CONTINUOUS COHOMOLOGY OF THE GROUP OF VOLUME-PRESERVING AND SYMPLECTIC DIFFEOMORPHISMS, MEASURABLE TRANSFER AND HIGHER ASYMPTOTIC CYCLES

Alexander Reznikov

Institute of Mathematics
Hebrew University
Giv'at Ram
91904 Jerusalem
Israel

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
Germany

CONTINUOUS COHOMOLOGY OF THE GROUP OF VOLUME-PRESERVING AND SYMPLECTIC DIEFEOMORPHISMS, MEASURABLE TRANSFER AND HIGHER ASYMPTOTIC CYCLES

Alexander Reznikov

July, 1996

Topology of a manifold is reflected in its diffeomorphism group. It is challenging therefore to understand the diffeomorphism group $\operatorname{Diff}(M)$ both as a topological and discrete group. Twenty years ago, some work had been done, in connection with characteristic classes of foliations, in constructing continuous cohomology classes for $\operatorname{Diff}(M)$. For M closed oriented n-dimensional manifold, a class in $H_{\text {cont }}^{n+1}(\operatorname{Diff}(M), \mathbb{R})$ had been explicitly written down by Bott [Bo] [Br]. This class is defined as follows. The group $\operatorname{Diff}(M)$ acts in the multiplicative group $C_{+}^{\infty}(M)$ of positive smooth functions, and on its torsor $A_{n}(M)$ of volume forms. Hence one gets a cocycle in $H_{\text {cont }}^{1}\left(\operatorname{Diff}(M), C_{+}^{\infty}(M)\right)$, defined by $\lambda(f)=\frac{f^{*}(v)}{v}=J a c_{v}(f)$, where $\nu \in A_{n}(M)$ and $f \in \operatorname{Diff}(M)$. The Bott class is

$$
\int_{M} \log \lambda \cup \underbrace{d \log \lambda \cup \ldots \cup d \log \lambda}_{n}
$$

The nontriviality of Bott class had been shown for $M=S^{1}[\mathrm{Br}]$, and recently for S^{n} [BCG], $\mathbb{C} P^{n}$ [Go] by restricting to finite-dimensional Lie groups in $\operatorname{Diff}(M)$. In fact, the restriction of the Bott class on $S O(n, 1) \subset \operatorname{Diff}\left(S^{n}\right)$ gives the hyperbolic volume class, whereas the restriction on $\operatorname{PSL}(n+1, \mathbb{C}) \subset \operatorname{Diff}\left(\mathbb{C} P^{n}\right)$ gives the Borel class.

By its construction, the Bott class vanishes on the group $\operatorname{Diff} f_{\nu}(M)$ of volumepreserving diffeomorphisms. Moreover, since it is defined by an invariant closed $(n+1)$-form in the space $A_{n}(M)$ where $\operatorname{Diff}(M)$ acts, and by a theorem of Brooks [Br] there are no more invariant forms there, one gets just one class in dimension ($n+1$) for a fixed manifold M. This contrasts sharply the usual intuition coming from the study of finite-dimensional semisimple group, where there is a range of continuous cohomology classes.

In this paper we construct, for a closed manifold M^{n} with a volume form ν, a series of continuous cohomology classes in $H_{\text {cont }}^{\kappa}\left(\operatorname{Diff}_{\nu}(M), \mathbb{R}\right)$ for all $\kappa=5,9, \ldots$. The classes will be shown nontrivial already for a torus T^{n}. We also will construct, for a symplectic manifold (M, w), a series of classes in $H^{2 \kappa}(\operatorname{Sympl}(M), \mathbb{R})$
for $\kappa=1,3, \ldots$. Again, these are nontrivial for a torus T^{n} with standard symplectic structure.

Working harder, we will show that for the smooth moduli space of stable vector bundles over a Riemann surface \mathcal{M} with its Kähler structure, our class in $H^{2}\left(\operatorname{Symp}\left(\mathcal{M}_{g}\right), \mathbb{R}\right)$ is nontrivial and restricts to a generator of $H^{2}\left(M a p_{g}, \mathbb{R}\right)$, where $M a p_{g}$ is the mapping class group:

Theorem (3.6). $H^{2}\left(\operatorname{Sympl}\left(\mathcal{M}_{g}\right), \mathbb{R}\right)$ is nontrivial. Moreover, the homomorphism $M a p_{g} \rightarrow \operatorname{Sympl}\left(\mathcal{M}_{g}, \mathbb{R}\right)$ induces a nontrivial map in the second real cohomology.

In both cases, our classes arise from action on a "principal homogeneous space" X which in the case of $\operatorname{Diff}_{\nu}(M)$ will be the space of Riemannian metrics with volume form ν, and in the case of $\operatorname{Sympl}(M)$ will be the twistor variety, introduced in [Re$]$ [Re1]. In that paper we have studied the symplectic reduction of X with respect to the Hamiltonian action of subgroups of $\operatorname{Sympl}(M)$ with a primal interest in integrable systems arising on Teichmüller space and universal Jacobian. A lenghty computation from [Re] [Rel] related to the existence of the moment map will be used here to prove a vanishing result in 5.4.

There is quite another way to look at our classes, from the stand point of the transfer map. The subgroup $\operatorname{Dif} f_{\nu}^{0}(M)$ of $\operatorname{Dif} f_{\nu}(M)$ which fixes a point $p \in M$, has the tangential representation to $S L_{n}(\mathbb{R})$ and one can pull the Borel classes back on Diff $f_{\nu}^{0}(M)$. The transfer map [G] [Gu] will send these classes to $H_{c o n t}^{*}\left(\operatorname{Diff}_{\nu}(M)\right)$. We will not however prove a rigorous comparison theorem relating these two types of construction in the present paper. However we do use the transfer map to define a new source of classes in $H^{*}\left(\right.$ Dif $\left._{\nu}(M)\right)$ coming from the fundamental group of M. Namely, a map

$$
S: H^{\kappa}\left(\pi_{1}(M), \mathbb{R}\right) \rightarrow H^{\kappa}\left(\operatorname{Diff}_{\nu}^{\sim}(M), \mathbb{R}\right)
$$

will be constructed where $\operatorname{Dif} f_{\nu}^{\sim}(M)$ is the connected component of $\operatorname{Diff} f_{\nu}(M)$. For $\kappa=1$, the dual of this map, a character

$$
S^{\vee}: \operatorname{Diff}_{\nu}^{\sim}(M) \rightarrow H_{1}(M, \mathbb{R})
$$

has been known for forty years [Sch] and called the asymptotic cycle map. One can view our map S as "higher" asymptotic cycle map.

For M a closed surface with an area form, the groups $\operatorname{Dif} f_{\nu}(M)$ and $\operatorname{Sympl}(M)$ coincide. The two previously described constructions produce a class in $H_{\text {cont }}^{2}\left(\operatorname{Diff} f_{\nu}(M)\right)$ which we will show to lie in bounded cohomology group $H_{b}^{2}(\operatorname{Diff}(M), \mathbb{R})$. For $f, g \in \operatorname{Diff}_{\nu}(M)$ we give an explicit formula fora cocycle $\ell(f, g)$ representing this class. For any lamination on M [Th] one can exhibit quite a different formula, using the expression for Euler class from [BG].

The following application of dynamical nature will be proven. Let F_{2} be a free group in two generators, and let, for some words h_{i}, k_{i} in F_{2}, a sum $\sum_{i=1}^{\infty} a_{i}\left(h_{i}, k_{i}\right)$, $\Sigma\left|a_{i}\right|<\infty$ be a cycle for ℓ^{1}-homology of F_{2}. This homology has dimension $2^{\aleph_{0}}$, as shown in []. Let M be a closed surface with an area form ν. Given $f, g \in$ $\operatorname{Diff}_{\nu}(M)$ one has a homomorphism $F_{2} \rightarrow \operatorname{Diff}_{\nu}(M)$, so the words h_{i}, k_{i} may be viewed as diffeomorphisms in $\operatorname{Diff}_{\nu}(M)$.

Theorem (4.2). Suppose $\sum_{i=1}^{\infty} a_{i} \ell\left(h_{i}, k_{i}\right) \neq 0$. Then the group generated by f, g in $\operatorname{Diff}_{\nu}(M)$ is not amenable.

The significance of Theorem stems from the fact that the condition $\Sigma a_{i} \ell\left(h_{i}, k_{i}\right) \neq$ 0 is C^{1}-open on f, g. Therefore one gets a domain in $\operatorname{Dif} f_{\nu}(M) \times \operatorname{Dif} f_{\nu}(M)$, such that any pair (f, g) in it generate a "big" group in Diff $\mathcal{L}_{\nu}(M)$. One can see this result as a step towards "Tits alternative" for the infinite-dimensional Lie group $\operatorname{Diff}_{\nu}(M)$.

We will show in the next paper that this theorem holds for M symplectic of higher dimension. For that purpose we ill use Lagrangian measurable foliations and LyonVergne Maslov class to show that our class in $H^{2}\left(\operatorname{Sympl}\left(\mathcal{M}_{g}, \mathbb{R}\right)\right.$ is bounded. See also the end of [BG].

In $[\operatorname{Re} 2]$ we defined the "symplectic Chern-Simons" classes $K_{2 i-1}^{a l g}(\operatorname{Sympl}(M))=$ $\left.\pi_{2 i-1}\left((B \operatorname{Symp})^{\delta}(M)\right)^{+}\right) \rightarrow \mathbb{R} / A$, where A is the group of periods of the Car\tan form in $\Omega_{c l}^{2 i-1}\left(\right.$ Sympl $^{t o p}(M)$), introduced in [Re2], on the Hurewitz image of $\pi_{2 i-1}\left(\operatorname{Sympl}^{\text {top }}(M)\right)$ in $H_{2 i-1}\left(\mathrm{Sympl}^{\text {top }}(M), \mathbb{R}\right)$. The real classes introduced in the present paper seem to be in the same relation to the symplectic Chern-Simons classes as Borel classes in $H_{\text {cont }}^{*}\left(S L_{n}(K), \mathbb{R}\right)$ are to proper Chern-Simons classes ($K=\mathbb{R}, \mathbb{C}$). The "symplectic Chern-Simons classes" of $[\operatorname{Re} 2]$ have remarkable rigidity property: for a continuous family of representations of a f.p. group Γ into $\operatorname{Sympl}(M)$, the pull-back of these classes are constant in $H^{*}(\Gamma)$. This contrasts strikingly the famous non-rigidity of the Bott class, proved by Thurston. In fact, Thurston exhibited a family of homomorphism $\pi_{1}(S) \rightarrow \operatorname{Diff}\left(S^{1}\right)$, where S is a closed surface of genus two, with varying Godbillon-Vey class (which coincides with the Bott class for $\operatorname{Diff}\left(S^{1}\right)$).

We do not know if the real classes constracted in the present paper in $H^{*}\left(\operatorname{Diff}_{\nu}(M)\right)$ and $H^{*}(\operatorname{Sympl}(M))$ are rigid. However, we introduce a new "Chern-Simons" class in $H^{3}\left(\operatorname{Diff}_{\nu}\left(S^{3}\right), \mathbb{R} / \mathbb{Z}\right)$ which is rigid and restricts to usual Chern-Simons class on $H^{3}(S O(4), \mathbb{R} / \mathbb{Z})$. This uses the invariant scalar product on Lie $\left(\operatorname{Diff} f_{\nu}\left(S^{3}\right)\right)$ in much the same way we used invariant polynomials on Lie ($\operatorname{Sympl}(M)$) in $[\operatorname{Re} 2]$.

1. Forms on the space of metrics

We work with the manifold M with the fixed volume form ν. Define the space \mathcal{P} as the Frechet manifold of C^{∞}-Riemannian metrics on M, whose volume form is ν. Obviously, Diff $f_{\nu}(M)$ acts on \mathcal{P}. We can look at \mathcal{P} as a space of sections of a fibration $\mathbb{R} \rightarrow M$ with a fiber $S L_{N}(\mathbb{R}) / S O(N)$, where $N=\operatorname{dim} M$. Clearly, \mathcal{M} is contractible. For any $n=5,9, \ldots$ fix the Borel form: a $S L_{N}(\mathbb{R})$-invariant closed n-form on $S L_{N}(\mathbb{R}) / S O(N)$, normalized as in [Bo]. For a vector space V of dimension N with a volume form ν this gives a canonical choice of a closed form on the space \mathcal{P}^{V} of Euclidean metrics on V with determinant ν. Call this form ψ_{n}^{V}. Now, we define a form on \mathcal{P} by $\psi_{n}=\int_{M} \psi_{n}^{T_{x} M} d \nu(x)$. That means the following: let $g \in \mathcal{P}$ a Riemannian metric on M. Let $h_{1}, \ldots, h_{n} \in T_{g} \mathcal{P}$ be symmetric bilinear smooth 2-forms. Define $\psi_{n}\left(h_{1}, \ldots, h_{n}\right)=\int_{M} \psi_{n}^{T_{x}(M)}\left(h_{1}(x), \ldots, h_{n}(x)\right) d \nu$.
Lemma (1.1). The form $\psi \in \Omega^{n}(\mathcal{P})$ is closed and Diff $f_{\nu}(M)$-invariant.
Proof. The invariance is obvious from definition. To prove the closedness, observe first that a form $\psi_{n}\left(x_{1}, \ldots, x_{m}\right)\left(h_{1}, \ldots, h_{n}\right)=\sum_{j=1}^{m} \lambda_{j} \psi_{n}^{T_{x_{j}}(M)}\left(h_{1}\left(x_{j}\right), \ldots, h_{n}\left(x_{j}\right)\right)$
is closed as a pull-back of a closed form under the map $\mathcal{P} \mapsto \prod_{j=1}^{m} \mathcal{P}^{T_{x_{j}}(M)}$. Now one approximates ψ by $\psi_{n}\left(x_{1}, \ldots, x_{m}\right)$ to show that ψ is closed.
1.2 The definition of the classes. We will now apply a general theory of regulators, as presented in [Re1], section 3. For a Frechet-Lie group \mathfrak{G}, acting smoothly on a contractible smooth manifold Y, preserving a closed form ψ_{n}, this theory prescribes a class in $H^{n}\left(\mathfrak{G}^{\delta}, \mathbb{R}\right)$, called $r\left(\psi_{n}\right)$ in [Re1].
Definition (1.2). Consider the action of $\operatorname{Diff}_{\nu}(M)$ on the contractible manifold \mathcal{P} with the invariant form ψ_{n} as above. A class $\gamma_{n} \in H^{n}\left(\operatorname{Dif} f_{\nu}^{\delta}(M), \mathbb{R}\right)$ is defined as $r\left(\psi_{n}\right)$.

Theorem (1.3). The class γ_{n} lies in the image of the natural map

$$
H_{\text {cont }}^{n}\left(\operatorname{Diff}_{\nu}(M), \mathbb{R}\right) \rightarrow H^{n}\left(\operatorname{Diff}_{\nu}^{\delta}(M), \mathbb{R}\right)
$$

The proof follows from Proposition 1.3 below.
1.9 Simplices in \mathcal{P} and a Dupont-type construction. Fix two metrics g_{1}, g_{2} in \mathcal{P}. We can join them by a segment in two different ways. First, there is a straight line segment $I_{g_{1}, g_{2}}(t): t \mapsto t \cdot g_{1}+(1-t) g_{2}$. Second, there is a geodesic segment $J_{g_{1}, g_{2}}(t): t \mapsto\left(x \mapsto c\left(t, g_{1}(x), g_{2}(x)\right)\right)$. Here $t \in[0,1], x \in M, g_{1}(x), g_{2}(x) \in$ $\mathcal{P}^{T_{x}}(M)$ and $c\left(t, g_{1}(x), g_{2}(x)\right)$ is a geodesic segment in the homogeneous metric of symmetric space on $\mathcal{P}^{T_{x}(M)} \approx S L_{N}(\mathbb{R}) / S O(N)$. Now, having n metrics g_{1}, \ldots, g_{n} in \mathcal{P} we define two singular simplices $I_{g_{1} \ldots g_{n}}: \sigma \rightarrow \mathcal{P}$ and $J_{g_{1} \ldots g_{n}}: \sigma \rightarrow \mathcal{P}$ by induction as a joint of g_{1} and $I_{g_{2}, \ldots, g_{n}}$, (resp. g_{1} and $J_{g_{2} \ldots g_{n}}$) using straight line segments (resp. geodesic segments, comp [Th2]).

Now fix a reference metric g in \mathcal{P}. Define

$$
\gamma_{n}^{I}\left(g_{1}, \ldots, g_{n}\right)=\int_{I(} \quad \psi_{n}
$$

and

$$
\gamma_{n}^{J}\left(g_{1}, \ldots, g_{n}\right)=\int_{J(}, \psi_{n}
$$

Proposition (1.3). Both γ_{n}^{I} and γ_{n}^{J} are continuous cocycles, representing γ_{n}.
Proof. The proof mimics the finite-dimensional case, cf. [Du], and is therefore omitted.

2. Non-triviality

We will prove that the class γ_{n} in discrete group cohomology, and consequently classes of γ_{n}^{I} and γ_{n}^{J} in continuous cohomology are non-trivial in general. For that purpose, consider a torus $T^{N}=\mathbb{R}^{N} / \mathbb{Z}^{N}$ with a standard volume form $d x_{1} \ldots d x_{N}$. We have an inclusion

$$
S L(N, \mathbb{Z}) \hookrightarrow \operatorname{Diff}_{\nu}\left(T^{N}\right)
$$

Proposition (2.1). The class γ_{n} restricts to the Borel class in $H^{n}(S L(N, \mathbb{Z}), \mathbb{R})$ and is therefore nontrivial for N big enough.
Proof. Let \mathcal{P}_{0} be the space of left-invariant metrics on T^{N} with the determinant $\nu ;$ as a manifold, $\mathcal{P}_{0} \approx S L_{N}(\mathbb{R}) / S O(N)$. The embedding $\mathcal{P}_{0} \hookrightarrow \mathcal{P}$ is $S L_{N}(\mathbb{Z})$ -invariant, and the pull-back of the form ψ_{n} on \mathcal{P}_{0} is the Borel form on \mathcal{P}_{0}. Now by [Re1], section $3, r\left(\psi_{n}\right)$ coincides with the Borel class.

3. Cohomology of symplectic diffeomorphisms

We will now adapt the theory for the group $\operatorname{Sympl}(M)$ of symplectic diffeomorphisms of a compact symplectic manifold M. For this purpose, we will introduce a new (∞-dimensional) contractible manifold Z, on which $S y m p l(M)$ acts, preserving some differential forms of even degree.
3.1 Principal transformation space. Let \mathfrak{F} be the fibration over $M^{2 n}$, whose fiber over $x \in M$ consists of complex structures in $T_{x} M$, say J, such that ω_{x} is J invariant and the symmetric form $\omega(J \cdot, \cdot)$ is positive definite. Alternatively, \mathfrak{F} is a $S p(2 n, \mathbb{R}) / U(n)$ fiber bundle over M, associated to the $S p(2 n, \mathbb{R})$-frame bundle. The principal transformation space Z is defined as a space of C^{∞}-sections of \mathfrak{F}. So a point in Z is just an almost-complex structure on M, tamed by ω, in the sense of Gromov [Gr]. Since the Siegel upper half-plane $S p(2 n, \mathbb{R}) / U(n)$ is contractible, the space Z is contractible, too.
3.2 Forms on Z. Fix an $S p(2 n, \mathbb{R})$-invariant form on $S p(2 n, \mathbb{R}) / U(N)$. This induces a form $\varphi^{T_{x} M}$ on \mathcal{F}_{x} for each $x \in M$ and a form

$$
\varphi=\int_{M} \varphi^{T_{x} M} \cdot \omega^{n}
$$

as in 1.1. Obviously, this form φ is $\operatorname{Sympl}(M)$-invariant. Recall that the ring of $S p(2 n, \mathbb{R})$-invariant forms on $\operatorname{Sp}(2 n, \mathbb{R}) / U(n)$ is generated by forms in dimensions $2,6, \ldots$ [Bo].

Correspondingly, we have $\operatorname{Sympl}(M)$-invariant closed forms, in same dimensions.
We single out the symplectic (Kähler) form on $S p(2 n, \mathbb{R}) / U(n)$, which may be described as follows. For $J \in S p(2 n, \mathbb{R}) / U(n)$, the tangent space $T_{J} S p(2 n, \mathbb{R}) / U(n)$ consists of operators $A: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ satisfying $A J=-J A$ and $\langle A x, y\rangle=\langle A y, x\rangle$, where $\langle\cdot, \cdot\rangle$ is the symplectic structure. Alternatively, A is self-adjoint in the Euclidean scalar product $\langle J \cdot, \cdot\rangle$ and skew-commutes with J. The Kähler form on $T_{J} S p(2 n, \mathbb{R}) / U(n)$ is given by $\langle A, B\rangle=\operatorname{Tr} J A B$.
9.9 Simplices on Z. For two almost-complex structures J_{1}, J_{2}, tamed by ω, we define a segment $\mathcal{J}(t): t \mapsto\left(c\left(t, J_{1}(x), J_{2}(x)\right)\right.$ where $c\left(t, J_{1}(x), J_{2}(x)\right)$ is the geodesic segment in the Hermitian symmetric space of nonpositive curvature $\operatorname{Sp}(2 n, \mathbb{R}) / U(n)$, joining $J_{1}(x)$ and $J_{2}(x)$. For a collection J_{1}, \ldots, J_{n} define a singular simplex $K\left(J_{1}, \ldots, J_{n}\right)$ as in 1.3.
9.4 Continuous cohomology classes in $\operatorname{Sympl}(M)$: a definition. For any generator of the ring of $S p(2 n, \mathbb{R})$-invariant form on $S p(2 n, \mathbb{R}) / U(n)$ we define a continuous cohomology class in $H_{\text {cont }}(\operatorname{Sympl}(M), \mathbb{R})$ by the explicit formula

$$
\delta\left(h_{1}, \ldots, h_{n}\right)=\int_{K(}, \varphi
$$

where J_{0} is any fixed tamed almost-complex structure, and φ is a form of 3.2.
9.5 Non-trviality. Let M be a flat torus $\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}$ with a standard symplectic structure $d x_{1} \wedge d x_{2}+\ldots+d x_{2 n-1} \wedge d x_{2 n}$. As in 2.1 , we have an $S p(2 n, \mathbb{Z})$-invariant embedding $S p(2 n, \mathbb{R}) / U(n) \hookrightarrow X$, and the classes of 3.4 on $\operatorname{Sympl}(M)$ restrict to Borel classes on $S p(2 n, \mathbb{Z})$, nontrivial for big $n[B]$.
3.6 Application to moduli spaces. Let S be a closed Riemann surface of genus $g \geq 2$, and let \mathcal{M}_{g} be a component of the representation variety $\operatorname{Hom}\left(\pi_{1}(S), S O(3)\right) / S O(3)$ with Stiefel-Whitney class 1 . This is known to be a smooth compact simplyconnected symplectic manifold [Go2] of dimension $6 g-6$. By a famous theorem of [NS], \mathcal{M}_{g} is identified with the moduli space of stable holomoprhic vector bundles of rank 2 and . The mapping class group $M a p_{g}$ acts symplectically on \mathcal{M}_{g}, so we have an injective homomorphism $\operatorname{Map} \rightarrow \operatorname{Sympl}\left(\mathcal{M}_{g}\right)$. Now we claim the following
Theorem (3.6). $H^{2}\left(\operatorname{Sympl}\left(\mathcal{M}_{g}\right), \mathbb{R}\right)$ is nontrivial. Morover, the homomorphism $\mathrm{Map}_{g} \rightarrow \operatorname{Sympl}\left(\mathcal{M}_{g}, \mathbb{R}\right)$ induces a nontrivial map in second real cohomology.
Proof. By the main theorem of [NS] there is a holomorphic embedding of the Te ichmüller space T_{g} to the space of complex structures in \mathcal{M}_{g}, tamed by Goldman's symplectic form. In particular, we have a $M a p_{g}$-invariant holmorphic embedding $T_{g} \xrightarrow{\alpha} Z\left(\mathcal{M}_{g}\right)$. Let Ω be the Kähler form of $Z\left(\mathcal{M}_{g}\right)$, then $\alpha^{*}(\Omega)$ is a $M a p_{g}-$ equivariant Kähler form on T_{g}. We know there exist holomorphic maps $Y \xrightarrow{\pi} S$, where S is a closed Riemann surface, Y is a compact complex surface and π is a smooth fibration by complex curves of genus g, such that the corresponding holomorphic map $\tilde{S} \rightarrow T_{g}$ is nontrivial. We may form a flat holomorphic fibration $\mathcal{F} \rightarrow S$ with T_{g} as a fiber, associated to the homomorphism $\pi_{1}(S) \rightarrow M a p_{g}$, coming from π. The Borel regulator of the flat fibration $\mathcal{F} \rightarrow S$, corresponding to the form $\alpha^{*}(\Omega)$ on T_{g}, will coincide with the pullback of the class in $H^{2}\left(\operatorname{Sympl}\left(\mathcal{M}_{g}\right), \mathbb{R}\right)$ under the composite map $\pi_{1}(S) \rightarrow M a p_{g} \rightarrow \operatorname{Sympl}\left(\mathcal{M}_{g}\right)$. The variation of complex structure $Y \xrightarrow{\pi} S$ gives a holomorphic section of $\mathcal{F} \rightarrow S$ which is not horizontal. Therfore the pullbak of $\alpha^{*}(\Omega)$ on S using this section will have positive integral over S. By [Re1], section 3, this precisely means that the class we get in $H^{2}(S, \mathbb{R})$ is nontrivial. Therefore the map $M a p_{g} \rightarrow \operatorname{Sympl}\left(\mathcal{M}_{g}\right)$ induces a nontrivial map in H^{2}.
Q.E.D.

4. BOUNDED COHOMOLOGY FOR AREA-PRESERVING DIFFEOMORPHISMS

4.1. Let M^{2} be a compact oriented surface of any genus and let ν be an area from on M. Then $\operatorname{Dif} f_{\nu} M=\operatorname{Sympl}(M)$. The construction of 3.4 gives a class in $H_{\text {cont }}^{2}\left(\right.$ Diff $\left._{\nu} M, \mathbb{R}\right)$.
Theorem (4.1). The cocyle $\delta\left(h_{1}, h_{2}\right)$ of 3.4 is bounded. The class [δ] lives therefore in the image of the natural map

$$
H_{b}^{2}\left(\operatorname{Diff}_{\nu}(M), \mathbb{R}\right) \rightarrow H^{2}\left(\operatorname{Diff}_{\nu}^{\delta}(M), \mathbb{R}\right)
$$

Proof. Fix a tame almost-complex structure J_{0}. Then $\delta\left(h_{1}, h_{2}\right)$ is given by \int_{M} area ${ }_{h}(\quad)$. ω, where $\operatorname{area}_{h}(x, y, z)$ is the hyperbolic area in $S L_{2}(\mathbb{R}) / S O(2) \approx \mathcal{H}^{2}$ of the geodesic triangle, spanned by x, y, z. Therefore $\left|\delta\left(h_{1}, h_{2}\right)\right| \leq \pi \cdot \omega(M)$.
4.2 Non-amenability of two-generated subgroups of $\operatorname{Diff}_{\nu}(M)$. We will apply theorem 4.1 to the following problem: given two area-preserving maps $f, g: M \rightarrow M$, when the group $\phi(f, g) \in \operatorname{Diff}_{\nu}(M)$ is "big" (say, free)? When $\operatorname{Diff}_{\nu}(M)$ is replaced by a finite-dimensional Lie group, this problem has been studied extensively, see e.g. [Re4], and references therein. In [Re4] we showed how the value of a (twisted) Euler class forces 2κ elements $f_{1}, \ldots, f_{2 \kappa}$ of $S L_{2}(\mathbb{R})$ to generate a free group. Here we will give a criterion for $\phi(f, g)$ as above to be non-amenable. For that, denote $F(f, g)$ a free group in two generators f, g. Consider the ℓ^{1} homology Banach space $H_{2}^{\ell^{1}}(F, \mathbb{R})$ []. An element of this space has a representive $\sum_{j=1}^{\infty} a_{j}\left(h_{j}, k_{j}\right)$ with $h_{j}, k_{j} \in F, \Sigma\left|a_{j}\right|<\infty$ and $\sum a_{j}\left(h_{j} k_{j}-h_{j}-h_{j}\right)=0$ in $\ell^{1}(F)$. A bounded cocycle ℓ induces a continuous functional

$$
\sum a_{j} \ell\left(h_{i}, k_{i}\right): H_{2}^{\ell_{1}}(F, \mathbb{R}) \rightarrow \mathbb{R}
$$

which vanishes if $[\ell]=0$ in $H_{b}^{2}(F, \mathbb{R})$.
Theorem (4.2). Let $\sum a_{j}\left(h_{j}, k_{j}\right)$ be any ℓ^{1}-cycle in $H_{2}^{\ell_{1}}(F, \mathbb{R})$. If $\sum a_{j} \delta\left(h_{j}, k_{i}\right) \neq$ 0 , then the group $\phi(f, g)$ is non-amenable. The set of pairs $(f, g) \in \operatorname{Diff}_{\nu}(M) \times$ $\operatorname{Diff}_{\nu}(M)$ satisfying this inequality, is open in C^{1}-topology.
Proof. Consider the following maps:

$$
H_{b}^{2}\left(\operatorname{Diff}_{\nu}(M), \mathbb{R}\right) \rightarrow H_{b}^{2}(\phi(f, g), \mathbb{R}) \rightarrow H_{b}^{2}(F(f, g), \mathbb{R}) \rightarrow\left(H_{2}^{\ell_{1}}(F(f, g), \mathbb{R})\right)^{*}
$$

If $\phi(f, g)$ is amenable, then $H_{b}^{2}(\phi(f, g), \mathbb{R})=0[\mathrm{Gr} 2]$, so the image of δ in $\left(H_{2}^{\ell_{1}}(F(f, g), \mathbb{R})\right)^{*}$ is zero and $\left(\delta, \sum a_{i}\left(h_{j}, k_{j}\right)\right)=0$, a contradiction. The last statement of the theorem is checked directly from the definition of δ.
4.3 Constructing ℓ^{1}-cycles. The cardinality of $\operatorname{dim}_{\mathbb{R}} H_{2}^{\ell_{1}}(F(f, g), \mathbb{R})$ is $2^{\aleph_{0}}$ by []. To apply the theorem 4.2 it is useful to have explicit formulas for ℓ^{1}-cycles. One way is described in [].

5. Lie algebra cohomology

We will give the Lie algebraic analogues of the above constructed classes in $\operatorname{Diff}_{\nu}(M)$ and $\operatorname{Sympl}(M)$. Observe that some odd-dimensional classes in the Lie algebra of $\operatorname{Sympl}(M)$ were constructed in [Re2] they induce, in general, nontrivial classes in cohomology of $\operatorname{Sympl}(M)$ as a topological space. The even-dimensional classes constructed here always induce trivial classes in $H^{*}\left(\operatorname{Sympl}^{\text {top }}(M), \mathbb{R}\right)$.
5.1 Formulas for $\operatorname{Diff}_{\nu}(M)$. Let $X_{1}, \ldots, X_{2 \kappa+1} \in \operatorname{Lie}\left(\operatorname{Diff}_{\nu}(M)\right)$. Fix a Riemannian metric g with volume form V. Let

$$
\psi\left(X_{1}, \ldots, X_{2 \kappa+1}\right)=\int_{M} A l t \operatorname{Tr} \prod_{j=1}^{2 \kappa+1}\left(\nabla X_{j}+\left(\nabla X_{j}\right)^{*}\right) \cdot \nu
$$

Theorem (5.1). ψ defines a cocycle for $H^{2 \kappa+1}\left(\operatorname{Lie}\left(\operatorname{Diff} f_{\nu}(M)\right)\right.$.
Proof. Consider a $\operatorname{Diff}_{\nu}(M)$-equivariant evaluation map $\operatorname{Diff}_{\nu}(M) \rightarrow M: f \mapsto$ $\left(f^{*}\right)^{-1}(g)$. Then the $\operatorname{Diff} f_{\nu}(M)$-invariant forms on M, constructed in 1.1 induce left-invariant closed forms on $\operatorname{Diff}_{\nu}(M)$, whose restriction on $T_{e} \operatorname{Dif} f_{\nu}(M)$ will be a Lie algebra cocycle. The derivative of the evaluation map Lie($\left.\operatorname{Dif} f_{\nu}(M)\right) \rightarrow T_{g} M$ is given by $X \mapsto \mathcal{L}_{X} g=g\left(\nabla X+(\nabla X)^{*} \cdot, \cdot\right)$. Accounting the formula for Borel classes (see e.g. [Re3]), one arrives above-written formula for ψ.
5.2 Formulas for $\operatorname{Sympl}(M)$. Let $X_{1}, \ldots, X_{2 \kappa} \in \operatorname{Lie}(\operatorname{Sympl}(M))$. Fix a tame almost-complex structure J. Let

$$
\varphi_{2 \kappa}\left(X_{1}, \ldots, X_{2 \kappa}\right)=\int_{M} A l t \operatorname{Tr} J \cdot \prod_{j=1}^{2 \kappa} \mathcal{L}_{X_{j}} J \cdot \omega^{n}
$$

Theorem (5.2). φ defines a cocycle for $H^{2 \kappa}(\operatorname{Lie}(\operatorname{Sympl}(M))$.
Proof. Same as for 5.1.

5.9 Vanishing for φ_{2} for flat torus.

Proposition (5.9). Let $M=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}$ be a torus with standard symplectic structure. Then for any choice of a tame almost-complex structure, the cohomology class of φ_{2} in $H^{2}(\operatorname{Lie}(\operatorname{Sympl}(M)), \mathbb{R})$ is zero.

Proof. The cohomology class of φ_{2} does not depend on the choice of J, since X is connected. Choose J to be the standard complex structure. We need to work on the formula for φ_{2}. Let g be a metric, defined by $g(J \cdot, \cdot)=\omega$ (flat in our case). We then have $\mathcal{L}_{X} J=[\nabla X, J]$ since g is Kähler and $\nabla_{X} J=0$. So

$$
\left.\varphi_{2}(X, Y)=\int_{M} \operatorname{Tr} J([\nabla X, J][\nabla Y, J]-[\nabla Y, J][\nabla X, J]]\right) \cdot \omega^{n}
$$

Let X be Hamiltonian, so that $X=J$ grad f. Then $\nabla X=J H_{f}$, where H_{f} is the Hessian of f. If Y is also Hamiltonian, say $Y=J$ gradh, we have

$$
\varphi_{2}(X, Y)=-\int_{M} \operatorname{Tr} J\left[H_{f}, J\right]\left[H_{h}, J\right] \cdot \omega^{n}
$$

Direct computation shows that the last expression is zero for flat torus. Now, $\mathrm{Lie}(\operatorname{Sympl}(M))$ is a semidirect product of the ideal of Hamiltonian vector fields and an abelian subalgebra of constant vector fields, generated by (multivalued) linear Hamiltonians. Clearly, $\varphi_{2}(X, Y)$ is zero for all choices for X and Y.
5.4 Vanishing of φ_{2} for a symplectic surface.

Proposition (5.4). Let (M, ω) be a compact surface with a symplectic form. Then for any choice of a tame almost-complex structure, the cohomology class of φ_{2} in $H^{2}(\operatorname{Lie}(\operatorname{Ham}(M), \mathbb{R}))$ is zero.

Proof. Let g be as above. Again we have

$$
\varphi_{2}(X, Y)=-\int_{M} \operatorname{Tr} J\left[H_{f}, J\right]\left[H_{h}, J\right] \cdot \omega
$$

The proposition follows now from the following remarkable identity.
Theorem (5.4). On a compact Riemannian surface (M, g) the following identity holds:

$$
\begin{equation*}
\int_{M} \operatorname{Tr} J\left[H_{f}, J\right]\left[H_{h}, J\right] \cdot d \text { area }=-\int K(g)\{f, h\} \cdot d \text { area } \tag{*}
\end{equation*}
$$

where $K(g)$ is the curvature of g.
Proof. We were only able to prove this identity by a direct (very) long computation ($[\operatorname{Re} 1]$), which we will sketch here. Let $g=e^{A(x, y)}\left(d x^{2}+d y^{2}\right)$ in local conformal coordinates. Then $\Gamma_{x x}^{x}=\frac{1}{2} A_{x}, \Gamma_{y y}^{y}=\frac{1}{2} A_{y}, \Gamma_{x y}^{x}=\frac{1}{2} A_{y}, \Gamma_{x y}^{y}=\frac{1}{2} A_{x}, \Gamma_{x x}^{y}=-\frac{1}{2} A_{y}$, $\Gamma_{y y}^{x}=-\frac{1}{2} A_{x}$. Next, $H_{f}=\nabla(\operatorname{Grad} f)$ and to the matrix of H_{f} is

$$
\left(\begin{array}{ll}
e^{-a} f_{x x}+\frac{1}{2} e^{-A}\left(A_{y} f_{y}-A_{x} f_{x}\right) & e^{-A} f_{x y}-\frac{1}{2} e^{-A}\left(A_{y} f_{x}+A_{x} f_{y}\right) \\
e^{-A} f_{x y}-\frac{1}{2} e^{-A}\left(A_{y} f x+A_{x} f_{y}\right) & e^{-A} f_{y y}+\frac{1}{2} e^{-A}\left(A_{x} f_{x}-A_{y} f_{y}\right)
\end{array}\right)
$$

and the same for h. Substituting to the left side of $\left({ }^{*}\right)$ one gets

$$
\begin{aligned}
& -2\left[\int\left(e^{-A} f_{x y}-\frac{1}{2} e^{-A}\left(A_{y} f_{x}+A_{x} f_{y}\right)\right) \cdot\left(h_{x x}-h_{y y}+A_{y} h_{y}-A_{x} h_{x}\right)-\right. \\
& \left.-\int\left(e^{-A} h_{x y}-\frac{1}{2}\left(A_{y} h_{x}+A_{x} h_{y}\right)\right)\left(f_{x x}-f_{y y}+A_{y} f_{y}-A_{x} f_{x}\right)\right] d x d y
\end{aligned}
$$

Twice integrating by parts, one finds this equal to

$$
\begin{gathered}
\int e^{-A}\left[-A_{x x y} f_{x}+A_{y} A_{x x} f_{x}-A_{y y y} f_{x}+\right. \\
\left.+A_{y} A_{y y} f_{x}+A_{y y x} f_{y}-A_{x} A_{y y} f_{y}+A_{x x x} f_{y}-A_{x} A_{x x} f_{y}\right] d x d y
\end{gathered}
$$

On the other hand, the right hand side is

$$
\int_{M}\left\{f_{x} h_{y}-f_{y} h_{x}\right\} \cdot\left(A_{x x}+A_{y y}\right) e^{-A} d x d y
$$

Again integrating by parts, one gets the same expression as above.
q.e.d.

6. Chern-Simons-type class in $H^{3}\left(\right.$ Dif $_{\nu}\left(M^{3}\right), \mathbb{R}(\mathbb{Z})$

This section is best read in conjunction with [Re2]. In that paper, we constructed secondary classes in $\operatorname{Hom}\left(\pi_{2 i-1}\left(B \operatorname{Sympl}^{\delta}(M)^{+}, \mathbb{R} / A\right)\right.$ where $M^{2 n}$ is a compact simply-connected symplectic manifold and A is a group of periods of a biinvariant ($2 i-1$) -form on $\operatorname{Sympl}(M)$, whose restriction on the Lie algebra is $f_{1}, \ldots, f_{2 i-1} \rightarrow$ Alt $\int_{M}\left\{f_{1}, f_{2}\right\} f_{3} \ldots f_{2 i-1} \cdot \omega^{n}$. In particular, it implied the following results.
6.1 Theorem ([Re2]) (Chern-Simons class extends to $\operatorname{Sympl}\left(S^{2}\right)$). There exists a rigid class in $H^{3}\left(\operatorname{Sympl}\left(S^{2}\right.\right.$, can $\left.), \mathbb{R} / \mathbb{Z}\right)$ whose restriction on $S O(3)$ is the standard Chern-Simons class.
6.2 Theorem ($[\operatorname{Re} 2])$ (Chern-Simons class extends to Sympl $\left(\mathbb{C} P^{2}\right)$). There exists a class in $H^{3}\left(\operatorname{Symp}\left(\mathbb{C} P^{2}\right.\right.$, can $\left.), \mathbb{R} / \mathbb{Z}\right)$ whose restriction on $S U(3)$ is the standard Chern-Simons class.
6.3 Theorem ($[\mathbf{R e} 2])$. There exists a class in $H^{3}\left(\operatorname{Sympl}\left(\left(S^{2}, a_{1} \cdot c a n\right) \times S^{2}\left(a_{2} \times\right.\right.\right.$ can)), $\mathbb{R} / \mathbb{Z}), a_{1} \neq a_{2}$, whose restriction on $S O(3) \times S O(3)$ is the sum of standard Chern-Simons classes.

Let M^{3} be a rational homology sphere, say $f \cdot H_{1}(M, \mathbb{Z})=0, f \in \mathbb{Z}$.
6.4 The definition of the $C h S$ class. Fix a point $p \in M$ and consider the evaluation (at p) map

$$
\operatorname{Diff}_{\nu}(M) \rightarrow M
$$

The pull-back of ν under this map is a closed left-invariant form ν_{p} on $\operatorname{Diff} f_{\nu}(M)$, having integral periods. The general theory of $[\mathrm{Re} 3]$ and $[\mathrm{Re} 2]$ produces a regulator

$$
\begin{equation*}
\pi_{3}\left(B \operatorname{Diff}_{\nu}^{\delta}(M)^{+}\right) \rightarrow \mathbb{R} / \mathbb{Z} \tag{*}
\end{equation*}
$$

A different choice of a point $p^{\prime} \in M$ will give another left-invariant form $\nu_{p^{\prime}}$ such that $\nu_{p}-\nu_{p^{\prime}}=d \mu$ for a left-invariant form μ. It follows from [Re3] that the regulator (*) does not depend on p. In fact, one has a biinvariant 3 -form ω on $\operatorname{Diff}_{\nu}(M)$, whose values on the Lie algebra are given by $\omega(X, Y, Z)=$ $\int_{M} \nu(X(p), Y(p), Z(p)) d \nu(p)$. The form ω gives the same regulator as above.

To extend the regulator to $H^{3}\left(\operatorname{Dif} f_{\nu}^{\delta}(M), \mathbb{R} / \mathbb{Z}\right)$, we need to alter the scheme of [Re3] as follows. Since $\mathrm{MSO}_{3}\left(B\right.$ Diff $\left.{ }^{\delta}(M)\right) \approx H_{3}\left(B\right.$ Diff $\left.f^{\delta}(M), \mathbb{Z}\right)$ any class in $H_{3}\left(B \operatorname{Diff}^{\delta}(M), \mathbb{Z}\right)$ is represented by a map $X \xrightarrow{\varphi} B \operatorname{Diff}(M)$, or equivalently, by a representation $\pi_{1}(X) \xrightarrow{\rho}$ Diff $_{\nu}(M)$. Now, for M a flat bundle $M \rightarrow \mathcal{E} \rightarrow X$, associating to ρ. The form ω extends to the closed form on \mathcal{E} whose periods on fibers are 1. That gives an element λ in $H^{3}(\mathcal{E}, \mathbb{R} / \mathbb{Z})$. The spectral sequence of \mathcal{E} with \mathbb{R} / \mathbb{Z}-coefficients looks like

where W is the local system whose stalk at p is $H^{1}(M, \mathbb{R} / \mathbb{Z}) \approx \widehat{H_{1}(M, \mathbb{Z})}$. The element λ lies in the kernel of the wedge $\operatorname{map} H^{3}(\mathcal{E}, \mathbb{R} / \mathbb{Z}) \rightarrow H^{3}(M, \mathbb{R} / \mathbb{Z})$. Now,
the group $H^{2}(X, \underline{W})$ has exponent a divisor of f, and the image of the transgression $d^{2}: H^{1}(X, \underline{W}) \rightarrow H^{3}(X, \mathbb{R} / \mathbb{Z})$ has the same property. Therefore, $f \cdot \lambda$ induces a well-defined class in $H^{3}\left(X, \mathbb{R} / \mathbb{Z} \cdot \frac{1}{f}\right)$. If M is a \mathbb{Z}-homology sphere, we get a class in $H^{3}(X, \mathbb{R} / \mathbb{Z})$.

If $Y \rightarrow B \operatorname{Diff}^{\delta}(M)$ is a map, bordant to φ, then the same argument as in [$\operatorname{Re} 2]$ proves that the value of the corresponding class in $H^{3}\left(Y, \mathbb{R} / \mathbb{Z} \cdot \frac{1}{f}\right)$ on $[Y]$ is the same as for X. So we constructed a well-defined map

$$
H_{3}\left(D_{i f f^{\delta}}(M), \mathbb{Z}\right) \rightarrow \mathbb{R} / \mathbb{Z} \cdot \frac{1}{f}
$$

6.5 Invariant scalar product on Lie(Diff (M), the Cartan form and rigidity of ChS class. Here we will prove that the ChS class

$$
H_{3}\left(\text { Diff }_{\nu}^{\delta}(M), \mathbb{Z}\right) \rightarrow \mathbb{R} / \mathbb{Z}
$$

of the previous section is rigid for $M \approx S^{3}$. For that purpose we need to work with principal flat bundles rather then with flat associated bundles. The clue is that the form ω constructed above on $\operatorname{Diff}_{\nu}(M)$ can be viewed as a Cartan form, associated with an invariant scalar product on $\operatorname{Lie}\left(\right.$ Diff $\left._{\nu}(M)\right)$.

We are going to prove similar results for the group Diff $f_{\nu}\left(M^{3}\right)$ of volumepreserving diffeomorphisms of a compact oriented three-manifold. Throughout this section, M is assumed to be a rational homology sphere, that is, $H_{1}(M, \mathbb{Z})$ is torsion.

Let $X \in \operatorname{Lie}\left(\operatorname{Diff}_{\nu}(M)\right)$ a vector field with $\operatorname{div} X=0$. The form $X J \nu$ is closed, whence exact: $d \mu=X\rfloor \nu$. Put $\langle X, X\rangle=\int_{M} \mu^{\mu} \cdot(X J \nu)$. An immediate computation shows that $\langle X, X\rangle$ does not depend on the choice of μ. Moreover $X \mapsto\langle X, X\rangle$ is a quadratic form, invariant under the adjoint action of $\operatorname{Diff}_{\nu}(M)$. By Arnold [A], $\langle X, X\rangle$ is the asymptotic self-linking number of trajetories of X. We need the following elementary lemma (the proof of left to the reader)

Lemma (6.5). For any $X, Y, Z \in \operatorname{Lie}\left(\operatorname{Diff}_{\nu}(M)\right)$,

$$
\Omega(X, Y, Z)=\omega(X, Y, Z)
$$

that is, the forms Ω and w coincide.
Now, as in [Re2] we define a biinvariant form Ω on $\operatorname{Diff}_{\nu}(M)$ by $\Omega(X, Y, Z)=$ $\langle[X, Y], Z\rangle$ on the Lie algebra.

Lemma (6.6). Let $M=S^{3} / \Gamma$ where S^{3} is considered as a compact Lie group and the finite subgroup Γ acts from the right. Then the pullback of Ω by the natural $\operatorname{map} S^{3} \rightarrow$ Diff $_{\nu}(M)$ is $\frac{1}{|\Gamma|} \cdot\left(\right.$ volume form of $\left.S^{3}\right)$.

Proof. It is clearly enough to check this for $\Gamma=\{1\}$. Let $v \in \operatorname{Lie}\left(S^{3}\right)$ and X is the corresponding right-invariant vector field. Let μ be a right-invariant 1-form, defined by (v, \cdot) on Lie $\left.S^{3}\right)$. Then $d \mu=X j \nu$ and $\mu \wedge(X \mid \nu)=\nu$. q.e.d.
6.6 Theorem (Chern-Simons class in Diff $f_{\nu}\left(S^{3}\right)$). There exists a rigid class in $H^{3}\left(\operatorname{Diff}_{\nu}\left(S^{3}\right), \mathbb{R} / \mathbb{Z}\right)$ whose restriction on $S O(4) \approx S^{3} \times S^{3} / \mathbb{Z}_{2}$ coincides with the sum of standard Chern-Simons classes. Moreover, for $M=S^{3} / \Gamma$ there exists a class in $H^{3}\left(\right.$ Diff $\left._{\nu}(M), \mathbb{R} / \mathbb{Z}\right)$ whose restriction on S^{3} is $|\Gamma|$ times the standard Chern-Simons class.

Proof. By the general theory of regulators, developed in [Re3], section 3, and $[\operatorname{Re} 2]$, the invariant form Ω gives rise to a map

$$
\pi_{3}\left(B \operatorname{Diff}_{\nu}^{\delta}(M)^{+}\right) \rightarrow \mathbb{R} / A
$$

where A is the group of periods of Ω on the Hurewitz image of $\pi_{3}\left(\operatorname{Diff} f_{\nu}(M)\right)$ in $H_{3}\left(\operatorname{Dif} f_{\nu}(M), \mathbb{Z}\right)$. Moreover, if $\operatorname{Dif} f_{\nu}(M)$ is homotopically equivalent to S^{3} or $S O(4)$ this extends to a map

$$
H_{3}\left(B \operatorname{Diff}^{\delta}(M)\right) \rightarrow \mathbb{R} / A
$$

By Hatcher $[\mathrm{H}]$ and Ivanov $[\mathrm{I}]$ this is exactly the case for $M=S^{3} / \Gamma$. Moreover, periods of Ω are $2 \pi^{2} \cdot \mathbb{Z}$ and $2 \pi^{2} \cdot \frac{1}{|\Gamma|} \mathbb{Z}$, respectively. Since Ω is a Cartan form, associated to an invariant polynomial in $\operatorname{Lie}\left(\operatorname{Dif} f_{\nu}(M)\right)$, it is rigid by CheegerSimons [Che-S].
6.6 Case of Seifert manifolds. Let Γ be a uniform lattice in $\widehat{S L_{2}(\mathbb{R})}$, then $M=$ $\widehat{S L_{2}(\mathbb{R})} / \Gamma$ is a Seifert manifold. There is a cohomology class $\beta \in H^{3}\left({\widehat{S L_{2}(\mathbb{R})}}^{\delta}, \mathbb{R}\right)$, called the Seifert volume class [BGo], such that for any $\Gamma \subset \widehat{S L_{2}}(\mathbb{R})$, the restriction of β on Γ is $\operatorname{vol}\left(\widetilde{S L_{2}(\mathbb{R})} / \Gamma\right)$ times the fundamental class. Then the computation of 6.4 gives the class in $H^{3}\left(\operatorname{Diff} f_{\nu}(M), \mathbb{R}\right)$, whose restriction on $\widehat{S L_{2}(\mathbb{R})}$ is β, subject to the condition that $\operatorname{Diff}_{\nu}(M)$ is contractible. It is not known to the author if this is true for all such M, comp. [FJ].

7. Measurable transfer and higher asymptotic cycles

We will first outline here an alternative approach in defining the classes of 1.2 in Diff $_{\nu}(M)$. For M a locally symmetric space of nonpositive curvature, this approach also leads to new classes in $H_{\text {cont }}^{*}\left(\operatorname{Diff} f_{\nu}(M), \mathbb{R}\right)$, different from those of 1.2 .

Let $\mathfrak{G}=\operatorname{Diff}_{\nu}(M)$ and $\mathfrak{G}_{0} \subset \mathfrak{G}$ is a closed group, stabilizing a fixed point $p \in M$. Let \mathfrak{G}^{\sim} be the connected component of \mathfrak{G} and let $\mathfrak{G}_{0}^{\sim}=\mathfrak{G} \cap \mathfrak{G}_{0}$. Fix a measurable section $s: M \rightarrow \mathfrak{G}$ such that $s(q) p=q$. We will always assume that $\overline{s(M)}$ is compact.
7.1 Ergodic cocycle in non-abelian cohomology [Gu]. Define a map $\psi: \mathfrak{G} \times M \rightarrow \mathfrak{G}_{0}$ by $g s(q)=s(g q) \psi(g, q)$. We will view it as a map $\mathfrak{G} \xrightarrow{\psi} \mathcal{F}\left(M, \mathfrak{G}_{0}\right)$. Here $\mathcal{F}\left(M, \mathfrak{G}_{0}\right)$ is the group of measurable functions from M to \mathfrak{G}_{0} with compact closure of the image. \mathfrak{G} acts on $\mathcal{F}\left(M, \mathfrak{G}_{0}\right)$ by the argument change and ψ is a cocycle for the non-abelian cohomology $H^{1}\left(\mathfrak{G}, \mathcal{F}\left(M, \mathfrak{E}_{0}\right)\right)$.
7.2 Measurable transfer [Gu]. Now let $f: \mathfrak{G}_{0} \times \ldots \mathfrak{G}_{0} \rightarrow \mathbb{R}$ be a locally bounded (say, continuous) cocycle. Define $F: \mathfrak{G} \times \ldots \times \mathfrak{G} \rightarrow \mathbb{R}$ as $F=\int_{M} f\left(\psi\left(g_{1}, m\right)\right.$,
$\left.\psi\left(g_{2}, m\right) \ldots \psi\left(g_{n}, m\right)\right) d \nu(m)$. This defines a cohomology class in $H^{n}(\mathfrak{G}, \mathbb{R})$, independent of the choices of s and $f[\mathrm{Gu}]$.

Now, we have the tangential representation $\mathfrak{G}_{0} \rightarrow S L\left(T_{p}(M)\right)$. Pulling back the usual Borel classes on \mathfrak{G}_{0}, we construct cohomology classes in $H^{i}\left(\mathfrak{G}_{0}, \mathbb{R}\right)$ for $i=5,9, \ldots$. The transfer will map these to classes in $H^{i}(\mathfrak{G}, \mathbb{R})$, which we have constructed in 1.2. We do not prove the comparison theorem here, however.
7.9 Supertransfer. We will now define a map

$$
H^{\kappa}\left(\pi_{1}(M), \mathbb{R}\right) \xrightarrow{S} H^{\kappa}\left(\operatorname{Diff}_{\nu}(M), \mathbb{R}\right)
$$

in the following way. We know that $\pi_{0}\left(\mathfrak{G}_{0}^{\sim}\right) \approx \pi_{1}(M) / \pi_{1}\left(\mathfrak{G}^{\sim}\right)$. This defines a homomorphism $\mathfrak{G}_{0}^{\sim} \rightarrow \pi_{0}\left(\mathfrak{G}_{0}^{\sim}\right) \rightarrow \pi_{1}(M) / \pi_{1}\left(\mathfrak{G}^{\sim}\right)$, and a map $H^{\kappa}\left(\pi_{1}(M) / \pi_{1}\left(\mathfrak{G}^{\sim}\right), \mathbb{R}\right) \rightarrow$ $H^{\kappa}\left(\mathfrak{G}_{0}^{\sim}, \mathbb{R}\right)$.

In many interesting cases one knows that $\pi_{1}\left(\mathfrak{G}^{\sim}\right)=1$. If M is a surface of genus $g \geq 2$, a result of Earle and Eells says that \mathfrak{G}^{\sim} is contractible. For M locally symmetric of rank ≥ 2 [FJ]. For any M such that $\pi_{1}\left(\mathcal{G}^{\sim}\right)=1$, we get $\pi_{0}\left(\mathfrak{G}_{0}\right) \approx \pi_{1}(M)$ so that there is a map

$$
H^{k}\left(\pi_{1}(M)\right) \rightarrow H^{\kappa}\left(\pi_{0}\left(\mathfrak{G}_{0}^{\sim}\right)\right) \rightarrow H^{\kappa}\left(\mathfrak{G}_{0}^{\sim}\right) .
$$

Now, composing with the measurable transfer $H^{\kappa}\left(\mathfrak{G}_{0}^{\sim}\right) \rightarrow H^{\kappa}\left(\mathfrak{G}^{\sim}\right)$ we arrive to a desired map

$$
S: H^{\kappa}\left(\pi_{1}(M), \mathbb{R}\right) \rightarrow H^{\kappa}\left(\mathfrak{G}^{\sim}, \mathbb{R}\right)
$$

7.4 Higher asymptotic cycles. The dual to the above-constructed map S is

$$
S^{\vee}: H_{\kappa}\left(\mathcal{G}^{\sim}, \mathbb{R}\right) \rightarrow H_{\kappa}\left(\pi_{1}(M), \mathbb{R}\right)
$$

As we will see now, this is higher version of the classical asymptotic cycle character

$$
\mathfrak{G}^{\sim} \xrightarrow{\tau} H_{1}(M, \mathbb{R})
$$

[Sch]. Indeed, for $\kappa=1$ the map S^{\vee} will act as follows: let $g \in \mathfrak{G}^{\sim}$ be a volumepreserving map, isotopic to identity. Fix an isotopy $g(t, x)$ such that $g(0, \cdot)=\mathrm{id}$ and $g(1, \cdot)=g$. For $x \in M, g(t, x)$ is a path from x to $g(x)$ and may be considered as a 1 - current. Now, the integral

$$
\int_{M}[g(t, x)] d \nu(x)
$$

is a closed current, defining an element in $H_{1}(M, \mathbb{R})$. This will be $S^{\vee}(g)$.
Now, the definition of the asymptotic cycle map [Sch] gives the following recepy: for an element $z \in H^{1}(M, \mathbb{Z})$ let $f: M \rightarrow S^{1}$ be a representing map. The map $f \circ g-f: M \rightarrow S^{1}$ is zero-homotopic, so it comes from the map $F: M \rightarrow \mathbb{R}$. Now, $\int_{M} F(\bmod \mathbb{Z})$ is the image of $\tau(f)$ on z. If f is isotopic to identity, $\tau(f)$ lifts to $H_{1}(M, \mathbb{R})$. It is easy to check that $\left(d f, \int_{M}[g(t, x)] d \nu\right)=(\tau(f), z)$, which proves $S^{\vee}=\tau$ in dimension 1.

References

[A] V. Arnold.
[B] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ec. Norm. Super. 7 (1974), 235-272.
[BCG] G. Besson, G. Courtois, J. Gallot, in preparation.
[Bo] R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseignement Math. (2), 23 (1977), 209-220.
[BG] J. Barge, E. Ghys, Cocycles d'Euler et de Moslov, Math. Ann. 294 (1992), 235-265.
[BGo] R. Brooks, W. Goldman, Volumes in Seifert space, Duke Math. J. 51 (1984), 529-545.
[Br] R. Brooks.
[D] Dupont.
[FJ] F. Farrell, L. Jones, Isomorphism conjectures in Algebraic K-theory, Journ. AMS 6 (1993), 249-297.
[G] W. Goldman, Berkeley Thesis (1980).
[Go] A. Goncharov, in preparation.
[Go2] W. Goldman.
[Gr] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Inv. Math. 82 (1985), 307-347.
[Gr2] M. Gromov, Volume and bounded cohomology, Publ. Math. IHES.
[Gu] A. Guichardet, Cohomologie des Groupes Topologiques et des Algèbres de Lie, Cedic (1980).
[Ha] A. Hatcher.
[I] N. Ivanov, Soviet Math. Dokl. 20 (1979), 47-50.
[NS] M.S. Narasimhan, Seshadri.
[Re1] A. Reznikov, Twistor varieties, symplectic reduction and universal Jacobians (1996), preprint MPI.
[Re2] A. Reznikov, Characteristic classes in symplectic topology (1994), submitted to Annals of Mathematics.
[Re3] A. Reznikov, Rationality of secondary classes, to appear, J. Diff, Geom..
[Re4] A. Reznikov, Euler class and free generation, preprint MPI (July, 1996).
[Sch] Schwartzmann, Asymptotic cycles, Annals of Mathematics 66 (1957), 270-284.
[Th] W. Thurston.
[Th2] W. Thurston.
Institute of Mathematics, Hebrew University, Giv'at Ram 91904, Jerusalem, IsRAEL, SIMPLEX@MATH.HUJI.AC.IL

Current address: Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany, reznikov@mpim-bonn.mpg.de

