-Wintenberger functor field of norms and Fontaine's interpretation of Witt reciprocity law play very important rôle). It seems, one can apply Fontaine's theory for formal groups over arbitrary local fields K_{0}^{\prime} to obtain explicit formulae at least modulo some finite defect subgroup in $G[M]\left(m_{K}\right)$ (which is trivial, if absolute ramification index of K_{0}^{\prime} is less than $p-1$), c.f. [Fo1]. All our arguments can be directly applied in the case of A-modules over $A_{u r}$, one should use parallel theory of π_{A}-adic periods (in particular, this gives explicit formula in the Lubin-Tate case from [Vo2]), c.f. [De], [F-L]. Our method is ajusted also to study the case of " p-adic motives" appearing in Fontaine-Laffaille theory, but one should clarify the concept of p-adic points for these motives. It would be also interesting to develop this theory by methods of [Ka], where the most natural and general interpretation of explicit formulae for the group \mathbb{G}_{m} is given.

Finally, we remark, that there is another way to obtain explicit formulae for the Hilbert symbol, which is presented by Coates-Wiles formulae in the cases of multiplicative and Lubin-Tate groups, and by Kolyvagin's ideas [Ko] for 1-dimensional groups. Recently, D. Benois (private communication) obtained in this way explicit description of Kolyvagin's normalized relations and formulae of Artin-Hasse type for the Hilbert symbol in the case of formal groups over arbitrary local field. These formulae also involve information about matrix of values of p-adic periods pairing.

This paper was written during my stay in the "Arbeitsgruppe Algebraische Geometrie und Zahlentheorie" (Max-Planck-Gesellschaft, Berlin). I express my gratitude to this organization for hospitality.

1. p-adic periods of a formal group over Witt vectors.

Let K_{0} be the fraction field of Witt vectors ring $W\left(k_{0}\right)$, where k_{0} is a perfect field of characteristic $p>2$. Fix an algebraic closure \bar{K} of K_{0}, and denote by C a p-adic completion of \bar{K}. Let m_{C} be the maximal ideal of the valuation ring O_{C} of the field C and $\Gamma_{0}=\operatorname{Gal}\left(\bar{K} / K_{0}\right)$.

1.1. Fontaine's ring $A_{\text {cris }}$ [Fo3].

Let $R=\left\{\left(x^{(n)}\right)_{n \geq 0} \mid x^{(n)} \in O_{C}, x^{(n+1) p}=x^{(n)}\right\}$ be a ring with operations $\left(x^{(n)}\right)+\left(y^{(n)}\right)=\left(z^{(n)}\right),\left(x^{(n)}\right)\left(y^{(n)}\right)=\left(w^{(n)}\right)$, where $z^{(n)}=\lim _{m \rightarrow \infty}\left(x^{(n+m)}+\right.$ $\left.y^{(n+m)}\right)^{p^{m}}, w^{(n)}=x^{(n)} y^{(n)}$. The ring R is complete with respect to the valuation v_{R} given by $v_{R}\left(\left(x^{(n)}\right)\right)=v\left(x^{(0)}\right)$, where v is a p-adic valuation on C, such that $v(p)=1$. Residue fields of O_{C} and of R are canonically identified, in particular, there is a canonical inclusion of Witt vectors rings $W\left(k_{0}\right) \subset W(R)$. We use notation m_{R} for the maximal ideal of R.

If $w=\sum_{n \geqslant 0} p^{n}\left[r_{n}\right] \in W(R)$, then $w \mapsto \sum_{n \geq 0} p^{n} r_{n}^{(0)}$ gives epimorphism of $W\left(k_{0}\right)$ algebras $\gamma: W(R) \longrightarrow O_{C}$, and $W^{1}(R):=\operatorname{Ker} \gamma$ is a principal ideal in $W(R)$. One can take as its generator any $\xi \in W^{1}(R)$, such that $v_{R}\left(r_{0}\right)=1$, where $r_{0}=$ $\xi \bmod p W(R) \in R$. Remark, that $\operatorname{Ker}\left(\gamma: W\left(m_{R}\right) \longrightarrow m_{C}\right):=W^{1}\left(m_{R}\right)$ equals to $\xi W\left(m_{R}\right) . A_{\text {cris }}$ is the p-adic completion of the divided powers envelope of $W(R)$ with respect to the ideal $\operatorname{Ker} \gamma . A_{\text {cris }}$ has induced continuos Γ_{0}-action and $A_{\text {cris }}^{\Gamma_{0}}=$ $W\left(k_{0}\right)$. Absolute Frobenius σ of $W\left(k_{0}\right)$ has a natural prolongation ϕ_{0} to $A_{\text {cris }}$. There is a decreasing filtration $\mathrm{Fil}^{i} A_{\text {cris }}, i \geq 0$, of divided powers of the ideal $\operatorname{Ker} \gamma$. If $\gamma_{\text {cris }}: A_{\text {cris }} \longrightarrow O_{C}$ is a natural prolongation of γ, then Fil $^{1} A_{\text {cris }}=\operatorname{Ker} \gamma_{\text {cris }}$. One has ϕ_{0} Fil $^{1} A_{\text {cris }} \subset p A_{\text {cris }}$, so $\phi_{1}=\phi_{0} / p$ is well-defined σ-linear morphism from Fil ${ }^{1} A_{\text {cris }}$ to $A_{\text {cris }}$. Sometimes we denote ϕ_{0} and ϕ_{1} simply by σ and σ / p, respectfully.

If $M \in \mathbb{N}$, denote by $A_{\text {cris }, M}$ the quotient $A_{\text {cris }} / p^{M} A_{\text {cris }}$ with induced Γ_{0}-action, filtration and mappings $\phi_{0}: A_{\text {cris }, M} \longrightarrow A_{\text {cris }, M}, \phi_{1}: \mathrm{Fil}^{1} A_{\text {cris }, M} \longrightarrow A_{\text {cris }, M}$.
1.2. p-adic periods pairing, [Fo1], [F-L].

Denote by $\mathrm{MF}_{W\left(k_{0}\right)}$ the abelian category of admissible filtered modules with filtration of length 1 . Its objects are quadruples $\mathcal{M}=\left(M^{0}, M^{1}, \phi_{0}, \phi_{1}\right)$, where M^{0} is a $W\left(k_{0}\right)$-module, M^{1} is its submodule, $\phi_{0}: M^{0} \longrightarrow M^{0}$ and $\phi_{1}: M^{1} \longrightarrow M^{0}$ are σ-linear morphisms, such that for any $m \in M^{1}$ one has $\phi_{0}(m)=p \phi_{1}(m)$, and $M=\phi_{0}\left(M^{0}\right)+\phi_{1}\left(M^{1}\right)$. Morphisms of this category are morphisms of filtered modules, which commute with ϕ_{0} and ϕ_{1}.

Let \tilde{G} be a p-divisible group over $W\left(k_{0}\right)$ of finite height $h(\tilde{G})$. If $T(\tilde{G})$ is Tate module of \tilde{G}, let $M^{0}(\tilde{G})=\operatorname{Hom}_{\Gamma_{0}}\left(T(\tilde{G}), A_{\text {cris }}\right)$ and $M^{1}(\tilde{G})=\operatorname{Hom}_{\Gamma_{0}}\left(T(\tilde{G}), \operatorname{Fil}^{1} A_{\text {cris }}\right)$. Then $\left.\phi_{0}\right|_{A_{\text {cri, }}}$ and $\left.\phi_{1}\right|_{\mathrm{Fil}^{1} A_{\text {cris }}}$ induce $\phi_{0}: M^{0}(\tilde{G}) \longrightarrow M^{0}(\tilde{G})$ and $\phi_{1}: M^{1}(\tilde{G}) \longrightarrow$ $M^{0}(\tilde{G})$ and $\mathcal{M}(\tilde{G})=\left(M^{0}(\tilde{G}), M^{1}(\tilde{G}), \phi_{0}, \phi_{1}\right)$ is the object of the category $\mathrm{MF}_{W\left(k_{0}\right)}$. The correspondence $\tilde{G} \mapsto \mathcal{M}(\tilde{G})$ gives fully faithfull functor from the category of p-divisible groups over $W\left(k_{0}\right)$ (of finite height) to the category $\mathrm{MF}_{W\left(k_{0}\right)}$. The essential image of this functor consists of $\mathcal{M}(\tilde{G})$, such that $M^{0}(\tilde{G})$ is free $W\left(k_{0}\right)$-module of finite rank. We have $\mathrm{rk}_{W\left(k_{0}\right)} M^{0}(\tilde{G})=h(\tilde{G})$, and dimension $n(\tilde{G})$ of \tilde{G} is equal to $\mathrm{rk}_{W\left(k_{0}\right)} M^{1}(\tilde{G})$.

If G is a formal smooth group over $W\left(k_{0}\right)$ of finite height and $G[m]=\operatorname{Ker} p^{m} \mathrm{id}_{G}$, then $\tilde{G}=\{G[m]\}_{m \geq 0}$ is a p-divisible group over $W\left(k_{0}\right)$. The correspondence $G \mapsto \tilde{G}$ gives fully faithfull functor from the category of formal smooth groups of finite height to the category of p-divisible groups over $W\left(k_{0}\right)$. Corresponding objects $\mathcal{M}(G)=\mathcal{M}(\tilde{G})$ can be completely characterized by one additional property: ϕ_{0} is topologically nilpotent on $M^{0}(\tilde{G})$.

The above description of p-divisible groups \tilde{G} can be interpreted as the p-adic periods pairing

$$
T(\tilde{G}) \times M^{0}(\tilde{G}) \longrightarrow A_{\text {cris }}
$$

This pairing is \mathbb{Z}_{p}-bilinear, nondegenerate and compatible with additional structures, i.e. with structures of Γ_{0}-modules on $T(\tilde{G})$ and on $A_{\text {cris }}$, and with filtrations and Frobenius actions on $M^{0}(\tilde{G})$ and on $A_{\text {cris }}$. We remark, that if G is a formal group, then this pairing has values in $A_{\text {cris }}^{l o c}:=\left\{a \in A_{\text {cris }} \mid \phi_{0}^{n}(a) \rightarrow 0\right.$, if $\left.n \rightarrow \infty\right\}$.

The above description of p-divisible groups exists also on the level of finite group schemes. We use it to obtain for any $M \in \mathbb{N}$ non-degenerate pairing

$$
\tilde{G}[M]\left(O_{C}\right) \times\left(M^{0}(\tilde{G}) \bmod p^{M}\right) \longrightarrow A_{\text {cris }, M}
$$

where $\tilde{G}[M]=\operatorname{Ker}\left(p^{M} \operatorname{id}_{\tilde{G}}\right)$. As earlier, this pairing is also compatible with all additional structures. In particular, Γ_{0}-module $\tilde{G}[M]\left(O_{C}\right)$ can be identified with

$$
\begin{gathered}
\left\{\eta \in \operatorname{Hom}_{W\left(k_{0}\right)}\left(M^{0}(\tilde{G}), A_{\text {cris }, M}\right) \mid \eta\left(M^{1}(\tilde{G})\right) \subset \mathrm{Fi}^{1} A_{\text {cris }, M}\right. \\
\text { and } \left.\eta \phi_{0}=\phi_{0} \eta, \eta \phi_{1}=\phi_{1} \eta\right\}
\end{gathered}
$$

1.3. Structure of $\mathcal{M}(\tilde{G})$.

Let \tilde{G} be a p-divisible group over $W\left(k_{0}\right)$ of finite height h and of dimension n. If $\mathcal{M}(\tilde{G})=\left(M^{0}, M^{1}, \phi_{0}, \phi_{1}\right)$, then $W\left(k_{0}\right)$-module M^{1} is a direct summand of M^{0}. So, we can choose $W\left(k_{0}\right)$-basis of M^{1} and elements $m_{1}, \ldots, m_{h-n} \in M^{0}$, such that $\left\{l_{1}, \ldots, l_{n}, m_{1}, \ldots, m_{h-n}\right\}$ is $W\left(k_{0}\right)$-basis of M^{0}.

Consider vector-columns $\bar{l}={ }^{t}\left(l_{1}, \ldots, l_{n}\right), \bar{m}={ }^{t}\left(m_{1}, \ldots, m_{h-n}\right)$. Then to give on $\mathcal{M}(\tilde{G})$ the structure of an object of the category $\mathrm{MF}_{W\left(k_{0}\right)}$ is equivalent to giving the relation

$$
\begin{equation*}
\binom{\phi_{1}(\bar{l})}{\phi_{0}(\bar{m})}=\mathcal{E}\binom{\bar{l}}{\bar{m}} \tag{1}
\end{equation*}
$$

for some invertible matrix $\mathcal{E} \in \mathrm{GL}_{h}\left(W\left(k_{0}\right)\right)$.
Let $\mathcal{E}=\left(\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$ be a block form of \mathcal{E}, such that the relation $\left(*_{1}\right)$ can be rewritten in a form

$$
\begin{aligned}
\phi_{1}(\bar{l}) & =A_{1} \bar{l}+B_{1} \bar{m} \\
\phi_{0}(\bar{m}) & =C_{1} \bar{l}+D_{1} \bar{m}
\end{aligned}
$$

Now we restrict ourselves to the case of p-divisible groups arising from formal groups G. This means, that ϕ_{0} acts nilpotently on $M^{0}=M^{0}(G)$. One can easily verify, that this additional property is equivalent in terms of the matrix \mathcal{E} to the property

$$
\lim _{u \rightarrow \infty} \sigma^{u}\left(D_{1}\right) \ldots D_{1}=0
$$

Let $\mathcal{E}^{-1}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be a block form, such that

$$
\begin{aligned}
\bar{l} & =A \frac{\sigma \bar{l}}{p}+B \sigma \bar{m} \\
\bar{m} & =C \frac{\sigma \bar{l}}{p}+D \sigma \bar{m}
\end{aligned}
$$

(now we use notation σ and σ / p instead of ϕ_{0} and ϕ_{1}). One can use topological nilpotency of $\left.\sigma\right|_{M} 0$ to replace the above relations ($*_{2}$) to equivalent relations

$$
\bar{l}=\sum_{u \geq 1} F_{u} \frac{\sigma^{u} \bar{l}}{p}, \quad \bar{m}=\sum_{u \geq 1} F_{u}^{\prime} \frac{\sigma^{u} \bar{l}}{p}
$$

where $F_{1}=A, F_{2}=B(\sigma C), \ldots, F_{u}=B(\sigma D) \ldots\left(\sigma^{u-1} D\right)\left(\sigma^{u} C\right)$ for $u \geq 3$, and $F_{1}^{\prime}=C, F_{u}^{\prime}=D \ldots\left(\sigma^{u-2} D\right)\left(\sigma^{u-1} C\right)$ for $u \geq 2$ (we use, that $\bar{m}=(\mathrm{id}-D \sigma)^{-1} C(\sigma \bar{l}) / p$ and $\left.(\mathrm{id}-D \sigma)^{-1}=\mathrm{id}+D \sigma+\cdots+D(\sigma D) \ldots\left(\sigma^{u-1} D\right) \sigma^{u}+\ldots\right)$.

1.4. Formal group $G_{\mathcal{A}}$.

Let $\mathcal{B}=W\left(k_{0}\right)[[\bar{X}]]$ be a power series ring with coefficients in $W\left(k_{0}\right)$ and variables $X_{1}, \ldots, X_{n}, \mathcal{B}_{\mathbb{Q}_{p}}=\mathcal{B} \hat{\otimes} \mathbb{Q}_{p}$. Let Δ be a σ-linear operator on $\mathcal{B}_{\mathbb{Q}_{p}}$, such that $\Delta\left(w X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}\right)=\sigma(w) X_{1}^{p i_{1}} \ldots X_{n}^{p_{i}}$, where $w \in W\left(k_{0}\right), i_{1}, \ldots, i_{n} \geq 0$. Denote by $\mathcal{B}_{\mathbf{Q}_{\phi}}^{n}$ the space of vector-columnes of order n with coordinates in $\mathcal{B}_{\mathbf{Q}_{p}}$. Clearly, Δ acts on $\mathcal{B}_{\mathbf{Q}_{p}}^{\mathrm{n}}$.

Introduce \mathbb{Z}_{p}-linear operator $\mathcal{A}=\sum_{u \geq 1} F_{u} \Delta^{u}$ on $\mathcal{B}_{\mathbf{Q}_{p}}^{n}$, where $F_{u}, u \geq 1$, are $n \times n$ - matrices from n.1.3.

Consider $\bar{l}(\bar{X})={ }^{t}\left(l_{\mathcal{A}, 1}\left(X_{1}, \ldots, X_{n}\right), \ldots, l_{\mathcal{A}, n}\left(X_{1}, \ldots, X_{n}\right)\right) \in \mathcal{B}_{\mathbb{Q}_{2}}^{n}$, such that

$$
\bar{l}_{\mathcal{A}}(\bar{X})=\left(\mathrm{id}-\frac{\mathcal{A}}{p}\right)^{-1}(\bar{X})=\bar{X}+\sum_{m \geq 1} \frac{\mathcal{A}^{m}(\bar{X})}{p^{m}}
$$

(here $\left.\bar{X}={ }^{t}\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{B}_{\mathbf{Q}_{\boldsymbol{p}}}^{n}\right)$. Clearly, $\bar{l}(\bar{X})$ is the unique solution in $\mathcal{B}_{\mathbf{Q}_{p}}^{n}$ of the functional equation

$$
\bar{l}_{\mathcal{A}}(\bar{X})=\bar{X}+\frac{1}{p} \sum_{u \geq 1} F_{u}\left(\sigma_{*}^{u} \bar{l}_{\mathcal{A}}\right)\left(\bar{X}^{p^{u}}\right), \bar{l}_{\mathcal{A}}(0)=0
$$

(here $\sigma_{*}: \mathcal{B}_{\mathbf{Q}_{p}}^{n} \longrightarrow \mathcal{B}_{\mathbb{Q}_{p}}^{n}$ is action of σ on coefficients of power series).
By [Ha], power series $\bar{l}_{\mathcal{A}}(\bar{X})$ can be taken as the logarithm map of some n dimensional commutative formal group law $G_{\mathcal{A}}$ over $W\left(k_{0}\right)$. Namely, $G_{\mathcal{A}}=\operatorname{Spf} \mathcal{B}$ with coaddition given by the relation $\Delta_{\mathcal{A}}(\bar{X})=\bar{l}_{\mathcal{A}}^{-1}\left(\bar{l}_{\mathcal{A}}(\bar{X}) \hat{\otimes} 1+1 \hat{\otimes} \bar{l}_{\mathcal{A}}(\bar{X})\right)$.

In fact, formal groups G and $G_{\mathcal{A}}$ are isomorphic. This follows from comparison of Fontaine's and of Honda's theories, c.f. [Fo1, Ch.5]. In n.1.5 below we use more precise version of this statement.
1.5. Construction of p-adic periods pairing.
1.5.1. Lemma. $\bar{l}_{\mathcal{A}}$ induces injective continuos homomorphism of Γ_{0}-modules

$$
\bar{l}_{\mathcal{A}}: G_{\mathcal{A}}\left(W\left(m_{R}\right)\right) \longrightarrow A_{\mathrm{cris}}^{n} \otimes \mathbb{Q}_{p}
$$

Proof.
Let $w \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)\right)$, then $\bar{l}_{\mathcal{A}}(w) \in A_{\text {cris }}^{n}$. Divided powers of the ideal $W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)$ give basis of topology on $A_{\text {cris. }}$. Therefore, $\bar{l}_{\mathcal{A}}$ is injective on $G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)\right)$. If $w \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, then $w_{1}=\left(p^{n} \mathrm{id}_{G_{\mathcal{A}}}\right)(w) \in$ $W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)$ for some $n \geq 0$, because $p \mathrm{id}_{G_{\mathcal{A}}}$ is topologically nilpotent on $G_{\mathcal{A}}\left(m_{R}\right)$.

Now $\bar{l}_{\mathcal{A}}(w)=\left(1 / p^{n}\right) \bar{l}_{\mathcal{A}}\left(w_{1}\right)$ and injectivity of $\left.\bar{l}_{\mathcal{A}}\right|_{G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)}$ is a formal consequence of the above injectivity of $\left.\bar{l}_{\mathcal{A}}\right|_{G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)\right)}$.

Corrolary. For any $M \in \mathbb{N}$

$$
\bar{l}_{\mathcal{A}}: G_{\mathcal{A}}\left(W_{M}\left(m_{R}\right)\right) \longrightarrow A_{\mathrm{cris}}^{n} \otimes \mathbb{Q}_{p} \bmod p^{M} W\left(m_{R}\right)
$$

is injective continuos homomorphism of Γ_{0}-modules.

Proof.

Any $w \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ can be written as $w=w_{1}+_{G_{\mathcal{A}}}\left(p^{M} w_{2}\right)$, where $w_{1}, w_{2} \in$ $W\left(m_{R}\right)^{n}$ and $w_{1} \bmod p^{M} W\left(m_{R}\right)$ is uniquelly determined. The statement follows, because for any $m \in \mathbb{N}$ one has $\bar{l}_{\mathcal{A}}\left(G_{\mathcal{A}}\left(p^{m} W\left(m_{R}\right)\right)\right) \subset p^{m} W\left(m_{R}\right)^{n}, \bar{l}_{\mathcal{A}}$ is identical on $p^{m} W\left(m_{R}\right) \bmod p^{m+1} W\left(m_{R}\right)$ and, therefore, $\bar{l}_{\mathcal{A}}$ induces bijection

$$
\bar{l}_{\mathcal{A}}: G_{\mathcal{A}}\left(p^{m} W\left(m_{R}\right)\right) \longrightarrow p^{m} W\left(m_{R}\right)^{n}
$$

1.5.2. Let $o=\left(o_{s}\right)_{s \geq 0} \in T\left(G_{\mathcal{A}}\right)$. Here all $o_{s} \in G_{\mathcal{A}}\left(m_{C}\right),\left(\operatorname{pid}_{G_{\mathcal{A}}}\right)\left(o_{s+1}\right)=o_{s}$ and $o_{0}=0$. For every s choose $\hat{o}_{s} \in W\left(m_{R}\right)$, such that $\gamma\left(\hat{o}_{s}\right) \equiv o_{s} \bmod p m_{C}$.

In this notation one has

$$
p^{s+1} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s+1}\right) \equiv p^{s} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right) \bmod p^{s} \mathrm{Fil}^{1} A_{\text {cris }}+p^{s+1} W\left(m_{R}\right)
$$

Indeed, $\gamma\left(\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\hat{o}_{s+1}\right)\right) \equiv\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(o_{s+1}\right)=o_{s} \equiv \gamma\left(\hat{o}_{s}\right) \bmod p m_{C}$, therefore, $\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\hat{o}_{s+1}\right) \equiv \hat{o}_{s} \bmod W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)$, and

$$
p \bar{l}_{\mathcal{A}}\left(\hat{o}_{s+1}\right)=\bar{l}_{\mathcal{A}}\left(\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\hat{o}_{s+1}\right)\right) \equiv \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right) \operatorname{modFil}{ }^{1} A_{\text {cris }}+p W\left(m_{R}\right)
$$

Let $\hat{o}_{s}^{\prime} \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, where $\gamma\left(\hat{o}_{s}^{\prime}\right) \equiv o_{s} \bmod p m_{C}, s \geq 1$, be another system of liftings. Then

$$
p^{s} \widetilde{l}_{\mathcal{A}}\left(\hat{o}_{s}^{\prime}\right) \equiv p^{s} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right) \bmod p^{s} \mathrm{Fil}^{1} A_{\mathrm{cris}}+p^{s+1} W\left(m_{R}\right)
$$

This equivalence follows because $\hat{o}_{s} \equiv \hat{o}_{s}^{\prime} \bmod W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)$.
If we choose $\hat{o}_{s} \in W\left(m_{R}\right)$, such that $\gamma\left(\hat{o}_{s}\right)=o_{s}$, then $p^{s} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right) \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$, because $\gamma\left(\left(p^{s} \operatorname{id}_{G_{\Lambda}}\right)\left(\hat{o}_{s}\right)\right)=\left(p^{s} \operatorname{id}_{G_{\Lambda}}\right)\left(o_{s}\right)=o_{0}=0$.

The above reasons give the following lemma, c.f. also [Co],
Lemma. The correspondence $o=\left(o_{s}\right)_{s \geq 0} \mapsto \lim _{s \rightarrow \infty} p^{s} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right)$ gives well-defined element $\hat{\bar{l}} \in \operatorname{Hom}^{\Gamma_{0}}\left(T\left(G_{\mathcal{A}}\right),\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}\right)$.

We remark, that if $\hat{\bar{l}}={ }^{t}\left(\hat{l}_{1}, \ldots, \hat{l}_{n}\right)$, then all $\hat{l}_{i} \in \operatorname{Hom}^{\Gamma_{0}}\left(T\left(G_{\mathcal{A}}\right)\right.$, Fil $\left.^{t} A_{\text {cris }}\right)=$ $M^{1}\left(G_{\mathcal{A}}\right)$.

Let $\hat{\bar{m}}=\sum_{u \geq 1} F_{u}^{\prime} \sigma^{u} \hat{\bar{l}} / p$, where F_{u}^{\prime} are the matrices from n.1.3. Then $\hat{\bar{m}}=$ ${ }^{t}\left(\hat{m}_{1}, \ldots, \hat{m}_{h-n}\right)$, where all $\hat{m}_{i} \in \operatorname{Hom}^{\Gamma_{0}}\left(T\left(G_{\mathcal{A}}\right), A_{\text {cris }}\right)$ and $\hat{\bar{m}}(o)=\lim _{s \rightarrow \infty} p^{s} \bar{m}_{\mathcal{A}}\left(\hat{o}_{s}\right)$, where $\bar{m}_{\mathcal{A}}\left(\hat{o}_{s}\right)=(1 / p) \sum_{u \geq 1} F_{u}^{\prime} \sigma^{u}\left(\bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right)\right)$. The functional equation for $\vec{l}_{\mathcal{A}}^{\infty}$ from n.1.4 gives the relation

$$
\hat{\bar{l}}=\frac{\mathcal{A}^{*}}{p} \stackrel{\tilde{l}}{ }
$$

where $\mathcal{A}^{*}=\sum_{u \geq 1} F_{u} \sigma^{u}$ is \mathbb{Z}_{p}-linear operator on $M^{0}\left(G_{\mathcal{A}}\right)$. This equality can be rewritten as, c.f. n.1.3,

$$
\binom{\phi_{1}(\hat{\bar{l}})}{\phi_{0}(\hat{\bar{m}})}=\mathcal{E}\binom{\hat{\bar{l}}}{\hat{\bar{m}}}
$$

Therefore, the correspondence $\bar{l} \mapsto \hat{\bar{l}}, \bar{m} \mapsto \hat{\bar{m}}$ gives morphism in the category $\mathrm{MF}_{W\left(k_{0}\right)}$

$$
\pi_{\mathcal{A}}: \mathcal{M}(G) \longrightarrow \mathcal{M}\left(G_{\mathcal{A}}\right)
$$

Claim. $\pi_{\mathcal{A}}$ is isomorphism in $\mathrm{MF}_{W\left(k_{0}\right)}$ and therefore, gives rise to the isomorphism $\eta_{\mathcal{A}}: G \simeq G_{\mathcal{A}}$.

This is more precise version of the mentioned in n.1.4 existence of an isomorphism between G and $G_{\mathcal{A}}$. This fact follows from Fontaine's description of points of a formal group in terms of its Deudonne module, c.f. [Fol], and from relation between covectors and $A_{\text {cris }}$, c.f. [F-L].
1.5.3. From now on we use the isomorphism $\eta_{\mathcal{A}}$ to identify G and $G_{\mathcal{A}}$, in particular, points of the formal group G can be given by coordinates. We can use lemma of n.1.5.2 to express values $($,$\rangle of the p$-adic periods pairing $T\left(G_{\mathcal{A}}\right) \otimes \mathbf{z}_{p} M^{0}\left(G_{\mathcal{A}}\right) \longrightarrow$ $A_{\text {cris }}$:
if $o=\left(o_{s}\right)_{s \geq 0} \in T\left(G_{\mathcal{A}}\right)$ and $l_{1}, \ldots, l_{n}, m_{1}, \ldots, m_{h-n}$ is the $W\left(k_{0}\right)$-basis of $M^{0}\left(G_{\mathcal{A}}\right)$ from n.1.3, then
a) $\langle o, \bar{l}\rangle={ }^{t}\left(\left\langle o, l_{1}\right\rangle, \ldots,\left\langle o, l_{n}\right\rangle\right)=\lim _{s \rightarrow \infty} p^{s} \bar{l}_{\mathcal{A}}\left(\hat{o}_{s}\right)$, where $\hat{o}_{s} \in G\left(W\left(m_{R}\right)\right)$ are such that $\gamma\left(\hat{o}_{s}\right)=o_{s} \bmod p m_{C}$;
b) $\langle o, \bar{m}\rangle={ }^{t}\left(\left\langle o, m_{1}\right\rangle, \ldots,\left\langle o, m_{h-n}\right\rangle\right)=\lim _{s \rightarrow \infty} p^{s} \bar{m}_{\mathcal{A}}\left(\hat{o}_{s}\right)=\sum_{u \geq 1} F_{u}^{\prime} \sigma^{u}(\langle o, \bar{l}\rangle) / p$, where F_{u}^{\prime} are matrices from n.1.3.

Values of the modulo $p^{M} p$-adic periods pairing

$$
G_{\mathcal{A}}[M]\left(m_{C}\right) \otimes \mathbf{z}_{p} M^{0}\left(G_{\mathcal{A}}\right) \bmod p^{M} \longrightarrow A_{\text {cris }, M}
$$

can be given as follows
if $o \in G_{\mathcal{A}}[M]\left(m_{C}\right)$, then
a) $\left\langle o, \bar{l}_{\bmod } p^{M}\right\rangle=p^{M} \bar{l}_{\mathcal{A}}(\hat{o})$, where $\hat{o} \in G\left(W\left(m_{R}\right)\right)$ is such that $\gamma(\hat{o}) \equiv o \bmod p m_{C}$;
b) $\left\langle o, \bar{m} \bmod p^{M}\right\rangle=\sum_{u \geq 1} F_{u}^{\prime} \phi_{1}\left(\left\langle o, \bar{l} \bmod p^{M}\right\rangle\right)$.
1.5.4. Consider \mathbb{Z}_{p}-linear operator $\mathcal{A}^{*}=\sum_{u \geq 1} F_{u} \sigma^{u}$ on $A_{\text {cris }}$. Claim of n.1.5.2 gives injectivity of $\hat{l}: T\left(G_{\mathcal{A}}\right) \longrightarrow\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$ and the equality

$$
\operatorname{Im} \hat{\bar{l}}=\left\{\bar{x} \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n} \left\lvert\, \bar{x}=\frac{\mathcal{A}^{*}}{p} \bar{x}\right.\right\} .
$$

Remark. In the modulo p^{M} situation we have induced identification of $G_{\mathcal{A}}[M]\left(m_{C}\right)$ with $\left\{\bar{x} \in\left(\text { Fil }^{1} A_{\text {cris }, M}\right)^{n} \mid \bar{x}=\left(\mathcal{A}^{*} / p\right) \bar{x}\right\}$.

Let $o=\left(o_{s}\right)_{s \geq 0} \in T\left(G_{\mathcal{A}}\right)$ and $\hat{o}_{s} \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ are such that $\gamma\left(\hat{o}_{s}\right)=o_{s}$. Then $\lim _{s \rightarrow \infty}\left(p^{s} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\hat{o}_{s}\right)$ exists, doesn't depend on the above choice of liftings \hat{o}_{s} and is
an element of the group $G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)$. The correspondence $o \mapsto \lim _{s \rightarrow \infty}\left(p^{s} \mathrm{id}_{G_{\mathcal{A}}}\right)\left(\hat{o}_{s}\right)$ gives rise to injective homomorphism of Γ_{0}-modules

$$
j: T\left(G_{\mathcal{A}}\right) \longrightarrow G\left(W^{1}\left(m_{R}\right)\right)
$$

such that $j \circ \bar{l}_{\mathcal{A}}=\hat{\bar{l}}$.
So, we have the following characterization of the image of j :

$$
\operatorname{Im} j=\left\{w \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right) \left\lvert\, \bar{l}_{\mathcal{A}}(w)=\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(w)\right.\right\}
$$

1.6. Some lemmas.

1.6.1. Lemma. $\mathcal{A}^{*}=\sum_{u \geq 1} F_{u} \sigma^{u}$ is invertible on $W\left(m_{R}\right)^{n}$.

Proof.

If $\mathcal{E}^{-1}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, then $\mathcal{A}^{*}=A \sigma+B \sigma(E-D \sigma)^{-1} C \sigma$.
Let $w \in W\left(m_{R}\right)^{n}$. It is easy to see, that if $\left(x, w_{1}\right) \in W\left(m_{R}\right)^{h}$ is a solution of the system

$$
\binom{w}{w_{1}}=\left(\begin{array}{cc}
A & B \tag{1}\\
C & D
\end{array}\right)\binom{\sigma x}{\sigma w_{1}}
$$

where $x \in W\left(m_{R}\right)^{n}, w_{1} \in W\left(m_{R}\right)^{h-n}$, then $\mathcal{A}^{*}(x)=w$. To prove solvability of the system $\left(*_{1}\right)$ multiply both sides of it by the matrix $\mathcal{E}=\left(\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$ to obtain an equivalent system

$$
\begin{align*}
\sigma x & =A_{1} w+B_{1} w_{1} \\
\sigma w_{1} & =C_{1} w+D_{1} w_{1} \tag{2}
\end{align*}
$$

Let
$w_{1}^{0}=\sigma^{-1}\left(C_{1} w\right)+\left(\sigma^{-1} D_{1}\right) \sigma^{-2}\left(C_{1} w\right)+\cdots+\left(\sigma^{-1} D_{1}\right) \ldots\left(\sigma^{-u} D_{1}\right) \sigma^{-(u+1)}\left(C_{1} w\right)+\ldots$.
This expression has sense, because

$$
\lim _{u \rightarrow \infty}\left(\sigma^{-1} D_{1}\right) \ldots\left(\sigma^{-u} D_{1}\right)=\lim _{u \rightarrow \infty} \sigma^{u}\left(\left(\sigma^{u-1} D_{1}\right) \ldots D_{1}\right)=0
$$

c.f. n.1.3. Clearly, $\sigma w_{1}^{0}=C_{1} w+D_{1} w_{1}^{0}$. Therefore, $\left(x^{0}, w_{1}^{0}\right)$, where $x^{0}=\sigma^{-1}\left(A_{1} w\right)+$ $\sigma^{-1}\left(B_{1} w_{1}^{0}\right)$ gives a solution of the system $\left(*_{1}\right)$.

Prove that Ker $\mathcal{A}^{*}=0$. Let $x \in W\left(m_{R}\right)^{n}$ be such that $\mathcal{A}^{*}(x)=0$. Again, this is equivalent to existence of $w_{1} \in W\left(m_{R}\right)^{h-n}$, such that $\left(x, w_{1}\right)$ is a solution of $\left(*_{1}\right)$ with $w=0$. Then relations ($*_{2}$) give

$$
\sigma w_{1}=D_{1} w_{1}
$$

and, therefore, $w_{1}=\left(\sigma^{-1} D_{1}\right)\left(\sigma^{-2} D_{1}\right) \ldots\left(\sigma^{-u} D_{1}\right) w_{1}$ for any $n \in \mathbb{N}$. But the right hand side of this equality tends to 0 , if $u \rightarrow \infty$. So, $w_{1}=0$ and, therefore, $x=0$.
1.6.2. Lemma. $G_{\mathcal{A}}\left(m_{R}\right)$ is uniquelly p-divisible.

Proof.
Let $r={ }^{t}\left(r_{1}, \ldots r_{n}\right) \in G_{\mathcal{A}}\left(m_{R}\right)$ be such that $\left(p \operatorname{id}_{G_{\mathcal{A}}}\right) r=0$. Then for $[r]=$ ${ }^{t}\left(\left[r_{1}\right], \ldots,\left[r_{n}\right]\right) \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, one has $p \bar{l}_{\mathcal{A}}([r])=\bar{l}_{\mathcal{A}}\left(p \mathrm{id}_{G_{\mathcal{A}}}([r])\right) \in p W\left(m_{R}\right)^{n}$, and functional equation for $\bar{l}_{\mathcal{A}}$ gives

$$
\mathcal{A}^{*} \bar{I}_{\mathcal{A}}([r])=p \bar{l}_{\mathcal{A}}([r])-p[r] \in p W\left(m_{R}\right)^{n}
$$

Now lemma of n.1.6.1 gives $\bar{l}_{\mathcal{A}}([r]) \in p W\left(m_{R}\right)^{n}$. But $\bar{l}_{\mathcal{A}}: G_{\mathcal{A}}\left(m_{R}\right) \longrightarrow A_{\text {cris }}^{n} \otimes$ $\mathbb{Q}_{p} \bmod p W\left(m_{R}\right)$ is injective, c.f. n.1.5.1. Therefore, $r=0$, and $\left.p \mathrm{id}_{G_{A}}\right|_{G_{\Lambda}\left(m_{R}\right)}$ is injective.

Let $r_{0} \in G_{\mathcal{A}}\left(m_{R}\right)$. Take $r \in m_{R}^{n}$, such that $\mathcal{A}^{*}(r)=r_{0}$. Then $\mathcal{A}^{*}([r])=$ $\left[r_{0}\right]+p\left[r_{1}\right]+\cdots+p^{n}\left[r_{n}\right]+\ldots$ and

$$
\begin{gathered}
p \bar{l}_{\mathcal{A}}([r])=p[r]+\left(\mathcal{A}^{*}+\cdots+\mathcal{A}^{* u+1} / p^{u}+\ldots\right)([r])= \\
\quad=p[r]+\bar{l}_{\mathcal{A}}\left(\left[r_{0}\right]\right)+p \bar{l}_{\mathcal{A}}\left(\left[r_{1}\right]\right)+\ldots p^{n} \bar{l}_{\mathcal{A}}\left(\left[r_{n}\right]\right)+\ldots
\end{gathered}
$$

Therefore, $\bar{l}_{\mathcal{A}}\left(\left[r_{0}\right]\right) \equiv p \bar{l}_{\mathcal{A}}([h]) \bmod p W\left(m_{R}\right)$, where $h=r-G_{\mathcal{A}}\left(r_{1}+G_{\mathcal{A}}\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(r_{2}\right)+\right.$ $\left.\cdots+G_{\mathcal{A}}\left(p^{n} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(r_{n+1}\right)+\ldots\right)$. By n.1.5.1 we conclude $r_{0}=\left(p^{\operatorname{id}} G_{\mathcal{A}}\right) h$. Lemma is proved.
1.6.3. Lemma. For any $g \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ there exists the unique $h \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, such that $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}(h)=\bar{l}_{\mathcal{A}}(g)$.
Proof.
Existence. We can assume, that $g=g_{1}+_{G_{A}} w$, where $g_{1}=[r], r \in m_{R}^{n}$, and $w \in G_{\mathcal{A}}\left(p W\left(m_{R}\right)\right)$. Let $h_{1}^{\prime} \in W\left(m_{R}\right)^{n}$ be such that $\mathcal{A}^{*}\left(h_{1}^{\prime}\right)=g_{1}$, c.f. lemma 1.6.1. If $h_{1}^{\prime}=\sum_{\boldsymbol{s} \geqslant 0} p^{s}\left[r_{s}\right]$, take $h_{1}=\sum_{G_{\mathcal{A}}}\left(p^{s} \operatorname{idd}_{G_{\mathcal{A}}}\right)\left[r_{s}\right] \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$.

$$
\begin{aligned}
& \text { Then } \mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(h_{1}\right)=\sum_{s \geq 0} p^{s} \mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(\left[r_{s}\right]\right)= \\
& \begin{array}{c}
=\sum_{s \geq 0} p^{s}\left(\mathrm{id}+\mathcal{A}^{*} / p+\cdots+\mathcal{A}^{* m} / p^{m}+\ldots\right)\left(\mathcal{A}^{*}\left[r_{s}\right]\right)=\left(\mathrm{id}-\mathcal{A}^{*} / p\right)^{-1} \mathcal{A}^{*}\left(\sum_{s \geq 0} p^{s}\left[r_{s}\right]\right)= \\
=\left(\mathrm{id}-\mathcal{A}^{*} / p\right)^{-1} \mathcal{A}^{*}\left(h_{1}^{\prime}\right)=\left(\mathrm{id}-\mathcal{A}^{*} / p\right)^{-1}([r])=\bar{l}_{\mathcal{A}}\left(g_{1}\right)
\end{array}
\end{aligned}
$$

Because \mathcal{A}^{*} and $\bar{l}_{\mathcal{A}}$ are invertible on $p W\left(m_{R}\right)^{n}$, there exists $w_{1} \in G_{\mathcal{A}}\left(p W\left(m_{R}\right)\right)$, such that $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(w_{1}\right)=\bar{l}_{\mathcal{A}}(w)$. Therefore, $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(h_{1}+G_{\mathcal{A}} w_{1}\right)=g$.

Uniquiness. It is sufficient to prove, that for $h \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ the equality $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}(h)=0$ implies $h=0$. Let $h=[r]+G_{\mathcal{A}}(p w)$, where $r \in m_{R}^{n}, w \in W\left(m_{R}\right)^{n}$. Then $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}([r]) \in p W\left(m_{R}\right)$ and functional equation for $\bar{l}_{\mathcal{A}}$ gives $p \bar{l}_{\mathcal{A}}([r]) \in p W\left(m_{R}\right)$. Therefore, $\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)(r)=0$ in $G_{\mathcal{A}}\left(m_{R}\right)$ (c.f. n.1.5.1) and $r=0$ (c.f. n.1.6.2). So, $\mathcal{A}^{*} \bar{l}_{\mathcal{A}}(p w)=0$, but \mathcal{A}^{*} and $\bar{l}_{\mathcal{A}}$ are inversible on $p W\left(m_{R}\right)$, c.f. n.1.6.1.

1.7. Some properties of $A_{\text {cris }}$.

1.7.1. Let \mathbb{G}_{1} be one dimensional formal group over $W\left(k_{0}\right)$ with logarithm

$$
l_{\mathbf{G}_{1}}(X)=X+\frac{X^{p}}{p}+\cdots+\frac{X^{p^{*}}}{p^{s}}+\ldots
$$

\mathbb{G}_{1} is isomorphic to the multiplicative formal group $\hat{\mathbb{G}}_{m}$. Therefore, Tate module $T\left(\mathbb{G}_{1}\right)$ has \mathbb{Z}_{p}-rank 1 and Γ_{0} acts on $T\left(\mathbb{G}_{1}\right)$ via cyclotomic character $\chi: \Gamma_{0} \longrightarrow$ \mathbb{Z}_{p}^{*}. Filtered module $\mathcal{M}\left(\mathbb{G}_{1}\right)=\left(M^{0}\left(\mathbb{G}_{1}\right), M^{1}\left(\mathbb{G}_{1}\right)\right)$, where $M^{0}\left(\mathbb{G}_{1}\right)=M^{1}\left(\mathbb{G}_{1}\right)=$ $\operatorname{Hom}^{\Gamma_{0}}\left(T\left(\mathbb{G}_{1}\right)\right.$, Fil $\left.^{1} A_{\text {cris }}\right)$ has $W\left(k_{0}\right)$-rank 1, and there exists $W\left(k_{0}\right)$-generator y of $M^{0}\left(\mathbb{G}_{1}\right)$, such that $\phi_{1}(y)=y$.

Fix \mathbb{Z}_{p}-generator $o=\left(o_{s}\right)_{s \geq 0}$ of the Tate module $T\left(\mathbb{G}_{1}\right)$. Here all $o_{s} \in \mathbb{G}_{\mathrm{J}}\left(m_{C}\right)$, $\left(\operatorname{pid}_{\mathbf{G}_{1}}\right)\left(o_{s+1}\right)=o_{s}, o_{0}=0, o_{1} \neq 0$. Then we can fix $W\left(k_{0}\right)$-generator y of $M^{0}\left(\mathbb{G}_{1}\right)$ by relation

$$
\langle o, y\rangle=y(o)=\lim _{s \rightarrow \infty} p^{s} l_{\mathrm{G}_{1}}\left(\hat{o}_{s}\right),
$$

where $\hat{o}_{s} \in W(R)$ are such that $\gamma\left(\hat{o}_{s}\right) \equiv o_{s} \bmod p m_{C}$. This element $y(o)$ has the following properties: $y(o) \in \mathrm{Fil}^{1} A_{\text {cris }} \backslash p \mathrm{Fil}^{1} A_{\text {cris, }} \phi_{1} y(o)=y(o)$, and for any $\tau \in \Gamma_{0}$ one has $\tau y(o)=\chi(\tau) y(o)$, where χ is cyclotomic character of Γ_{0}. So, $y(o)$ generates additive Tate submodule $\mathbb{Z}_{p}(1)=\left\{a \in \mathrm{Fil}^{1} A_{\text {cris }} \mid \phi_{1}(a)=a\right\}$ of $A_{\text {cris }}$, and we can use standard notation $t^{+}=y(o)$ from [Fo3].
1.7.2. Let $\psi=\lim _{s \rightarrow \infty}\left(p^{s} \mathrm{id}_{\mathbb{G}_{1}}\right)\left(\hat{o}_{s}\right)$, where $o=\left(o_{s}\right) \in T\left(\mathbb{G}_{1}\right)$ and \hat{o}_{s} were defined in n.1.7.1. Then $\psi \in W^{1}\left(m_{R}\right)$ and $t^{+}=l_{\mathbf{G}_{1}}(\psi)$. Let $\psi_{1}=\sigma^{-1} \psi \in W\left(m_{R}\right)$. Then

$$
\left(p \operatorname{id}_{\mathbf{G}_{1}}\right)\left(\psi_{1}\right)=\lim _{s \rightarrow \infty}\left(p^{s+1} \operatorname{id}_{\mathbf{G}_{1}}\right)\left(\sigma^{-1} \hat{o}_{s}\right)=\lim _{s \rightarrow \infty}\left(p^{s} \operatorname{id}_{\mathbf{G}_{1}}\right)\left(p \mathrm{id}_{\mathbf{G}_{1}}\right)\left(\sigma^{-1} \hat{o}_{s}\right)=\psi
$$

because $\left(p \operatorname{id}_{\mathbf{G}_{1}}\right)\left(\sigma^{-1} \hat{o}_{s}\right) \equiv\left(\sigma^{-1} \hat{o}_{s}\right)^{p} \equiv \hat{o}_{s} \bmod W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)$.
Remark. We use, that if $r \in m_{R}$, then $\left(p \operatorname{id}_{\mathbf{G}_{1}}\right)(r)=r^{p}$ in $\mathbb{G}_{1}\left(m_{R}\right)$. Indeed,

$$
l_{\mathbb{G}_{1}}\left(p \operatorname{id}_{\mathbf{G}_{1}}([r])=p l_{\mathbf{G}_{1}}([r])=p[r]+l_{\mathbf{G}_{1}}\left(\left[r^{p}\right]\right)\right.
$$

so, $p \operatorname{id}_{\mathbf{G}_{1}}([r]) \equiv[r]^{p} \bmod p W\left(m_{R}\right)$ by n.1.5.1.
Therefore,

$$
\begin{equation*}
\psi=p \psi_{1}+\psi_{1}^{p}+\sum_{i \geqslant 0} c_{i} \psi_{1}^{i+1}, \tag{*}
\end{equation*}
$$

where all $c_{i} \in p W\left(\mathbb{F}_{p}\right)$. This gives $t=\psi / \psi_{1} \in W^{1}\left(m_{R}\right)=\operatorname{Ker} \gamma$. One can easily see, that t generates the ideal $W^{1}(R)$ of $W(R)$. In particular, $W^{1}\left(m_{R}\right)=t W\left(m_{R}\right)$.
1.7.3. Remark, that $A_{\text {cris }}$ is a p-adic completion of the ring $W(R)\left[t_{1}, \ldots, t_{s}, \ldots\right]$, where $t_{1}=t^{p} / p, \ldots, t_{s+1}=t_{s}^{p} / p, \ldots$ Therefore, the power series ring $\left.W(R)\left[t^{p} / p\right]\right]$ can be identified with p-adic closure of $W(R)\left[t_{1}, \ldots, p^{p^{2-2}+\cdots+1} t_{s}, \ldots\right]$ in $A_{\text {cris }}$.
Lemma. $W(R)\left[\left[t^{p} / p\right]\right]=W(R)\left[\left[\psi^{p-1} / p\right]\right]$
Proof.
The equation (*) of n.1.7.2 gives $\psi=p \psi_{1}+\varepsilon \psi_{1}^{p}$, where $\varepsilon=1+\sum_{i \geq 0} c_{i} \psi_{1}^{i} \in$ $W\left(m_{R}\right)^{*}$. Therefore, $t^{p} / p=\varepsilon^{p} \psi_{1}^{p(p-1)} / p+w$, where $w \in W\left(m_{R}\right)+p W(R)$. This gives $\psi_{1}^{p(p-1)} / p$ is topologically nilpotent element of $A_{\text {cris }}$ and

$$
W(R)\left[\left[t^{p} / p\right]\right]=W(R)\left[\left[\psi_{1}^{p(p-1)} / p\right]\right] .
$$

On the other hand, $\psi^{p-1} / p=\varepsilon^{p-1} \psi_{1}^{p(p-1)} / p+w_{1}$, where $w_{1} \in W\left(m_{R}\right)$. Therefore, ψ^{p-1} / p is topologically nilpotent element of $A_{\text {cris }}$ and

$$
W(R)\left[\left[\psi_{1}^{p(p-1)} / p\right]\right]=W(R)\left[\left[\psi^{p-1} / p\right]\right] .
$$

1.7.4. From topological nilpotency of ψ^{p-1} / p it follows, that $\eta=t^{+} / \psi=1+$ $\psi^{p-1} / p+\cdots+\psi^{p^{2}-1} / p^{s}+\ldots$ is invertible element of the ring $W(R)\left[\left[\psi^{p-1} / p\right]\right]$. Therefore, t^{+}and ψ are associated elements of $W(R)\left[\left[\psi^{p-1} / p\right]\right]$.

Lemma. σ / p acts nilpotently on the ideal $\psi^{p-1} / p W(R)\left[\left[\psi^{p-1} / p\right]\right]$ of the ring $W(R)\left[\left[\psi^{p-1} / p\right]\right]$.

Proof.

The above property $t^{+}=\psi \eta, \eta \in W(R)\left[\left[\psi^{p-1} / p\right]\right]^{*}$, gives

$$
\psi^{p-1} / p W(R)\left[\left[\psi^{p-1} / p\right]\right]=\left(t^{+}\right)^{p-1} / p W(R)\left[\left[\left(t^{+}\right)^{p-1} / p\right]\right] .
$$

$\operatorname{But}(\sigma / p)\left(\left(t^{+}\right)^{p-1} / p\right)=p^{p-2}\left(\left(t^{+}\right)^{p-1} / p\right)$, q.e.d.
1.7.5. Let \tilde{G} be a p-divisible group over $W\left(k_{0}\right)$ and let $\mathcal{M}(\tilde{G}) \in \operatorname{MF}_{W\left(k_{0}\right)}$ be given in notation of n.1.3. Then we have identification of Γ_{0}-modules

$$
T(\tilde{G})=\left\{\left.\binom{a}{b} \in A_{\text {cris }}^{h} \right\rvert\, a \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n},\binom{\phi_{1} a}{\phi_{0} b}=\mathcal{E}\binom{a}{b}\right\} .
$$

Let $T_{1}(\tilde{G})$ be Γ_{0}-module cosisting of all $\binom{a_{1}}{b_{1}} \in\left(W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{h}$, such that $a_{1} \in\left(W^{1}(R)+\left(\psi^{p-1} / p\right) W(R)\left[\left[\psi^{p-1} p\right]\right]\right)^{n}$ and $\binom{\phi_{1} a_{1}}{\phi_{0} b_{1}}=\mathcal{E}\binom{a_{1}}{b_{1}}$.

Clearly, a natural inclusion $W(R)\left[\left[\psi^{p-1} / p\right]\right] \longrightarrow A_{\text {cris }}$ gives Γ_{0}-morphism $\iota_{1}:$ $T_{1}(\tilde{G}) \longrightarrow T(\tilde{G})$.

The relation (*) of n.1.7.2 can be rewritten as $\sigma t=p+\psi^{p-1} \varepsilon_{1}$, where $\varepsilon_{1}=$ $1+\sum_{i \geq 1} c_{i} \psi^{i}$. If $w \in W^{1}(R)$, let $\bar{\phi}_{1}(w)=(\sigma w / \sigma t) \in W(R)$.

Then

$$
\begin{equation*}
\phi_{1}(w)=\frac{\sigma w}{p}=\bar{\phi}_{1}(w)\left(1+\frac{\psi^{p-1}}{p} \varepsilon_{1}\right) \equiv \bar{\phi}_{1}(w) \bmod \frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] . \tag{*}
\end{equation*}
$$

Let $T_{2}(\tilde{G})$ be Γ_{0}-module, which consists of all $\binom{a_{2}}{b_{2}} \in W(R)^{h}$, such that $a_{2} \in$ $W^{1}(R)^{n}$ and

$$
\binom{\bar{\phi}_{1} a_{2}}{\sigma b_{2}}=\mathcal{E}\binom{a_{2}}{b_{2}} .
$$

Let $T_{3}(\tilde{G})$ be Γ_{0}-module of all $\binom{a_{3}}{b_{3}} \in\left(W(R) \bmod \psi^{p-1} W(R)\right)^{h}$, such that $a_{3} \in$ $\left(W^{1}(R) \bmod \psi^{p-1} W(R)\right)^{n}$, and

$$
\binom{\tilde{\phi}_{1} a_{3}}{\sigma b_{3}}=\mathcal{E}\binom{a_{3}}{b_{3}}
$$

(here $\tilde{\phi}_{1}=\bar{\phi}_{1} \bmod \psi^{p-1}: W^{1}(R) \bmod \psi^{p-1} W(R) \longrightarrow W(R) \bmod \psi^{p-1} W(R)$).
Clearly, projections $W(R)\left[\left[\psi^{p-1} / p\right]\right] \longrightarrow W(R) \bmod \psi^{p-1} W(R) \longleftarrow W(R)$ induce Γ_{0}-morphisms

$$
T_{1}(\tilde{G}) \xrightarrow{\iota_{3}} T_{3}(\tilde{G}) \stackrel{\iota_{2}}{\longleftrightarrow} T_{2}(\tilde{G}) .
$$

In [Ab1] lemma of n.1.7.4 and the above relation (*) between ϕ_{1} and ϕ_{2} were used to prove the following
Proposition. The above maps ι_{1}, ι_{2} and ι_{3} are isomorphisms of Γ_{0}-modules.
Remark. In particular, values of the p-adic periods pairing belong to the subring $W(R)\left[\left[\psi^{p-1} / p\right]\right]$.
1.7.6. Lemmas of nn .1 .7 .3 and 1.7.4 give the following

Lemma. Let $\bar{l}_{\mathcal{A}}$ be logarithm vector power series from n.1.3. If $w \in W^{1}\left(m_{R}\right)$, then

$$
\bar{l}_{\mathcal{A}}(w) \in\left(W^{1}\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{n}
$$

Remark. It follows from this lemma, that values of the p-adic periods pairing of the formal group $G_{\mathcal{A}}$ belong to $W\left(m_{R}\right)+\left(\psi^{p-1} / p\right) W(R)\left[\left[\psi^{p-1} / p\right]\right]$.
1.8. Duality.
1.8.1. Let $\tilde{G}=\underset{s \geqslant 1}{\lim } G_{\mathcal{A}}[s]$ be the p-divisible group associated to the formal group $G_{\mathcal{A}}$. Consider the dual p-divisible group $\tilde{G}^{D}=\underset{s \geqslant 1}{\lim } G_{\mathcal{A}}^{D}[s]$, where $G_{\mathcal{A}}^{D}[s]$ are Cartier duals for the group schemes $G_{\mathcal{A}}[s]$. If $T\left(\tilde{G}^{D}\right)$ is Tate module of \tilde{G}^{D}, then Cartier duality gives nondegenerate pairing of Γ_{0}-modules

$$
\langle,\rangle_{T}: T\left(G_{\mathcal{A}}\right) \otimes \mathbf{z}_{p} T\left(\tilde{G}^{D}\right) \longrightarrow T\left(\mathbb{G}_{1}\right)
$$

Fix \mathbb{Z}_{p}-basis o^{1}, \ldots, o^{h} of $T\left(G_{\mathcal{A}}\right)$ and denote by $o^{* 1}, \ldots, o^{* h} \mathbb{Z}_{p}$-basis of $T\left(\tilde{G}^{D}\right)$, such that $\left\langle o^{i}, o^{* j}\right\rangle_{T}=\delta_{i j} o$, where o is the generator of $T\left(\mathbb{G}_{1}\right)$ chosen in n.1.7.
1.8.2. Let $\mathcal{M}\left(\tilde{G}^{D}\right)=\left(M^{0}\left(\tilde{G}^{D}\right), M^{1}\left(\tilde{G}^{D}\right)\right) \in \mathrm{MF}_{W\left(k_{0}\right)}$ be filtered module of the p-divisible group \tilde{G}^{D}. One can use functorial properties of tensor product in the category of admissible filtered modules of length of filtration 2, c.f. [F-L], [Fo2], to express Cartier duality as a morphism in this category

$$
\Delta_{\mathcal{M}}: \mathcal{M}\left(\mathbb{G}_{1}\right) \longrightarrow \mathcal{M}\left(G_{\mathcal{A}}\right) \otimes \mathcal{M}\left(\tilde{G}^{D}\right)
$$

If $l_{1}, \ldots, l_{n}, m_{1}, \ldots, m_{h-n}$ is a special basis of $M^{0}\left(G_{\mathcal{A}}\right)$, chosen in n.1.3, and $y \in M^{1}\left(\mathbb{G}_{1}\right)$ is the element from n.1.7.1, then
a) $\Delta_{\mathcal{M}}(y)=l_{1} \otimes m_{1}^{*}+\cdots+l_{n} \otimes m_{n}^{*}+m_{1} \otimes l_{1}^{*}+\cdots+m_{h-n} \otimes l_{h-n}^{*} \in M^{0}\left(G_{\mathcal{A}}\right) \otimes$ $M^{0}\left(\tilde{G}^{D}\right)$, where $l_{1}^{*}, \ldots, l_{h-n}^{*}$ is $W\left(k_{0}\right)$-basis of $M^{1}\left(\tilde{G}^{D}\right)$ and $m_{1}^{*}, \ldots, m_{n}^{*}, l_{1}^{*}, \ldots, l_{h-n}^{*}$ is $W\left(k_{0}\right)$-basis of $M^{0}\left(\tilde{G}^{D}\right)$;
b) $\Delta_{\mathcal{M}}\left(\phi_{1} y\right)=\phi_{1}\left(l_{1}\right) \otimes \phi_{0}\left(m_{1}^{*}\right)+\cdots+\phi_{1}\left(l_{n}\right) \otimes \phi_{0}\left(m_{n}^{*}\right)+\phi_{0}\left(m_{1}\right) \otimes \phi_{1}\left(l_{1}^{*}\right)+\cdots+$ $\phi_{0}\left(m_{h-n}\right) \otimes \phi_{1}\left(l_{h-n}^{*}\right)$.

These properties of the copairing $\Delta_{\mathcal{M}}$ give the following structure of the filtered module $\mathcal{M}\left(\tilde{G}^{D}\right)$. If $\bar{m}^{D}={ }^{t}\left(m_{1}^{*}, \ldots, m_{n}^{*}\right), \bar{l}^{D}={ }^{t}\left(l_{1}^{*}, \ldots, l_{h-n}^{*}\right)$, then

$$
\begin{equation*}
\binom{\phi_{0} \bar{m}^{D}}{\phi_{1} \bar{l}^{D}}={ }^{t} \mathcal{E}^{-1}\binom{\bar{m}^{D}}{\bar{l}^{D}} \tag{*}
\end{equation*}
$$

where $\mathcal{E} \in \mathrm{GL}_{h}\left(W\left(k_{0}\right)\right)$ gives structure of the filtered module $\mathcal{M}\left(G_{\mathcal{A}}\right)$, c.f. n.1.3.
Indeed, we have $\phi_{1}(\vec{l})=A_{1} \bar{l}+B_{1} \bar{m}, \phi_{0} \vec{m}=C_{1} \bar{l}+D_{1} \bar{m}$, where $\mathcal{E}=\left(\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$ (c.f. n.1.3). In evident notation we have

$$
\begin{gathered}
\Delta_{\mathcal{M}}\left(\phi_{1} y\right)=\sum_{1 \leqslant i \leqslant n} \phi_{1}\left(l_{i}\right) \otimes \phi_{0}\left(m_{i}^{*}\right)+\sum_{1 \leqslant j \leqslant h-n} \phi_{0}\left(m_{j}\right) \otimes \phi_{1}\left(l_{j}^{*}\right)= \\
=\phi_{1}(\bar{l}) \otimes \phi_{0}\left(\bar{m}^{D}\right)+\phi_{0}(\bar{m}) \otimes \phi_{1}\left(\bar{l}^{D}\right)=\left(A_{1} \bar{l}+B_{1} \bar{m}\right) \otimes \phi_{0}\left(\bar{m}^{D}\right)+\left(C_{1} \bar{l}+D_{1} \bar{m}\right) \otimes \phi_{1}\left(\bar{l}^{D}\right)= \\
=\bar{l} \otimes\left({ }^{t} A_{1} \phi_{0}\left(\bar{m}^{D}\right)+{ }^{t} C_{1} \phi_{1}\left(\bar{l}^{D}\right)\right)+\bar{m} \otimes\left({ }^{t} B_{1} \phi_{0}\left(\bar{m}^{D}\right)+{ }^{t} D_{1} \phi_{1}\left(\bar{l} \bar{l}^{D}\right)\right) .
\end{gathered}
$$

Now the equality $\Delta_{\mathcal{M}}\left(\phi_{1} y\right)=\Delta_{\mathcal{M}}(y)=\bar{l} \otimes \bar{m}^{D}+\bar{m} \otimes \bar{l}^{D}$ gives the relation (*):

$$
\binom{\bar{m}^{D}}{\bar{l}^{D}}=\left(\begin{array}{cc}
{ }^{t} A_{1} & { }^{t} C_{1} \\
{ }^{t} B_{1} & { }^{t} D_{1}
\end{array}\right)\binom{\phi_{0}\left(\bar{m}^{D}\right)}{\phi_{1}\left(\bar{l}^{D}\right)}={ }^{t} \mathcal{E}\binom{\phi_{0}\left(\bar{m}^{D}\right)}{\phi_{1}\left(\bar{l}^{D}\right)}
$$

1.8.3. Let $l_{1}, \ldots, l_{n}, m_{1}, \ldots, m_{h-n}$ and $m_{1}^{*}, \ldots, m_{n}^{*}, l_{1}^{*}, \ldots, l_{h-n}^{*}$ be above special basises of $M^{0}\left(G_{\mathcal{A}}\right)$ and $M^{0}\left(\tilde{G}^{D}\right)$, and let o^{1}, \ldots, o_{h} and $o^{* 1}, \ldots, o^{* h}$ be special basises of $T\left(G_{\mathcal{A}}\right)$ and $T\left(\tilde{G}^{D}\right)$ from n.1.8.1.

Consider matrices of values of the p-adic periods pairing in these basises

$$
\mathcal{V}=\left(\begin{array}{ccc}
\left\langle o^{1}, \bar{l}\right\rangle & \ldots & \left\langle o^{h}, \bar{l}\right\rangle \\
\left\langle o^{1}, \bar{m}\right\rangle & \ldots & \left\langle o^{h}, \bar{m}\right\rangle
\end{array}\right) \quad \mathcal{V}^{D}=\left(\begin{array}{ccc}
\left\langle o^{* 1}, \bar{m}^{D}\right\rangle & \ldots & \left\langle o^{* h}, \bar{m}^{D}\right\rangle \\
\left\langle o^{* 1}, \bar{l}^{D}\right\rangle & \ldots & \left\langle o^{* h}, \bar{l}^{D}\right\rangle
\end{array}\right)
$$

Then compatibility of the p-adic periods pairing with tensor product gives

Proposition.

$$
{ }^{t} \mathcal{V}^{D} \mathcal{V}=t^{+} E_{h}
$$

where E_{h} is the unity matrix of order h.
Remark. In evident notation matrices \mathcal{V} and \mathcal{V}^{D} satisfy the following properties

$$
\binom{\phi_{1}}{\phi_{0}} \mathcal{V}=\mathcal{E} \mathcal{V},\binom{\phi_{0}}{\phi_{1}} \mathcal{V}^{D}={ }^{t} \mathcal{E}^{-1} \mathcal{V}^{D}
$$

1.8.4. In notation of n.1.7.5 denote by $\iota_{\tilde{G}}$ the isomorphism of Γ_{0}-modules $\iota_{\bar{G}}=$ $\iota^{-1} \circ \iota_{3} \circ \iota_{2}^{-1}: T(\tilde{G}) \longrightarrow T_{2}(\tilde{G})$. For $1 \leq i \leq h$ we have

$$
\iota_{G_{\mathcal{A}}}\binom{\left\langle o^{i}, \bar{l}\right\rangle}{\left\langle o^{i}, \bar{m}\right\rangle}=\binom{a_{i}}{b_{i}} \in W\left(m_{R}\right)^{h}
$$

where $a_{i} \in W^{1}\left(m_{R}\right)^{n}$ and $\binom{\bar{\phi}_{1} a_{i}}{\sigma b_{i}}=\mathcal{E}\binom{a_{i}}{b_{i}}$.
Similarly, for $1 \leq i \leq h$, we have

$$
\iota_{\tilde{G}^{D}}\binom{\left\langle o^{* i}, \bar{m}^{D}\right\rangle}{\left\langle o^{* i}, \bar{l}^{D}\right\rangle}=\binom{b_{i}^{D}}{a_{i}^{D}} \in W\left(m_{R}\right)^{h},
$$

where $a_{i}^{D} \in W^{1}\left(m_{R}\right)^{h-n}$ and $\binom{\sigma b_{i}^{D}}{\bar{\phi}_{1} a_{i}^{D}}={ }^{t} \mathcal{E}^{-1}\binom{b_{i}^{D}}{a_{i}^{D}}$.
For the formal group \mathbb{G}_{1} from n.1.7.1 we have $\iota_{\mathbf{G}_{1}}\left(t^{+}\right)=\psi$.
Introduce matrices of order h

$$
\iota_{G_{A}}(\mathcal{V})=\hat{\mathcal{V}}=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{h} \\
b_{1} & \ldots & b_{h}
\end{array}\right), \quad \iota_{\hat{G}^{D}}\left(\mathcal{V}^{D}\right)=\hat{\mathcal{V}}^{D}=\left(\begin{array}{ccc}
b_{1}^{D} & \ldots & b_{h}^{D} \\
a_{1}^{D} & \ldots & a_{h}^{D}
\end{array}\right) .
$$

By construction we have the following properties

$$
\begin{gathered}
\binom{\bar{\phi}_{1}}{\sigma} \hat{\mathcal{V}}=\left(\begin{array}{ccc}
\bar{\phi}_{1} a_{1} & \ldots & \bar{\phi}_{1} a_{h} \\
\sigma b_{1} & \ldots & \sigma b_{h}
\end{array}\right)=\mathcal{E} \hat{\mathcal{V}} \\
\binom{\sigma}{\bar{\phi}_{1}} \hat{\mathcal{V}}^{D}=\left(\begin{array}{ccc}
\sigma b_{1}^{D} & \ldots & \sigma b_{h}^{D} \\
\bar{\phi}_{1} a_{1}^{D} & \ldots & \bar{\phi}_{1} a_{h}^{D}
\end{array}\right)={ }^{t} \mathcal{E}^{-1} \hat{\mathcal{V}}^{D}
\end{gathered}
$$

and proposition of n.1.8.3 gives

$$
{ }^{t} \hat{\mathcal{V}}^{D} \circ \hat{\mathcal{V}}=\psi E_{h}
$$

2. Crystalline symbol and its relation to the formal group symbol.

2.1. Recall, c.f. n. 1.5.4, that

$$
j: T\left(G_{\mathcal{A}}\right) \longrightarrow G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)
$$

is injective morphism of Γ_{0}-modules, and

$$
\operatorname{Im} j=\left\{w \in G_{\mathcal{A}}\left(W^{\mathbf{1}}\left(m_{R}\right)\right) \left\lvert\, \bar{l}_{\mathcal{A}}(w)=\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(w)\right.\right\}
$$

Let

$$
\psi: G_{\mathcal{A}}\left(W\left(m_{R}\right)\right) \longrightarrow A_{\mathrm{cris}}^{n} \otimes \mathbb{Q}_{p}
$$

be Γ_{0}-morphism defined by the correspondence $g \mapsto p \bar{l}_{\mathcal{A}}(g)-\mathcal{A}^{*} \bar{l}_{\mathcal{A}}(g)$ for any $g \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$.
Proposition. If $\psi^{1}=\left.\psi\right|_{G_{A}\left(W^{1}\left(m_{R}\right)\right)}$, then $\operatorname{Im} \psi^{1}=p W\left(m_{R}\right)^{n}$ and, therefore, we have exact sequence of Γ_{0}-modules

$$
0 \longrightarrow T\left(G_{\mathcal{A}}\right) \xrightarrow{j} G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right) \xrightarrow{\psi^{1}} p W\left(m_{R}\right)^{n} \longrightarrow 0 .
$$

Proof.
2.2.1. Lemma. Let $r \in G_{\mathcal{A}}\left(m_{R}\right)$, and for $s \in \mathbb{N}$ let $r_{s} \in G_{\mathcal{A}}\left(m_{R}\right)$ be such that $\left(p^{s} \mathrm{id}_{G_{\Lambda}}\right)\left(r_{s}\right)=r$. Then
a) there exists $\lim _{s \rightarrow \infty}\left(p^{s} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\left[r_{s}\right]\right):=\delta(r) \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$;
b) $r=\delta(r) \bmod p W\left(m_{R}\right)$;
c) $\psi(\delta(r))=0$.

Proof.

a) and b) can be proved by arguments of n.1.5.2.
c) follows, because for any $s \in \mathbb{N}$ one has

$$
\begin{aligned}
& p \bar{l}_{\mathcal{A}}\left(\left(p^{\boldsymbol{s}} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\left[r_{s}\right]\right)\right)-\mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(\left(p^{s} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(\left[r_{s}\right]\right)\right)= \\
= & p^{s}\left(p \bar{l}_{\mathcal{A}}\left(\left[r_{s}\right]\right)-\mathcal{A}^{*} \bar{l}_{\mathcal{A}}\left(\left[r_{s}\right]\right)\right)=p^{s+1}[r] \in W_{s+1}\left(m_{R}\right)
\end{aligned}
$$

2.2.2. $\psi\left(G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)\right)=\psi\left(G_{\mathcal{A}}\left(p W\left(m_{R}\right)\right)\right)$.

This follows from the above lemma, because if $w \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ and $r=$ $w \bmod p W\left(m_{R}\right) \in G_{\mathcal{A}}\left(m_{R}\right)$, then $w=\delta(r)+G_{\mathcal{A}} w_{1}$, where $w_{\mathcal{1}} \in G_{\mathcal{A}}\left(p W\left(m_{R}\right)\right)$.
2.2.3. $\psi\left(G\left(p W\left(m_{R}\right)\right)\right)=p W\left(m_{R}\right)^{n}$.

Indeed, let $g \in G_{\mathcal{A}}\left(p^{i} W\left(m_{R}\right)\right)$ for some $i \geq 1$. Then $\bar{l}_{\mathcal{A}}(g) \equiv g \bmod p^{i+1} W\left(m_{R}\right)$ and

$$
\psi(g) \equiv-p^{i} \mathcal{A}^{*}(r) \bmod p^{i+1} W\left(m_{R}\right)
$$

where $r \in m_{R}^{n}$ is such that $g \equiv p^{i}[r] \bmod p^{i+1} W\left(m_{R}\right)$.
By n.1.6.1 the operator $\left.\mathcal{A}^{*}\right|_{m_{R}^{n}}$ is invertible, therefore, for every $i \geq 1$ the map ψ induces bijection of $p^{i} W\left(m_{R}\right) \bmod p^{i+1} W\left(m_{R}\right)$.
2.2.4. Lemma. For any $a \in G_{\mathcal{A}}\left(m_{C}\right)$ there exists $r \in G_{\mathcal{A}}\left(m_{R}\right)$, such that $\gamma(\delta(r))=a$.
Proof.
Choose a sequence $\left\{a_{s}\right\}_{s \geq 0}$ of $a_{s} \in G_{\mathcal{A}}\left(m_{C}\right)$, such that $a_{0}=a$ and $\left(p \operatorname{id}_{G_{\mathcal{A}}}\right)\left(a_{s+1}\right)=$ a_{s} for all $s \geq 0$. Let $r_{s}^{\prime} \in G_{\mathcal{A}}\left(m_{R}\right)$ be such that $\gamma\left(r_{s}^{\prime}\right)=a_{s}$. Then one can use arguments of n.1.5.2 to verify the following properties
a) there exists $\lim _{s \rightarrow \infty}\left(p^{s} \mathrm{id}_{G_{\mathcal{A}}}\right)\left(\left[r_{s}^{\prime}\right]\right):=w \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$.
b) if $w \bmod p W\left(m_{R}\right)=r \in G_{\mathcal{A}}\left(m_{R}\right)$, then $w=\delta(r)$.

Now lemma is proved, because $\gamma(w)=\lim _{s \rightarrow \infty}\left(p^{s} \mathrm{id}_{G_{\mathcal{A}}}\right)\left(a_{s}\right)=a$.
2.2.5. $\psi^{1}\left(G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)\right)=p W\left(m_{R}\right)^{n}$.

Indeed, if $w \in p W\left(m_{R}\right)^{n}$ and $g \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$ is such that $\psi(g)=w$, take $r \in$ $G_{\mathcal{A}}\left(m_{R}\right)$, such that $\gamma(\delta(r))=\gamma(g) \in G_{\mathcal{A}}\left(m_{C}\right)$. Then $g^{\prime}-G_{\mathcal{A}} \delta(r) \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)$ and $\psi^{1}\left(g^{\prime}\right)=\psi(g)=w$.

Proposition is proved.

2.3. Crystalline symbol.

2.3.1. Fix a natural number M. Let K be a finite extension of K_{0} in \bar{K}, such that all geometric points of the group scheme $G_{\mathcal{A}}[M]=\operatorname{Ker}\left(p^{M} \operatorname{id}_{G_{\mathcal{A}}}\right)$ are defined over K. This means, that

$$
G_{\mathcal{A}}[M]\left(m_{C}\right)=G_{\mathcal{A}}[M]\left(m_{K}\right),
$$

where m_{K} is the maximal ideal of the valuation ring of the field K.
We use explicite description of the structure of the filtered module $\mathcal{M}\left(G_{\mathcal{A}}\right)$ from n.1.3 and nondegenerancy of the p-adic periods pairing modulo p^{M} to identify $G_{\mathcal{A}}[M]\left(m_{C}\right)$ with the group $U_{M}\left(\mathcal{M}\left(G_{\mathcal{A}}\right)\right)$ of vector-columns $\binom{y}{z} \bmod p^{M} A_{\text {cris }} \in$ $A_{\text {cris }, M}^{h}$, such that $y \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}, z \in A_{\text {cris }}^{h-n}$ and $\binom{\phi_{1}(y)}{\phi_{0}(z)}=\mathcal{E}\binom{y}{z}$.

In these terms the equality $G_{\mathcal{A}}[M]\left(m_{C}\right)=G_{\mathcal{A}}[M]\left(m_{K}\right)$ means, that for any $\binom{y}{z} \bmod p^{M} A_{\text {cris }} \in U_{M}(\mathcal{M}(G))$ and any $\tau \in \Gamma_{K}=\operatorname{Gal}(\bar{K} / K)$ one has

$$
\tau\binom{y}{z}-\binom{y}{z} \in p^{M} A_{\mathrm{cris}}^{h}
$$

2.3.2. Let t^{+}be a generator of the additive Tate module in $A_{\text {cris }}$ from n.1.7.1, and $A_{\text {cris }}^{l o c}$ be the maximal subring in $A_{\text {cris }}$, where action of σ is topologically nilpotent. Take

$$
\alpha \in\left(A_{\text {cris }}^{n} \bmod t^{+} A_{\text {cris }}^{l o c}\right)^{\Gamma_{K}}=\left\{\alpha \in A_{\text {cris }}^{n} \mid \forall \tau \in \Gamma_{K} \tau \alpha \equiv \alpha \bmod t^{+} A_{\text {cris }}^{l o c}\right\}
$$

take $\tau \in \Gamma_{K}$ and define the value of crystalline symbol $(\alpha, \tau]_{\text {cris }} \in G_{\mathcal{A}}[M]\left(m_{K}\right)$ as follows:
if $\binom{Y}{Z} \in A_{\text {cris }}^{h}$ is such that $Y \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$ and

$$
\begin{equation*}
\binom{Y}{Z}=\mathcal{E}^{-1}\binom{\phi_{1}(Y)}{\phi_{0}(Z)}+\binom{\alpha}{0} \tag{*}
\end{equation*}
$$

then $(\alpha, \tau]_{\text {cris }}$ is the element $\binom{y}{z} \bmod p^{M} A_{\text {cris }}$ of $G_{\mathcal{A}}[M]\left(m_{K}\right)=U_{M}\left(\mathcal{M}\left(G_{\mathcal{A}}\right)\right)$, such that

$$
\tau\binom{Y}{Z}-\binom{Y}{Z} \equiv\binom{y}{z} \bmod t^{+} A_{\text {cris }}^{l o c}
$$

Remark. This symbol is related to the filtered module $\mathcal{M}\left(G_{\mathcal{A}}\right)$, or equivalently, to the formal group $G_{\mathcal{A}}$. When this dependance is important for us, we write $(\alpha, \tau]_{G_{\mathcal{A}}, \text { cris }}$.
2.3.3. Lemma. The above definition of $(\alpha, \tau]_{\text {cris }}$ is correct.

Proof.

Solvability of the equation (*) of $n .2 .3 .2$ can be deduced from $n .5$ of [F-L] (where it is considered a case of more general filtered modules). In fact, we apply below crystalline symbol only for $\alpha \in W\left(m_{R}\right)^{n}$, where solvability of the equation (*) follows from proposition of n .2 .1 .

Existence of $\binom{y}{z}$.

$$
\begin{aligned}
\text { If }\binom{A}{B}=\tau\binom{Y}{Z}- & \binom{Y}{Z}, \text { then } \\
& \binom{A}{B}=\mathcal{E}^{-1}\binom{\phi_{1}(A)}{\phi_{0}(B)}+\binom{\alpha_{\tau}}{0}
\end{aligned}
$$

where $\alpha_{\tau} \in\left(t^{+} A_{\text {cris }}^{l o c}\right)^{n}$. But the operator

$$
\mathcal{E}^{-1}\binom{\phi_{1}}{\phi_{0}}=\left(\begin{array}{ll}
A & p B \\
C & p D
\end{array}\right) \phi_{1}:\binom{a}{b} \mapsto\binom{A \phi_{1}(a)+p B \phi_{1}(b)}{C \phi_{1}(a)+p D \phi_{1}(b)}
$$

is nilpotent on $\left(t^{+} A_{\text {cris }}^{l o c}\right)^{h}$, therefore, we can define

$$
\binom{\beta_{1}}{\beta_{0}}=\sum_{s \geq 0}\left\{\mathcal{E}^{-1}\binom{\phi_{1}}{\phi_{0}}\right\}^{s}\binom{\alpha_{\tau}}{0} \in\left(t^{+} A_{\mathrm{cris}}^{l o c}\right)^{h} .
$$

Clearly, $\binom{\beta_{1}}{\beta_{0}}=\mathcal{E}^{-1}\binom{\phi_{1}\left(\beta_{1}\right)}{\phi_{0}\left(\beta_{0}\right)}+\binom{\alpha_{r}}{0}$, and we can take $\binom{y}{z}=\binom{Y}{Z}-\binom{\beta_{1}}{\beta_{0}}$.
Uniquiness of $\binom{y}{z}$.
If $\tau\binom{Y}{Z}-\binom{Y}{Z} \equiv\binom{y_{1}}{z_{1}} \bmod t^{+} A_{\text {cris }}^{l o c}$, then $\binom{a}{b}=\binom{y}{z}-\binom{y_{1}}{z_{1}} \in\left(t^{+} A_{\text {cris }}^{l o c}\right)^{h}$
. and satisfies the relation

$$
\binom{a}{b}=\mathcal{E}^{-1}\binom{\phi_{1}}{\phi_{0}}\binom{a}{b}
$$

Therefore, $\binom{a}{b}=\left\{\mathcal{E}^{-1}\binom{\phi_{1}}{\phi_{0}}\right\}^{N}\binom{a}{b} \underset{N \rightarrow \infty}{\longrightarrow}\binom{0}{0}$, because $\mathcal{E}^{-1}\binom{\phi_{1}}{\phi_{0}}$ is topologically nilpotent on $\left(t^{+} A_{c r i s}^{l o c}\right)^{h}$.

Independence of the choice of $\binom{Y}{Z}$.
If $\binom{Y_{1}}{Z_{1}} \in A_{\text {cris }}^{h}$ can be taken instead of $\binom{Y}{Z}$, then $\binom{Y_{1}}{Z_{1}}=\binom{Y}{Z}+\binom{a}{b}$, where $\binom{a}{b} \bmod p^{M} A_{\text {cris }} \in U_{M}(\mathcal{M}(G))$. But $\tau \in \Gamma_{K}$ and, therefore, $\tau\binom{a}{b} \equiv$ $\binom{a}{b} \bmod p^{M} A_{\text {cris }}^{h}$, c.f. n. 2.3.1.
2.4. Symbol $(\alpha, \tau]_{\text {cris }}$ in terms of operator \mathcal{A}^{*}.

Use notation from the above definition of $(\alpha, \tau]_{\text {cris. }}$. Then vector $\binom{Y}{Z}$ appears as a solution of the system
(*)

$$
Y=A \frac{\sigma Y}{p}+B \sigma Z+\alpha
$$

$$
Z=C \frac{\sigma Y}{p}+D \sigma Z
$$

One can easily verify, that the correspondence $\binom{Y}{Z} \mapsto Y$, where $Y \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$, $Z \in A_{\text {cris }}^{h-n}$, gives one-to-one correspondence between solutions $\binom{Y}{Z}$ of the above system (*) and solutions $Y \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$ of the relation

$$
Y-\frac{\mathcal{A}^{*}}{p} Y=\alpha
$$

So, calculation of the value $o_{M} \in G[M]\left(m_{K}\right)$ of ($\left.\alpha, \tau\right]_{\text {cris }}$ can be done as follows:
a) find $Y \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$, such that $Y-\mathcal{A}^{*} Y / p=\alpha$;
b) find $y \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$, such that $y=\mathcal{A}^{*} y / p$ and $\tau Y-Y \equiv y \bmod t^{+} A_{\text {cris }}^{l o c}$;
c) find $o_{M} \in G[M]\left(m_{K}\right)$, such that $y \equiv p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}\right) \bmod p^{M} A_{\text {cris }}$, where $\hat{o}_{M} \in$ $W\left(m_{R}\right)$ and $\gamma\left(\hat{o}_{M}\right) \equiv o_{M} \bmod p m_{C}$.

2.5. Homomorphism $\Theta_{G_{\mathcal{A}}}$.

2.5.1. Fix some uniformizer $\pi \in K$ and denote residue field of K by k. Fix $t_{0} \in m_{R}$, such that $t_{0}^{(0)}=\pi$ (it is equivalent to choosing of a sequence $\pi_{s} \in m_{C}$, such that $\pi_{0}=\pi$ and $\pi_{s+1}^{p}=\pi_{s}$ for all $s \geq 0$).

Let $\left.O_{k, \bar{t}}=W(k)[\tilde{t}]\right] \subset W(R)$, where $\tilde{t}=\left[t_{0}\right]$, and let $m_{k, \tilde{t}}=\tilde{t} W(k)[[\tilde{t}]]=$ $O_{k, \tilde{i}} \cap W\left(m_{R}\right)$. Remark, that $\gamma(\tilde{t})=\pi$ and, therefore, $\gamma\left(O_{k, \tilde{t}}\right)=O_{K}, \gamma\left(m_{k, \tilde{t}}\right)=$ m_{K}.

As usually, denote by $m_{k, i}^{n}$ the space of vector-columns of order n with coordinates in $m_{k, i}$. We use the following abbreviated form for elements of $m_{k, i}^{n}$

$$
\sum_{i \in \mathbf{N}^{\mathbf{N}}} w_{\mathbf{i}} \tilde{T}^{i}={ }^{t}\left(\sum_{i_{1} \in \mathbf{N}} w_{i_{1}} \tilde{t}^{i_{1}}, \ldots, \sum_{i_{n} \in \mathbf{N}} w_{i_{n}} \tilde{t}^{i_{n}}\right),
$$

where $w_{i}={ }^{t}\left(w_{i_{1}}, \ldots, w_{i_{n}}\right) \in W(k)^{n}$ and $\bar{i}={ }^{t}\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$.
2.5.2. Let $\sum w_{i} \hat{t}^{7}$ be some element of $m_{k, \tilde{i}}^{n}$. If $w_{i}=\sum_{s \geq 0} p^{s}\left[\alpha_{i, s}\right]$, where $\alpha_{i, s}=$ ${ }^{t}\left(\alpha_{i_{1}, s}, \ldots, \alpha_{i_{n}, s}\right) \in k^{n}$ and $\left[\alpha_{i_{,}, s}\right]={ }^{t}\left(\left[\alpha_{i_{1}, s}\right], \ldots,\left[\alpha_{i_{n}, s}\right]\right)$, set
(here the right hand sum is the sum of points in the group $G_{\mathcal{A}}\left(m_{k, t}\right)$).
So, we obtained the map $\Theta_{G_{\mathcal{A}}, 1}=\Theta_{1}: m_{k, \bar{t}}^{n} \longrightarrow G_{\mathcal{A}}\left(m_{k, \bar{t}}\right)$.
Lemma. Θ_{1} is group isomorphism.
Proof.

$$
\begin{aligned}
& =\sum_{\substack{s \geqslant 0 \\
\mathfrak{i} \in \mathbf{N}^{n}}} p^{s} \bar{l}_{\mathcal{A}}\left(\left[\alpha_{\mathfrak{i}, s}\right] \tilde{t}^{\mathcal{i}}\right)=\sum_{\substack{s \geqslant 0 \\
\mathfrak{i} \in \mathbf{N}^{n}}} p^{s}\left(\operatorname{id}-\frac{\mathcal{A}^{*}}{p}\right)^{-1}\left(\left[\alpha_{\hat{i}, s}\right] \tilde{t}^{\hat{i}}\right)=
\end{aligned}
$$

$$
=\left(\mathrm{id}-\frac{\mathcal{A}^{*}}{p}\right)^{-1}\left(\sum_{i \in \mathbb{N}^{n}} w_{\mathrm{i}} \tilde{t}^{-1}\right) .
$$

So, $\Theta_{1} \circ \bar{l}_{\mathcal{A}}$ is \mathbb{Z}_{p}-linear map $m_{k, \tilde{t}}^{n} \longrightarrow A_{c r i s}^{n}$ and, therefore, Θ_{1} is group homomorphism. This formula shows also, that Θ_{1} is isomorphism and the correspondence

$$
g \mapsto \bar{l}_{\mathcal{A}}(g)-\frac{\mathcal{A}^{*}}{p} \tilde{l}_{\mathcal{A}}(g)
$$

gives inverse homomorphism $\Theta_{1}^{-1}: G_{\mathcal{A}}\left(m_{k, \bar{t}}\right) \longrightarrow m_{k, \tilde{i}}^{n}$.
Remark.
In the above proof we obtained the identity

$$
\bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right)=\left(\mathrm{id}+\frac{\mathcal{A}^{*}}{p}+\cdots+\frac{\mathcal{A}^{* s}}{p^{s}}+\ldots\right)(\alpha)
$$

for any $\alpha \in m_{k, \tilde{i}}^{n}$.
2.5.3. Define the homomorphism $\Theta_{G_{\mathcal{A}}}=\Theta: m_{k, i}^{n} \longrightarrow G_{\mathcal{A}}\left(m_{K}\right)$ as a composition of Θ_{1} and of $\gamma: G_{\mathcal{A}}\left(m_{k, \bar{t}}\right) \longrightarrow G_{\mathcal{A}}\left(m_{K}\right)$. Clearly, Θ is surjection.

A relation between vector power series $f(\tilde{t}) \in m_{k, \tilde{i}}^{n}$ and n-vector $\beta=\Theta(f(\tilde{t})) \in$ m_{K}^{n} can be explained in a following way.

Take any presentation of β in a form $\beta=\sum_{i \in \mathbb{N}^{n}} w_{i} \pi^{i}$, define vector power series $\beta(\tilde{t})=\sum_{\tilde{i} \in \mathbf{N}^{n}} w_{i} \tilde{t}^{\tilde{i}}$, then for

$$
f(\tilde{t})=\bar{l}_{\mathcal{A}}(\beta(\tilde{t}))-\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(\beta(\tilde{t}))
$$

one has $f(\tilde{t}) \in m_{k, \tilde{t}}^{n}$ and $\Theta(f(\tilde{t}))=\beta$.
2.6. Lemma. Let $\alpha \in m_{k, \bar{t}}^{n} \subset W\left(m_{R}\right)$. If $\tau \in \Gamma_{K}$, then $\tau \alpha-\alpha \in\left(t^{+} A_{\text {cris }}^{l o c}\right)^{n}$.

Proof.
It is sufficient to check that $\tau \tilde{t}-\tilde{t} \in t^{+} A_{\text {cris }}^{\text {loc }}$.
One can take a generator of the additive Tate submodule in $A_{\text {cris }}$ in a form $t^{+}=\log [\varepsilon]$, where $\varepsilon=\left(\varepsilon^{(s)}\right)_{s \geq 0} \in R$ is such that $\varepsilon^{(0)}=1, \varepsilon^{(1)} \neq 1$. Remark, $t^{+}=([\varepsilon]-1) \eta$, where η invertible in $A_{\text {cris }}$.

There exists $a=a_{\tau} \in \mathbb{Z}_{p}$, such that $\tau \tilde{t}=\tilde{t}[\varepsilon]^{a}$. This gives $\tau \tilde{t}-\tilde{t}=\tilde{t}\left([\varepsilon]^{a}-1\right)=$ $t^{+} w$, where $w=\tilde{t}\left([\varepsilon]^{a}-1\right)([\varepsilon]-1)^{-1} \in W\left(m_{R}\right) \subset A_{\text {cris }}^{\text {loc }}$.
Remark. Because, $t^{+} A_{\text {cris }}^{l o c} \cap W(R)=\psi W\left(m_{R}\right)$, the above proposition gives $\tau \alpha-\alpha \in$ $\psi W\left(m_{R}\right)^{n}$.
2.7. Let $f \in G_{\mathcal{A}}\left(m_{K}\right)$ and $\tau \in \Gamma_{K}$. One can consider the formal group symbol as a pairing

$$
G_{\mathcal{A}}\left(m_{K}\right) \times \Gamma_{K} \longrightarrow G_{\mathcal{A}}[M]\left(m_{K}\right) .
$$

Namely, $(f, \tau]_{G_{\mathcal{A}}}=\tau f_{1}-G_{\mathcal{A}} f_{1}$, where $f_{1} \in G_{\mathcal{A}}\left(m_{C}\right)$ is such that $\left(p^{M} \operatorname{id}_{G_{\mathcal{A}}}\right)\left(f_{1}\right)=$ f.

Proposition. If $\alpha \in m_{k, \tilde{t}}^{n}$ and $\tau \in \Gamma_{K}$, then

$$
(\alpha, \tau]_{\text {cris }}=\left(-\operatorname{id}_{G_{\mathcal{A}}}\right)\left(\Theta_{G_{\mathcal{A}}}(\alpha), \tau\right]_{G_{\mathcal{A}}} .
$$

Remark. According to n.2.5.3, this statement can be reformulated in a following way. If $f \in G_{\mathcal{A}}\left(m_{K}\right)$ and $f(\tilde{t}) \in m_{k, i}^{n}$ is a vector power series, such that $f(\pi)=f$, then for any $\tau \in \Gamma_{K}$

$$
(f, \tau]_{G_{\mathcal{A}}}=\left(-\operatorname{id}_{G_{\mathcal{A}}}\right)\left(\bar{l}_{\mathcal{A}}(f(\tilde{t}))-\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(f(\tilde{t})), \tau\right]_{\text {cris }}
$$

2.8. Proof of proposition 2.7.

2.8.1. The exact sequence of $n .2 .1$ gives a solution $Y \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$ of the equation

$$
Y-\frac{\mathcal{A}^{*}}{p} Y=\alpha
$$

in a form $Y=\bar{l}_{\mathcal{A}}(g)$ for some $g \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)$.
By the definition of the crystalline symbol

$$
\tau Y=Y+X+l_{\alpha, \tau}
$$

where $l_{\alpha, \tau} \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}, l_{\alpha, \tau}=\left(\mathcal{A}^{*} / p\right) l_{\alpha, \tau}, l_{\alpha, \tau} \bmod p^{M} A_{\text {cris }}=(\alpha, \tau]_{\text {cris }}$ (under identification $U_{M}\left(\mathcal{M}\left(G_{\mathcal{A}}\right)\right)=G_{\mathcal{A}}[M]\left(m_{K}\right)$ from n.2.3.1 $)$ and $X \in\left(t^{+} A_{\text {cris }}^{l o c}\right)^{n}$ is such that $X-\left(\mathcal{A}^{*} / p\right) X=\tau \alpha-\alpha$.

We can use nilpotency of $\left.\left(\mathcal{A}^{*} / p\right)\right|_{\left(t+A_{\text {crip }}^{\text {loc }}\right)^{n}}$ and the identity from remark of n.2.5.2 to express X as follows

$$
X=\left(\operatorname{id}-\frac{\mathcal{A}^{*}}{p}\right)^{-1}(\tau \alpha-\alpha)=\tau \bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right)-\bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right)
$$

(here $\Theta_{1}=\Theta_{G_{A}, 1}$ is the isomorphism from n .2 .5 .2).
2.8.2. By lemma of n.1.6.3 take $h, y \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, such that $\mathcal{A}^{* M} \bar{l}_{\mathcal{A}}(h)=\bar{l}_{\mathcal{A}}(g)$ and $\mathcal{A}^{* M} \bar{l}_{\mathcal{A}}(y)=\bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right)$.

Now the relation $\mathcal{A}^{*} Y=p Y-p \alpha$ gives

$$
\begin{gathered}
\mathcal{A}^{* M} Y=p \mathcal{A}^{* M-1} Y-p \mathcal{A}^{* M-1} \alpha=\cdots= \\
=p^{M} Y-\left(p^{M} \mathrm{id}+p^{M-1} \mathcal{A}^{*}+\cdots+p \mathcal{A}^{* M-1}\right) \alpha= \\
=\mathcal{A}^{* M}\left(p^{M} \bar{l}_{\mathcal{A}}(h)-\left(p^{M} \mathcal{A}^{*-M}+\cdots+p \mathcal{A}^{*-1}\right) \alpha\right)
\end{gathered}
$$

Remark, that we can cancell this relation by $\mathcal{A}^{* M}$ because of the uniquiness property of lemma 1.6.3.

Applying the identity from remark of n.2.5.2, we obtain

$$
\left(p^{M} \mathcal{A}^{*-M}+\cdots+p \mathcal{A}^{*-1}\right) \alpha=\left(p^{M} \mathcal{A}^{*-M}-\mathrm{id}\right)\left(\mathrm{id}+\frac{\mathcal{A}^{*}}{p}+\cdots+\frac{\mathcal{A}^{* s}}{p^{s}}+\ldots\right) \alpha=
$$

$$
=p^{M} \bar{l}_{\mathcal{A}}(y)-\bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right)
$$

Therefore, for $h^{\prime}=h-G_{\mathcal{A}} y \in G_{\mathcal{A}}\left(W\left(m_{R}\right)\right)$, we have the relation

$$
\begin{equation*}
\widetilde{l}_{\mathcal{A}}(g)=p^{M} \bar{l}_{\mathcal{A}}\left(h^{\prime}\right)+\bar{l}_{\mathcal{A}}\left(\Theta_{1}(\alpha)\right) . \tag{1}
\end{equation*}
$$

Using this formula and the expression for X from n.2.8.1, we obtain

$$
\begin{equation*}
\bar{l}_{\alpha, \tau}=\bar{l}_{\mathcal{A}}(\tau g)-\bar{l}_{\mathcal{A}}(g)-X=p^{M} \bar{l}_{\mathcal{A}}\left(\tau h^{\prime}-G_{\mathcal{A}} h^{\prime}\right) . \tag{2}
\end{equation*}
$$

2.8.3. Apply morphism $\gamma: G_{\mathcal{A}}\left(m_{k, \bar{\imath}}\right) \longrightarrow G_{\mathcal{A}}\left(m_{K}\right)$ to both sides of the relation $\left(*_{1}\right)$ and use that $g \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)$. We obtain

$$
\left(p^{M} \operatorname{id}_{G_{\mathcal{A}}}\right)(\tilde{h})=\left(-\mathrm{id}_{G_{\mathcal{A}}}\right) \Theta_{G_{\boldsymbol{\Lambda}}}(\alpha)
$$

where $\tilde{h}=\gamma\left(h^{\prime}\right) \in G\left(m_{C}\right)$.
Let $o=\left(o_{s}\right)_{s \geq 0} \in T\left(G_{\mathcal{A}}\right)$ be such that $\bar{l}_{\alpha, \tau}=\bar{l}_{\mathcal{A}}(j(o))$, c.f. n.2.1. From 1.5.3, it follows that

$$
\bar{l}_{\mathcal{A}}(j(o)) \equiv p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}\right) \bmod p^{M} \bar{l}_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)+p^{M+1} W\left(m_{R}\right)
$$

where $\hat{o}_{M} \in W\left(m_{R}\right)$ is such that $\gamma\left(\hat{o}_{M}\right) \equiv o_{M} \bmod p m_{C}$.
Therefore, the relation ($*_{2}$) gives

$$
\bar{l}_{\mathcal{A}}\left(\hat{o}_{M}\right) \equiv \bar{l}_{\mathcal{A}}\left(\tau h^{\prime}-G_{\mathcal{A}} h^{\prime}\right) \bmod \bar{l}_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)\right)+p W\left(m_{R}\right)
$$

So, $\hat{o}_{M}=\tau h^{\prime}-G_{\mathcal{A}} h^{\prime}+\delta$, where $\delta \in G_{\mathcal{A}}\left(W^{1}\left(m_{R}\right)+p W\left(m_{R}\right)\right)$. Applying γ, we obtain

$$
o_{M} \equiv \tau \tilde{h}-G_{\mathcal{A}} \tilde{h} \bmod p m_{C}
$$

But $o_{M}, \tau \tilde{h}-_{G_{\Lambda}} \tilde{h} \in G[M]\left(m_{C}\right), G[M]\left(m_{C}\right) \cap p m_{C}^{n}=0$, and, therefore, $o_{M}=$ $\tau \tilde{h}-G_{\mathcal{A}} \tilde{h}$.

But $o_{M}=(\alpha, \tau]_{\text {cris }}$, and $\left(\Theta_{G_{\mathcal{A}}}(\alpha), \tau\right]_{G_{\mathcal{A}}}=\left(-\operatorname{id}_{G_{\mathcal{A}}}\right)\left(\tau(\tilde{h})-G_{\mathcal{A}} \tilde{h}\right)$.
Proposition is proved.

3. Relation between crystalline and Witt symbols.

3.1. Let R_{0} be the fraction field of the ring R. Denote by \mathcal{G} the set of formal sums

$$
\left\{\sum_{n \in \mathbf{Z}} p^{n}\left[r_{n}\right] \mid r_{n} \in R_{0}, r_{n} \underset{n \rightarrow-\infty}{\longrightarrow} 0\right\}
$$

Clearly, $\mathcal{G} \supset W\left(R_{0}\right) \otimes \mathbf{z}_{p} \mathbb{Q}_{p}=\left\{\sum_{n>-\infty} p^{n}\left[r_{n}\right] \mid r_{n} \in R_{0}\right\}$ and can be identified with completion of $W\left(R_{0}\right) \otimes \mathbb{Q}_{p}$ in v_{R}-adic topology. So, \mathcal{G} has a natural structure of a $W(R)$-module, continuos action of the Galois group $\Gamma_{0}=\operatorname{Gal}\left(\bar{K} / K_{0}\right)$ and absolute Frobenius $\sigma_{\mathcal{G}}: \sum p^{n}\left[r_{n}\right] \mapsto \sum p^{n}\left[r_{n}^{p}\right]$ is \mathbb{Z}_{p}-linear Γ_{0}-morphism. Clearly, $\left.\mathcal{G}\right|_{\sigma_{\mathcal{E}}=\text { id }}=W\left(\mathbb{F}_{\boldsymbol{p}}\right) \otimes \mathbb{Q}_{p}=\mathbb{Q}_{p}$.

Let

$$
\mathcal{G}\left(m_{R}\right)=\left\{\sum_{n \in \mathbf{Z}} p^{n}\left[r_{n}\right] \mid r_{n} \in m_{R}, r_{n} \xrightarrow[n \rightarrow-\infty]{\longrightarrow} 0\right\}
$$

Then $\mathcal{G}\left(m_{R}\right)$ is Γ_{0}-invariant $W(R)$-submodule of $\mathcal{G},\left.\sigma_{\mathcal{G}}\right|_{\mathcal{G}\left(m_{R}\right)}$ is topologically nilpotent morphism. Clearly, $\left.\mathcal{G}\left(m_{R}\right)\right|_{\sigma_{\mathcal{G}}=\mathrm{id}}=0$.

Let $a, b \in \mathbb{Q}, a>b \geq 0$. Denote by $\mathcal{G}_{a, b}^{\circ}$ the subset of \mathcal{G}, which consists of $\sum p^{n}\left[r_{n}\right]$, such that $v_{R}\left(r_{n}\right) \geq-b n$ for $n \geq 0$, and $v_{R}\left(r_{n}\right) \geq-a n$ for $n \leq 0$. It is easy to see, that the $W(R)$-algebra structure on $W_{Q_{p}}\left(R_{0}\right)$ induces the $W(R)$ algebra structure on $\mathcal{G}_{a, b}^{\circ}$. This structure is compatible with Γ_{0}-action and $\sigma_{\mathcal{G}}$ induces semilinear isomorphism of Γ_{0}-modules $\sigma_{\mathcal{G}}: \mathcal{G}_{a, b}^{\circ} \longrightarrow \mathcal{G}_{p a, p b}^{\circ}$.

If $a, b \in \mathbb{Q}, a \geq b \geq 0$, let $\mathcal{G}_{a^{+}, b}^{\circ}$ be a p-adic closure of $\bigcup_{c>a} \mathcal{G}_{c, b}^{\circ}$. Then $\mathcal{G}_{a+, b}^{\circ}$ is $W(R)$-algebra with continuos Γ_{0}-action. We set $\mathcal{G}_{a+, b}=\mathcal{G}_{a^{+}, b}^{\circ} \otimes \mathbb{Q}_{p} \subset \mathcal{G}$.
\cdot Remark, $A_{\text {cris }}$ can be naturally identified with Γ_{0}-submodule in \mathcal{G}. Clearly, if $a \in A_{\text {cris }}$, then $\sigma a=\sigma_{\mathcal{G}} a$.

3.1.1. Lemma.

a) $A_{\text {cris }} \subset \mathcal{G}_{(p-1)^{+}, 0}^{\circ}$;
b) every element of $B_{\text {cris }}^{+}=A_{\text {cris }} \otimes \mathbb{Q}_{p} \subset \mathcal{G}_{(p-1)^{+}, 0}$ is invertible in $\mathcal{G}_{(p-1)^{+}, p-1}$;
c) if $t^{+} \in A_{\text {cris }}$ is a generator of the additive Tate module $\mathbb{Z}_{p}(1) \subset A_{\text {cris }}$ (c.f. n.1.7.1) and $x_{0} \in R$ is such that $x_{0}^{(0)}=p$, then $\left(t^{+}\right)^{-1} \in\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0} \subset \mathcal{G}_{(p-1)^{+}, 1}$ (and, therefore, $B_{\text {cris }}=B_{\text {cris }}^{+}\left[1 / t^{+}\right] \subset \mathcal{G}_{(p-1)+, 1}$).

Proof.

a) $A_{\text {cris }}$ is a p-adic closure of the ring $W(R)\left[\left\{\left[x_{0}\right]^{n} / n!\mid n \geq 1\right\}\right]$, where $x_{0} \in R$ is such that $x_{0}^{(0)}=p$. So, it is sufficient to prove, that $\left[x_{0}\right]^{n} / n!\in \mathcal{G}_{(p-1)+, 0}$. But this follows from the inequality

$$
\frac{v_{R}\left(x_{0}^{n}\right)}{n!}=\frac{n}{[n / p]+\cdots+\left[n / p^{v}\right]+\ldots}>p-1 .
$$

b) This follows from the fact, that in p-adic topology any element of $B_{\text {cris }}^{+}$is limit of finite sums $\sum p^{n}\left[r_{n}\right] \in \mathcal{G}$.
c) $\sigma t^{+}=p t^{+}$implies $t^{+}=\sum_{n \in \mathbf{Z}} p^{n}\left[r^{p^{-n}}\right]$ for some $r \in m_{R}$. From the definition of t^{+}it follows, that $v_{R}(r)=p /(p-1)$. Therefore,

$$
\left[r^{-1}\right] t^{+}=1+\sum_{n \in \mathbb{Z} \backslash\{0\}} p^{n}\left[r_{n}\right]
$$

where $v_{R}\left(r_{n}\right) \geq-n$ for $n>0$, and $v_{R}\left(r_{n}\right) \geq-p n$ for $n<0$. Now remark, that

$$
\left(1+\sum_{n \in \mathbb{Z} \backslash\{0\}} p^{n}\left[r_{n}\right]\right)^{-1}=1+\sum_{s \geq 1}(-1)^{s}\left(\sum_{n \in \mathbb{Z} \backslash\{0\}} p^{n}\left[r_{n}\right]\right)^{s} \in \mathcal{G}_{p, 1}^{0}
$$

This gives $\left(t^{+}\right)^{-1} \in\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}$.

Remark. One must be carefull about compatibility of Frobenius morphisms σ on $B_{\text {cris }}$ and $\sigma_{\mathcal{G}}$ on \mathcal{G} with respect to defined in n.b) inclusion of the field of fractions Frac $B_{\text {cris }}^{+}$into $\mathcal{G}_{(p-1)^{+}, p-1}$. For example, $\sigma\left(1 / t^{+}\right)=1 /\left(p t^{+}\right)$, but $\sigma_{\mathcal{S}}\left(1 / t^{+}\right) \notin$ $\mathcal{G}_{(p-1)^{+}, 1}$. Compatibility of σ and $\sigma_{\mathcal{C}}$ can be formulated as follows:
if $b \in B_{\text {cris }}$ is such that $\sigma_{\mathcal{C}}(b) \in \mathcal{G}_{(p-1)+, p-1}$, then $\sigma b=\sigma_{\mathcal{G}}(b)$.
3.1.2. The above lemma gives existence of a natural inclusion of the field of fractions Frac $A_{\text {cris }}$ into $\mathcal{G}_{(p-1)+, p-1}$. Let ψ be the element of $W(R)$ defined in n.1.7.2, and x_{0} be the element of R from n . c) of lemma 3.1.1.

Lemma.

$$
\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0} .
$$

Proof. If t is a generator of $W^{1}(R)$ from n.1.7.2, one can easily check, that $W(R)\left[\left[t^{p} / p\right]\right]=$ $W(R)\left[\left[\left[x_{0}\right]^{p} / p\right]\right]$. Therefore, $W(R)\left[\left[\psi^{p-1} / p\right]\right]=W(R)\left[\left[\left[x_{0}\right]^{p} / p\right]\right]=\mathcal{G}_{p, 0}^{0}$ by lemma of n.1.7.3. So, t^{+}and ψ are associated elements of the ring $\mathcal{G}_{p, 0}^{0}$ and, therefore,

$$
\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0} \mathcal{G}_{p, 0}^{0}=\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0} .
$$

3.2. Let $\alpha={ }^{t}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in m_{k, i}^{n}$. Let $\binom{Y}{Z} \in A_{\text {cris }}^{h}$ be such that $Y \in$ $\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$ and

$$
\binom{Y}{Z}=\mathcal{E}^{-1}\binom{\phi_{1}(Y)}{\phi_{0}(Z)}+\binom{\alpha}{0}
$$

(we use all notation from the definition of the crystalline symbol, c.f. n.2.3). Remark (c.f. n.1.7.6)

$$
\begin{aligned}
& Y \in\left(W^{1}\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{n} \\
& Z \in\left(W\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{h-n}
\end{aligned}
$$

Choose some \mathbb{Z}_{p}-basis of $T\left(G_{\mathcal{A}}\right)$. Let

$$
\mathcal{V}=\left(\begin{array}{ccc}
\left\langle o^{1}, \bar{l}\right\rangle & \ldots & \left\langle o^{h}, \bar{l}\right\rangle \\
\left\langle o^{1}, \bar{m}\right\rangle & \ldots & \left\langle o^{h}, \bar{m}\right\rangle
\end{array}\right)
$$

be the matrix of values of the p-adic periods pairing with respect to the special $W\left(k_{0}\right)$-basis $\left\{l_{1}, \ldots, l_{n}, m_{1}, \ldots, m_{h-n}\right\}$ of $M^{0}\left(G_{\mathcal{A}}\right)$ and the above chosen \mathbb{Z}_{p}-basis of $T\left(G_{\mathcal{A}}\right)$. All elements of the matrix \mathcal{V} belong to the subring $W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset A_{\text {cris }}$, c.f. n.1.7.6.

By n. 1.8 the matrix \mathcal{V} is nondegenerate in the field of fractions Frac $A_{\text {cris }}$ of $A_{\text {cris }}$. Therefore, there exist unique vector-columns $X, T \in\left(\operatorname{Frac} A_{\text {cris }}\right)^{h}$, such that

$$
\mathcal{V} X=\binom{\alpha}{0}, \quad \mathcal{V} T=\binom{Y}{Z}
$$

3.3. Lemma.

a) $X, T \in\left(\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{h} \subset\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h}$;
b) $\sigma_{\mathcal{G}} T \in \mathcal{G}_{(p-1)+, 1}$ and, therefore, $\sigma_{\mathcal{S}} T=\sigma T$;
c) $T-\sigma T=X$;
d) If $T_{1} \in\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h}$ is such that $T_{1}-\sigma_{\mathcal{G}} T_{1}=X$, then $\mathcal{V} T_{1}=\binom{Y_{1}}{Z_{1}} \in$ $A_{\text {cris }}^{h}, Y_{1} \in\left(\text { Fil }^{1} A_{\text {cris }}\right)^{n}$ and

$$
\binom{Y_{1}}{Z_{1}}=\mathcal{E}^{-1}\binom{\phi_{1}\left(Y_{1}\right)}{\phi_{0}\left(Z_{1}\right)}+\binom{\alpha}{0}
$$

(in other words, $\binom{Y_{1}}{Z_{1}}$ can be taken instead of $\binom{Y}{Z}$ in computation of $(\alpha, \tau]_{\text {cris }}$). Proof.
a) This follows because ${ }^{t} \mathcal{V}^{D} \mathcal{V}=t^{+} E_{h}, t^{+}$and ψ are associated elements of the ring $W(R)\left[\left[\psi^{p-1} / p\right]\right]$, and $\binom{\alpha}{0},\binom{Y}{Z} \in\left(W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)^{h}$.
b) One can use nilpotency of ϕ_{1} on $\psi^{p-1} / p W(R)\left[\left[\psi^{p-1} / p\right]\right]$ and of $\bar{\phi}_{1}=\sigma / \sigma t$ on $\psi^{p-1} W(R)$ (compare with n.1.7.5) to prove existence of the unique $\binom{\hat{Y}}{\hat{Z}} \in$ $W\left(m_{R}\right)^{h}$, such that $\hat{Y} \in W^{1}\left(m_{R}\right)^{h-n}$,

$$
\binom{Y}{Z} \bmod \left(\psi^{p-1} / p\right) W(R)\left[\left[\psi^{p-1} / p\right]\right]=\binom{\hat{Y}}{\hat{Z}} \bmod \psi^{p-1} W(R)
$$

and $\binom{\hat{Y}}{\hat{Z}}=\mathcal{E}^{-1}\binom{\bar{\phi}_{1}(\hat{Y})}{\sigma(\hat{Z})}+\binom{\alpha}{0}$.
If $\hat{\mathcal{V}}$ is the matrix from n.1.8.4, there exist the unique $\hat{X}, \hat{T} \in(1 / \psi) W(R)^{h} \subset$ $\mathcal{G}_{(p-1)^{+}, 1}^{h}$, such that

$$
\begin{equation*}
\hat{\mathcal{V}} \hat{X}=\binom{\alpha}{0}, \quad \hat{\mathcal{V}} \hat{T}=\binom{\hat{Y}}{\hat{Z}} . \tag{*}
\end{equation*}
$$

It is easy to see, that $T \bmod \left(\psi^{p-2} / p\right) W(R)\left[\left[\psi^{p-1} / p\right]\right]=\hat{T} \bmod \psi^{p-2} W(R)$.
Consider the above equalities (*) in the ring $W\left(R_{0}\right)$ (where R_{0} is the field of fractions of the ring R). Then $\sigma_{W\left(R_{0}\right)}=\left.\sigma_{\mathcal{G}}\right|_{W\left(R_{0}\right)}$ and we have

$$
\begin{gathered}
\binom{\sigma_{\mathcal{G}} / t}{\sigma_{\mathcal{G}}}(\hat{\mathcal{V}} \hat{T})=\binom{\bar{\phi}_{1}}{\sigma_{\mathcal{G}}}(\hat{\mathcal{V}}) \sigma_{\mathcal{G}} \hat{T}=\mathcal{E} \hat{\mathcal{V}}_{\sigma_{\mathcal{G}}} \hat{T} \\
\binom{\bar{\phi}_{1}}{\sigma_{\mathcal{G}}}\binom{\hat{Y}}{\hat{Z}}=\mathcal{E}\binom{\hat{Y}}{\hat{Z}}-\mathcal{E}\binom{\alpha}{0}=\mathcal{E} \hat{\mathcal{V}} \hat{T}-\mathcal{E} \hat{\mathcal{V}} \hat{X} .
\end{gathered}
$$

Therefore, $\sigma_{\mathcal{G}} \hat{T}=\hat{T}-\hat{X} \in(1 / \psi) W(R)^{h} \subset\left[x_{0}\right]^{-p /(p-1)}\left(\mathcal{G}_{p, 1}^{0}\right)^{h}$. If $T=\hat{T}+T_{1}$, where $T_{1} \in\left(\psi^{p-2} / p\right) W(R)\left[\left[\psi^{p-1} / p\right]\right]$, then

$$
T_{1} \in \frac{1}{p}\left(\mathcal{G}_{p, 0}^{0}\right)^{h} \subset\left(\mathcal{G}_{p, 0}\right)^{h}
$$

and $\sigma_{\mathcal{G}} T_{1} \in\left(\mathcal{G}_{p, 0}\right)^{h} \subset\left(\mathcal{G}_{(p-1)^{+}, 1}\right)^{h}$. So, $\sigma_{\mathcal{G}} T=\sigma_{\mathcal{G}} \hat{T}+\sigma_{\mathcal{G}} T_{1} \in \mathcal{G}_{(p-1)+, 1}^{h}$ and $\sigma_{\mathcal{G}} T=\sigma T$.
c) Because of the above n.b) we can apply operator $\binom{\phi_{1}}{\phi_{0}}$ to both sides of the equality $\mathcal{V} T=\binom{Y}{Z}$. We obtain

$$
\left(\begin{array}{ccc}
\left\langle o^{1}, \phi_{1}(\bar{l})\right\rangle & \ldots & \left\langle o^{h}, \phi_{1}(\bar{l})\right\rangle \\
\left\langle o^{1}, \phi_{0}(\bar{m})\right\rangle & \ldots & \left\langle o^{h}, \phi_{0}(\bar{m})\right\rangle
\end{array}\right) \sigma T=\binom{\phi_{1}(Y)}{\phi_{0}(Z)}
$$

This equality can be rewritten as

$$
\mathcal{E} V \sigma T=\mathcal{E}\binom{Y}{Z}-\binom{\alpha}{0}=\mathcal{E} V T-\mathcal{E} V X
$$

So, $\sigma T=T-X$.
d) If $t=T_{1}-T$, then $t \in \mathcal{G}_{(p-1)^{+}, 1}^{h}$ and $\sigma_{\mathcal{G}} t=\sigma_{\mathcal{G}} T_{1}-\sigma_{\mathcal{G}} T=T_{1}-T=t$. This gives

$$
t \in\left(\mathbb{Q}_{p} \cap\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h}=\mathbb{Z}_{p}^{h}
$$

If $t={ }^{t}\left(a_{1}, \ldots, a_{h}\right)$, then

$$
\binom{Y_{1}}{Z_{1}}=\mathcal{V} T_{1}=\mathcal{V} T+\mathcal{V} t=\binom{Y}{Z}+\sum_{1 \leq i \leq h} a_{i}\binom{\left\langle o^{i}, \bar{l}\right\rangle}{\left\langle o^{i}, \bar{m}\right\rangle}
$$

So, $Y_{1}=Y+\sum_{1 \leq i \leq h} a_{i}\left\langle o^{i}, \bar{l}\right\rangle \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$ and

$$
\binom{Y_{1}}{Z_{1}}-\mathcal{E}^{-1}\binom{Y_{1}}{Z_{1}}=\binom{Y}{Z}-\mathcal{E}^{-1}\binom{Y}{Z}=\binom{\alpha}{0} .
$$

Remark. The correspondence $T \mapsto \mathcal{V} T$ gives one-to-one correspondence between the sets

$$
\left\{T \in\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h} \mid T-\sigma_{\mathcal{G}} T=X\right\}
$$

and

$$
\left\{\left.\binom{Y}{Z} \in A_{\text {cris }}^{h} \right\rvert\, Y \in\left(\mathrm{Fil}^{1} A_{\mathrm{cris}}\right)^{n},\binom{Y}{Z}=\mathcal{E}^{-1}\binom{\phi_{1}(Y)}{\phi_{0}(Z)}+\binom{\alpha}{0}\right\}
$$

3.4. Lemma. For any $\tau \in \Gamma_{K}$ coordinates of the vector $\tau X-X$ belong to $W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right]+\left(p^{M} / \psi\right) W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right]$.
Proof.

From $\mathcal{V} X=\binom{\alpha}{0}$ it follows, that $t^{+} X={ }^{t} \mathcal{V}^{D}\binom{\alpha}{0}$. Coefficients of the matrix ${ }^{t} \mathcal{V}^{D}$ are elements of the ring $W(R)\left[\left[\psi^{p-1} / p\right]\right],\binom{\alpha}{0} \in W\left(m_{R}\right)^{h}$, therefore,

$$
X \in\left(\frac{1}{\psi} W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right]\right)^{h}
$$

Rewrite the relation $\tau(\mathcal{V} X)-\mathcal{V} X=\binom{\tau \alpha-\alpha}{0}$ as

$$
\begin{equation*}
{ }^{t} \mathcal{V}^{D}(\tau \mathcal{V}-\mathcal{V}) \tau X+t^{+}(\tau X-X)={ }^{t} \mathcal{V}^{D}\binom{\tau \alpha-\alpha}{0} \tag{*}
\end{equation*}
$$

a) All coefficients of the matrix ${ }^{t} \mathcal{V}^{D}(\tau \mathcal{V}-\mathcal{V})$ belong to $p^{M} \mathbb{Z}_{p} t^{+} \subset A_{\text {cris }}$. Indeed, for $1 \leq i \leq h$ one has

$$
\tau o^{i}-o^{i}=\sum_{1 \leq i \leq h} p^{M} a_{i j} o^{j}
$$

where all $a_{i j} \in \mathbb{Z}_{p}$. Therefore,

$$
\tau \mathcal{V}-\mathcal{V}=\left(\begin{array}{ccc}
\left\langle\tau o^{1}-o^{1}, \bar{l}\right\rangle & \ldots & \left\langle\tau o^{h}-o^{h}, \bar{l}\right\rangle \\
\left\langle\tau o^{1}-o^{1}, \bar{m}\right\rangle & \ldots & \left\langle\tau o^{h}-o^{h}, \bar{m}\right\rangle
\end{array}\right)=\mathcal{V}^{M}\left(\left(a_{j i}\right)\right)_{1 \leq i, j \leq h}
$$

and

$$
{ }^{t} \mathcal{V}^{D}(\tau \mathcal{V}-\mathcal{V})=p^{M} t^{+}\left(\left(a_{j i}\right)\right)_{1 \leq i, j \leq h}
$$

b) $\tau \alpha-\alpha \in\left(\psi W\left(m_{R}\right)\right)^{h}$, c.f. n.2.6, therefore,

$$
{ }^{\imath} \mathcal{V}^{D}\binom{\tau \alpha-\alpha}{0} \in W(R)\left[\left[\psi^{p-1} / p\right]\right] \psi W\left(m_{R}\right)=\psi W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right]
$$

Clearly, lemma follows from the above relation (*) and properties a) and b).
Corollary. Let $T \in\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h}$ be such that $T-\sigma_{\mathcal{G}} T=X$, then for any $\tau \in \Gamma_{K}$
a) $\tau T-T \equiv A \bmod \mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$, where $A={ }^{t}\left(A_{1}, \ldots, A_{h}\right) \in \mathbb{Z}_{p}^{h}$;
b) If $\alpha \in m_{k, \tilde{t}}^{n}$, then

$$
(\alpha, \tau]_{\text {cris }}=A_{1} o_{M}^{1}+\cdots+A_{h} o_{M}^{h} .
$$

Proof. If $t=\tau T-T$, then $t \in\left[x_{0}\right]^{-p /(p-1)}\left(\mathcal{G}_{p, 1}^{0}\right)^{h} \subset\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)^{h}$ and all coordinates of the vector $t-\sigma_{\mathcal{G}} t=X-\tau X$ belong to $W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right]+$ $\left(p^{M} / \psi\right) W\left(m_{R}\right)\left[\left[\psi^{p-1} / p\right]\right] \subset \mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$.

Let $X-\tau X=X_{1}+p^{M} X_{2}$, where $X_{1} \in \mathcal{G}\left(m_{R}\right)^{h}$ and $X_{2} \in W\left(R_{0}\right)^{h}$. If $t_{1}=$ $\sum_{s \geq 0} \sigma^{s} X_{1} \in \mathcal{G}\left(m_{R}\right)^{h}$, then $t_{1}-\sigma_{\mathcal{G}} t_{1}=X_{1}$. Take $t_{2} \in W\left(R_{0}\right)^{h}$, such that $t_{2}-$ $\sigma_{\mathcal{C}} t_{2}=X_{2}$. Then $A=t-\left(t_{1}+p^{M} t_{2}\right) \in\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)_{\sigma_{\mathcal{O}}=\mathrm{id}}^{h}=\mathbb{Z}_{p}^{h}$.

Part a) of corollary is proved.

Let $\binom{Y}{Z}=\mathcal{V} T$, then (c.f. n.3.3) $\binom{Y}{Z} \in A_{\text {cris }}^{h}, Y \in\left(\mathrm{Fil}^{1} A_{\text {cris }}\right)^{n}$ and

$$
\binom{Y}{Z}=\mathcal{E}^{-1}\binom{\phi_{1}(Y)}{\phi_{0}(Z)}+\binom{\alpha}{0}
$$

By definition of the crystalline symbol, there exist $a_{1}, \ldots, a_{h} \in \mathbb{Z}_{p}$ and $b \in$ $\left(A_{\text {cris }}^{l o c}\right)^{h}$, such that

$$
\tau\binom{Y}{Z}=\binom{Y}{Z}+\sum_{1 \leq i \leq h}\binom{\left\langle o^{i}, \bar{l}\right\rangle}{\left\langle o^{i}, \bar{m}\right\rangle} a_{i}+t^{+} b
$$

In this notation $(\alpha, \tau]_{\text {cris }}=a_{1} o_{M}^{1}+\cdots+a_{h} o_{M}^{h}$.
If $a={ }^{t}\left(a_{1}, \ldots, a_{h}\right) \in \mathbb{Z}_{p}^{h}$, then we can rewrite the above equation as

$$
\tau\binom{Y}{Z}=\binom{Y}{Z}+\mathcal{V} a+t^{+} b .
$$

Multiplying the both sides by the matrix ${ }^{t} \mathcal{V}^{D}$ we obtain in notation from proof of the above lemma

$$
p^{M} t^{+} \tau T\left(\left(a_{j i}\right)\right)_{1 \leq i, j \leq h}+t^{+}(\tau T-T)=t^{+} a+t^{+}\left({ }^{t} \mathcal{V}^{D} b\right)
$$

therefore,

$$
\tau T-T=a+\left({ }^{t} \mathcal{V}^{D} b\right)+p^{M} c
$$

where $c \in\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h} \subset\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)^{h}$. Now

$$
b_{1}={ }^{t} \mathcal{V}^{D} b \in\left(\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\right)^{h}
$$

and $\lim _{N \rightarrow \infty} \sigma^{N} b_{1}=0$ imply $b_{1} \in \mathcal{G}\left(m_{R}\right)^{h}$.
Therefore, $a \equiv A \bmod p^{M} \mathbb{Z}_{p}$, q.e.d.
3.5. Matrix $\mathcal{V}_{\tilde{i}}$.
3.5.1. Recall, K is a finite extension of the field K_{0} in \bar{K}, such that $G_{\mathcal{A}}[M]\left(m_{C}\right)=$ $G_{\mathcal{A}}[M]\left(m_{K}\right)$, where m_{K} is the maximal ideal of the valuation ring O_{K} of K.

In n.2.5.1 there was fixed uniformizer $\pi \in K$ and $t_{0} \in m_{R}$, such that $t_{0}^{(0)}=\pi$. If k is the residue field of K, then $O_{k, \tilde{t}}=W(k)[[\tilde{t}]] \subset W(R)$, where $\tilde{t}=\left[t_{0}\right]$. The structural morphism $\gamma: W(R) \longrightarrow O_{C}$ induces epimorphism of rings $\gamma: O_{k, \tilde{t}} \longrightarrow$ O_{K}. If $m_{k, \bar{t}}=\tilde{t} W(k)[[\tilde{t}]]$, then $\gamma\left(m_{k, \tilde{i}}\right)=m_{K}$. Clearly, $\left.\operatorname{Ker} \gamma\right|_{O_{k, i}}=g(\tilde{t}) O_{k, \bar{i}}$ and $\left.\operatorname{Ker} \gamma\right|_{m_{k, i}}=g(\tilde{t}) m_{k, \tilde{t}}$, where $g \in W(k)[X]$ is irreducible polynom, such that $g(\pi)=0$.

Denote by $O_{k, \tilde{t}}^{\mathrm{DP}} p$-adic closure of the divided power envelope of $O_{k, \tilde{t}}$ with respect to the ideal $(g(\tilde{t}))$. Clearly, $O_{k, \tilde{t}}^{\text {DP }} \subset A_{\text {cris }}$ and can be identified with p-adic closure of $O_{k, i}\left[\left\{\tilde{t}^{e n} / n!\mid n \geq 1\right\}\right]$, where e is absolute ramification index of the field K (use,
that $g(\tilde{t})=\tilde{t}^{e}+a_{1} \tilde{t}^{e-1}+\cdots+a_{e}$, where $a_{1}, \ldots, a_{e} \in p W(k), v_{p}\left(a_{e}\right)=1$ and equality of ideals $(g(\tilde{t}), p)=\left(\tilde{t}^{e}, p\right)$ in the ring $\left.O_{k, \tilde{t}}\right)$.
3.5.2. Let $o^{1}=\left(o_{s}^{1}\right)_{s \geqslant 0}, \ldots, o^{h}=\left(o_{s}^{h}\right)_{s \geqslant 0}$ be \mathbb{Z}_{p}-basis of $T\left(G_{\mathcal{A}}\right)$. Then $o_{M}^{1}, \ldots, o_{M}^{h}$ give $\mathbb{Z} / p^{M} \mathbb{Z}_{2}$-basis of $G_{\mathcal{A}}[M]\left(m_{K}\right)$. Let $\bar{l}_{\mathcal{A}}$ be logarithm vector power series from n.1.3. For $1 \leq i \leq h$ fix $\hat{o}_{M}^{i} \in m_{k, \tilde{t}}$, such that $\gamma\left(\hat{o}_{M}^{i}\right)=o_{M}^{i}$. Then

$$
p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right) \in \mathrm{Fil}^{1} O_{k, \bar{i}}^{\mathrm{DP}}
$$

Use matrices F_{u}^{\prime} from n.1.3 to set

$$
\bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right)=\sum_{u \geq 1} F_{u}^{\prime}\left(\sigma^{u} / p\right) \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right)
$$

Then

$$
p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right) \in O_{k, \bar{i}}^{\mathrm{DP}}
$$

In fact (compare with n.1.7.6),

$$
\begin{aligned}
& p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right) \in m_{k, \bar{t}}^{1}+\frac{\tilde{t}^{e p}}{p} O_{k, \tilde{t}}\left[\left[\tilde{t}^{e p} / p\right]\right], \\
& p^{M_{\bar{m}_{\mathcal{A}}}\left(\hat{o}_{M}^{i}\right) \in m_{k, \bar{t}}+\frac{\tilde{t}^{e p}}{p} O_{k, \bar{t}}\left[\left[\tilde{t}^{e p} / p\right]\right] . ~ . ~ . ~ . ~}
\end{aligned}
$$

From n.1.5 it follows
Lemma. For $1 \leq i \leq h$ one has

$$
\begin{aligned}
\left\langle o^{i}, \bar{l}\right\rangle & \equiv p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right) \bmod p^{M}\left(W^{1}\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right) \\
\left\langle o^{i}, \bar{m}\right\rangle & \equiv p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{i}\right) \bmod p^{M}\left(W\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)
\end{aligned}
$$

3.5.3. Consider matrix of order h

$$
\mathcal{V}_{\hat{t}}=\left(\begin{array}{ccc}
p^{M} \tilde{l}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \ldots & p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right) \\
p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \ldots & p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right)
\end{array}\right) .
$$

This matrix has coefficients in $O_{k, t}^{\mathrm{DP}}$ (c.f. n.3.5.2) and can be considered as approximation of the matrix \mathcal{V} of values of the p-adic periods pairing from n.1.8.3.

Lemma of the above n.3.5.2 gives the equivalence

$$
{ }^{t} \mathcal{V}^{D} \circ \mathcal{V}_{\bar{t}} \equiv t^{+} E_{h} \bmod p^{M}\left(W^{1}\left(m_{R}\right)+\frac{\psi^{p-1}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]\right)
$$

Therefore, one can write

$$
{ }^{\imath} \mathcal{V}^{D} \circ \mathcal{V}_{i}=t^{+}\left(E_{h}-p^{M} \Delta\right)
$$

where Δ is some matrix of order h with coefficients from

$$
\frac{1}{\psi} W^{1}\left(m_{R}\right)+\frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]
$$

3.5.4. Let t be a generator of $W^{1}(R)$ from n.1.7.2.

Lemma.

$$
\mathcal{R}=\frac{p t}{\psi} W(R)[[p t / \psi]]+\psi^{p-2} W(R)\left[\left[\psi^{p-1} / p\right]\right]
$$

is $W(R)$-subalgebra of $\mathcal{G}_{(p-1)+, 1}$.
Proof.
As topological $W(R)$-module \mathcal{R} is generated by elements $(p t / \psi)^{m+1}$, where $m \geq$ 0 , and $\psi^{p-2}\left(\psi^{p-1} / p\right)^{l}$, where $l \geq 0$. It is sufficient to prove for any $m, l \geq 0$, that

$$
\left(\frac{p t}{\psi}\right)^{m+1} \psi^{p-2}\left(\frac{\psi^{p-1}}{p}\right)^{l}=p^{m+1-l} t^{m+1} \psi^{p-2+(p-1) l-(m+1)} \in \mathcal{R}
$$

If $m+1-l=s>0$, then this product is equal to

$$
\left(\frac{p t}{\psi}\right)^{s} t^{t} \psi^{p-2+(p-1) l} \in \mathcal{R}
$$

If $m+1-l=-s \leq 0$, then this product can be rewritten as

$$
\psi^{p-2}\left(\frac{\psi^{p-2}}{p}\right)^{s} t^{m+1} \psi^{(p-2)(m+1)} \in \mathcal{R}
$$

Proposition. In notation of n.3.5.3 one has

$$
\left(E_{h}-p^{M} \Delta\right)^{-1}=E_{h}+p^{M} \Delta_{1}
$$

where Δ_{1} is matrix of order h with coefficients from

$$
\frac{1}{p} \mathcal{R}=\frac{t}{\psi} W(R)[[p t / \psi]]+\frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] .
$$

Proof. We have

$$
\Delta_{1}=\sum_{s \geq 0} p^{M s} \Delta^{s+1}=\frac{1}{p} \sum_{s \geq 0} p^{s(M-1)}(p \Delta)^{s+1}
$$

has coefficients in $(1 / p) \mathcal{R}$, because $p \Delta$ has coefficients in \mathcal{R} and \mathcal{R} is a ring.

Corollary.

The matrix $\mathcal{V}_{\hat{t}}$ is invertible in the field of fractions $\operatorname{Frac} O_{k, \tilde{t}}^{\mathrm{DP}} \subset \mathcal{G}_{(p-1)+, p-1}$.

3.5.5. Proposition.

$$
\mathcal{V}_{\tilde{i}}^{-1} \equiv \mathcal{V}^{-1} \bmod p^{M}\left(\frac{1}{p \psi} \mathcal{R}\right)
$$

Proof. We have

$$
\mathcal{V}_{\hat{t}}^{-1}=\frac{1}{t^{+}}{ }^{t} \mathcal{V}^{D}\left(E_{h}+p^{M} \Delta_{1}\right)=\mathcal{V}^{-1}+p^{M}\left(\frac{1}{t^{+}} t \mathcal{V}^{D}\right) \Delta_{1}
$$

Coefficients of the matrix $\left(1 / t^{+}\right)^{t} \mathcal{V}^{D}$ belong to

$$
\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right]=\frac{1}{\psi} W(R)+\frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] .
$$

By proposition of n.3.5.4 it is sufficient to prove, that

$$
\frac{t}{\psi} W(R)[[p t / \psi]] \frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset \frac{1}{p \psi} \mathcal{R} .
$$

For $m, l \geq 0$ take the product of generators

$$
\frac{t}{\psi}\left(\frac{p t}{\psi}\right)^{m} \frac{\psi^{p-2}}{p}\left(\frac{\psi^{p-1}}{p}\right)^{l}=p^{m-l-1} t^{1+m} \psi^{p-3+(p-1) l-m}
$$

If $m-l-1=s \geq 0$, then it can be presented as

$$
\frac{t}{\psi}\left(\frac{p t}{\psi}\right)^{s} t^{l+1} \psi^{p-3+(p-2) l} \in \frac{t}{\psi} W(R)[[p t / \psi]]
$$

If $m-l-1=-s \leq-1$, then $s+m=l+1$ and the above product can be rewritten as

$$
\frac{\psi^{p-3}}{p}\left(\frac{\psi^{p-1}}{p}\right)^{s-1} t^{1+m} \psi^{(p-2) m} \in \frac{\psi^{p-3}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]
$$

Corollary. Coefficients of the matrix $\mathcal{V}_{\hat{t}}^{-1}$ belong to

$$
\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right]+p^{M}\left(\frac{1}{p \psi} \mathcal{R}\right) .
$$

3.6. In $W\left(R_{0}\right)$-module \mathcal{G} any expresion of a form $\sum_{s \in \mathbf{Z}} w_{s} p^{s}$, where $w_{s} \in W\left(R_{0}\right)$ and $w_{s} \longrightarrow 0$ in v_{R}-adic topology has sense, i.e. gives some element of \mathcal{G}.

Let

$$
\mathcal{G}_{k, \tilde{t}}=\left\{\sum_{s \in \mathbf{Z}, u \geq u_{s}}\left[\alpha_{s, u}\right] \tilde{t}^{u} p^{s} \mid u_{s} \underset{s \rightarrow-\infty}{\longrightarrow}+\infty, \text { all } \alpha_{s, u} \in k\right\} \subset \mathcal{G} .
$$

Then $O_{k, \bar{i}} \subset \mathcal{G}_{k, \tilde{i}}, \mathcal{G}_{k, \bar{i}}$ is closed $O_{k, \tilde{t}^{-}}$submodule in \mathcal{G}.
One can easily see, that
a) Any element of $\mathcal{G}_{k, i}$ can be uniquelly presented in a form $\sum\left[\alpha_{s, u}\right] \tilde{t}^{u} p^{s}$ from its definition.
b) $O_{k, \bar{i}}^{\mathrm{DP}} \subset \mathcal{G}_{k, \bar{i}} \cap \mathcal{G}_{(p-1)+, 0}^{0}$.
c) Any element of $O_{k, \tilde{t}}^{\mathrm{DP}}$ is invertible in $\mathcal{G}_{k, i} \cap \mathcal{G}_{(p-1)+, p-1}$.

Let $\mathcal{L}_{k, \bar{i}}=\mathcal{G}_{k, \bar{i}} \cap \mathcal{G}_{(p-1)+, p-1}$. Then $\mathcal{L}_{k, \bar{t}}$ is $W_{\mathbf{Q}_{p}}(k)$-algebra, every element of $\mathcal{L}_{k, \tilde{t}}$ can be uniquelly expressed as $\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u}$, where all $w_{u} \in W_{\mathbf{Q}_{p}}(k)$. It is easy to see, that this $W_{\mathbb{Q}_{p}}(k)$-algebra coincides with denoted by the same symbol $W_{\mathbb{Q}_{p}}(k)$ algebra from introduction.
3.7. Consider the matrix $\mathcal{V}_{\tilde{i}}^{-1}$ from n.3.5. Clearly, all elements of $\mathcal{V}_{\tilde{i}}^{-1}$ belong to $\mathcal{L}_{k, \tilde{t}}$. So, they are Laurent series in variable \tilde{t} with coefficients in $W_{\mathbf{Q}_{p}}(k)$, i.e. they can be written as $\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u}$, where all $w_{u} \in W_{\mathbb{Q}_{p}}(k)$.

Proposition. Let $\mathcal{V}_{\tilde{t}}^{-1}=\left(\left(v_{i j}\right)\right)_{1 \leq i, j \leq h}$ and $v_{i j}=\sum_{u \in \mathbf{Z}} w_{u i j} \tilde{t}^{u}$, where all $w_{u i j} \in$ $W(k) \otimes \mathbb{Q}_{p}$. If $u<0$, then $w_{u i j} \in W(k)$ (i.e. all coefficients of the matrix $\mathcal{V}_{\bar{t}}^{-1}$ have p-integral principal parts).

Proof.
By corollary of $n .3 .5 .5$ for any $1 \leq i, j \leq h$ we have

$$
v_{i j} \in \mathcal{G}_{k, i} \cap(1 / p \psi) \mathcal{R} .
$$

3.7.1. Lemma.

$$
\frac{1}{p \psi} \mathcal{R} \subset\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

Proof of lemma.
We have $t \in\left[x_{0}\right] W(R)+p W(R) \subset\left[x_{0}\right] \mathcal{G}_{p, 1}^{0}$ and $\psi^{-1} \in\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}$, c.f. n.3.1.2. Therefore, $p t / \psi \in p\left[x_{0}\right]^{-1 /(p-1)} \mathcal{G}_{p, 1}^{0} \subset \mathcal{G}_{p, 1}^{0}$ (because $p\left[x_{0}\right]^{-1 /(p-1)} \in \mathcal{G}_{p, 1}^{0}$), and $\left(t / \psi^{2}\right) W(R)[[p t / \psi]] \subset\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}$.

As it was proved earlier (c.f. n.3.1.2), $W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset \mathcal{G}_{p, 1}^{0}$. We have $\psi^{p-3} \in$ $\left[x_{0}\right]^{p(p-3) /(p-1)} \mathcal{G}_{p, 1}^{0}$, because $\psi \in\left[x_{0}\right]^{p /(p-1)} \mathcal{G}_{p, 1}^{0}$. Therefore,

$$
\frac{\psi^{p-3}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset \frac{1}{p}\left[x_{0}\right]^{p-\frac{2 p}{p-1}} \mathcal{G}_{p, 1}^{0} \subset\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

because $\left[x_{0}\right]^{p} / p \in \mathcal{G}_{p, 1}^{0}$. So,

$$
\frac{1}{p \psi} \mathcal{R}=\frac{t}{\psi^{2}} W(R)[[p t / \psi]]+\frac{\psi^{p-3}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

Lemma is proved.
Clearly, our proposition is implied by the following lemma.
3.7.2. Lemma. Any Laurent series from $\left[x_{0}\right]^{-p} \mathcal{G}_{p, p-1}^{0} \cap \mathcal{L}_{k, i}$ has p-integral principal part.
Proof.
If $v \in\left[x_{0}\right]^{-p} \mathcal{G}_{p, p-1}^{0} \cap \mathcal{L}_{k, \tilde{t}}$, then

$$
\sum_{\substack{s \leqslant-1 \\ u \geqslant-e p(s+1)}} p^{s}\left[\alpha_{s, u}\right] \tilde{t}^{u}+\sum_{\substack{s \geqslant 0 \\ u \geqslant-e(p+s)}} p^{s}\left[\alpha_{s, u}\right] \tilde{t}^{u},
$$

where all $\alpha_{s, u} \in k$ and e is absolute ramification index of the field K. Let $\alpha_{s_{0}, u_{0}} \neq 0$ for some $s_{0} \leq-1$. Then

$$
u \geq-e p(s+1) \geq 0
$$

Lemma is proved.
3.8. Let $X_{\tilde{t}}=\mathcal{V}_{\tilde{t}}^{-1}\binom{\alpha}{0}=\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u}$, where $w_{u} \in W_{\mathbf{Q}_{p}}(k)^{h}$.

Proposition.

a) $X_{\bar{t}} \equiv X \bmod p^{M}(1 / p \psi) \mathcal{R} W\left(m_{R}\right)$;
b) if $u \leq 0$, then $w_{u} \in W(k)^{h}$, i.e. "nonnegative" part $\hat{X}_{\hat{i}}=\sum_{u \leq 0} w_{u} \tilde{t}^{u}$ of the vector Laurent series $X_{\tilde{i}}$ has p-integral coefficients;
c) if $\mathcal{V}_{\hat{i}}^{(-1)}$ is the matrix of principal parts of elements of the matrix $\mathcal{V}_{\hat{t}}^{-1}$, then "nonnegative" part of the vector $\mathcal{V}_{i}^{(-1)}\binom{\alpha}{0}$ equals to \hat{X}_{i};
d) $\psi \hat{X}_{\tilde{t}} \in W\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$.

Proof.

a) $\alpha \in m_{k, \bar{t}}^{n} \subset W\left(m_{R}\right)^{n}$ gives by proposition 3.5.5

$$
X_{\dot{t}}=\mathcal{V}_{\hat{t}}^{-1}\binom{\alpha}{0} \equiv \mathcal{V}^{-1}\binom{\alpha}{0}=X \bmod p^{M}\left(\frac{1}{p \psi} \mathcal{R}\right) W\left(m_{R}\right)
$$

b) and c) follow from proposition of n.3.7.
d) follows from corollary of n.3.5.5.
3.9. Now we can state the main result of this section.

Proposition. In the above notation let $\hat{T}_{\hat{t}} \in W\left(R_{0}\right)^{h}$ be such that $\hat{T}_{\hat{t}}-\sigma \hat{T}_{\hat{t}}=\hat{X}_{\tilde{t}}$. If $\tau \in \Gamma_{K}$, then $\tau \hat{T}_{\hat{i}}-\hat{T}_{\hat{i}} \equiv a \bmod W\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$, where $a={ }^{t}\left(a_{1}, \ldots, a_{h}\right) \in \mathbb{Z}_{p}^{h}$ and

$$
(\alpha, \tau]_{\text {cris }}=a_{1} o_{M}^{1}+\cdots+a_{h} o_{M}^{h}
$$

Proof.

Let $X_{\bar{i}}=X+p^{M} w$, where X has coordinates in $\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}$ and w has coordinates in $\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0} W\left(m_{R}\right)$, c.f. nn.3.8 a) and 3.7.1.

By corollary of $n .3 .4$, if $T \in\left[x_{0}\right]^{-p /(p-1)}\left(\mathcal{G}_{p, 1}^{0}\right)^{h}$ is such that $T-\sigma_{\mathcal{G}} T=X$, then

$$
\tau T-T \equiv A \bmod \mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)
$$

where $A={ }^{t}\left(A_{1}, \ldots, A_{h}\right) \in \mathbb{Z}_{p}^{h}$ and $(\alpha, \tau]_{\text {cris }}=A_{1} o_{M}^{1}+\cdots+A_{h} o_{M}^{h}$.
It is easy to see, that $\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0} W\left(m_{R}\right) \subset \mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)$. Therefore, one can take $w_{1} \in \mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)$, such that $w_{1}-\sigma_{\mathcal{G}} w_{1}=w$.

Then for $T_{\bar{t}}=T+p^{M} w_{1}$ one has $T_{\bar{t}} \in\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)^{h}, T_{\bar{i}}-\sigma_{\mathcal{L}} T_{\bar{t}}=X_{\bar{i}}$ and $\tau T_{\tilde{t}}-T_{\tilde{t}} \equiv A \bmod \mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$.

Let $X_{\bar{t}}=\hat{X}_{\tilde{i}}+X_{1}$, where $\hat{X}_{\tilde{t}}=\sum_{u \leq 0} w_{u} \tilde{t}^{u}$ is the "nonnegative" part of $X_{\tilde{i}}$. Then $X_{1} \in \mathcal{G}\left(m_{R}\right)$ and for $T_{\hat{i}}^{\prime}=T_{\bar{t}}-\sum_{s \geq 0} \sigma^{s} X_{1}$ one has $T_{\tilde{i}}^{\prime} \in\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)^{h}$, $T_{\bar{t}}^{\prime}-\sigma_{\mathcal{C}} T_{\tilde{t}}^{\prime}=\hat{X}_{i}$ and $\tau T_{\bar{t}}^{\prime}-T_{\bar{t}}^{\prime} \equiv A \bmod \left(\mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)\right)$.

Therefore, $\hat{T}_{\bar{i}}-T_{\hat{i}}^{\prime}$ has coordinates in $\left(\mathcal{G}\left(m_{R}\right)+W\left(R_{0}\right)\right)_{\sigma_{\mathcal{v}}=\mathrm{id}}=\mathbb{Z}_{p}, \tau \hat{T}_{\bar{i}}-\hat{T}_{\bar{t}}=$ $\tau T_{i}^{\prime}-T_{i}^{\prime}$ has coordinates in

$$
\left(\mathbb{Z}_{p}+\mathcal{G}\left(m_{R}\right)+p^{M} W\left(R_{0}\right)\right) \cap W\left(R_{0}\right)=\mathbb{Z}_{p}+W\left(m_{R}\right)+p^{M} W\left(R_{0}\right)
$$

and $a \equiv A \bmod p^{M}$.
Proposition is proved.

4. Explicit formulae for the formal group symbol.

We use all previous notation. When reciprocity map of class field theory ψ_{K} : $K^{*} \longrightarrow \Gamma^{\mathrm{ab}}$ is considered, we assume that the residue field k of K is finite.

4.1. Preliminaries.

4.1.1. Functor ficld of norms, [Wtb].

Let $\left\{\pi_{s}\right\}_{s \geq 0}$ be the sequence of elements of \bar{K} chosen in n.2.5.1. This means, that $\pi_{0}=\pi$ is fixed uniformizer of K and $\pi_{s+1}^{p}=\pi_{s}$ for all $s \in \mathbb{Z}, s \geq 0$. Let $\tilde{K}=\bigcup_{s \geq 0} K(s)$, where $K(0)=K$ and $K(s)=K\left(\pi_{s}\right)$. The field \tilde{K} is infinite APFextension, and the functor field of norms \mathcal{X} gives equivalence of the category of algebraic extensions of the field \tilde{K} and of the category of separable extensions of the discrete valuation field $\mathcal{K}=\mathcal{X}(\tilde{K})$ of characteristic p. The residue field of \mathcal{K} can be canonically identified with the residue field k of K. By definition $\mathcal{K}^{*}=\lim _{\leftrightarrows} K(s)^{*}$ with respect to norm maps. This gives fixed uniformizer $t_{0}=\lim _{\leftrightarrows} \pi_{s}$ in \mathcal{K}, so $\mathcal{K}=\operatorname{Frac} k\left[\left[t_{0}\right]\right]=k\left(\left(t_{0}\right)\right)$. One can fix a separable closure $\mathcal{K}_{\text {sep }}$ of \mathcal{K} by $\mathcal{K}_{\text {sep }}=\mathcal{X}(\bar{K})$ and the functor \mathcal{X} gives identification

$$
\iota: \Gamma_{\mathcal{K}}=\operatorname{Gal}\left(\mathcal{K}_{\mathrm{sep}} / \mathcal{K}\right)=\operatorname{Gal}(\tilde{K} / \tilde{K}) \subset \Gamma_{K}=\operatorname{Gal}(\bar{K} / K)
$$

4.1.2. Homomorphism $\mathcal{N}: \mathcal{K}^{*} \longrightarrow K^{*}$.

Let \mathcal{N} be the projection $\mathcal{K}^{*}=\underset{\leftarrow}{\lim } K(s)^{*} \longrightarrow K(0)^{*}=K^{*}$. Clearly, $\mathcal{N}\left(t_{0}\right)=\pi$. If $\alpha \in k \subset \mathcal{K}$, then $\mathcal{N}(\alpha)=[\alpha] \in K^{*}$, where $[\alpha]$ is Teichmuller representative of α considered as element of the residue field of K.

Let $U_{\mathcal{K}}$ and U_{K} be \mathbb{Z}_{p}-modules of principal units in \mathcal{K} and K, respectfully. Then $\mathcal{N}\left(U_{\mathcal{K}}\right) \subset U_{K}$ and can be described explicitly as follows.

Let $\alpha \in W(k)$ and

$$
E(\alpha, X)=\exp \left(\alpha X+\cdots+(\sigma \alpha) X^{p} / p+\ldots\right) \in \mathbb{Z}_{p}[[X]]
$$

be power series from [Sh]. Any element $u \in U_{\mathcal{K}}$ can be uniquelly presented in a form

$$
u=\prod_{(a, p)=1} E\left(\alpha_{a}, t_{0}^{a}\right)
$$

where all $\alpha_{a} \in W(k)$. With respect to this decomposition the homomorphism \mathcal{N} is uniquelly defined by the property, c.f. [Ab3],

$$
\mathcal{N}\left(E\left(\alpha, t_{0}^{a}\right)\right)=E\left(\alpha, \pi^{a}\right)
$$

where $a \in \mathbb{N},(a, p)=1, \alpha \in W(k)$.
It can be easily shown, that $K^{*} / \mathcal{N}\left(\mathcal{K}^{*}\right)$ is cyclic group of order $p^{l_{0}}$, where l_{0} is maximal integer, such that K contains primitive $p^{t_{0}}$-root of unity (this fact is wellknown modulo $K^{* p^{\prime 0}}$, c.f. [Sh], then one should use, that p-completion of $K^{* * p^{\prime 0}}$ is generated by $\pi^{p^{t_{0}}}$ and all $E\left(p^{l_{0}} \alpha, \pi^{a}\right)$, where $\left.\alpha \in W(k), a \in \mathbb{N},(a, p)=1\right)$.

The group $K^{*} / \mathcal{N}\left(\mathcal{K}^{*}\right)$ is generated by the image of any $p^{t_{0}}$-primary element. These elements appear as principal units $E_{l_{0}} \in U_{K}$, such that $K\left(E_{l_{0}}^{p^{-i_{0}}}\right)$ is unramified extension of K of degree $p^{l_{0}}$. Equivalently, if $\psi_{K}: K^{*} \longrightarrow \Gamma_{K}^{\mathrm{ab}}$ is reciprocity map of class field theory, then $\psi_{K}\left(E_{l_{0}}\right)\left(\pi^{p^{-t_{0}}}\right)=\zeta \pi^{p^{-t_{0}}}$ for some primitive $p^{l_{0}}$-root of unity ζ, and $\psi_{K}\left(E_{l_{0}}\right)\left(u^{p^{-l_{0}}}\right)=u^{p^{-i_{0}}}$ for all $u \in U_{K}$. Explicit constructions of primary elements were considered in $[\mathrm{A}-\mathrm{H}]$, $[\mathrm{Sh}]$, $[\mathrm{Vol}]$. In n .4 .3 below we give Vostokov's construction of primary elements.

4.1.3. Compatibility of class field theories, [La].

The homomorphism \mathcal{N} relates class field theories for the fields \mathcal{K} and K. Namely, let $\psi_{\mathcal{K}}: \mathcal{K}^{*} \longrightarrow \Gamma_{K}^{\mathrm{ab}}$ and $\psi_{K}: K^{*} \longrightarrow \Gamma_{K}^{\mathrm{ab}}$ be reciprocity maps of class field theory. Then for any $a \in \mathcal{K}^{*}$ we have $\iota^{\mathrm{ab}}\left(\psi_{\mathcal{K}}(\alpha)\right)=\psi_{K}(\mathcal{N}(\alpha))$, where $\iota^{\mathrm{ab}}: \Gamma_{\mathcal{K}}^{\mathrm{ab}} \longrightarrow \Gamma_{K}^{\mathrm{ab}}$ is induced by imbedding $\iota: \Gamma_{\mathcal{K}} \longrightarrow \Gamma_{K}$ from n.4.1.

4.1.4. Witt explicit reciprocity law, [Fo4].

The uniformizer t_{0} of the field \mathcal{K} gives p-basis for any separable extension \mathcal{E} of the field \mathcal{K}. One can use t_{0} to define functorial by $M \in \mathbb{N}$ and by $\mathcal{E} \subset \mathcal{K}_{\text {sep }}$ system of liftings $O_{M}(\mathcal{E})$ of the field \mathcal{E} modulo p^{M}. By definition $O_{M}(\mathcal{E})$ is flat $\mathbb{Z} / p^{M} \mathbb{Z}$ algebra, such that $O_{M}(\mathcal{E}) / p O_{M}(\mathcal{E})=\mathcal{E}$. These liftings can be given explicitly as

$$
O_{M}(\mathcal{E})=W_{M}\left(\sigma^{M} \mathcal{E}\right)\left[\tilde{t}_{0}\right] \subset W_{M}(\mathcal{E})
$$

where $\tilde{t}=\left[t_{0}\right]$ is Teichmuller representative of t_{0} in $W_{M}(\mathcal{E})$ (this version of general construction from [B-M] we use also in [Ab2]).

Multiplication by p induces epimorphisms of $W(k)$-algebras $O_{M+1}(\mathcal{E}) \longrightarrow O_{M}(\mathcal{E})$. If $O(\mathcal{E})=\underset{M}{\lim _{M}} O_{M}(\mathcal{E})$ with respect to these epimorphisms, then $O(\mathcal{E})$ is the valuation ring of absolutely unramified field of characteristic 0 with residue field \mathcal{E}. Clearly, $O_{M}(\mathcal{K})$ is $W_{M}(k)$-algebra of Laurent series $W_{M}(k)((\tilde{t}))=W_{M}(k)[[\tilde{t}]]\left[\tilde{t}^{-1}\right]$ with coefficients in $W_{M}(k)$, and $O(\mathcal{K})$ is p-adic completion $W(k)((\tilde{t}))$ of $\left.W_{M}(k)[\tilde{t}] j\right]\left[\tilde{t}^{-1}\right]$.

Absolute Frobenius morphism of Witt vectors induces compatible system of Frobenius morphisms $\sigma=\sigma_{\mathcal{E}}: O(\mathcal{E}) \longrightarrow O(\mathcal{E})$. We have $O\left(\mathcal{K}_{\text {sep }}\right)_{\sigma=\mathrm{id}}=W\left(\mathbb{F}_{p}\right)$. Action of $\Gamma_{\mathcal{K}}$ on $\mathcal{K}_{\text {sep }}$ induces action of $\Gamma_{\mathcal{K}}$ on $O\left(\mathcal{K}_{\text {sep }}\right)$. If $\mathcal{H} \subset \Gamma_{\mathcal{K}}$ is open subgroup and $\mathcal{K}_{\text {sep }}^{\mathcal{H}}=\mathcal{E}$, then $O\left(\mathcal{K}_{\text {sep }}\right)^{\mathcal{H}}=O(\mathcal{E})$.

Let $\mathrm{Col}: \mathcal{K}^{*} \longrightarrow O(\mathcal{K})^{*}$ be Coleman's multiplicative section of the projection pr : $O(\mathcal{K}) \longrightarrow \mathcal{K}$, c.f. [Fo4]. In our situation, the homomorphism Col can be described explicitly in terms of generators of the group \mathcal{K}^{*} from n.4.2. Namely, $\operatorname{Col}\left(t_{0}\right)=\tilde{t}$ and $\operatorname{Col}\left(E\left(\alpha, t_{0}^{a}\right)\right)=E\left(\alpha, \tilde{t}^{a}\right)$, where $\alpha \in W(k), a \in \mathbb{N},(a, p)=1$. This property gives the following simple explicit description of the homomorphism $\left.(\mathcal{N} \circ \mathrm{pr})\right|_{\mathrm{Col} \mathcal{K}^{*}}: \operatorname{Col} \mathcal{K}^{*} \longrightarrow K^{*}:$
if $g=g(\tilde{t}) \in \operatorname{Col} \mathcal{K}^{*}$, then $\mathcal{N}(\operatorname{pr}(g))=g(\pi)$.
One can easily prove the following characterization of the image $\operatorname{Col}\left(\mathcal{K}^{*}\right)$ in $O(\mathcal{K})^{*}$.

Lemma. Let $g \in O(\mathcal{K})^{*}$. Then $g \in \operatorname{Col}\left(\mathcal{K}^{*}\right)$ if and only if
a) $g \in W(k)[[\tilde{t}]]\left[\tilde{t}^{-1}\right]$;
b) $\left(\sigma g / g^{p}\right) \in 1+\tilde{t} W(k)[[\tilde{t}]]$;
c) $\frac{1}{p} \log \left(\sigma g / g^{p}\right)=\sum_{(c, p)=1} \alpha_{c} \tilde{t}^{c}$, where all $\alpha_{c} \in W(k)$.

Let $f \in O(\mathcal{K}), g \in \mathcal{K}^{*}$, and let $(f, g]_{W} \in W\left(\mathbb{F}_{p}\right)$ be Witt pairing given by

$$
(f, g]_{W}=\tau T-T
$$

where $T \in O\left(\mathcal{K}_{\text {sep }}\right)$ is such that $\sigma T-T=f$ and $\tau=\psi_{K}(g) \in \Gamma_{\kappa}^{\mathrm{ab}}$.
Then Witt explicit reciprocity law can be given by Fontaine formula, [Fo4]

$$
(f, g]_{W}=\left(\operatorname{Res}_{i=0} \circ \operatorname{Tr}\right)\left(f \frac{\mathrm{dCol} g}{\operatorname{Col} g}\right)
$$

where $\operatorname{Tr}: W(k) \longrightarrow W\left(\mathbb{F}_{p}\right)$ is the trace map and $\operatorname{Res}_{\tilde{i}=0}$ is residue at $\tilde{t}=0$.
Finally, we remark, that this construction can be made in $W\left(R_{0}\right)$, where $R_{0}=$ Frac R. We have a natural identification of the field \mathcal{K} with some subfield of R_{0} by the correspondence: $t_{0} \mapsto\left(\pi_{s}\right)_{s \geq 0} \in R_{0}$, c.f. n.2.5.1, and if $\alpha \in k \subset \mathcal{K}$, then $\alpha \mapsto\left(\left[\alpha^{p^{\prime \prime}}\right]\right)_{s \geq 0} \in R_{0}$, where [] denotes Teichmuller representative for elements of the residue field of K. This embedding is a particular case of compatible system of embeddings $\mathcal{E} \subset R_{0}$, where $\mathcal{K} \subset \mathcal{E} \subset \mathcal{K}_{\text {sep }}$, given in [Wtb]. So, we have a natural imbedding $\mathcal{K}_{\text {sep }} \subset R_{0}$ compatible with Galois action (with respect to the inclusion $\iota: \Gamma_{\mathcal{K}} \longrightarrow \Gamma_{K}$ from n.4.1). Then by universal property of Witt vectors there exists the unique compatible with given Frobenius morphisms system of embeddings $O(\mathcal{E}) \subset W\left(R_{0}\right)$. So, one can compute the value ($\left.f, g\right]_{W}$ of Witt symbol in the ring $W\left(R_{0}\right)$.
Remark. Under the above embedding $O_{\mathcal{K}}=W(k)((\tilde{t})) \subset W\left(R_{0}\right)$ notation t_{0} and \tilde{t} from this n . agree with notation t_{0} and \tilde{t} from n.2.5.1.

4.2. First explicit formula.

Let $G=G_{\mathcal{A}}$ be the formal group with vector logarithm power series $\bar{l}_{\mathcal{A}}(\bar{X})$ from section 1. If M is fixed natural number, choose $\mathbb{Z} / p^{M} \mathbb{Z}$-basis $o_{M}^{1}, \ldots, o_{M}^{h}$ of $G_{\mathcal{A}}[M]\left(m_{K}\right)=G_{\mathcal{A}}[M]\left(m_{C}\right)$, take liftings of its elements $\hat{o}_{M}^{1}, \ldots, \hat{o}_{M}^{h}$ in $m_{k, \bar{i}}^{n}=$ $\tilde{t} W(k)^{n} \subset O_{k, \pi}^{n}$ with respect to the epimorphism $\gamma: m_{k, \pi} \longrightarrow m_{K}$ given by $\tilde{t} \mapsto \pi$ and construct the matrix from n.3.5

$$
\mathcal{V}_{\tilde{i}}=\left(\begin{array}{ccc}
p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \ldots & p^{M} \bar{l}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right) \\
p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{1}\right) & \cdots & p^{M} \bar{m}_{\mathcal{A}}\left(\hat{o}_{M}^{h}\right)
\end{array}\right) .
$$

This matrix is invertible in the $W_{\mathbb{Q}}(k)$-algebra $\mathcal{L}_{k, \tilde{i}}$ and denote by $\mathcal{V}_{\tilde{t}}^{(-1)}$ the matrix obtained from \mathcal{V}_{i}^{-1} by taking principal parts of its elements.

If $f \in G_{\mathcal{A}}\left(m_{K}\right), g \in K^{*}$, then the value $(f, g]_{G_{\mathcal{A}}}$ of the formal group symbol modulo p^{M} can be expressed as

$$
(f, g]_{G_{\Lambda}}=A_{1}(f, g) o_{M}^{1}+\cdots+A_{h}(f, g) o_{M}^{h}
$$

where $A(f, g)={ }^{t}\left(A_{1}(f, g), \ldots, A_{h}(f, g)\right) \in\left(\mathbb{Z} / p^{M} \mathbb{Z}\right)^{h}$.
Now propositions of nn.2.7, 3.9 and Witt explicit reciprocity law from n.4.1.4 give the following theorem

Theorem A. Let $\beta(\tilde{t}) \in m_{k, \bar{i}}^{n}, \Theta_{G_{\mathcal{A}, 1}}: m_{k, \tilde{t}}^{n} \longrightarrow G_{\mathcal{A}}\left(m_{k, \tilde{t}}\right)$ be the isomorphism from n.2.5, and $\delta_{1} \in \mathcal{K}^{*}$. Then

$$
A(\beta(\pi), \mathcal{N}(\gamma))=\left(\operatorname{Res}_{\tilde{t}=0} \circ \operatorname{Tr}\right)\left\{\mathcal{V}_{\tilde{t}}^{(-1)}\binom{\Theta_{G_{\mathcal{A}}, 1}^{-1}(\beta(\tilde{t}))}{0} \mathrm{~d}_{\log } \operatorname{Col} \delta_{1}\right\} \bmod p^{M}
$$

We can use explicit description of $\Theta_{G_{\Lambda}, 1}^{-1}$ from $n, 2.5 .2$ to give equivalent form of the above theorem

Theorem A1. Let $f \in G_{\mathcal{A}}\left(m_{K}\right)=m_{K}^{n}, g \in K^{*}$. Take $\beta(\tilde{t}) \in m_{k, \pi}^{n}$ such that $\beta(\pi)=f$ and assume that there exists $\delta=\delta(\tilde{t}) \in \operatorname{Col} \mathcal{K}^{*} \subset O(\mathcal{K})=W(k)((\tilde{t}))$, such that $\delta(\pi)=g$ (c.f. lemma of n.4.1.4). Then

$$
A(f, g)=\left(\operatorname{Res}_{\tilde{i}=0} \circ \operatorname{Tr}\right)\left\{\mathcal{V}_{\tilde{i}}^{(-1)}\binom{\bar{l}_{\mathcal{A}}(\beta(\tilde{t}))-\frac{\mathcal{A}^{*}}{p} \bar{l}_{\mathcal{A}}(\beta(\tilde{t}))}{0} \mathrm{~d}_{\log } \delta\right\} \bmod p^{M}
$$

Remarks.

a) In the above theorems one can replace matrix $\mathcal{V}_{\hat{t}}^{(-1)}$ by $\mathcal{V}_{\hat{i}}^{-1}$, because one can compute residue also in the algebra $\mathcal{L}_{k, \bar{\tau}}$ and the above replacement does not affect the value of residue.
b) Theorems A and A1 give almost all information about values of the formal group symbol. The only restriction is that the second argument can be taken only from the subgroup $\mathcal{N}\left(\mathcal{K}^{*}\right)$. If K does not contain p-roots of unity, then $\mathcal{N}\left(\mathcal{K}^{*}\right)=$ K^{*}, and our formula gives complete description of symbol. If K contains primitive p^{M}-root of unity, one should involve in consideration p^{M}-primary elements of K^{*}, c.f. n.4.3 below.
c) Another inconvenience of the above formulae is related to the special choice of the power series $\operatorname{Col} \delta_{1}(\tilde{t})=\delta(\tilde{t})$ to obtain $g \in K^{*}$ as a result of substitution $\tilde{t} \mapsto \pi$. In the case $G=\hat{\mathbb{G}}_{m}$ Brückner-Vostokov formula is free from this restriction. In n. 4.4 below, we give similar expression for the formal group symbol.

4.3. p^{M}-primary elements.

Assume, that K contains a primitive p^{M}-root of unity ζ.
4.3.1. Let \mathbb{G}_{1} be the formal group from n.1.7.1. If $\hat{\mathbb{G}}_{m}$ is the formal multiplicative group, then $\eta: X \mapsto E(1, X)=\exp \left(l_{\mathbf{G}_{1}}(X)\right)$ gives isomorphism of formal groups $\eta: \mathbb{G}_{1} \longrightarrow \hat{\mathbb{G}}_{m}$. In particular, $\mathbb{G}_{1}\left(m_{K}\right) \simeq \hat{\mathbb{G}}_{m}\left(m_{K}\right)=U_{K}$ and $o_{M}=\eta^{-1}(\zeta)$ is generator of $\mathbb{G}_{1}[M]\left(m_{C}\right)=\mathbb{G}_{1}[M]\left(m_{K}\right)$.

In notation of n.1.7.2 the matrix of values of the p-adic periods pairing $\mathcal{V}_{\mathbb{G}_{1}}$ for the formal group \mathbb{G}_{1} equals $\left(\left(t^{+}\right)\right)$, where $t^{+}=l_{\mathbb{G}_{1}}(\psi)$. If $\hat{o}_{M} \in m_{k, t}$ is such that $\gamma\left(\hat{o}_{M}\right)=o_{M}$ (i.e. $\quad \hat{o}_{M} \mapsto o_{M}$ by substitution $\tilde{t} \mapsto \pi$), consider $s_{M}(\tilde{t})=$ $\left(p^{M} \operatorname{id}_{\mathbf{G}_{1}}\right)\left(\hat{o}_{M}\right)$. Then $\mathcal{V}_{\mathbf{G}_{1}, \bar{t}}=\left(\left(l_{\mathbf{G}_{1}}\left(s_{M}(\tilde{t})\right)\right)\right)$, and one can easily see, that $\mathcal{V}_{\mathbf{G}_{1}, \tilde{t}}^{(-\bar{t})}=$ $\left(\left(s_{M}(\tilde{t})^{-1}\right)\right)$.

Let $\delta_{0} \in W(k)$ be such that $\operatorname{Tr} \delta_{0} \in \mathbb{Z}_{p}^{*} \subset \mathbb{Z}_{p}$, where $\operatorname{Tr}: W(k) \longrightarrow \mathbb{Z}_{p}$ is the trace map. Take $\hat{T}_{\bar{i}} \in W(\bar{k}) \subset W\left(R_{0}\right)$, such that

$$
\hat{T}_{\bar{t}}-\sigma \hat{T}_{\tilde{t}}=\delta_{0}
$$

If $\tau \in \Gamma_{K}$, let $A_{\tau}=\tau \hat{T}_{\tilde{t}}-\hat{T}_{\hat{i}} \in \mathbb{Z}_{p} \subset W(\bar{k})$. Clearly, the correspondence $\tau \mapsto A_{\tau}$ gives epimorphism $j: \Gamma_{K} \longrightarrow \mathbb{Z}_{p}$, Ker j is the inertia subgroup of Γ_{K} and j induces isomorphism $\operatorname{Gal}\left(K_{\mathrm{ur}} / K\right) \simeq \mathbb{Z}_{p}$, where K_{ur} is maximal unramified extension of K.

If $\Theta=\Theta_{\mathbb{G}_{1}}$, c.f. n.2.5.2, then by nn.2.7, 3.9 for any $\tau \in \Gamma_{K}$ we have

$$
\begin{equation*}
\left(\Theta\left(\delta_{0} s_{M}(\tilde{t})\right), \tau\right]_{\mathbf{G}_{1}}=A_{\tau} o_{M} \tag{*}
\end{equation*}
$$

If $f_{1} \in \mathbb{G}_{1}\left(m_{C}\right)$ is such that $\left(p^{M} \operatorname{id}_{G_{1}}\right)\left(f_{1}\right)=\Theta_{\mathbb{G}_{1}}\left(\delta_{0} s_{M}(\tilde{t})\right)$, then the above formula (*) gives $K\left(f_{1}\right) \subset K_{\text {ur }}$ and $\left[K\left(f_{1}\right): K\right]=p^{M}$. Therefore, we obtain p^{M}-primary element $E_{M}=\eta\left(\Theta_{\mathbb{G}_{1}}\left(\delta_{0} s_{M}(\tilde{t})\right)\right)$ by applying isomorphism $\eta: \mathbb{G}_{1} \longrightarrow \hat{\mathbb{G}}_{m}$.
4.3.2. The above considerations give the following explicit construction of p^{M} primary element from [Vo1].
Proposition. If $s_{M}(\tilde{t})=\sum_{u>0} w_{u} \tilde{t}^{u}$, where all $w_{u} \in W(k)$, and

$$
E_{M}(\tilde{t})=\prod_{u>0} E\left(\delta_{0} w_{u}, \tilde{t}^{u}\right) \in 1+m_{k, \tilde{i}}
$$

then $\gamma\left(E_{M}(\tilde{t})\right)=E_{M}(\pi)=E_{M}$.
Proof. If $\delta_{0} w_{u}=\sum_{v \geq 0}\left[\alpha_{s, u}\right] p^{s}$, where all $\alpha_{s, u} \in k$, then

$$
\begin{gathered}
\Theta_{\mathbb{G}_{1}, 1}\left(\delta_{0} s_{M}(\tilde{t})\right)=\sum_{\substack{\mathrm{in}_{s, u} \mathbf{G}_{1}}}\left(p^{s} \operatorname{id}_{\mathbf{G}_{1}}\right)\left(\left[\alpha_{s, u}\right] \tilde{t}^{u}\right), \\
E_{M}=\eta\left(\Theta_{\mathbb{G}_{1}}\left(\delta_{0} s_{M}(\tilde{t})\right)\right)=\gamma\left(\eta\left(\Theta_{\mathbf{G}_{1}, 1}\left(\delta_{0} s_{M}(\tilde{t})\right)\right)\right)= \\
=\gamma\left(\prod_{\substack{s \geqslant 0 \\
u>0}} E\left(p^{s}\left[\alpha_{s, u}\right], \tilde{t}^{u}\right)\right)=\gamma\left(\prod_{u>0} E\left(\delta_{0} w_{u}, \tilde{t}^{u}\right)\right)=\gamma\left(E_{M}(\tilde{t})\right) .
\end{gathered}
$$

The following corollary is also well-known.
Corollary. If $E_{M} \in K^{*}$ is a p^{M}-primary element, then there exists power series $E_{M}(\tilde{t}) \in 1+m_{k, \tilde{t}}$, such that $E_{M}(\pi)=E_{M}$ and $\mathrm{d}_{\log } E_{M}(\tilde{t}) \in p^{M} \Omega_{O_{k, i}}^{1}$.
Proof. Indeed, take $E_{M}(\tilde{t})$ from the above proposition. Then

$$
\mathrm{d}_{\log } E_{M}(\tilde{t})=\mathrm{d}\left(\sum_{\substack{s \geqslant 0 \\ u>0}} \sigma^{s}\left(\delta_{0} w_{u}\right) \frac{\tilde{t}^{u} p^{*}}{p^{s}}\right)=\sum_{s \geqslant 0} \sigma^{s}\left(\tilde{t}_{M}^{\prime}(\tilde{t})\right) \frac{\mathrm{d} \tilde{t}}{\tilde{t}}
$$

But $s_{M}^{\prime}(\tilde{t}) \in p^{M} O_{k, \tilde{i}}$, because $l_{\mathbb{G}_{1}}\left(s_{M}(\tilde{t})\right)=p^{M} l_{\mathbb{G}_{1}}\left(\hat{o}_{M}\right)$ and, therefore,

$$
\left(1+s_{M}(\tilde{t})^{p-1}+\cdots+s_{M}(\tilde{t})^{p^{*}-1}+\ldots\right) \mathrm{d} s_{M}(\tilde{t})=p^{M} \mathrm{~d} l_{\mathbf{G}_{1}}\left(\hat{o}_{M}\right) \in p^{M} \Omega_{O_{k, i}}^{1}
$$

4.3.3. Let $E_{M} \in K^{*}$ be a p^{M}-primary element and $G_{\mathcal{A}}$ be the formal group from section 1 .

Proposition. For any $f \in G_{\mathcal{A}}\left(m_{K}\right)$ one has

$$
\left(f, E_{M}\right)_{G_{\mathcal{A}}}=0
$$

Proof. Choose some $\tau_{M} \in \Gamma_{K}$, such that $\psi_{K}\left(E_{M}\right)$ is the image of τ_{M} in Γ_{K}^{ab}, where $\psi_{K}: K^{*} \longrightarrow \Gamma_{K}^{\mathrm{ab}}$ is reciprocity map of class field theory. We must prove, that $(f, \tau)_{G_{\mathcal{A}}}=0$.

The statement of proposition holds for the formal group $\hat{\mathbb{G}}_{m}$ (c.f. n.4.1.2) and, therefore, it holds for the formal group \mathbb{G}_{1}.

Take $s_{M}(\tilde{t}) \in m_{k, \tilde{t}}$ from n.4.3.1. If $\alpha_{0} \in m_{k, i}$ and $T \in W\left(R_{0}\right)$ is such that $T-\sigma T=\alpha_{0} / s_{M}(\tilde{t})$, the equality $\left(\Theta_{\mathbf{G}_{1}}\left(\alpha_{0}\right), \tau_{M}\right]_{\mathbf{G}_{1}}=0$ is equivalent to the relation

$$
\begin{equation*}
\tau_{M} T-T \in W\left(m_{R}\right)+p^{M} W\left(R_{0}\right) \tag{*}
\end{equation*}
$$

Let $\mathcal{V}_{\bar{t}}$ be approximation of the matrix of values of the p-adic periods pairing for the formal group $G_{\mathcal{A}}$ from n.3.5, and let \hat{X}_{i} be nonnegative part of $\mathcal{V}_{\hat{i}}^{-1}\binom{\alpha}{0}$, c.f. n.3.8. By the part d) of proposition 3.8 vector-column $\psi \hat{X}_{\tilde{t}}$ has coordinates in $W\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$. It is easy to see, that $\psi \equiv s_{M}(\tilde{t}) \bmod p^{M} W(R)$, therefore,

$$
\hat{X}_{i} \in \frac{1}{s_{M}(\tilde{t})} m_{k, i}^{n} \bmod p^{M} W\left(R_{0}\right)
$$

Now the above relation (*) gives:
if $\hat{T}_{\bar{t}} \in W\left(R_{0}\right)$ is such that $\hat{T}_{\bar{i}}-\sigma \hat{T}_{\bar{i}}=\hat{X}_{\bar{i}}$, then $\tau_{M} \hat{T}_{\bar{i}}-\hat{T}_{\bar{t}}$ has coordinates in $W\left(m_{R}\right)+p^{M} W\left(R_{0}\right)$. By propositions of n.3.9 and n.2.7 this is equivalent to the statement of our proposition.

4.4. Second explicit formula.

4.4.1. Agreements.

As earlier, $G \simeq G_{\mathcal{A}}$ is the formal group over $W\left(k_{0}\right)$ from section 1. In particular, we use description of the structure of filtered module $\mathcal{M}(G)$ from section 1 given by the relation

$$
\binom{\phi_{1}(\bar{l})}{\phi_{0}(\bar{m})}=\mathcal{E}\binom{\bar{l}}{\bar{m}}
$$

\mathbb{Z} / p^{M}-basis $o_{M}^{1}, \ldots, o_{M}^{h}$ of $G_{\mathcal{A}}[M]\left(m_{K}\right)$ and the matrix $\mathcal{V}_{\bar{i}}$, c.f. n.4.2. All appeared Laurent series $\sum_{u \in \mathbf{Z}} w_{u} \tilde{t}^{u}, w_{u} \in W_{\mathbf{Q}_{p}}(k)$, are elements of the $W_{\mathbf{Q}_{\boldsymbol{p}}}(k)$-algebra $\mathcal{L}_{k, \bar{t}}=$ $\mathcal{G}_{k, i} \cap \mathcal{G}_{(p-1)+, p-1}, \sigma$ denotes absolute Frobenius of $\mathcal{G}_{k, \tilde{\tau}}$ given by restriction of $\sigma_{\mathcal{G}}$, i.e. $\sigma \tilde{t}=\tilde{t}^{p}$ and $\left.\sigma\right|_{W(k)}$ is usual Frobenius of Witt vectors.

If $\beta \in G_{\mathcal{A}}\left(m_{k, \bar{i}}\right)$ and $\bar{l}_{\mathcal{A}}(\bar{X})$ is vector logarithm power series of the formal group $G_{\mathcal{A}}$, then $\bar{l}_{\mathcal{A}}(\beta)$ has coordinates in $\mathcal{L}_{k, i} \cap \mathcal{G}_{p, 0}$, so for any $u \in \mathbb{N} \quad \sigma^{u} \bar{l}_{\mathcal{A}}(\beta)$ has sense in $\mathcal{L}_{k, i}$. We use matrices F_{u}, F_{u}^{\prime} from n.1.3 to define \mathbb{Z}_{p}-linear operator $\mathcal{A}^{*}=$ $\sum_{u \geq 1} F_{u} \sigma^{u}$ and to define for any $\beta \in G_{\mathcal{A}}\left(m_{k, \bar{t}}\right)$ vector Laurent series

$$
\bar{m}_{\mathcal{A}}(\beta)=\frac{1}{p} \sum_{u \geq 1} F_{u}^{\prime} \sigma^{u}\left(\bar{l}_{\mathcal{A}}(\beta)\right) \in \mathcal{G}_{k, \tilde{t}} \cap \mathcal{G}_{p, 0} \subset \mathcal{L}_{k, \tilde{t}}
$$

An easy consequence of the definition of these matrices F_{u} and F_{u}^{\prime} is the following formal identity for any $\beta \in m_{k, \bar{i}}$

$$
\mathcal{E}^{-1}\binom{(\sigma / p) \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}=\binom{\left(\mathcal{A}^{*} / p\right) \bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}
$$

We denote by \mathcal{H}_{K} multiplicative subgroup in $O_{k, \bar{i}}\left[\tilde{t}^{-1}\right] \subset \mathcal{L}_{k, \tilde{t}}$, such that

$$
\delta(\tilde{t}) \in \mathcal{H}_{K} \Longleftrightarrow \frac{\sigma \delta(\tilde{t})}{\delta(\tilde{t})^{p}} \in 1+m_{k, \tilde{t}}
$$

So, the group \mathcal{H}_{K} is generated by elements of $1+m_{k, \tilde{t}}$, by \tilde{t} and by $[\alpha]$, where $\alpha \in k^{*}$. Remark, that $\operatorname{Col}\left(\mathcal{K}^{*}\right) \subset \mathcal{H}_{K}$ and by lemma of n.4.1.4 we have

$$
\delta(\tilde{t}) \in \operatorname{Col}\left(\mathcal{K}^{*}\right) \Longleftrightarrow \delta(\tilde{t}) \in \mathcal{H}_{K} \text { and } \frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}}=\sum_{(c, p)=1} w_{c} \tilde{t}^{c},
$$

where all $w_{c} \in W(k)$.
As earlier, $\gamma: G\left(m_{k, \bar{i}}\right) \longrightarrow G\left(m_{K}\right)$ and $\gamma: \mathcal{H}_{K} \longrightarrow K^{*}$ are morphisms of substitution $\tilde{t} \mapsto \pi$.
4.4.2. Main theorem.

Assume, that K contains a primitive p^{M}-root of unity.
If $\beta=\beta(\tilde{t}) \in G_{\mathcal{A}}\left(m_{k, \tilde{t}}\right)$, let

$$
\begin{gathered}
\Phi_{1}(\beta)=\mathcal{V}_{\hat{t}}^{-1}\binom{\bar{l}_{\mathcal{A}}(\beta)-\frac{\mathcal{A}^{\mathcal{}}}{p} \bar{l}_{\mathcal{A}}(\beta)}{0} \in\left(\mathcal{L}_{k, \bar{t}}\right)^{h} \\
\Phi_{2}(\beta)=\mathcal{V}_{\hat{t}}^{-1} \mathcal{E}^{-1} \mathrm{~d}\binom{\frac{\sigma}{p} \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)} \in\left(\Omega_{\mathcal{L}_{h, i}}^{1}\right)^{h}
\end{gathered}
$$

Theorem B. Let $\beta \in G_{\mathcal{A}}\left(m_{k, \tilde{t}}\right), \delta \in \mathcal{H}_{K}$, and $B(\beta, \delta)={ }^{t}\left(B_{1}, \ldots, B_{h}\right)=$

$$
=\left(\operatorname{Res}_{\bar{i}=0} \circ \operatorname{Tr}\right)\left(\Phi_{1}(\beta) \mathrm{d}_{\log } \delta+\frac{1}{p} \log \left(\frac{\sigma \delta}{\delta^{p}}\right) \Phi_{2}(\beta)\right) \in \mathbb{Q}_{p}^{h}
$$

where $\operatorname{Tr}: W(k) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ is trace map, and $\operatorname{Res}_{\boldsymbol{i}=0}$ is residue. Then $B(\beta, \delta) \in$ \mathbb{Z}_{p}^{h} and

$$
(\gamma(\beta), \gamma(\delta)]_{G_{\mathcal{A}}}=B_{1} o_{M}^{1}+\cdots+B_{h} o_{M}^{h}
$$

Remark. We can use formal identity from n.4.4.1 to express the right-hand side of the above expression for $B(\beta, \delta)$ in a form, which is very close to Brückner-Vostokov formulae

$$
B(\beta, \delta)={ }^{t}\left(B_{1}, \ldots, B_{h}\right)=
$$

$(\operatorname{Res} \circ \operatorname{Tr})\left\{\mathcal{V}_{\hat{t}}^{(-1)}\left[\left(\mathrm{id}-\binom{\frac{\mathcal{A}^{*}}{p}}{\mathrm{id}}\right)\binom{\bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)} \mathrm{d}_{\log } \delta-\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}}\binom{\frac{\mathcal{A}^{*}}{p}}{\mathrm{id}} \mathrm{d}\binom{\bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}\right]\right\}$

4.5. Proof of theorem B.

Consider the pairing

$$
(,]_{k, \tilde{t}}: G_{\mathcal{A}}\left(m_{k, \bar{t}}\right) \times \mathcal{H}_{K} \longrightarrow \mathbb{Q}_{p}^{h}
$$

given for $\beta \in G_{\mathcal{A}}\left(m_{k, \tilde{t}}\right), \gamma \in \mathcal{H}_{K}$ by the expression

$$
(\beta, \gamma]_{k, \bar{t}}=\left(\operatorname{Res}_{\tilde{t}=0} \circ \operatorname{Tr}\right)\left(\Phi_{1}(\beta) \mathrm{d}_{\log } \delta+\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}} \Phi_{2}(\beta)\right)
$$

This pairing has the following properties.
4.5.1. For any $\beta \in G_{\mathcal{A}}\left(m_{k, \bar{i}}\right), \delta \in \mathcal{H}_{K}$, one has $(\beta, \delta]_{k, \bar{i}} \in \mathbb{Z}_{p}^{h}$.

Indeed, all elements of the matrix $\mathcal{V}_{\hat{i}}^{-1}$ have principal parts with coefficients from $W(k)$,

$$
\begin{gathered}
\bar{l}_{\mathcal{A}}(\beta)-\left(\mathcal{A}^{*} / p\right) \bar{l}_{\mathcal{A}}(\beta)=\Theta_{G_{\mathcal{A}}, 1}^{-1}(\beta) \in m_{k, i}^{n}=(\tilde{t} W(k)[[\tilde{t}]])^{n}, \\
\mathrm{~d}\binom{\left.\frac{\sigma}{p} \bar{l}_{\mathcal{A}}\right)(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)} \in\left(\Omega_{W(k)[[t]]]}^{1}\right)^{h},
\end{gathered}
$$

$\mathrm{d}_{\log } \delta \in \tilde{t}^{-1} W(k)\left[[\tilde{t}] \mathrm{d} \tilde{t}\right.$ and $(1 / p) \log \left(\sigma \delta / \delta^{p}\right) \in m_{k, \tilde{t}}$.
4.5.2. The pairing $(,]_{k, i}$ is \mathbb{Z}_{p}-linear by both arguments.

This property is obvious from the definition of pairing.
So, this pairing can be considered as homomorphism

$$
(,]_{k, \bar{i}}: G_{\mathcal{A}}\left(m_{k, \bar{i}}\right) \otimes{\mathbf{n}_{p}} \mathcal{H}_{K} \longrightarrow \mathbb{Z}_{p}^{h}
$$

4.5.3. Proof of the following proposition will be given in $n .4 .6$ below.

Proposition.

If $\gamma(\delta)=1$, then for any $\beta \in G_{\mathcal{A}}\left(m_{k, \bar{t}}\right)$ one has $(\beta, \delta]_{k, \tilde{t}} \equiv 0 \bmod p^{M}$.
4.5.4. Theorem B holds for any $\beta \in G_{\mathcal{A}}\left(m_{k, \tilde{\varepsilon}}\right)$ and $\delta \in \operatorname{Col} \mathcal{K}^{*} \subset \mathcal{H}_{K}$.

By theorem A1 of n.4.2 it is sufficient to prove, that

$$
\operatorname{Res}\left(\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}} \Phi_{2}(\beta)\right) \in p^{M} \mathbb{Z}_{p}^{h}
$$

Lemma. $\mathrm{d}\left(\mathcal{V}_{\tilde{t}}^{-1}\right)=p^{M} \mathcal{W}_{\tilde{t}} \mathrm{~d} \tilde{t}$, where the matrix $\mathcal{W}_{\tilde{t}}$ has coefficients in

$$
\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0} \cap \mathcal{L}_{k, i} .
$$

Proof of lemma. From definition of $\mathcal{V}_{\hat{t}}$ it is clear, that all coefficients of $\mathrm{d}\left(\mathcal{V}_{\hat{i}}\right)$ belong to $p^{M} \Omega_{W(k)[[\hat{t}]]}^{1}$. By nn. 3.5.5, 3.1.2 and 3.7.1 the matrix $\mathcal{V}_{\hat{t}}$ has coefficients in

$$
\frac{1}{\psi} W(R)\left[\left[\psi^{p-1} / p\right]\right]+p^{M}\left(\frac{1}{p \psi} \mathcal{R}\right) \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}+p^{M}\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

Then the equality

$$
\mathrm{d}\left(\mathcal{V}_{\hat{t}}^{-1}\right)=-\mathcal{V}_{\hat{t}}^{-1} \mathrm{~d}\left(\mathcal{V}_{\hat{i}}\right) \mathcal{V}_{\hat{t}}^{-1}
$$

gives $\mathrm{d}\left(\mathcal{V}_{\tilde{t}}^{-1}\right)=p^{M} \mathcal{W}_{\tilde{t}} \mathrm{~d} \tilde{t}$, where $\mathcal{W}_{\tilde{t}}$ has coefficients in

$$
\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}\left[p\left[x_{0}\right]^{-p /(p-1)}\right] \subset\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0}
$$

Lemma is proved.
Now from lemma of n.3.7.2 it follows, that principal parts of elements of \mathcal{W}_{i} have p-integral coefficients. Therefore, if $\mathcal{V}_{\tilde{t}}^{-1}=\left(\left(v_{i j}(\tilde{t})\right)\right)_{1 \leq i, j \leq h}$, and $v_{i j}(\tilde{t})=$ $\sum_{u \in \mathbf{Z}} w_{u i j} \tilde{t}^{u}$, where all $w_{u i j} \in W_{\mathbf{Q}_{p}}(k)$, then $u w_{u i j} \in p^{M} W(k)$ if $u<0$. In particular, if $u<0,(u, p)=1$, then $w_{u i j} \in p^{M} W(k)$.

Now remark, that there exists vector power series $F(\tilde{t}) \in(W(k)[[\tilde{t}]])^{h}$, such that

$$
\mathrm{d}\binom{(\sigma / p) \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}=F\left(\tilde{t}^{p}\right) \frac{\mathrm{d} \tilde{t}}{\tilde{t}}
$$

and $\delta \in \operatorname{Col} \mathcal{K} \subset \mathcal{H}_{K}$ implies

$$
\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}}=\sum_{(c, p)=1} \alpha_{c} \tilde{t}^{c}
$$

where $\alpha_{c} \in W(k)$, c.f. n.4.1.4.
Therefore, the expressions for coordinates of the residue of

$$
\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}} V_{\tilde{t}}^{-1} F\left(\tilde{t}^{p}\right) \frac{\mathrm{d} \tilde{t}}{\tilde{t}}
$$

are linear combinations of $w_{u i j},(u, p)=1$, with coefficients from $W(k)$. But all such $w_{u i j} \in p^{M} W(k)$.
4.5.5. Theorem B holds for $\delta=E_{M}(\tilde{t}) \in 1+m_{k, \tilde{t}}$ from proposition 4.3 .2 and any $\beta \in G_{\mathcal{A}}\left(m_{k, \bar{t}}\right)$.

By proposition 4.3 .3 it is sufficient to check up, that $B(\beta, \delta) \in p^{M} \mathbb{Z}_{p}^{h}$. By corollary of n.4.3.2 $\mathrm{d}_{\log } \delta \in p^{M} \Omega_{W(k)[[t]]}^{1}$, principal parts of coordinates of $\Phi_{1}(\beta)$ have p-integral coefficients. So, $\operatorname{Res}\left(\Phi_{1}(\beta) d_{\log } \delta\right) \in p^{M} \mathbb{Z}_{p}^{h}$.

From construction of $E_{M}(\tilde{t})$ it follows, that $(1 / p) \log \left(\sigma \delta / \delta^{p}\right)=\delta_{0} s_{M}(\tilde{t})$, c.f. n.4.3.1.

If $s_{M}(\tilde{t})=\psi+p^{M} w_{0}$, then $w_{0}=t w_{1} \in W^{1}\left(m_{R}\right)=t W\left(m_{R}\right)$ and corollary of n.3.5.5 gives

$$
\begin{gathered}
s_{M}(\tilde{t}) \mathcal{V}_{\hat{i}}^{-1} \in\left(1+p^{M} \frac{t w_{1}}{\psi}\right) W(R)\left[\left[\psi^{p-1} / p\right]\right]+p^{M}\left(1+p^{M} \frac{t w_{1}}{\psi}\right) \frac{1}{p} \mathcal{R} \subset \\
\subset \mathcal{G}_{p, 0}^{0}+p^{M}\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}
\end{gathered}
$$

Therefore, principal parts of coefficients of $s_{M}(\tilde{t}) \mathcal{V}_{\hat{i}}^{-1}$ have coefficients in $p^{M} W(k)$. This gives

$$
\operatorname{Res}\left(\delta_{0} s_{M}(\tilde{t}) \Phi_{2}(\beta)\right) \equiv 0 \bmod p^{M}
$$

Clearly, the above properties 4.5.1-4.5.5 give the proof of theorem B.

4.6. Proof of proposition 4.5.9.

We can calculate in $\mathcal{G}_{(p-1)+, p-1} \otimes \mathcal{C}_{k, i} \Omega_{\mathcal{C}_{k, i}}^{1} \supset \Omega_{\mathcal{C}_{k, i}}^{1}$.
4.6.1. $\gamma(\delta)=1$ implies existence of $\log \delta \in \mathcal{G}_{p, 0}^{0} \cap \mathcal{L}_{k, \bar{t}}$. Now we have

$$
\operatorname{Res}\left(\Phi_{1}(\beta) \mathrm{d}_{\log } \delta\right)=-\operatorname{Res}\left(\log \delta \mathrm{d} \Phi_{1}(\beta)\right)
$$

Lemma of n.4.5.4 gives

$$
\mathrm{d} \Phi_{1}(\beta) \equiv \mathcal{V}_{\hat{t}}^{-1} \mathrm{~d}\left(\bar{l}_{\mathcal{A}}(\beta)-\frac{\mathcal{A}^{*}}{0^{p}} \bar{l}_{\mathcal{A}}(\beta)\right) \bmod p^{M}\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0} \mathrm{~d} \tilde{t} .
$$

Now we can apply lemma of n.3.7.2 and the formal identity from the beginning of n.4.4 to obtain the following equivalence

$$
\begin{aligned}
& \operatorname{Res}\left(\Phi_{1}(\beta) \mathrm{d}_{\log } \delta\right) \equiv-\operatorname{Res}\left(\log \delta \mathcal{V}_{i}^{-1} \mathrm{~d}\binom{\bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}+\right. \\
& \quad+\operatorname{Res}\left(\log \delta \mathcal{V}_{i}^{-1} \mathcal{E}^{-1} \mathrm{~d}\binom{\frac{\sigma}{p} \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)} \bmod p^{M}\right.
\end{aligned}
$$

4.6.2. $\delta \in 1+m_{k, i}$ implies $(1 / p) \log \left(\sigma \delta / \delta^{p}\right)=(\sigma / p) \log \delta-\log \delta$. Now we can use the last equivalence of $n .4 .6 .1$ to write

$$
\begin{aligned}
& \operatorname{Res}\left(\Phi_{1}(\beta) \mathrm{d}_{\log } \delta+\frac{1}{p} \log \frac{\sigma \delta}{\delta^{p}} \Phi_{2}(\beta)\right) \equiv \\
\equiv & -\operatorname{Res}\left(\log \delta \mathcal{V}_{\hat{i}}^{-1} \mathrm{~d}\binom{\overline{\mathcal{L}}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}\right)+\operatorname{Res}\left(\frac{\sigma}{p} \log \delta \Phi_{2}(\beta)\right) \bmod p^{M} .
\end{aligned}
$$

4.6.3. Let $\omega(\beta)=\mathcal{V}_{\hat{i}}^{-1} \mathrm{~d}\binom{\bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)}$.

Lemma.

a) $\sigma_{\mathcal{G}}(\log \delta \omega(\beta)) \in \Omega_{\mathcal{C}_{k, i}}^{1}$ and, therefore,

$$
\sigma_{\mathcal{G}}(\log \delta \omega(\beta))=\sigma(\log \delta \omega(\beta)) ;
$$

b) $(\sigma / p)(\log \delta \omega(\beta))-(\sigma / p)(\log \delta) \Phi_{2}(\beta)=p^{M} Y \mathrm{~d} \tilde{t}$, where Y has coordinates in $\mathcal{L}_{k, \tilde{t}} \cap\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}$.

Remark. Generally, $\sigma_{\mathcal{G}} \omega(\beta)$ is not defined in $\Omega_{\mathcal{L}_{k, i}}^{1}$.
Proof.
a) We can write, c.f. nn.3.5.4 and 3.5.5,

$$
\log \delta \omega(\beta)=\frac{\log \delta}{t^{+}} \mathcal{V}^{D}\left(E_{h}+p^{M} \Delta_{1}\right) \mathrm{d}\binom{\bar{l}_{\mathcal{A}}(\beta)}{\bar{m}_{\mathcal{A}}(\beta)} .
$$

The matrix Δ_{1} has coefficients in $(t / \psi) W(R)[[p t / \psi]]+\psi^{p-2} / p W(R)\left[\left[\psi^{p-1} / p\right]\right]$, c.f. n.3.5.4. By construction of t, c.f. n.1.7.2, $t / \psi=1 /\left(\sigma^{-1} \psi\right)$, therefore, $\sigma_{\mathcal{G}}(t / \psi)=$ $1 / \psi \in\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}$.

This gives
$\sigma_{\mathcal{G}}((t / \psi) W(R)[[p t / \psi]]) \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}\left[p\left[x_{0}\right]^{-p /(p-1)}\right] \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0}$.
Clearly,

$$
\sigma\left(\psi^{p-2} / p W(R)\left[\left[\psi^{p-1} / p\right]\right]\right) \subset \psi^{p-2} / p W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

So, $\sigma_{\mathcal{G}} \Delta_{1}$ has coefficients in $\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0}$ and $\sigma_{\mathcal{G}}\left(\Delta_{1}\right)=\sigma \Delta_{1}$.
$\delta \in 1+m_{k, \bar{t}}^{1}$ implies

$$
\frac{\log \delta}{t^{+}} \in \frac{t}{\psi} W(R)+\frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right]
$$

By above arguments

$$
\sigma_{\mathcal{G}}\left(\frac{\log \delta}{t^{+}}\right) \in \frac{1}{\psi} W(R)+\frac{\psi^{p-2}}{p} W(R)\left[\left[\psi^{p-1} / p\right]\right] \subset\left[x_{0}\right]^{-p /(p-1)} \mathcal{G}_{p, 1}^{0}
$$

Remark, this gives

$$
\sigma_{\mathcal{G}}\left(\frac{\log \delta}{t^{+}}\right)=\sigma\left(\frac{\log \delta}{t^{+}}\right)=\frac{\sigma}{p}(\log \delta) \frac{1}{t^{+}}
$$

because $\sigma(\log \delta)=\sigma\left(\frac{\log \delta}{t^{t}}\right) \sigma t^{+}$and $\sigma t^{+}=p t^{+}$.
Clearly, $\sigma_{\mathcal{G}}\left({ }^{t} \mathcal{V}^{D}\right), \sigma_{\mathcal{G}}\left(\bar{l}_{\mathcal{A}}(\beta)\right), \sigma_{\mathcal{G}}\left(\bar{m}_{\mathcal{A}}(\beta)\right)$ have coordinates in $\mathcal{G}_{p, 0}^{0}$. So, $\sigma_{\mathcal{G}}(\log \delta \omega(\beta))$ has coordinates in

$$
\left(\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0} \cap \mathcal{G}_{k, \tilde{i}}\right) \mathrm{d} \tilde{t} \subset \Omega_{\mathcal{L}_{k, i}}^{1}
$$

b) Calculations of n.a) give

$$
\sigma(\log \delta \omega(\beta))=\left(\frac{\sigma}{p} \log \delta\right) \frac{1}{t^{+}}{ }^{t}\left(\sigma \mathcal{V}^{D}\right)\left(E_{h}+p^{M} \sigma \Delta_{1}\right) \mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}
$$

Consider vector differential form

$$
\omega_{1}=\left(\frac{\sigma}{p} \log \delta\right) \cdot \frac{1}{t^{+}} t\left(\sigma \mathcal{V}^{D}\right)\left(\sigma \Delta_{1}\right) \mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}
$$

Then estimates of n.a) give $\omega_{1}=p Y_{1} \mathrm{~d} \tilde{t}$, where $Y_{1} \in\left[x_{0}\right]^{-2 p /(p-1)}\left(\mathcal{G}_{p, p /(p-1)}^{0}\right)^{h}$, because $\mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)} \in\left(p \Omega_{W(k)[[t]]}^{1}\right)^{n}$.

If Δ is the matrix from n.3.5.3, then by the same reasons

$$
\omega_{2}=\left(\frac{\sigma}{p} \log \delta\right) \Delta{\frac{1}{t^{+}}}^{t}\left(\sigma \mathcal{V}^{D}\right) \mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}=p Y_{2} \mathrm{~d} \tilde{t}
$$

where Y_{2} has coordinates in $\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, 1}^{0}$.
Therefore, $\sigma(\log \delta \omega(\beta))=$

$$
=\left(\frac{\sigma}{p} \log \delta\right)\left(E_{h}-p^{M} \Delta\right) \frac{1}{t^{+}} t\left(\sigma \mathcal{V}^{D}\right) \mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}+p^{M+1}\left(Y_{1}-Y_{2}\right) \mathrm{d} \tilde{t} .
$$

Now we use properties of the matrix \mathcal{V}^{D} from n.1.8.

$$
\begin{aligned}
& \frac{1}{p} t\left(\sigma \mathcal{V}^{D}\right) \mathrm{d}\binom{\sigma \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}={ }^{t}\left\{\binom{\sigma}{\sigma / p} \mathcal{V}^{D}\right\} \mathrm{d}\binom{\sigma / p \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}= \\
& \quad={ }^{t} \mathcal{V}^{D} \mathcal{E}^{-1} \mathrm{~d}\binom{\sigma / p \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}=t^{+} \mathcal{V}^{-1} \mathcal{E}^{-1} \mathrm{~d}\binom{\sigma / p \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}
\end{aligned}
$$

From definition of the matrix Δ it follows, that $\left(E_{h}-p^{M} \Delta\right) \mathcal{V}^{-1}=\mathcal{V}_{i}^{-1}$, so, we obtained

$$
\sigma(\log \delta \omega(\beta))=\sigma(\log \delta) \mathcal{V}_{\hat{i}}^{-1} \mathcal{E}^{-1} \mathrm{~d}\binom{\sigma / p \bar{l}_{\mathcal{A}}(\beta)}{\sigma \bar{m}_{\mathcal{A}}(\beta)}+p^{M+1} Y \mathrm{~d} \tilde{t}
$$

where $Y \in\left[x_{0}\right]^{-2 p /(p-1)} \mathcal{G}_{p, p /(p-1)}^{0} \cap \mathcal{L}_{k, \tilde{t}}$.
Lemma is proved.
4.6.4. The vector Y from the above lemma has p-integral principal part, therefore,

$$
\operatorname{Res}\left(\frac{\sigma}{p} \log \delta \Phi_{2}(\beta)\right) \equiv \operatorname{Res}\left(\frac{\sigma}{p}(\log \delta \omega(\beta))\right)=\sigma \operatorname{Res}(\log \delta \omega(\beta)) \bmod p^{M}
$$

So, the equivalence of n.4.6.2 gives

$$
(\beta, \delta]_{k, \tilde{t}} \equiv-\operatorname{Tr}(\operatorname{Res}(\log \delta \omega(\beta)))+\operatorname{Tr}(\sigma \operatorname{Res}(\log \delta \omega(\beta)))=0 \bmod p^{M}
$$

Proposition is proved.

References

[Ab1] V.A. Abrashkin, Ramification in etale cohomology, Invent. Malh. 101 (1990), 631-640.
[Ab2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field II, Proceeding of Steklov Math. Inst. 208 (1995).
[Ab3] V.A. Abrashkin, A remark about Brückner-Vostokov explicit reciprocity law, Preprint MPI/ 94-61, Bonn.
[A-H] E. Artin, H. Hasse, Die beiden Ergänzungssätze zum Reziprozitätsgesetz der lnten Einheitzwurzeln, Abh. Math. Sem. Univ. Hamburg 6 (1928), 46-162.
[B-V] D.G. Benua (Benois), S.V. Vostokov, The norm pairing in formal groups, and Galois representations, Algebra i analiz 2 (1991); Engl. transl. in Leningrad Math. J. 2 (1991), 1221-1249.
[Br] H. Brückner, Eine explizite Formel zum Reziprozitätsgesetz für Primzahlexponenten p, In: Hasse, Roquette, Algebraische Zahlentheorie, Bericht einer Tagung des Math. Inst. Obervolfach 1964. Bibliographisches Institut, Manheim 1966.
[Co] P. Colmez, Periodes p-adiques des varietes abeliennes, Math. Ann. 292 (1992), 629-644.
[De] J.-M. Decauwert, Classification des A-modules formels, C.R. Acad. Sci. Paris, Serie A 282, 1413-1416.
[Fo1] J.-M. Fontaine, Groupes p-divisibles sur les corps locaux, Asterisque 47-48 (1977), Paris.
[Fo2] J.-M. Fontaine, Modules galoisiens, modules filtres et anneaux de Barsotli-Tate, in Journee de Geometrie Algebrique de Rennes, Soc. Math. de France, vol. 65, Paris, 1979, p. 3-80.
[Fo3] J.-M. Fontaine, Sur certains types de representations p-adiques du group de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. Math. 115 (1982), 529-577.
[Fo4] J.-M. Fontaine, Representations p-adiques des corps locaux (1-ere partie), in The Grothendieck Festschrift, A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck, vol. II, p. 249-309.
[F-L] J.-M. Fontaine, G. Laffaille, Construction de representations p-adiques, Ann. Sci. E.N.S. 4 serie 15 (1982), 547-608.
[Ha] M.Hazewinkel, Formal groups and applications, New York: Academic Press, 1978.
[Ka] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. math. France 119 (1991), 397-441.
[Ko] V.A. Kolyvagin, Formal groups and the norm residue symbol, Izv. Akad. Nauk SSSR. Ser. Mat. 43 (1979), 1054-1120; Engl. transl. in Math. USSR lzv. 15 (1980), 79-138.
[La] F. Laubie, Extensions de Lie et groupes d'automorphismes de corps locaux, Compos. Math. 67 (1988), 165-189.
[Sh] I.R. Shafarevich, A general reciprocity law, Mat. Sb. 26(68) (1950), 113-146.
[Vol] S.V. Vostokov, Explicit form on the law of reciprocity, Izv. Akad. Nauk SSSR. Ser. Mat. 42 (1978), 1288-1321; Engl. transl. in Math. USSR Izvestija 13 (1979), 557-588.
[Vo2] S.V. Vostokov, A norm pairing in formal modules, Izv. Akad. Nauk SSSR. Ser. Mat. 42 (1979), 765-794; Engl. transl. in Math. USSR Izv. 15 (1980), 25-52.
[Wtb] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; application, Ann. Sci. Ec. Norm. Super., IV. Ser 16 (1983), 59-89.

