Induced resolutions and Grothendieck groups

 of polycyclic-by-finite groupsby
K.A. BROWN, J. HOWIE and M. LORENZ

Max-Planck-Institut	Sonderforschungsbereich 40
für Mathematik	Theoretische Mathematik
Gottfried-Claren-Straße 26	Beringstraße 4
D-5300 Bonn 3	D-5300 Bonn 1

MPI/SFB 85-60

induced resolutions and Grothendeck groups of
 polycyclic-by-finite groups

Kenneth A. Brown ${ }^{1}$. James Howie ${ }^{2}$ and Mariln Lorenz ${ }^{3}$

S1. Introduction.

Let r be a group, let R be a commutative Noetherian ring. and let $G_{0}(R \Gamma)$ denote the Grothendieck group of finltely generated Rr-modules. Let X be a class of groups. and let $G_{0}(R \Gamma, X)$ denote the subgroup of $G_{0}(R \Gamma)$ generated by the classes of modules of the form $M \Theta_{\text {RH }} R \Gamma$. where H is a X-subgroup of Γ and M is a finitely generated RH-module. Let F be the class of finite groups.

Suppose Γ is torsion-free polycyclic-by-finite. Then (1) is the only F-subgroup of Γ. so $G_{0}(R \Gamma, F)$ is the image of the induction map $G_{0}(R) \rightarrow G_{0}(R \Gamma)$ When $\quad R=\mathbf{Z}$. the Cartan nomomorphisms $K_{0}(Z) \rightarrow G_{0}(Z) . K_{0}(Z \Gamma) \rightarrow G_{0}(Z \Gamma)$ are isomorphlsms. since 2Γ has finite global dimension. A result of Farrell and Hslang [5] asserts that $K_{0}(\mathbf{Z})^{\dot{*}} \rightarrow K_{0}(\mathbf{Z r})$ is also an isomorphism. Hence $G_{0}(\mathbf{Z \Gamma})=G_{0}(\mathbf{Z r}, F)$ In this case.

The situation when Γ has torsion is somewhat more complicated. However. we shall prove the following result. (A commutative Noetherian ring Is regular if all its finitely generated modules have projective resolutions of IInite length, and is Hllbert if each of its prime ideals is an Intersection of maximal ideals.)

[^0]THEOREM A Let r be a finitely generated group with an abellan normal subgroup of finite index a. Let h be the Hirsch number of r. Let A be a commutative Noetherian regular Hilbert ring of finlte Krull dimension d. Then $G_{0}(R \Gamma) / G_{0}(R \Gamma . F)$ is periodic. of exponent dividing a^{h+d}.

We know of no example where $G_{0}(R \Gamma, F) \xi G_{0}(R \Gamma)$. The restriction to abelian-by-finite groups is essential for our proof of Theorem A. but most of our preliminary results hold for a polycyclic-by-finite group Γ. We have stated these results in their most general form.

When r is abelian-by-finite. some insight into the structure of $G_{0}(z \Gamma)$ may be obtained from the action of crystallographic groups on Euclidean space. In fact. something along the same lines is true for polycyclic-by-finite groups in general.

THEOREM B Let Γ be a polycycllc-by-finite group with Hirsch number n. Then r acts smoothly and simpliclally on some smooth triangulation of Euclidean space \mathbb{R}^{h}. with compact quotient and finite Isotropy groups.

There is nothing essentlally new in Theorem B. The ingredients are readily avallable in the literature. Indeed. something akin to Theorem B seems to be Implicit in [16]. Nevertheless. it seems to be worthwhlle to Inciude a proot here. In view of the following interesting algebraic consequence. which. when r is torsion-free. Is just the well-known fact that z has a finite free zr-resolution of length h.

COROLLARY C Let Γ be as In Theorem B. Then there exists an exact sequence
(*)
$0-Q_{h}-\ldots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow \mathbf{z} \rightarrow 0$
of right zr-modules, where each Q_{1} is a finite direct sum of modules of the form

$20_{2}{ }^{2 r}$
for various finite subgroups H of r.

The paper is organised as follows. in $\$ 2$ we prove Theorem B and Corollary C. and in $\varsigma 3$ a stronger form of the latter is deduced (Theorem 3.2). This result provides the starting point in $\S 4$ for an inductive proof of Theorem A. A result on the uniform dimension of prime factor rings. which is needed in the proof of Theorem A and which may have some independent interest. is proved in $\$ 5$.

As applications of Theorem A. we offer

COROLLARY D Let A and Γ be as in Theorem A. Suppose R is a Dedekind ring for which the Jordan-Zassenhaus Theorem holds.
(i) $\quad G_{0}(R \Gamma)=T \times F$, where T is the torsion subgroup, and F is free abellan of finite rank, t say. Further. T contains a finite subgroup T_{0} such that T / T_{0} has exponent dividing a^{h+d}. If R is a fleld, then

```
t< \sum E |ivirr(RH)|,
```

where H is a set of representatives of the confugacy classes of maximal finite subgroups of r, and $||r r(R H)|$ is the number of isomorphism classes of Irreducible RH-modules.
(ii) Suppose R is a field of characteristic p. The cokernel of the Cartan homomorphism of $\mathrm{K}_{0}(\mathrm{R} \mathrm{\Gamma})$ into $\mathrm{G}_{0}(\mathrm{Rr})$ is torsion of exponent dividing $p^{r} a^{h}$. where p^{r} is the maximal order of a p-subgroup of r.

These follow Immediately from Theorem A and [19. proof of Theorem 3. 8]
and [4. Theorem 21.22] respectively.

52. Topology.

Throughout this section Γ is an arbltrary polycyclic-by-iinite group of Hirsch number h. The proof of Theorem B foltows that of Theorem 1 of [1] In constructing a smooth action of Γ on $\mathbb{R r}^{h}$ with finite isotropy groups and compact quotient. (The only difference being that. In [1]. Γ is assumed to be torsion-free. so that the quotient ER^{h} / Γ is a $K(\Gamma, 1)$-space).

Explicitly, there exists a commutative diagram

with exact rows and vertical monomorphisms, where Δ is a torsion-free subgroup of finite index in Γ, and $D(\Delta)$ is a soluble Lie group containing Δ as a discrete co-compact subgroup. As in [1]. let K be a maximal compact subgroup of $\Gamma D(\Delta)$. Then $K \backslash D(\Delta)$ is diffeomorphic to FR^{h}. and Δ acts freely and smoothly on the right, so that the quotlent space M is a smooth manifold. Moreover, the finite group $G=\Gamma / \Delta$ acts smoothly on M. so by [9] there exists a smooth G-equivariant triangulation T_{0} of M. This lifts to a smooth r-equivariant trlangulation T of \mathbb{x}^{h}. and the proof of Theorem B is complete.

For the proof of the Corollary, take (*) to be the simplicial chain complex of T. Thus each Q_{i} is a free abellan group. with basis the i-simplices of T. As a $2 r$-module. Q_{i} is a permutation module (since r
permutes simplices). with ilnite stablizers (since I has inite isotropy groups). and initely generated (since T / Γ ls a finite complex). But such a module has precisely the form stated In the Corollary.

63. Modules

We shall need the following version of Frobenlus reciprocity 119, Theorem 2.2].

LEMMA 3.1 Let R be a commutative ring and let H be a subgroup of a group G. Let W be a finitely generated $A H$-module and let X be a finitely generated RG-module. Then, as RG-modules,
$\left(W \Theta_{R H} R G\right) \Theta_{R} X \quad\left(W \Theta_{R} X \mid H\right) \Theta_{R H} R G$.
where each tensor product over R is equipped with the diagonal group action.

Proof it is routine to check that the map $\left.(w e g) \theta \times(w) \times g^{-1}\right) \theta g$ is well-defined and gives an Isomorphism of RG-modules.

THEOREM 3.2 Let R be a commutative Noetherian ring. Let r be a polycycilic-by-finite group, and let V be an Rr-module which is finitely generated as an R-module. Then [V] © $G_{0}(R I, F)$.

Proof By corollary C there is an exact sequence

$$
\begin{equation*}
0 \rightarrow Q_{n} \rightarrow \ldots+Q_{1} \rightarrow Q_{0} \rightarrow Z \rightarrow 0 \tag{1}
\end{equation*}
$$

of $\mathbf{z r}$-modules, with each Q_{i} a finite direct sum of modules

$$
\mathbf{z} \boldsymbol{\theta}_{\mathbf{2 H}} \mathbf{z \Gamma}
$$

for various finite subgroups H of Γ.
Apply the functor (-) $\theta_{Z} R$ to (1) to get a sequence

$$
\begin{equation*}
0 \rightarrow P_{h} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow R \rightarrow 0 \tag{2}
\end{equation*}
$$

of Rr-modules. Then (2) is exact. since (1) consists of free z-modules. Furthermore each P_{i} is a finlte direct sum of modules

$$
\left(\mathbf{Z} \theta_{\mathbf{Z}} H \mathbf{Z} \Gamma\right) \theta_{\mathbf{Z}} R \quad \equiv \quad R \theta_{R H} R \Gamma
$$

for varlous finite subgroups H of 5 .
Finally. apply the functor (-) $e_{R} V$ to (2) (where each term is given the Ar-module structure with diagonal r-action. The resulting sequence is exact. since the modules in (2) are free R-modules. By Lemma 3.1. its terms are finite direct sums of modules

$$
\left.\left(R \Theta_{R H} R \Gamma\right) \Theta_{R} \nabla \equiv \nabla\right|_{B} \Theta_{R B} R \Gamma
$$

The sequence obtained is a sequence of Rr-modules. since if
 to

$$
\begin{aligned}
f_{\mathfrak{l}}(\pi \theta) \ominus v_{\theta} & =f_{t}(\pi) \theta \ominus v \theta \\
& =\left(f_{t}(\pi) \theta v\right) \theta \\
& =\left[\left(f_{t} \odot 1\right)(\pi \in v)\right] \theta
\end{aligned}
$$

The result now follows from the fact that V is finitely generated as an A-module.

S4. Abellan-by-finlte groups

We begln this section by recalling some well-known facts and definitions concerning a Noetherlan ring S. Let M be an S-module. We say that M is unlform if it is non-zero and, if X and Y are any two non-zero submodutes of M. then $X \cap Y \neq 0$. The uniform dimension of M. u-dim M) is 0 if $M=0$, t If M contalns an essentlal direct sum of t uniform submodules. and ∞ if no such finlte direct sum exisis: If M is finltely generated. then u-dim(M) $\leqslant \infty$. See [14. Ch. 10. §4] for details. An element m of M is torsion if mc $=0$ for some regular element c of S : and M is torsion free if it contains no non-zero torsion elements.

Let P be a prime ideal of S. By Golde's theorem [14. Theorem 10.4.101. S/P has a simple Artinian quotient ring $Q: Q$ is a ring of $t x t$ matrices over a division ring. where t is the unliform dimension of S/P (as right or left module). Let U and V be unitorm right ideals of S/P. Thus U esfP Q and V es/P Q are both irreducible right Q-modules, and so isomorphic. It follows easily that U and V are sublsomorphic as S-modules: in other words each is isomorphlc to a submodule of the other. More generally, if X and Y are finitely generated torsion free S / P-modules of the same uniform dimension, then X embeds in Y and the cokernel is torsion as an S / P-module. These facts are clear when S / P is a finite module over Its centre (the only case we require here). For the general case, one may consult [10. Lemma 2.2.131, for example.

Let M be a finitely generated S-module. Choose a uniform submodule U_{1} of M whose annihllator P_{1} is maximal among annihilators of non-zero submodules of M. It is easy to see that P_{1} is prime. Repeat this process for M / U_{1}. and so on: we get a chain (finite. since M is Noetherian) oc $U_{1} \subset U_{2} \subset \ldots \subset U_{n}=M$ of submodules whose factors U_{I} / U_{I-1} are uniform, every non-zero submodule of U_{l} / U_{i-1} having annlhilator P_{l}. Suppose now that S is finitely generated as a module over its centre. Let U be a finitely generated unlform S-module all of whose non-zero submodules have prime anninilator P. We can form the quotient ring Q of S / P by inverting the non-zero elements of the centre of S/P (since the resulting partlal quotient ring is a finite dimensional algebra over a fleld and hence Artinian). Thus. if $c+P$ is a regular element of S / P. (cS $+P) / P$ must have non-zero intersection with the centre of S/P. It follows that U is a torsion free S/P-module, and so, by the previous paragraph. U is (isomorphic to) a uniform right ideal of S/P. To sum up:

-8-

PROPOSITION 4.1 Let S be a Noetherian ring which is a finitely generated module over its centre.
(1) Let M be a finitely generated S-module. Then M has a finite series of submodules with successive factors isomorphic to uniform right ideals of prime factor rings of S.
(ii) Let P be a prime ideal of S, with u-dim $(S / P)=t$. Let U be a uniform right ideal of S/P. Each of $U^{(t)}$ and S / P embeds in the other, the cokernel having annihllator strictly containing P.

We shall use induction arguments Involving the Krull dimension. K-dim(M). of an S-module M. Details may be found In [6]: but it is almost enough to know that, for S and M as in 4.1 .
(K1) k-dim(S) is the supremum of the lengths of descending chains of prime ldeals of S :
(K2) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of S-modules. $k-\operatorname{dim}(B)=\max (k-\operatorname{dim}(A), k-\operatorname{dim}(C)):$
(K3) [6. Theorem 9.2 and 18. Lemma 8] if R is a commutative Noetherian ring of finite Krull dimension d and r is a finitely generated abellan-by-finite group of Hirsch number h. then $k-\operatorname{dim}(R r)=n+d$.

The next result contains the crux of the Inductive step in the proof of Theorem A. Let A be a commutative Noetherlan ring and let G be a polycyclic-by-finlte group. For a non-negative integer n. define subgroups of $\mathrm{G}_{0}(R G)$ as follows:

$$
\begin{aligned}
& G_{0}(R G)_{n}=\langle[V]: k-\operatorname{dim}(V) \leqslant n\rangle \\
& \left.G_{0}(R G)_{n-}=\langle V]: k-\operatorname{dim}(V)<n\right\rangle
\end{aligned}
$$

PROPOSITION 4.2 With the above notation, let P be a prime ideal of RG
and set $n=k$-dim(RG/P). Then, in $G_{0}(R G)$,

$$
[R G / P] \in G_{0}(R G, F)+G_{0}(R G)_{n-} .
$$

Proof Let H and N be subgroups of G. with N normal. If M is a finitely generated \quad RH-module with $[M] \in G_{0}(R H, F)$. then [M $\left.\theta_{R H} R G\right] \in G_{o}(R G . F)$. Hence. In view of Theorem 3.2. Inflation from $R(G / N)$ - to $R G-$ modules maps $G_{0}(R(G / N), F)$ to $G_{0}(R G . F)$. Moreover. under this map $G_{o}(R(G / N))_{n-}$ is sent to $G_{o}(R G)_{n-}$. Thus. In proving the proposition we may assume that $L \in G:(0-1) \in P)=1$.

In the notation of [171. set $H=n i o(G)$. an orbitally sound normal subgroup of finite index in G. We argue by induction on IG: HI. Suppose first that $G=H$, or more generally that $P \cap R H=Q$ is a prime ideal of RH. Then $(0 \in G:(g-1) \in Q)=1$ so $Q=(Q \cap R \Delta) R H$. by [17. Theorem C1]. where Δ is the ${ }^{\circ}$ FC-subgroup (see [14. 54.1] for definition) of H and of G. By [12. Lemma 2.1]. $Q R G=(Q \cap R \Delta) R G$ is a prime ideal of RG which is contalned in P by construction. Since QRG $\cap R H=P \cap R H=Q$, we conclude that $Q R G=P$ by incomparablity [13. Theorem 1.21. Now, if Δ_{0} denotes the (finite) torsion subgroup of Δ. then Δ / Δ_{0} is free abellan of finite rank and so $R \Delta$ is an terated skew Laurent extension of R Δ_{0}. The so-called twisted Grothendleck Theorem 115. Exerclse following Theorem 8, 561, or [20. -Proposition 4.1 (2)] therefore Implies that $G_{0}(R \Delta)=G_{0}\left(R \Delta . \Delta_{0}\right)=G_{0}(R \Delta . F)$ Consequently. $[R G / P]=\left[(R \Delta Q \cap R \Delta) \theta_{R \Delta} R G\right] \in G_{o}(R G . F)$.

We may therefore assume that $P \cap R H=x \in G Q^{x}$ for some prime ideal Q of $R H$ with $B=\left\{g \in G: Q^{g}=Q\right\}$ a proper subgroup of G. Let $J=\left(x_{1}, \ldots, x_{t}\right)$ be a right transversal to B in G. By [12. Theorem 1.71. there is a unlque prime ideal L of $R B$ with $L \cap R H=Q$ and

natural embedding of $R G / P$ in $\sum_{i}^{\infty}(R G / L R G)$ as right $R G$-modules. with cokernel Y. We claim that

$$
\begin{equation*}
k-d / m(Y)<n . \tag{1}
\end{equation*}
$$

Let us complete the proof, assuming that (1) is true. By definition. $[Y] \in G_{0}(R G)_{n-}$. and so. setting $B_{i}=B^{x_{j}}$.

$$
[R G / P]=\sum_{i}\left[\left(R B_{1} / L_{i}\right) \Theta_{R B} R G\right]-[\eta .
$$

By [2. Lemma 4.2]. $k-\operatorname{dim}\left(R B_{i} / L_{i}\right)=n$ for all 1. By induction on
 and the first paragraph of the proof.

$$
[(R B / / L) \in R G] \in G_{0}(R G . F)+G_{0}(R G)_{n-}
$$

for alt 1 . Thus (1) shows that $[R G / P]$ is in the required subgroup of $\mathrm{G}_{\mathrm{o}}(\mathrm{RG})$. It remains therefore to prove (1).

For $1=1, \ldots . t$ let $\pi_{j}: \Sigma^{\oplus} R G / L_{/} R G \longrightarrow R G / L_{j} R G$ be the projection map. Since $Q_{i}:=Q^{x_{i}}=L_{i} \cap R H$.
 such is Invarlant under conjugation by B_{j}. Hence, X is a non-zero two-sided Ideal of $R B_{j} / L /$. Since L is a prime ideal. $k-\operatorname{dim}\left(\left(R B_{/} / L /\right) / X\right)$ \& k-dim $\left(R B_{/} / L /\right)$. by [6]. (or by ($K 1$) if we assume G is abellan-by-finite). Therefore. Identitying $R B_{j} / L_{j}$ with $R B_{j}+L_{j} R G / L_{j} R G$,

$$
\operatorname{k-dim}_{R B_{j}}\left(\left(R B_{j} / L_{j}\right) / \operatorname{im}\left(\pi_{j} \circ \theta\right) \cap\left(R B_{j} / L_{j}\right)\right)<\operatorname{kidm}_{R B_{j}}\left(R B_{j} / L_{j}\right)=i
$$

and so, by [18, Lemma 8],

$$
\mathrm{k}_{\mathrm{dim}}^{R B_{j}}\left(\left(R G / L_{j} R G\right) / i m\left(\pi_{j} \circ \theta\right)\right)<\mathrm{K}^{-d i m_{R B_{j}}\left(R G / L_{j} R G\right)=n .}
$$

By [18, Lemma 8] once more,

$$
\begin{equation*}
k-d i m_{R G}\left(\left(R G / L_{j} R G\right) / i m\left(\pi_{j} \circ \theta\right)\right) \quad<\quad k-d i m_{R G}\left(R G / L_{j} R G\right)=n . \tag{2}
\end{equation*}
$$

Since (2) holds for all $j=1, \ldots, t$, (1) is proved.

Let p be a prime. A finite group is p-hyperelementary if it has the form (x) JP. with x an element of order prime to p, and P a proup. Let G be a finlte group. We denote by H the class of finite groups are p-hyperelementary for some prime p. We need a verslon of the Brauer-Berman-Witt Induction theorem:-

THEOREM 4.3 Let R be a commutative Noetherian ring. Let G be a finite group. Then $G_{0}(R G . H)=G_{0}(R G)$.

Proof The theorem is true when R is a field by [4, Theorems 21.6 and 21.15] and [19. Corollary 2.9], using the fact [3. Proposition 5. p. 23 and Proposition ic. p. $1 \widehat{7}]$ that every fleld of characteristic p arises as the residue field of some discrete valuation ring of characteristic 0 . The proof proceeds by induction on k-dim(R). Since a ilnitely generated RG-module M has a finite serles of submodules $0=M_{0} \subset \ldots \subset M_{/} \subset \ldots \subset M_{n}=M$ with each factor M_{1} / M_{1+1} having prlme annihilator in R. we may assume that R is prime. Let K be the quotlent fleld of R. There is a commutative diagram

In which the vertical arrows are incluslons, and by 179. Theorem 1,6] the rows are exact. By the induction hypothesis and the result for fields the outer maps are surjections. Hence, so is the middle map.

Abstract

A commulative Noetherlan ring A is regular if every finitely generated R-module has a finlte resolution by projective R-modules. Let G be a finite group. The abelian group with generators [M], where M is a ilnitely generated $R G$-module which is R-projective, and relations given by short exact sequences. Is denoted by $G_{0}{ }^{R}(R G)$. If R is regular. $G_{0}{ }^{R}(R G)=G_{0}(R G)$ [19. Theorem 1.2]. The group $G_{o} R_{(R G)}$ can be given a ring structure by setting $[M][N]=\left[M \Theta_{R} N\right]$. [19. Theorem 1.5]. Note that $[R]$ Is the identity element of this ring.

THEOREM A Let R be a commutative Noetherlan regular Hilbert ring of finite Krull dimension d, and let r be a finitely generated abellan-by-finite group with Hirsch number h. Let A be a maximal Abollan normal subgroup of Γ, and set $G=\Gamma / A$; put $|G|=a . \quad$ Then $G_{0}(R \Gamma) / G_{0}(R \Gamma, F)$ is periodic. with exponent dividing a^{h+d}.

Proof The ring $R C$ is Noetherian and is a finite module over its centre. [14. Corollary 10.2.8 and proof of Lemma 4.7.101. so we can make use of the facts and concepts given at the start of 54 .

Step 1. Reduction to the case where G is hyper-elementary.
Let $A(\Gamma)$ be the set of Inverse images in Γ of the H-groups in G. By Theorem 4.3.

$$
\begin{equation*}
G_{0}(R G, H)=G_{0}(R G) \text {. } \tag{3}
\end{equation*}
$$

As pointed out above. the hypotheses on R ensure that $G_{0}(R G)$ is a ring with ldentity element. Viewing $G_{0}(R \Gamma)$ as a $G_{0}(R G)$-module via inflation and ${ }^{-\theta_{R}}{ }^{-}$.

$$
\begin{equation*}
G_{0}(R \Gamma) \cdot G_{0}(R G, B) \subseteq G_{0}(R \Gamma, \hat{H}(\Gamma)), \tag{4}
\end{equation*}
$$

by Lemma 3.1. By (3) and (4).

$$
\begin{equation*}
G_{0}(R \Gamma)=G_{0}(R \Gamma, \hat{B}(\Gamma)) . \tag{5}
\end{equation*}
$$

It follows from (5) that there is a surjection induced by Induction.

$$
\begin{equation*}
\underset{X \in \hat{H}(\Gamma)}{\Sigma^{\oplus}} G_{0}(R X) / G_{0}(R X, F) \longrightarrow G_{0}(R \Gamma) / G_{0}(R \Gamma, F) . \tag{6}
\end{equation*}
$$

Since $|X / A|^{h+d}$ divides a^{h+d} for all $X \in H(\Gamma)$. (6) shows that we may replace r by one of the groups x in $\hat{H}(r)$ in proving the theorem.

Step 2. The induction set-up.
We shall deduce the theorem from the following more precise set of statements:

Let P be a prime ideal of $R \Gamma$, with
$\mathbf{k}-\operatorname{dim}(R \Gamma / P)=m . \quad$ Let $u=\max \left\{1, a^{m-1}\right\}$.
(7:m)
Then $\omega \cdot[R \Gamma / P] \in G_{o}(R \Gamma, P)$.
Since R is Hibert, every finitely generated Artinian Rr-module is finitely generated as an A-module [11. Theorem 31]. Thus Theorem 3.2 shows that $(7: 0)$ is true.

We claim that
if $m \geqslant 0$ and if $(7 ; i)$ is true for all $i \leqslant m$,
then $a^{m} \cdot\left(G_{0}(R \Gamma)_{m}\right) \quad \subseteq G_{0}(R \Gamma, F)$.
Again. Theorem 3.2 allows us to assume that $m>0$ and that (8: 1) is true for all $<m$. By Proposition 4.1 and $(K 2) . G_{0}(R r)_{m}$ is generated by [M]. where M is a unlform right ldeal of $R \Gamma / P$ and P ranges over the set of all prime ldeals for whlch k-dim $(R \Gamma / P) \leqslant m$. Let M be one such right ideal. of Rr/P. say. Let $t=u$-dim(Rr/P). By Proposition 4. 1 (il) there is an exact sequence

$$
\begin{equation*}
0 \rightarrow R \Gamma / P \longrightarrow M(t) \longrightarrow X \longrightarrow 0 . \tag{9}
\end{equation*}
$$

By Proposition 4.1 (ii) and $(K 1)$. $(K 2), k-d i m(X)=2<m$. Hence, by ($8: \Omega$). $a^{m-1} .[X] \in G_{0}(R \Gamma . F), \quad B y(7: m)$ and (9). $\quad t a^{m-1} .[M] \in G_{0}(R \Gamma . F)$. Thus (8:m) follows from thls. Proposition 5.2 (II). and Step 1.

Proposition 4.2 shows that the statements ($8: 1$). for $1=0 . \ldots . m^{-1}$. together imply ($7: m$). Thus the proof is complete.

55 Uniform dimension of prime lactors

Our aim here is to prove Propostion 5.2. part of which was used in the proof of Theorem A.

Let H be a subgroup of a group G and let R be a commutative ring. Let Q be an ldeal of $R H$. Then Q^{G} denotes the blggest ideal of $R G$ inside $Q A G$. so $Q^{G}=g \mathcal{E A G}^{(Q R G)} \boldsymbol{g}$: see [12].

LEMMA 5.1 Let R be a commutative ring, and let G be a polycycllc-by-finite group containing a subgroup H of finite index.
(I) Let P be a prime ldeal of RG and let $Q_{1} \ldots . Q_{r}$ be the prime Ideals of RH minimal over $P \cap R H$. Then there exist positive integers z_{1}, \ldots, z_{r} such that u-dim(RG/P) $=\Sigma_{i} z_{j} . u-\operatorname{dim}\left(R H / Q_{1}\right)$.
(II) Let Q be a prime ideal of RH and let $P_{1}, \ldots . P_{S}$ be the primes of RG minimal over Q^{G}. Then there exist positive integers $w_{1}, \ldots w_{S}$ such that $\Sigma_{j} w_{j} \cdot u$-dim(RG/Pj) $=|G: H| \cdot u-\operatorname{dim}(R H / Q)$.

Proof By factoring by $P \cap A$ in (I) and by $Q \cap A$ in (ii), and then Inverting the non-zero elements of R. we reduce to the case where R is a field. Thus all rings involved here are. Noetherian. In particular there are Indeed finlte sets of primes lying over P and Q in (I) and (II) respectively.
(1) This simply expresses the fact that the inclusion of rings RH \subset RG satlsfies the additivity principle [21. Corollary 2 and preceding remarks].
(II) Put $1=Q^{G}$ and $V=R G / Q R G$. Thus V is an ($R H-R G$)-blmodule with right annihllator 1 . and

$$
R H \mid V \equiv \Sigma^{\infty}(R H / Q) \& \equiv(R H / Q)^{(t)} .
$$

where $T=\left(x_{1}, \ldots, x_{f}\right)$ is a right transversal for H in G and g denotes the image of x in V. Thus

$$
A:=R G / I \subseteq B:=E_{R} \subseteq(V) \approx M_{t}(R H / Q)
$$

and (II) will follow if we can show that the inclusion $A \subseteq B$ satisfles the additivity princlple. By [21. Corollary 2]. It suffices to show that B is finitely generated as a right and as a left A-module.

For this. flx a normal subgroup N of G with $N \subseteq H$ and $|G: N|<\infty$. and set $A_{0}=R N / I \cap R N \subseteq A$. Under the embedding $A \subseteq M_{t}(R H / Q)$. Ao corresponds to the subring

$$
D=\left\{\left[\begin{array}{cc}
\overline{\mathbf{r}_{1}} & 0 \\
\cdot & \\
0 & \overline{r^{x} t}
\end{array}\right]: r \in A_{0}\right\}
$$

of $M_{t}\left(\bar{A}_{0}\right)$. where - denotes images in RH/Q. Clearly the elementary matrices $\left.\left\{E_{\|}\right]: 1 \leqslant 1,1 \leqslant t\right\}$ generate $M_{t}\left(\bar{A}_{0}\right)$ as a left and as a right D-module: and $M_{t}(R H / Q)$ is finitely generated as a left and as a right module over $M_{1}\left(\bar{A}_{0}\right)$, since thls holds for $R H / Q$ over \bar{A}_{0}. Therefore B is ilnitely generated on both sides over A_{0}. and hence over A. as required.

```
For any ring S . set
    u(S) := sup( u-dim (S/P) | P a prlme ideal of S ).
```

a positive integer or ∞. Then. in the situation of Lemma 5. 1. we have

$$
u(R H) \leq u(R G) \leq[G: H] \cdot u(R H)
$$

To derlve this from Lemma 5. 1 one uses the fact that each prime Ideal of $R H$ is minimal over $P \cap R H$ for a sultable prime ldeal P of $R G$. and each prime ideal of RG is minimal over Q^{G} for some prime Q of RH. The detalls are fairly routine and are left to the reader.

We can now state and prove the main result of thls section.

PROPOSITION 5.2 Let N De a normal subgroup of finite index a in a polycycilc-by-finite group r. Let A be a commutalive ring, and let P be a prime Ideal of Rr. Let p be the cheracteristic of R/P $\cap R$. Let Q be a prime ldeal of RN minimal over $P \cap R N$, with $P \cap R N=\gamma \in \Gamma O^{\gamma}$. Then
(1) u-dim(RN/Q)|u-dim(RL/P).
(II) Let \hat{C} denote the algobralc closure of the centre C of the simple Artinian ring of quotients F of $R N / Q$. Let $\widehat{C N}$ denote the subring of $\widehat{C} \Theta^{\circ} F$ generated by \widehat{C} and $R N / Q$. If either pla or Γ / N is p-soluble, then

$$
\mathrm{u}-\operatorname{dim}(\mathrm{R} \Gamma / \mathrm{P}) \mid \mathrm{a} \cdot \mathrm{u}-\operatorname{dim}(\hat{\mathrm{C}} \mathrm{~N} / \hat{\mathrm{Q}})
$$

where \hat{Q} is a suitable prime ideal of $\hat{C} N$ lying over the zero ideal of $R N / Q$.

In particular if N is Abelian, and either pla or Γ / N is p-soluble, then

$$
u-\operatorname{dim}(R \Gamma / P) \mid a
$$

Proof As In Lemma 5.1 we reduce at once to the case where A is a fleld. By [17. Lemma 5] we have $P \cap R N=\gamma \in Q^{\gamma} . \quad$ Slnce $u-\operatorname{dim}(R N / Q)=u$-dim $\left(R N / Q^{\gamma}\right)$ for all $\gamma \in \Gamma$. (1) Is a special casa of Lemma 5. 1 (1).
(II) We argue by Induction on a. For $a=1$. the clalm is that u-dim(Rr/P)|u-dm(Ĉr/̂ि) for some prime ideal \hat{P} of $\hat{C} r$ with $\hat{P} \cap \mathrm{Rr}=\mathrm{P} . \quad$ But. tor any such $\hat{P} . \quad \mathrm{Rr} / P \leq \hat{C} r / \hat{P}$ is a centrallzing extension of prime Noetherlan rings. so the assertion follows from 121. Theorem 31. for example. Thus we may assume that (II) Is true for all proper subgroups H of r with $N \leq H$.

Let M be a proper normal subgroup of Γ with $N \subseteq M$ and such that $P \cap R M$ is not prime. Then $P=P_{1}{ }^{5}$ for some prime ideal P_{1} of $R M_{1}$. where $M \subseteq M_{1} \subset \Gamma$, by [12. Theorem 1.71. By Lemma 5.1(ii),

$$
u-d i m(R \Gamma / P)\left|u-d i m\left(R M_{1} / P_{1}\right) \cdot\right| G: M_{1} \mid
$$

so the inductive hypothesis applled to M_{1} ylelds the result. (Note that the primes of $R N$ minimal over $P_{1} \cap R N$ are minimal over $P \cap R N$ and hence r-conjugate to Q.$) Thus we may assume that, for all normal$ subgroups M of Γ with $N \subseteq M . P \cap A M$ is prime.

In particular. $Q=P \cap R N$ is prime. Standard arguments along the Iines of [12. Lemma 1.5] show that the set C of regular elements of RN/Q forms an Ore set of regular elements in Rr/QRr and in Rr/P. By localising at C we obtain the classical rings of quotients of the rings under consideration:

$$
\begin{aligned}
A:= & (R N / Q) C^{-1}=Q(R N / Q) \subseteq B:=(R \Gamma / P) C^{-1}=Q(R \Gamma / P) \\
& (R \Gamma / Q R \Gamma) C^{-1}=Q(R \Gamma / Q R \Gamma)
\end{aligned}
$$

(Here we are abusing notation by writing C for its image in RF/QRF and Rr/P.) Note that B has the structure of a crossed product over A. $B \pm A^{*} G$ with $G=\Gamma / N$. Let $\Gamma i n n$ be the normal subgroup of Γ consisting of those elements acting by inner automorphisms on the simple Artinian ring A and set $G_{i n n}=\Gamma_{i n n} / N \subseteq G$. By our assumption. $P \cap R \Gamma i n n$ is prime. Let ${ }^{-}$denote images modulo $Q R \Gamma$. Thus $T:=(\overline{P \cap R \Gamma / n n}) C^{-1}$ is a prime ideal of $A^{*} G_{i n n} \subseteq B$, and. by [13, Theorem 2.5(1)]. $P^{\prime}:=\bar{P} C^{-1}=T$. B. Lifted back to Rr, thls ylelds $P=\left(P \cap R \Gamma_{i n n}\right) R \Gamma$, and so if $\Gamma_{i n n} \neq \Gamma$ the induction hypothesis and Lemma 5. 1(II) again give the result. We may theretore assume that $\Gamma=\Gamma_{i n n}$.

Let E denote the centraliser of A in B. and let C be the centre of
A. Then $E \approx C^{t} G$ is a twisted group algebra of G. over the field C. with $B E A^{\circ} E$. and moreover. $P^{\prime}=\left(P^{\prime} \cap E\right) B$: see [13. 52]. Let \widehat{C} denote the algebraic closure of C and choose a prime ideal $P^{\text {e }}$ of $\hat{E}:=C{ }^{\circ} C E=C^{t} G$ with $P^{\prime} \cap E=P^{\prime} \cap E$. (Simply take P^{\prime} to be maximal among ideals 1 of \hat{E} with $\mid \cap E=P^{\prime} \cap E$.) Then

$$
\begin{equation*}
\hat{E} / P^{\cdot} \equiv M_{v}(\hat{C}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
v \mid a, \tag{2}
\end{equation*}
$$

by Lemma 5.3 below.

$$
S:=B / P^{\prime} \cong A \Theta_{C}\left(E / P^{\prime} \cap E\right) \subseteq A \Theta_{C}\left(\hat{E} / P^{*}\right) \cong M_{V}\left(A \Theta_{C} \hat{C}\right)
$$

It follows from the additivity principle [21, Lemma i] that the composition length of S divides u - $\operatorname{dim}\left(M_{V}\left(A \theta_{C} \hat{C}\right)\right)$: that is. that

$$
\begin{equation*}
u \text {-dim }(R \Gamma / P) \mid v \cdot u \text {-dim }\left(A \theta_{C} \hat{C}\right) \tag{3}
\end{equation*}
$$

Now $A \Theta_{C} \hat{C}$ is a simple ring. and the map from $A N$ to $A \Theta^{C} \hat{C}$ yields a map from $\hat{C N}$ to $A \Theta_{C} \hat{C}$ whose kernel \hat{Q} is a prime ldeal of $\hat{C N}$ with $\hat{Q} \cap R N=Q$ and u-dim($\hat{C N} / \hat{Q})=u$ - $\operatorname{dim}\left(A \theta_{C} \hat{C}\right) . \quad$ With (2) and (3). this completes the proof of the proposition. except that we still have to establish

Lemma 5.3. Let G be a finite group of order a, let K be an algebralcally closed field of characterlstic p, and let $K^{t} G$ be a twisted group algebra of G over K. Assume that efther
(1) $p \times a$
or (iI) G is p-soluble.
Then for any simple $K^{t} G$-module V, $\quad \operatorname{dimK}(V) \mid a$.

Proof Case (1) is essentlally covered by [4. Proposition 11.44]. where we can replace the hypothesis that char $K=0$ by condition (i). by using the
generalized form of Ito's Theorem [7. Satz V.12.11] at the approprlate point in the proof.

For (ii). note that there is a finite central extension H of G such that V is a.simple KH-module [4. Theorem $11.40(1)$]. Since H is also p-soluble, the Fong-Swan-Rukolalne theorem [4. Theorem 22.1] ensures that \checkmark can be "ilfted to characteristic zero". Hence. by lto's theorem $[4$. Theorem 11.331. dimk (V) divides $|H / Z(H)|$. (where $Z(H)$ denotes the centre of H). Thus. dimk(V) divides $|G|$, as required.

Lemma 5.3. (and so also Proposition 5.2 (ii)) is false without the hypothesis (i) or (ii). even for ordinary group algebras. For example. if K is algebralcally closed with char $K=7$, then $G=S L(2.7)$ has a 5-dimensional simple module over K, and $5 \ 336=|G|$ (ct. [8. p. 41]). Also $\hat{C N} / \hat{Q}$ cannot in general be replaced by $R N / Q$ in the stituation of Proposition 5.2 (iI). An explicit counterexample is as follows. Take $G=Q_{0} \times C_{3}$. the direct product of the quaternion group of order 8 and the cyclic group of order 3. and let $R=\mathbb{R}$ be the fleld of real numbers. Vlewing Q_{0} and C_{3} as multiplicative subgroups of the quaternions H and the complex numbers C respectively, we obtaln surjections $\Phi: \mathbb{R}\left[Q_{8}\right]-\underline{H}$ and $\psi: \mathbb{R}[G]-\underline{H} \boldsymbol{\theta}_{\mathbb{R}} \mathbf{c} \approx M_{\mathbf{2}}(\mathbf{c})$. Thus. with $Q=\operatorname{Ker} \Phi . P=\operatorname{Ker} \Psi$. and $N=Q_{B}$. the hypotheses of Proposition 5.2 (ii) are satisfied. yet u-dim $(\mathbb{R}[G] / P)=2$ does not divide $[G: N] . u$-dim $(\mathbb{R}[N] / Q)=3$.

References

1
L. Auslander and F. E. A. Johnson. On a conjecture of C. T. C. Wall. J. London Math. Soc. (2) 14 (1976) 331-332.
K. A. Brown. The structure of modules over polycycilc groups. Math. Proc. Camb. Phil. Soc. 89 (1981) 257-283.

3 N. Bourbaki. Algebre Commutative, Chap. IX. Masson. Parls. 1983.
C. W. Curtis and 1. Reiner, Methods of Representation Theory. Vol. 1. Wiley-Intersclence. New York. 1981.
F. T. Farrell and W. C. Hslang. The Whitehead group of poly(finlte-or-cyclic) groups. J. London Math. Soc. (2) 24 (1981) 308-324.

6 R. Gordon and J. C. Robson. Krull Dimension. Mem. Amer. Math. Soc. 133. Providence. R. I. 1973.

7 B. Huppert, Endliche Gruppen. Springer-Verlag. Berlin. 1967.
B. Huppert and N. Blackburn. FInlte Groups II. Springer-Verlag. Beriln. 1982.
S. Iliman. Smooth equivarlant trlangulations of G-manlfolds for G a finite group. Math. Ann. 233 (1978) 199-220.
A. V. Jategaonkar. Localizatlon In Noetherian Rings. London Mathematical Society Lecture Note Series. vol. 98, Cambridge Universlty Press, 1985.
M. Lorenz and D.S. Passman. Prime Ideals in group algebras of polycyclic-by-finite groups. Proc. London Math. Soc. (3) 43 (1981). 520-543.
M. Lorenz and D.S. Passman.: Prime Ideals in crossed products of finlte groups. Isr. J. Math. 33 (1979). 89-132.
D.S. Passman. The Algebralc Structure of Group Rings. Wliey-Intersclence. New York. 1977.
D. Quillen. Higher algebralc K-theory I. In: Algebraic K-theory I. Lecture Notes In Mathematics 341. Springer-Veriag. Berlin. 1973, 85-174.

16 F. Quinn. Algebralc K-theory of poly-(finite or cycllc) groups. Bull. Amer. Math. Soc. 12 (1985) 221-226.
$17 \mathrm{~J} . \mathrm{E}$. Roseblade. Prime ideals in group rings of polycyclic groups. Proc. London. Math. Soc. 36 (1978) 385-447.
D. Segai. On the residual simplicity of certaln modules. Proc. London Math. Soc. (3) 34 (1977) 327-353.
R. Swan. K-Theory of Finite Groups and Orders. Lecture Notes in Mathematics 149. Springer-Verlag. Berlln. 1970. 1. Ann. of Math. 108 (1978) 135-204.

[^0]: 2 Supported by an SERC Advanced Fellowship
 3 Supported by the Deutsche Porschungsgemeinschaft/ Heisenberg Program Grant no. Lo 261/2-2.

