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Introduction

We construct Hag domains for simply connected groups G defined over a
nonarchimedean loeal field K. The case where G is split over K was treated
in {PV] (There the spaces we call Hag domains were ealled symmetrie spaces.
Hut Hag domains seems to be a better name). Here we concentrate on the
absolutely almost simple groups that are not split over K.

Let us first reeall the definition of a Hag domain. Let X be a projective
homogeneous space (not necessarily defined over K). Then X = GIP with
P C G ® K 8 a parabolie subgroup and K. is the separable closure of K. We
eall an open analytic subspace Y C X a flag domain if it has the following
two properties:

(1) Y is stable under the action 0/ G(K)
(fJ) FOT every discrete co-compact subgroup r c G(K) the quotient Y Ir

exists and is a proper rigid analyiic space defined Qver K,!.
This definition seems to be the p-adic analog of archimedean Hag do

mains. If G is defined over the field of real numbers lR then an open G(lR) 
orbit Y in G(C) IP(C) for same parabolic subgroup P c G®C is called a Hag
domain if Y ~ G(lR)/H for some compaet subgroup H c G(lR) (See [GrS]
and [WW]).

Ir Cbar(K) > 0 then discrete co-compact subgroups r c G(K) onlyexist
if G ia of inner type A, (See (Ve] or (M]). So G = SLn(D) with D a skew
field defined over K. To make the notion of a Hag domain also meaningful for
other groups in positive characteristics, one could replace (2) in the definition
above by the following :
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(~') There exists a formal scheme Y on which G(K) acts, with generic
/ibre Y. The closed /ibre 0/ Y consists 0/ proper components that are in 1-1
correspondance with the vertices 0/ the Bruhat-Tits building 0/ G(K) .

Note that (2') implies (2) in the case of existence of discrete co-compact
suhgroups of G(K). Dur construction oI ßag domains will be such that they
also satisfy (2').

We use the following construction. Let r. be an ample line bundle on
X. If the set of stable points coincides with the set oI semi-stable points for
the action oI a maximal K -split torus S c G on X with respect to r., then
Y := ngeG(K) g . XS(S, r.) is a flag domain for G(K) . Here X 8 (S, 1:,) denotes
the set of stahle points. This construction is described in detail in [PVJ.

In section 1 oI this article we briefly recall the construction. The sets of
stahle points on X are studied in section 2. In section 3 the calculations with
weights needed in section 2 are performed.

I thank the Max Planck Institut für Mathematik for providing the space,time
and money to be ahle to write this article.
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1 The Construction

1.1

We will briefly reeall the eonstruetion of Hag domains as deseribed in [PV].
We generalize it alittle to make it also work for non·split semisimple groups.

1.2

Let K denote a nonarehimedean loeal field and let KO denote its ring of inte
gers. Let X be anormal projective (possibly non-conneeted) variety defined
over KO on whieh a group defined over KO acts algebraically. The action
being defined over KO. We assume the group G is eonnected, semisimple,
absolutely almost simple and isotropie. A group G is called isotropie if G(K)
is non·cornpact. It ia ealled almost simple if G(K) does not eontain a proper
infinite normal subgroup, and absolutely almost simple if this remains true
for G(L) with L ::> K any finite extension of fields.

Let .c be an ample line bundle on X. We assume that .c is defined over KO.
We will explain what we mean by this. If .c is ample then for some natural
number n the Hne bundle {,0ß is very ample. SO {,0ß gives an embedding
of X into sorne projective space pm. The action of G on X induces a G
linearization of (,0n

• So we can identify pm with the projectivization P(V) of
some G-module V. We call (, defined over KO if there exists a representation
G~ GL(V) defined over KO eorresponding with the G-linearization of .c0n

for some n such that (,0n is very ample.
Let SeT be a maximal KO- rational KO.split torus.Then .c determines

the sets of stahle and semistable points for the action of S on X, denoted by
XS(S, (,) and XSS(S, (,) respeetively, both defined over KO. For a seheme Z
defined over KO we denote by ZK the same scheme but now defined over K,
Le. ZK := Z xspec(KO) spec(K). Clearly XS(S, {,)K and XSS(S, {,)K are the
sets of (semi-)stable points for the action of SK on XK with respeet to the
ample Hne bundle (, ® K.

We define a G(K) -stable analytic subspace Y C XK by:

Y := ngeG(K)g . (XSK(SK, [, ® K)).

In [PV] the following theorem is proved:
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1.3 Theorem

1/ X 8 (S, l.) = XSS(S, l.) then Y Ir is a proper rigid analytic space lor any
discrete co-compact subgroup r c G( K) .

1.4

In [PV] this theorem is only proved for split groups G acting on a projective
homogeneous variety X = G/ P, where P c G is a parabolic subgroup. In
specting the proof given there, one sees that it only uses general properties
of the Bruhat-Tits building (to be {ound in [BrT] and [T.3] ) and properties
of sets of (semi-)stable points. Hence the theorem remains valid in this more
general set up.

In particular the following remains true:

1.5 Proposition

X K - Y is the union 0/ a compact set 0/ Zariski closed divisors.

1.6

Suppose XB(S, l.) = XSS(S, l.). Let k be the residue field of K. Let us assume
that Xk := X Xspec(KO) spec(k)consists of one single component. Then tbe
pure affinoid covering of Y given in [PV] is such that the reduction of Y
consists of components in 1-1 correspondance wi th the vertices of the Bruhat
Tits building of G(K). This gives rise to a formal scheme Y assodate to Y
such that the components of the closed fibre of Y are in 1-1 correspondance
with the vertices of the Bruhat·Tits building.

The analytic space YIr is proper for any discrete co-compact subgroup
r c G(K). According to [Lu.2) any formal scheme belonging to a proper
rigid analytic space has a closed fibre consisting of proper components.

Therefore we have, assuming Xk consists of one component:

1.7 Theorem

There exists a formal scheme Y with generic /ibre Y such that the closed /ibre
consists 01 proper components in 1-1 correspondance with the vertices 0/ the
Bruhat-Tits building 0/ G(K) .
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1.8

There is also a scheme theoretical way to construct the formal scheme Y (See
[PV] and [Ku ]).

The non-algebraicity result proved in [PV] theorem 4.2 remains valid in
our more general set up. Indeed the results of Wang [W] and Lütkebohmert
[Lu.I] used in the proof are also valid for non split groups.

1.9 Theorem

Let G have only a finite number 0/ orbits on X and let XS(S,.c) = XSS(S, .c).
Let r C G(K) be a discrtde co-compact subgroup. Then every meromorphic
/unction on the proper rigid analytic space Y / r is constant on each connected
component 0/ Y / r i/ codim(XK - Xk(S,.c)) ~ ~.
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2 Stahle Points

2.1

We Msume that G is a simpIy connected, semisimple, absolutely almost
simple group defined over a non-arehimedean Ioeal field K.

All varieties occuring in this seetion are defined over a suitable finite
separable extension of the field K. So we will not work over KO in this
seetion.

2.2

Let SeT c G be a maximal K-split torus and a maximal torus defined over
K, respeetively. The torus T and the group G both split over the separable
closure Ks of K. Let X(T) be the charaeter group of T. Let ~ denote the
(absolute) root system of G. We choose a simple basis ß of ~.

Let W be the Weyl group of cI>. Choosing a W - invariant inner product
on X(T)®~ , the group W is generated by the refleetions in the hyperplanes
orthogonal to the simple roots a E ß. One has W ~ NT/ZT(Ks ). Here NT
and ZT are the normalizer and centralizer of the torus T in G. We denote
the simple roots in ß by O'i, i= 1, ... ,l . Here l = dimKs (T) is the absolute
rank of G. Let Wi E W be the refleetion belonging to O'i'

The simple basis ß of cI> determines aBorei subgroup BeG. One has
B =< T, UalO' E 4>+ >, where ep+ is the set of positive roots and Ua is the
T-stable additive subgroup on which T acts with eharacter o.

For any subset I C {I, ... , l}, I # 0 we denote by WI C W the sub
group generated by the reflections Wi, i '1.1. Then the parabolic subgroups
containing Bare the groups PI := BWIB. Any parabolie subgroup of Gis
conjugated to exactly one of the groups PI' These parabolic groups PI are
all defined over the splitting field of G.

2.3

Let H be the Galois group H := Gal(Ks/ K). We fix an ordering on X(S).
We ehoose an ordering on X(T) compatible with the ordering on X(S). The
set of simple roots of G with respect to T vanishing on S is ealled ßo. The
relative root system of G, Le. the roots of X(S), is denoted by epK' The
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relative Weyl group is called WK. One has WK ~ NsIZs(K), where NS
and Zs are the normalizer and the centralizer of S in G. The simple basis of
4l K is denoted by 6.K .

The Galois group H acts on X(T), since T is split over K s . We will need
a twisted action of H on X (T). For any h E H the image h(6.) of 6. is
again a simple basis of~. There exists an unique element w E W such that
wh(6.) = ß. We set h"" = wo hand call the *·action of H on X(T) the
twisted action. Let H"" := {h*lh EH}. Then H"" acts on X(T). Note that
H* is a finite group.

2.4

Let .c be an ample line bundle on X = GIP. Then.c is in fact very ample. So
.c determines an embedding X t....+ P{ V). Here P(V) is the projectivization
of aG-module V. When Char{K) = 0 the module V is irreducible. If
Char{K) > 0 then this might not be the case ( See [Ke] and [MR] ).

However, the module V is uniquely eharacterized by its highest weight.
We will denote this G-module with highest weight A by VA'

Next we deseribe the weights..\ Buch that there exists an ample lioe bundle
.c on X = GIPI eorresponding to the G-module V>.. Let Wi be the fundamen
tal weight determined by 2{wi,oj)/(oj,oj) = Dij. Here (-,-) is a W-invariant
inner produet on X{T) ®:R. The ample line bundles .c on X = GIPI eorre
spond to the modules V>. with highest weight A= I:iEI ni • Wi with ni > O.

We need to know whieh representations of G ean be defined over K. These
can be found in [T.2]. Let Ar denote the root lattice, Le. the sublattiee of
X(T) generated by the roots 0 E <1». We restate the theorems 3.3 and 7.2 of
[T.2] in a form suitable for our purposes:

2.5 Theorem

The representation p>. 0/ G into GL(EaCTEH. VCT (>.») can be defined over K if
..\ E Ar (otherwise if ..\ rt Ar it can be defined over some skew field D defined
ouer K).
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2.6

If Char(K) = 0 then this repreaentation is irredueible over K and the theorem
is a.ctually proved in [T.2]. Otherwise if Char(K) > 0 , the representation
might not be irreducible, but it follows from the proof given in [T.2] that the
theorem above remains true.

The theorem above gjves us for ea.ch weight ~ = LiEI ni • ~i E Ar a rep
resentation p}, defined over K. Let v>. E Eac:rEH. Vc:r(>.) be a veetor contained
in V>. EB < 0 > , whose component in V>. is a heighest weight vector. The
image X t >. of the orbit G· v>. in P(EBO'EH. Vc:r(>.)) is isomorphie to GIPI' In
P(EBc:rEH. Vc:r(>.)) we have a variety X t defined over K, whose eonneeted eom
ponents are xtc:r(>.), er E Hltl. The eonneeted eomponents are all isomorphie.
Moreover the very ample line bundle .ct associated with this embedding,
gjves on eaeh eonneeted eomponent xtc:r(>.) the line bundle .c associated with
the weight er(~).

So for each X = GIPI defined over Ks and ample line bundle .c on X
eorresponding to some weight ~ E Ar , we ean construet a variety X t and an
ample line bundle .ct ,both defined over K , such that one connected eom
ponent of xt is isomorphie to X and the restriction of .ct to this component
is.c. So we ean forget about X and .c being defined over K, sinee we can
always construet suitable X t and .ct defined over K, if ~ E Ar.

The fact that we have to assurne that ~ E Ar is unimportant for UB, sinee
for any weight ~ we ean find an integer n > 0, such that n . ~ E Ar. If.c is
a line bundle on X eorresponding to ~, then .cflm eorresponds to the weight
n .~. Hence ~ and n . ~ define the same sets of (semi-)stable points on X.

From now on we will always ta.citly assurne that ~ E Ar.

2.7

The sets of (semi-)stable points of X for the a.ction of T w.r.t . .c ean be
determined using the criteria given in [MF]. Let .c give an embedding of X
ioto P(V) for some G-module V. Then we have an unique deeomposition
V = E9 Vp, ß E X(T) of V into eigenspaees Vß on which T acts with
eharacter ß. Let 1rß be the projection V --+ V,B. For x E X we denote by
Jl(x) C X(T)®~ the polyhedron given by the convex huH of {ßI7l'ß(v):I O},
where v E V is some original of x E X C P( V). One has:

x E XS(T,.c) <=> 0 Eint Jl(x)
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x E X 88(T,.c) <==> 0 E Jl(x)

Using [GS] the following ia proved in [PV] theorem 1.1:

2.8 proposition

Let.c be the ample line bundle on X = GIP, corresponding to the weight A.
Let T E G be a maximal torus. Then we haue:

a) For any point x E X the vertices 01 Jl(x) are contained in the set
{w(A)lw E W}. The edges 0/ Jl(x) are parallel to the roots a E <}) •

b) X S
( T,.c) = X 88

( T,.c) il and only i/ Aisnot contained in a hyperplane
(through 0) spanned by roots.

2.9

Using the restriction map 1': X(T) ---. X(S) one gets a map r 0 Jl with '
which one can determine the sets of (semi-)stable point for the action of S
on X with respect to the line bundle (,. Since all characters of S are stable
for the non~twisted action of the Galois group H, we have r( h(A») = r( A)
for any A E X( T) and h EH. In [BoT] proposition 6.7 it is proved that
r (h lll

( A)) = r (h(A)), where h lll denotes the twisted action of h EH. This fact
will be very useful. We now state Borne properties of the rnap r 0 JL.

2.10 proposition

Let.c be an ample line bündle on X = GIP, corresponding to the wheight A
and let SeT c G be as be/ore. Then we have:

a) For any point x E X the vertices 01 r 0 JL( x) are contained in the set
{r(w(A)lw E W}. The edges o/roJl(x) are paraleIl to roois a E <})K'

b) XS(S, (,) = X 88(S,.c) i/ for aIl w E W r(w(A)) is not contained in a
hyperplane (through 0) spanned by roois.

c) XS(S,.c) f:. XB8(S,.c) il A is contained in a hyperplane V spanned by
roois a E cI- and moreover there exisls an element W E W such that r(w(V))
is a hyperplane (spanned by roots ß E cI-K ).
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2.11 Proof

Since r maps ep into ep K U {O}, part (a) of the proposition is dear. Using (a)
one concludes that (b) must hold.

Part (c) follows from [PV] 1.4. There one constructs for A contained in
a hyperplane V spanned by roots a point x E X such that oue has p(x) =
conv( {w(A)lw E Wv}). Here Wv is the Weyl group ofthe root system epnv.
Then 0 E J.l (x) C V. Taking w(V) Buch that r( w(V)) is a hyperplane in
X(S) l8>~, one has 0 E r( w(p(x))) = r 0 p( w(x)) C r(V). This shows that
w(x) E X 88 (S,.c.) - X 8 (S,.c.). This proves (c).

2.12

The dassification of absolutely almost simple groups over a non-archimedean
local field K can be found in [Sa], [T.1] and [T.3]. In [Sa] and [T.1] the group8
are given by their index. A simply conoected semisimple group over a 000

archimedean local field is essentially deterrnined by its index.
The index of G is the following. One takes the Dynkin diagram V of

the absolute root system ep. The vertices of V represent the simple roots
Q' E ß. One draws a cirde around each vertex that represents a simple root
Q' that does not vanish on S. These circ1ed vertices are called the distinguished
vertices. One indicates the action of H· on the simple roots by arrows joining
the vertices corresponding to roots that are in the same H· orbit.

A group G is called ao inner form. if H· = {id.}. 0 therwise it is called
an outer form. A group G is called quasi-split if 00 root Q' E ß vanishes on
the K-split torus S.

2.13 Theorem

There exists an ample line bundle .c. on X = GI P such that
X 8 (S,.c) = X 88(S,.c) if and only if one of the following holds:

1) P = Band G is any group
2) P = PJ , J = {l, ... ,l - 1} and G a non split form 01 Cl. Bere Q'l is

the unique long root in .6..
3) P = PI and G = 8L'+1 (D), where D is a 8kew fie1d defined over K.

Here g.c.d.(i E I, s +1) = 1 and GIP{i} = Gr(i, (8+ 1). d), where cf denotes
the dimension of D over K.
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2.14

The theorem above is in almost all cases a direct consequence of proposition
2.10 and the calculations done in 3.2 till 3.17. The only exeptioDs are the
outer forms of type Al with PI =f B. Then the hyperplane V construeted
in 3.11 containing AI is not spanned by roots. But, since the polyhedron p
constructed in remark 3.12 in fact ia the polyhedron p( x) for some x E X =
G/PI, we still have XS(S,.c) =f XSS(S,.c) in this case.

2.15

Associated to the variety X and the ample line bundle .c both defined over
Ks one has a variety xt and an ample line bundle .ct both defined over K.
By eonstruction one has:

Since all components of xt ® Ks are isomorphie to X ® Ks , one sees that
X and .c can be defined over K if and only if xt ® Ks = X @Ks . Using
proposition 3.18 and theorem 2.5 one easily proves:

2.16 Theorem

There exists an ample line bundle .c defined over K on X = G/ P (defined
over K) such that XS(S,.c) = X 88(S,.c) if and only if Pisas in theorem
f.19 and Gisnot a quasi.split group with ~H· = 2 or an outer form with
~=Al'

2.17 Proposition

Let G be a non split group and suppose that X8(S,.c) = X 8S (S, .c). Then
codim(X - XS(S,.c) ~ f.

2.18 Proof

Since SeT one has XS(T,.c) c XS(S,.c) and XBS(T,.c) c X 8S (S, .c).
Hence codim(X - XS(S,.c) ~ codim(X - X 8 (T, .c).
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Let ~ f; At, then in [PV] lemma 4.12 it is proved for X = GIB that
codim(X - X 88(T,.c)) ~ tJ. If P 'I B, then we have a G-equivariant map 4> :
GIB --+ GIP and for any ample line bundle r. on GIP one can find an ample
line bundle.cb on GIB such that (GIB)88(T,.cb) = <p- 1 ((GIP)88(T,.c)).
Hence we have always codim(X - X 88 (S, .c)) ~ H in this case.

If <I» = At aod X = GIP with P a maximal parabolic subgroup, then
in [PV] lemma 4.5 it is shown that codim(X - X 8 (S, .c)) ~ ~ for X 'I
pt, Gr(tJ,4). Since we assurne XS(S,.c) = X 88(S,.c) the case X = Gr(B,4)
does not occur. If X = pt then G = SL.+ 1(D) with d(s + 1) = I + 1.
Then one easily that codim(X - X 8 (S, .c)) = d > 1. For general X one
has codim(X - XS(T, .c)) = 1 if and ooly if for a map <p as above one has
X S(T,.c) = 4>- 1 (set 0/ stable points in pt or Gr( tJ, 4))' Now one easily con~

cludes that codim(X - X 8 (S,.c)) > 1 for a11 X.

2.19

Assume X 8 (S,.c) = X S8 (S, .c). Since G and Xtcan in fact be defined over
KO, we are allowed to use the conatruction of paragraph 1 of this article.
Applying theorem 1.9 to yt := n,eG(K)(Xt)S(S,.c) one sees that every
meromorphic function on ytIris constant on each connected component.
Since the connected eomponents of ytIr are all isomorphie to YIr, where
y := ngeG(K) XS(S,.c) one has:

2.20 Theorem

Let G be a non split group and let XS(S,.c) = XSS(S, .c). Let r c G(K) be
a discrete co-compact subgroup. Then any meromorphic /unction on Y Iris
constant.
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3 Weights

3.1

In this seetion we perform the ealculations with weights that are needed to
prove the last two propositions of the previous paragraph.

As before Lwill denote the absolute rank of G. The set I will always denote
a non-empty subset of the set {1, ... , l}. And..\1 will denote a weight of the
form ..\1 = LiEl ni . Wi, where the Wi are the fundamental weights of the root
system ~.

First we will determine for eaeh group G the sets I such that there do or
do not exist weights ..\1 with r ( w (..\1)) eootained in a hyperplane spanned by
roots a E cI>K for same w E W. In proposition 3.18 we will deterrnine the
sets I such that for same weight ..\1 stable under the action of H· no r( w (..\1))
is contained in a hyperplane as above.

3.2 Proposition

Let ~ # At and let G be different from a non split form of Cl. Then for
every weight AI, I =1= {I, ... , L}, there exists an eIem ent w E W sueh that
W(..\I) is eontained in a hyperplane V spanned by roots a E cI> and such that
r(V) is a hyperplane (spanned by raols 0: E ~K).

3.3 Proof

Let ßl be the highest root of cI>. If cI> contains roots of different length we
call the highest short root ß'J. Since cI> =1= At, there exists an unique simple
root 'Yi E ß such that (ßi,*Yd f. o. So the hyperplane ßiJ. C X(T) (9 ~ is
spanned by the roots a E ß, a f. 'Yi.

Since the ßi are uniquely determined by the simple basis ß , they are
stable under the twisted action of the Galois group H. The same is true of
the simple roots 'Yi, since cI> =f At.

If r("Yd f. 0 then r(ßil.) is the hyperplane in X(S) (9 ~ spanned by the
roots 0: E ßK, er =1= r( 'Yi).

We will show that there exists an element w E W such that w(..\) E ß11.

or w(..\) E ß21.. Since I C {I, .. . l}, I '# {1, ... ,L}, There exists a foot
0: E cI> , such that (>'1, 0:) = O. Since the WeyI graup acts transi tively on the
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long (short) roots in ~, we can find an element w E W such that w(Ä]) is
contained in ß11. or ß'l.L.

3.4 Proposition

For every group G there exist weights Ä], I = {I, ... , l} such that no r ( W ( A] )),
W E W is contained in a hyperplane spanned by roots 0 E «I>K.

3.5 Proof

Let Adenote the union of hyperplanes in X(S)~~ that are spanned by roots.
Then 8 := UtuEWw( r-1(A)) is the union of a finite number of hyperplanes
in X(T) ~~. Since the fundamental weights Wi span X(T) ~~, we can find
a weight A] avoiding all these hyperplanes.

3.6

Next we treat the non split groups with absolute root system cI> of type Cl'
They are inner forms of Cl.

We will use the following description of the root system Cl. Let ei,

i = 1, ... , i be an orthonormal basis of ~. Then the foot system Cl consists
of the vectors ±ei ± ej, i f; j and ±2 . ei, i,j = 1, ... , f. . As a simple basis
we take ß = {odi = 1, ... ,i} , where 0i = ei - ei+l, i = 1, ... ,i-l and
0l = ~ . el·

Let J denote the set J = {1 , ... , l - 1}.

3.7 Proposition

Let G be a non split group with absolute raot system Cl.
a) For every weight I, I ~ J there exists an element w E W such that

w (,\]) is contained in a hyperplane V spanned by roots ° E cI> and such that
r(V) is a hyperplane (spanned by roots 0 E «I>K).

b) There exist weights A], I ~ J such that no r( w(A] )), w E W is
contained in a hyperplane spanned by roots ° E ~K'
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3.8 Proof

a) The proof the same a.s that of proposition 3.2. Now only r(ßf) =I 0 .
b) Since the fundamental weights Wj, i E J span O't.l = etl., it is sufficient

to prove that Ot.l %B, where B is as in 3.5. So we only have to prove that
r ( w ( et.l )) is not contained in a hyperplane spanned by roots a E ~K .

Now w( ell.) = ejl. for some i = 1, ... , i. One verifies that we have:
e1.L =< 02,0'3,·' .,(Xl >
eil. =< 0'), ,(Xi-!,O'i-1 +Oi,O'i+1, ... ,C'tl >, i = E, ... ,i-l.
el.l =< 0'1, ,(Xl-2,2·O'l-1 +Ol >
Inspecting the indices one finds that r(eil.) spans ~K' This proves (b).

3.9

Next we treat the outer forms with absolute root system ~ = Al. Then G is
a special unitary group.

3.10 Proposition

Let G be an outer form with absolute root system Al. Then for every weight
A[ , I =I {I, ... , i} , there exists an element w E W such that r(w( A[)) lS

contained in a hyperplane spanned by roofs ° E ~K'

3.11 Proof

Let ß be the highest root of~. Then we have :
ßl. =< 0'1 - (Xl, O'd i = 1, ... , l - 1 >
Since r(0'1) = r(Q'l) =I 0, we have:
r(ß.l) =< r(adli = 1, ... ,l-1 >
Therefore there exists an element w E W such that r(W(A[)) is contained

in the hyperplane r(ß.l), which is spanned by roots Q' E ~K'

3.12 Remark

In the proposition above W(A[) E V = ßl., but ß.l is not spanned by roots
0' E ~. Let fjJ~ be Vn ~ and let W~be the Weyl group of ~b. In general 0 is not
contained in the polyhedron p, which is the convex huH of {Wb(W(Ar))lwbE
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Wb}. But 0 is contained in r(Il), since r(al - al) = O. Furthermore r(p) is
contained in the hyperplane r( V).

3.13

The only groups left to study are the inner fonns of type Al. They are the
groups Al,. with s+l dividing l + 1, Le. the groups G = SL.+ 1 (D) with D
a skew field of dimension d!, d = :t~ over K. Since SL(D) is compact, we
will assume that s > O. If d=l then D=K and G is split.

We will use the following description of the root system Al. Let ei,
i = 1, ... ,l+1 be an orthonormal basis of Rf+l. The root system Al consists
of the vectors ±(e, - ej), i =f j. The simple basis ß of cI- we will use consists
of the roots ai = ei - ei+l, i = 1, ... ,l. Furthermore X(T) ® ~ C ~+1 is
given by L:1~~ Xi = O.

The index of G has s distinguished vertices. They are the vertices corre
sponding to the roots ai.d, i = 1, ... , s. The relative root system cI-K of G
is of type A•. We take an orthonormal basis fi, i = 1, ... , s + 1 of ~.+l and
give tbe root system A. as above with ej replaced by /i. Now X (S) (8) ~ is
. b ".+1 - 0gIven Y LJj;;;:l Yj - •

The restriction map r can be given as follows:
ei ---+ h, i = j . (d - 1) + 1, ... ,j . d, j = 1, ... , s + 1 .
The fundamental weights Wi of <) with respect to .6. are:
Wi = el + ef + ... + ei - l~l (el +... + el+l )

3.14 Proposition

Let G be an inner form of type Al. lf g. c. d.(i E I, s +1)=1 then there exists
a weight AI such that for no w E W one has that r(w( A)) is contained in a
hypcrplanc in X(8) ® ~ spanned by roofs a E q.K.

3.15 Proof

If g. c. d.( i E I, s+ 1) = 1, then we can choose ni > 0 such that g. c. d.(l: ni'
i, s + 1) = 1. Let us fix such ni and let AI := LiEI ni . Wi. For any element

w E W we have W(AI) = l: aj . Cj - Yf::-i .(el +... + Cl+l), where the aj
are certain integers.
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Now r( w(AI)) = L bj • h - d·w7i
.
i

. (/1 +... +/.tl)

= E bj • h - z::r i
• (/1 + ... +/. t1 )

= -L . "'~t1 (b' . (s + 1) - '" n' . i) . t .•+1 LJ)=l ) LJ I JJ

Here the bj are eertain integers. Now r(W(A[)) is eontained in a hyper-
plane in X(S) ® ~ spanned by roots in c}) K if and only if there exists a subset
J C {1 , ... , s + 1}, J -1= 0, J -1= {1, ... , s +1}, such that :

LjeJ( bj • (8 + 1) -l: ni . i) = 0
{::> L j eJ bj • (8 + 1) = (#J) . L nj . i
Now g. c. d. (L nj . i, 8 + 1) = 1 implies that #J = s +1 or #J = O. This

eannot be.
Therefore DO r (W ( AI)) is eontained in a hyperplane spanned by roots.

3.16 Proposition

Let G be an inner form 0/ type At. // g.c.d.( i E 1,8+ 1) > 1 then /or every
weight AI there exists an element w E W such that w( A[) is contained in a
hyperplane V c X(T) ® ~ spanned by roots Ci E ~ and r(V) C X(S) ~ ~ is
a hyperplane spanned by roots Q' E ~K'

3.17 Proof

Let us first look at Wj = ej +e2+' .. +ej- t+1 (el +.. '+ettl)' Suppose n > 1
divides g.c.d.(i, s + 1). Then Wj is cantained in the following hyperplanes in
X(T) ® ~ spanned by roots Ci E ~:

LjeJXj + LjeFXj = 0, where J C {l, ... ,i}, #J="*" and
F C {i + 1 , ... , l + 1}, #F = t±!-i .

Let 1= {i1 , ••• , i,} with i1 < i f < ... < i,. Suppose g.c.d.(i E 11 = n >
1. We ean eonstruet a hyperplane Vb spanned by raots Ci E <I- containing
all the weigts Wi, i E land therefore eontaining AI, The hyperplane V~ is
defined by l:jeJ Xj = O. Here J is given by:

J -{l iL}UU,-l{", 1 ", ij±l- ij }U{' 1 . lt1 - i ,}
- , ••• , Ja j =1 I) + ,... , I) + n I, + ,... , I, + n

It is eIear that d divides #J = l~l. One ean find an element w E W such
that W(AI) is contained in the hyperplane V given by Li=l Xj = 0, where

m = #J. Then r(V) is given by Li!: Yj = 0, which is spanned by roots
Ci E <I-K. This proves the proposition.
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3.18 Proposition

Let AH'" C X(T) 0 ~ denote the set 0/ weights stable under the action 0/ H".
Then there exists an element w E W such that r( w(AH"')) is contained in a
hyperplane spanned by roots 0' E cI>K if and only if G is an outer form of type
At or a non split quasi-split form with UH" = 2 (Then cI> = At, Dt or Es .).

3.19 Proof

We first remark that AR'" ® ~ is always spanned by roots. Therefore
r( w(A H'" <8> ~)) is always spanned by roots 0' E cI> K.

Ir G is an inner form then UH'" = 1 and therefore AH' = A and r(w( AH"'))
is never contained in a hyperplane.

Let us now assume that G is quasi-split with UH" = 2 and that cI> #- At.
Since Gis quasi-split we have rank(AH"') = rank( 4>K)' We can find 0', ß E ß,
0' # ß, such that {o, ß} is a H"'-orbit and (0', ß) = O. Let w = ra be
the reflection in the hyperplane orthogonal to 0', Then 0' +ß E AH' and
w(o+ß) = -o+ß. Now r(o+ß) # 0, but r(-a+ß) = O. One easily
concludes that r( w(AH')) is contained in a hyperplane spanned by roots
Q' E cI>K'

A similar argument as above also works for the non quasi-split outer form
with cI> = At.

Now we treat the non quasi-split outer form with (f) = Dt and with
UH" = ~. Let cI> be cI> = {±ei ± ej li,j = i ... l, i #- j}, where ~he Ci,
i = 1, ... , l form an orthonormal basis of~. Let us assurne that the simple
basis ß consists of the roots ai = ei - ei+l, i = 1, ... , l - 1 and O'l =
Cl-J + Cl. It is easy to see that AB' spans the hyperplane orthogonal to
O'l-1 - 0l = -~Ct. Therefore one has for any w E W that w(AH' <8>~) = cf
for some i = 1, ... , l. Inspecting the indices oue sees that r( cf) is never a
hyperplane. So r(w( AH')) is never contained in a hyperplane in this case.

We leave the remaining cases up to the reader. They are outer forms with
~ = At and ~ = D,4.
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