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§1. Introduction.

Let I be a group. let A be a commutative Noetherian ring. and let
Go (RN denote the Grothendlecrgroup ol finltely generated Ar-modules.
Let X Dbe a class of groups. and let Gg(RIr'.X) denote the subgroup of
Go(Ar)Y generated by the classes of modules of the form M egH AT, whére
H is a X-subgroup of I' and M Iis a finitely generated AH-module. Let
F be the class of finite groups.

Suppose T Is torsion-free polycyciic-by-finite. Then {1} s the only

F-subgroup of r . so Go(RI.F) Is the Image of the induction map

Go(R) - Go(RI) . When R=12. the Cartan homomorphisms

Ko(Z) = GolZ) . Kg(ZI) =+ Go(ZI)  are isomorphlsms., since 2ZI' has finite

global dimension. A result of Farrell and Hsiang (51 asserts that

Kol(Z) =+ Ko(ZI) I8 also an isomorphism. Hence Gol(Il) = Go(ZL.F)  In
-~

this case. ‘ -

i

The situation when r has- torsion is somewhat more complicated.
However. we shall prove the following result. (A commutative Noetherian ring
is regular It all s finitely genérdted modules have projective resolutions of

finite length, and is Hiibert If each of its prime Ideals is an Intersection of

maximal ideals.)
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THEOREM A Let I be & finitely generated group with an abelian normal
subgroup of finite Index a . Let h be the Hirsch number of T. tet R
be a commutative Noetherian regular Hilbert ring 6! finite Krull dimension d.

Then Gol(RI) /Go(RT.F) Is periodic, of exponent dividing ah*d,

We know of no example where Go(Ar.F § Go(RAD. The restriction to
abelian-by-finite groups is essential for our proof of Theorem A. but most of
our preliminary results hold tor a polycyclic-by-finite group [ . We have
stated these resuits in their most general form.

When T is abelian-by-finite. some insight into the structure of Go(ZI)
may be oStalned trom the action of crystaliographic groups on Euclidean

space. in fact. something aiong the same lines is true for polycyclic-by-tinite

groups in general.

THEOREM B Let I be a polycyclic-by-finite group with Hirsch number h .
Then r acts smoothly and simpliclally on some smooth triangulation of

Euclidean space rb |, with compact quotient and finite Isotropy groups.

There Is nothing essentlally new In Theorem B. The Iingredients are
readily avallable in the literature. Indeed. something akin to Theorem B seems
to be Implicit in [16). Nevertheless., it seems to be worthwhile to Inciude a
proof here. in view of the following interesting algebraic consequence. which,
when T s torsion-free. Is just the well-known fact that Z has a finlte ifree

zr-resolution of length h,

COROLLARY C let I be as In Theorem B. Then there exists an exact

sequence

*) 0-Qp=-... ~Q ~Qp=-2~0
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of right Ir-modules, where each Q; Is a finite direct sum of modules of the
form

ey 2r

for various finite subgroups H of T .

The paper Is organised as foliows. In §2 we prove Theorem B and
Corollary C, and in §3 a stronger form of the latter Is deduced (Theorem
3.2). This result provides ithe starting point In §4 for an inductive proof of
Theorem A. A result on the uniform dimension of prime tfactor rings. which Is
needed In the proof of Theorem A and which may have some Iindependent
interest, Is proved in §5.

. As applications of Theorem A. we offer

COROLLARY D let AR @and [ be as In Theorem A. Suppose R Is &

Dedekind ring tor which the Jordan-Zassenhaus Theorem holds.

) Go(Ar) =T x F , where T Is the torsion subgroup, and F Is
free abellan of ftinite rank, t say. Further, T contains a tinite subgroup
To such that T/Tg has exponent dividing ah*d . if R is a field, then

t < [ lirr(RA)I ’
BeH
where H Is a set of representatives of the conjugacy classes of maximal finite
subgroups of I , and lirr(RH) | Is the number of Isomorphism classes of
irreducible RH-modulies.
i Suppose R Is a field of characteristic p . The cokernel! ot the
Cartan homomorphism of Ko(RT)Y into Go(RI) Is torsion of exponent dividing

pral . where p’ Is the maximal order of @ p-subgroup of T .

These follow Immediately from Theorem A and (19, proot of Theorem 3.8}



and (4. Theorem 21, 22) respectively.

§2. Topology.

Throughout this sectlon I is an arbitrary polycyclic-by-finite group of
Hirseh number h . The proot of Theorem B follows that of Theorem 1 of (1]
" in constructing 8 smooth action of I on ®  with finite Isotropy groups and
compact quotient. (Tho only difference being that, In {1}, I is aasumed to
be torsion-free. so that the quotient ®/I' is a K(I, 1)-space).

Explicitly. there exists a commutative diagram

11— A > I =36—1

1l DAY »>TIXAY = G — 1

with exact rows and vertlcal monomorphisms, where A is a torsion-ifree
subgroup of finite Index In ., and D(aA) is a soluble Lie group contalnl_ng
A& as a discrete co—compact'subgroup. As in [1]. let K be a maximal
compact subgroup of TrD(a) . Then K\rD(a) Is ditfeomorphic to ® .
and A acts freely and smoothily on the right, so that the quotient space M
is a smooth manifold. Moreover, the finite group G = /A acts smoothly
on M . so by [9] there exists a smooth G-equlvariant triangulation T, + of
M. This lifts to a smooth r-equivariant triangulation T of & . and the

proof of Theorem B is complete.

For the proof of the Corollary. take (*) to be the simplicial chain compliex
of T. Thus each Q; Is a free abellan group. with basis the [-simplices

of T. As a Ir-module, Qi Is a permutation module (since T
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permutes simplices), with finite stabllizers (since r has finlte Isotropy
groups) . and finltely generated (since 7/I I8 a finite complex). But such

a module has precisely the form stated In the Corollary. -

§3. Moduies
We shall need the following version of Frobenius reciprocity {19, Tﬁeorem

2.2].

LEMMA 3.1 let R be a commutative ring and let H be a subgroup of a
group G. Let W be a finitely generated RH-module and let X be a
finitely generated RG-module. Then,‘ as RG-modules,

(W epy RG) Oé X = (Weg X|H) 4 AG. |

where each tensor product over R Is equipped with the diagonal group action.

Proof tft is routine to check that the map (we g) e x+—> (wexg™ ) eg

is well-defined and gilves an Isomorphism of RG-modules.

THEOREM 3.2 Let R be a commutative Noetherian ring. let I' be a

polycyclic-by-tinite group, and let V be an ARC-module which Is [finitely

generated as an A-module.  Then [Vl € Go(Rr, F).

Proof By corollary C there is an exacl sequence ‘
O->On =+ ... +Q, 20, +2~+>0 (1)
of Zr'-modules., with each Q; a finite direct sum of modules
Z ey I
for various finite subgroups H of T.
Apply the functor (-) &z R to (1) to get a sequence

O+ P+ ... P, » Py +R+O0 (2)

R
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o1 RT-modules, Then (2) Is exact. since (1) consists ol free Z-modules.
Furthermore each P; is a finite direct sum of modules
(Z 0z Ir) g A = R ey AT
for various finite subgroups H of I,

Finally. apply the functor (-) eg V to (2) (where each term Is glven the
Rr-module structure with diagonal r-action). The resuiting sequence Is
exact. since the modules In (2) are free A-modules. By Lemma 3.1, its
terms are finite direct sums of modules

(ROgg RT) @g V  V|g @pg RC .
The sequence obtalned Is a sequence of Rr-modules. since it
1y - Pp+ Py , then (f; ® 1) : Pr@®@ V » Py ® V takes (r e vig = ng @ vg
to
fi(rg) ® vg = fi(m)g ® vg
= (fi(m) @ v)g
= [(fr @ 1) (m 8 v)]g
The result now follows from the fact that V Is flnitely generated as an

R-module. R

§4. Absllan-by-finite groups

We beglin thls. section by recalling some well-known facts and definitions
concerning a Noetherlan ring S. Let M be an S-module. We say that M is
unltorm H It IS non-zero and. it X and Y are any two non-zero submoduies of
M, then X nY # Q, The uniform dimension ot M. u-dim(M) is O H M =0, t
1 M contalns an essentlal direct sum of t uniform submodules. and o If no
such ftinite direct sum exists: f M is finltely generated. then u-dim(M) < m.
See (14, Ch. 10, §4) for details. An element m of M is torslon it mec = 0
for some regular element ¢ of 8. and M Is torsion free It it contains no

non-zero torsion elements.

At ase



Let P be a prime Ideal of S. By Goldle’'s theorem [(14. Theorem
10.4.10). S/P has a simple Artinian quotient ring Q. Q Is a ring of t x ¢t
matrices over a division ring. where t is the uniform dlmenglon ot S/P (as
right or left module). Let U and V be uniform right ideals of S/P. Thus
Ueg/p Q and V 8g/p Q are both lirreducible right Q-modulgs. and so
isomorphic. It follows easily that U and V are sublsomorphic as S-modules:
in other words each Is Isomorphlc to a submoduie of the other. More
generally., if X and Y are finitely generated torsion free S/P-modules ot the
same uniform dimension, then X embeds In Y and the cokernsel is torsion as
an S/P-module. These facts are clear when S/P is a finite module over
its centre (ihe only case we require here), For the general case. one may
consult {10, Lemma 2.2.13), .1or example. |

Let M be a finitely generated S—-module. Choose a uniform submodule:
Uy of M whose annihllator Py is maximal among annihilators of non-zero
submodules ot M. It Is easy to see that Py is prime. Repeat this process
for M/Uy. and so on. we get a chain (finite. since M is Noetherian)
OcyUgclpc ... € Uy = M of submodules whose factors U;/U;-y are
uniform. every non-zero submodule of UisUj—¢1 bhaving annlhilator Py,
Suppose now that S is finitely generated as a module over [ts centre. Let
U be a finltely generated unlform S-module all of whose non-zero submodules
have prime annlhilator P. We can form the quotient ring Q of S/P by
inverting the non-zero elements of the centre of S/P (since the resulting
partial quotient ring 1s a finite dimensional algebra over a fleld and hence
Artinian) . Thus. if ¢ + P is a regular element of S/P. (¢S + P)/P must
have non-zero Intersectlon with the centre of S/P. It follows that U is a
torsion free S/P-module. and so. by the previous paragraph. U is (lsomorphic

to} a uniform right ideal ot S/P. To sum up:
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PROPOSITION 4.1 Let S be a Noetherian ring which Is a finitely generated

module over Its centre.

N Let M be a finitely generated S-module. Then M has a finite series
of submodules with successive factors Isomorphlc’t'o uniform right Ideals of
prime tactor rings of S. |

Cin Let P be a prime ideal of S, with u-dim(S/P) = 1. Let U be a
uniform right ideal of S/P. Each of U and S/P embeds In the other, the

cokernel! having annihilator strictly containing P,

We shall use induction arguments Involving the Krull dimension, k-dim(M),
of an S-module M, Details may be found In [6]: but It Is almost enough to
know that, for S and M as in 4'|

(K1) k-dim(S) Is the supremum of the lengths of descending chains of
prime ideals of S:

(K2) ¥ 0 » A+ B » C » 0 Is an exact sequence of S-modules.
k-dim(B) = max {k-dim(A), k-dim(C)):

(K3) [6, Theorem 9.2 and 18, Lemma B8] I A Is a commutative
Nosetharian ring of finite Krull dimension d and T Is a finltely generated

abellan-by-finite group of Hirsch number h. then Kk-dim(RAr) = h+d.

The next result contains the crux of the inductive step in the proof of
Theorem A. Let A be a commutative Noetherlan ring and let G be a
polycyclic-by-finite group. For a non—-negative Integer n, define subgroups of
Go(RG) as foliows:

Go(RG)

<[Vl : k=dim(V) <€ n>,

Go(RG) - <Gv1 ¢ k-dim(V) < n>,

PROPOSITION 4.2 With the above notation, let P be a prime ideal of RG
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and set n = k-dim(RG/P). Then, In Gu(RG),

[RG/P] e G (ARG,F) + Gy(RG)p- .

Proof Let H and N be subgroups of G. with N normal. If M Is a finitely
generated AH-module with . IM] ¢ Go(RH.F), then
(M egy RG] € G,(RG.F). Hence. In view of Theorem 3.2. Inflation from
A(G/N) - to RG- modules maps Go(R(G/N),F) 1to Ge(RG.F). Moreover,
under this map Gy (A(G/N))p- Is sent 10 Ggo(RGYp-. Thus. in proving the
proposition we may assume that (g €« G . (g-1) € P} = 1,

In the notation of [(17]. set H = nio(G). an orbitally sound normal
subgroup of finite Index In G. We argue by Iinduction on |G . HI|. Suppose
first that G = H, or more generally that P n RH = Q Is a prime ideal of
RH. Then geG: (g-1) ¢ Q =1, 80 Q = (Q n RARH, by
UT.Theorem_ Cl}. where A Is the FC-subgroup (see [14. §4.1] for
dofinition) of H and of G. By 12. Lemma 2.11. QRG = (Q n RAYRG s
a prime Ideal of RG which.is contalned in P by construction. Since
QRG n ARH = P n RH = Q, we conclude that QARG = P by Incomparabllity {13,
Theorem 1.2]. Now. I A, denotes the (finite) torsion subgroup of A . then
A/A, Is free abelian of finite rank and so RA is an iterated skew Laurent
oxtension of Rag . The so-called twisted Grothendleck Theorem [15,
Exercise following Theorem 8. 8§61, or (20, "Proposition 4.1 (2)) therefore
implies that Go(Ra) = Go(RA, b)Y = Go(RA.F)Y . Consequently,
[RG/P) = ((RA/Q n R&) O, RG] € Go(AG.F)

We may therefore assume that P n RH = ,Qg Q* tor some prime ideal
Q of RH with B =1{g eG: QY9 = Q) a proper subgroup of G. Let
J = {x,;,...,x) be a right transversal to B8 in G. By (12, Theorem 1.7].
there s & wunique prime ideal L of RB with L nAH =Q and

¢ x
.n’L;RG = P, where L; denotes L ! for 1 =1,..., t. Let © denote the
¢z
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natural embedding of AG/P In :;“(RG/L;RG) as right AG-modules, with
cokernel Y. We claim that
k-dim(Y) < pn. (1)

Let us complete the proo!. assuming that (1) Iis true. By definition,

(Y] €« Go(RG)p-. and so. setting B8; = Bx‘.
[RG/P] = f {(RBy/L) egg RG] - [Y].
By [2. Lemma 4.2]. k-dim(RB;/L) =n ftor all | . By Induction on
IG : HI. [RB/L) e Go(RB;.F) + Go(RB) - tor all [, By [18, Lemma 8)
and the first paragraph of the proof.
[(RBy/Ly) ® RG] € Gy(RG.F) + Gg(RG) -

for alf . Thus (1) shows that [RG/P] Is In the required subgroup of
Go(RG). It remains therefore to prove (1). -

For /=1,....t. tet m;: r®ARG/L;RG —=>» ARG/LRG be the projection

map. Since Q; := Q@' =1, RH ,

0 # mj00(( g L{RG N RA)RBy + P/P) 1= X C RBjy +LyRG/LyRG ™ RBj/Lj.
12 :
FPurther, 2 (LtRG n RA) 18 the annihilator in RH of Qj/(P n RA), and as
ixJ
such is Invariant under conjugation by B; Hence. X is a non-zero two-sided
ideal of RB;/L;. Since Ly Is a prime ideal.

k-dim((RAB)/Lp /X) < k-dim(RB;/Lp). by i6l. (or by (K1) if we assume G Is

abellan-by-finite) . Therefore. ldentitying ARBy/L; with RB; + L;RG/LJAG,

’

k_dimRBJ( (RBJ/LJ)/im(TFJoG) n (RBJ/LJ)) < k—dmRBJ(RBJ/LJ) - n
and so, by (18, Lemma 8],

k-qim_, J( (RG/L 3RG) /im(1 §00) ) < k—dmRBJ(RG/LJRG) = n.,

By [18, Lemma 8] ohce more,

k-aim_ ( (RG/L3RG)/im(1 j00) ) ¢ k-aim (RG/LjRG) = n . (2)

Since (2) holds for all J =1, ..., t, (1) is proved.
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Let p be a prime. A finlte group Is p-hyperelementary It i has the form
<« JP. with x an element o! order prime to p. and P a p-group. Let
G be a finlte group. We denote by H the class of finite groups

are p-hyperelementary for some prime p . We need a version of the

Brauer-Berman-Witt Induction theorem: -

THEOREM 4.3 let R be a commutative Noetherian ring. let G be a

tinite group. Then Ggo(RG.H) = Go(RG).

~,

A}

Prootf The theorem is true when A ’Is a field by [4, Theorems 21.6 .and

21.15) and [(19. Corollary 2.9]. using the tact [3, Proposition 5, p.23 and

o ——

<

Proposltion 1c. p1”?] that every fleld of characteristic p arises as the
residue field of some discrete valuation ring of characteristic 0 . The proot
proceeds by induction on Kk-dim(R). Since a finitely generated RAG-module
M has a finite serles of submodules 0 =M, c ... c M C.,, CMp =M
with each factor M;/M;;, having prime annihilator in R, we may assume

that A Is prime. Let K be the quotient tleld of R. There is a

commuliative dlagrah

t® Go((R/PR)G) —> Go(RG) —  Go(XKG) —» 0
O#peR

® G,((R/PR)G,B) —> Go(RG,H) ——% G, (KG,H) —> 0,
O#peR

in which the vertical arrows are Inclusions, and by (19. Theorem 1.8] the
rows are exact. By the induction hypothesis and thae result for figids the outer

maps are surjections, Hence, s0 Is the middle map.
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A commuiative Noetherian ring R Is regular 1 every finltely generated
R-module has a finite resolution by projective A-modules. Let G be a
finite group. The abelian group with generators (Ml, where M s a finitely
gonerated RG-module which Is A-projective. and relations glven by short
exact sequences. Is denoted by GoR(RG) . i R Is regular,
GoA(RG) = Go(RG) {19, Theorem 1.2]. The group GcR(RG) can be given
a ring structure by setting [MIIN]l = [M e N]. [19, Theorem 1.5]. Note that

fR] Is the identity element of this ring.

THEOREM A Let R be a commutative Noetherlan regular Hilbert ring of
finite Krull dimension d , and let ' be a finitely generated abellan-by-finite
group with Hirsch number h . fet A be a maximal Abellan normal
subgroup of r, and set G = I/A : put 1Gi = a . Then

Go(RT) /Go(Ar.F) is periodic, with exponent dividing ahtd,
Proof The ring Al Is Noetherian and Is a finlte module over its centre. (14,
Corollary 10.2.8 and proof of Lemma 4.1.10]l. so we can make use of the

facts and concepts given at the start of §4.

Step 1. Reduction to the case where G Is hyper—-elementary.

Let A(r be the set of inverse images in T of the H-groups In G .
By Theorem 4.3, .
Go(RG,H) = Go(RG). (3)
As pointed out above, the hypotheses on A ensure that Ggo(RG) Is a ring
with ldentity element. Viewing Gg(AT) as a Go(RG)-module via inflation and
-8R/-.
Go(Rr).Go(RG,B) & Go(Rr,B(r)), (4)

by temma 3.1. By (3) and (4).
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Go(Rr) = Go(rr B(r)). (5)
It follows from (5) that there is a surjection induced by Induction.

£® Go(RX)/Go(RX,P) ———> Go(RI)/Go(RI,P). (6)
XeR(r)

Since IX/Athtd divides aM*d for all X « B(r) , (6) shows that we may

A
replace I by one of the groups X in H(IJ In proving the theorem.

Step 2. The_ induction set-up.

We shall deduce the theorem from the following more precise set ot

slatements:

Let P be a prime ideal of RI', with

x-dim (RT/P) = m.  let w = max{1l,a""%}. . (7:m)

Then w.[RC/P) € Go(RI,P).
‘Since R Is Hilbert. every finitely generated Artinian RT-module Is finitely
generated as an A-module [11. Theorem 311. Thus Theorem 3.2 shows that
(7:0) is true.

We claim that

if m > 0 and if (7;1) is true for all i<m (8;m)

then a®.(Go(RM)m) C Go(RT,F).
Again. Theorem 8.2 allows us to assume that m > 0 and that (8:.%) is true
for all 8 <m . By Proposition 4.1 and (K2)., Gu(ARrm, |Is generated by
iM]. where M Iis a uniform right ideal of RIr/P and P ranges over the

set of all prime Ideals for which k-dim(RI/P) <« m. let M Dbe one such

right ideal. of Rr/P. say. Let t = u-dim(RI/P). By Proposition 4.1 (iD

there is an exact sequence

0 — Rrpp —» M(t) —» x —» 0. (9)
By Proposition 4.1 (1D and (K1), (K2), k-dim(X) = 2 < m. Hence. by
(8:0)., a1 X1 € Go(ARr.F), By (7:m) and (8). taM~3 (M] € Go(RI.F).

Thus (8:m) follows from this. Proposition 5.2 (i), and Step 1.

et Al e el
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Proposition 4.2 shows that the statements (8:1), tor 1 =0,..., m-1,

together Iimply (7:m). Thus the proof is complete.

§5 Unitorm dlmonslonjm_prlmo factors

Our aim here s to prove Propostion 5.2, part of which was used in the
proof of Theorem A,

Let H be a subgroup of a group G and let R be a commutative
ring. Ltet Q be an ideal of RH . Then QG denotes the biggest \deal of

RG Inside QRG. so Q8 = 4G (QRG)T : see [12].

LEMMA 5.1 let R be a commutative ring, and let G be a
polycyclic-by-tinite group contalning a subgroup H of Hnite index.
(i) Let P be a prime Ideal of RG and let Q,,....Q be the prime

ideals of ARH minimal over P o~ RH. Then there exist pogitive Integers

Zys....Zr 8uch that u-dim(RG/P) = x; zj.u-dim(RH/Qp.

(l) Let Q be a prime ideal of RH and let P,,...,Pg be the primes
ot RG minimal over QG. Then there exist positive integers Wi ... Wg
such that I; wj.u-dim(ARG/P;) = 1G:H|  u-dim(RH/Q).

Prootf By factoring by P n A in (1) and by Qn A In (li}, and then
invarting the non-zero elements of A. we reduce to the case where AR Is a
field. Thus all rings Involved here are Noetherian. In particular there are
indeed finilte sets of primes ling over P and Q In (D and (D
respectively.

(1) This simply expresses the fact that the iInclusion of rings RH c RG
satisfies the additivity principle {21, Corollary 2 and preceding remarks].

(H)y Put | = QG and V = RG/QRG. Thus V Is an (RH-RG)-bimodule

with right annihilator /, and
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RH|V = RH/Q)Z = (RH/Q)
where T = x,,...,xs) I8 a right transversal for H In. G. and £ denotes
the image of x in V. Thus
A := RG/I €€ B := Endgy(V) & Mp(RH/Q),
and (/) will follow if we can show that the inclusion A € 8 satisfles the
additivity principle. By {21. Corollary 21, it sutfices to show that B Is fInitely
generated as a right and as a left A-module.
For this, flx a normal subgroup N of G with NCH and
IG : N| <w, and set Ag = RN/I n AN c A, Under the embedding

A C M(RH/Q), A, corresponds to the subring

“L
r 0
D = ) t T & A,
(o] ;RE
of - Mr(ﬁo). where =~ denotes Images In AH/Q. Cilearly the elementary

matrices (€ : 1 <1,/ <1l generate Mi(A,) as a left and as a right
D-module: and Mi(RH/Q) I8 finitely generated as a left and as a right
moduie over M;(ﬂo), since this holds for RH/Q over ﬁo. Therefore B

is finitely generated on both sides over A,. and hence over A, as

required.

For any ring S . set
u(S) := sup( u-dim (S/P) | P a prime ideal of S} .
a positive Integor‘ or o . Then. in the situation of Lemma 5.1. we have
u(RH) < u(RG) < [G:H]). u(RH)
To derive this from temma 5.1 one uses the fact that each prime ldea! of AH
Is minimal over P n AH 1or a sultable prime ideal P of ARG . and each
prime ideal of ARG Is minimal over QG for some prime Q of ARH . The

detalls are fairly routine and are left to the reader.

BT VR
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We can now siate and prove the main resull of this section.

PROPOSITION 5.2 Let N be & normal subgroup of finite Index & In &
polycycilc-by-tinite group . Let R be a commutative ring, &nd let P be
a primeo Ideal of Rr. let p be the characteristic of R/P n R. Let Q be
a prime Ideal of RN minimal over P n RN , with P n RN =, Q7.
Then

1) u-dim(AN/Q) | u-dim(Rr/P).

(n Let C denote the algebralc closure of the centre C of the simple
Artinian ring of quotients F of RAN/Q. Let €N denote the subring of

T ez F generated by C and RN/Q . T1f either
p-soluble, then

pla or T/N is

u-@im(RT/P) | a . u-dim(n/Q)
A

where Q is a suitable prime ideal of eN

. lying over the zero
ideal of RN/Q

In particular if N

| is Abelian, and either pla or T/N
1s p-soluble, then

u-dim(RT/P) | a
Proof As In Lemma 5.1 we reduce at once 1o the case where R is a tield.
By (17. temma 51 we have P n AN =, QY. Since
u-dim(AN/Q) = u-dim(RN/QY) for all y erT, (1) ¥s a special case of
Lemma 5.1(1, .

(ll) We argue by Inductlon on a. For a = 1. the claim s that
u-dim{(Rr/P) Iu—dlmtérlﬁ) for some p'rlma ideal P of &€r with
PrnAr=p. . But, for any such P, Rr/PcCr/P Is a cen{rauzlng
extension of prime Noetherlan rings. so the assertion follows from [21.
Theorem 3], for exampie. Thus we may assume that (ll) Is true for all

LY

proper subgroups H of I with N C H,

v
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Let M be a proper normal subgroup of T with N € M and such that
P nAM is not prime. Then P = P.¥ tor some prime Ideal P, of RAM,,
where M C M, €T, by [12. Theorem 1.7]. By Lemma 5. 1CiD,

u-dim(RC/P) | u-dim(RM /P,). IG: M, 1,

80 the inductive hypothesis applied to M, vyields the resuit. (Note that the
primes of AN minimal over P; n AN are minimal over P n AN, and
hence TI-conjugate t1©¢ Q.) Thus we may assume that, f{for all normal
subgroups M of I with NC M. P nAM Iis prime.

in particular, Q =P n AN Is prime. Standard arguments along the
lines of {12, Lemma 1.5] show that the set C of regular elements of RN/Q
forms an Ore set of regular .elements in Ar/QAr and In ARC/P . By
localising at C we obtain the classical rings of quotients of the rings under
considaeration:

A = (RN/Q)C™* = Q(AN/Q) € B := (Rr/P)C™* = Q(Rr/P)

(RT/QAM)C™* = Q(AT/QAT)

(Here we are abusing notation by writing C for its image In RI/VQRr and
Rr/P.) Note that 8 has the structure of a crossed product over A.
8 = A*G with G = /N, tet Tjpn be the normal subgroup of T
consisting of those elements acting by Inner automorphisms on the simple
Artinian ring A. and set Ginn = Tinp/N € G. By our assumption,
PnATjpy is prime. Llet ~  denote images modulo QARr. Thus
T := (Pn Rl pp)C™ is a prime ideal of A*Gyy, € B, and. by (13,

Theorem 2.5(1)). P’ := PC™* = T-B. . Litted back to Rr, this ylelds

P = (P n RAripp)Ar, and so It Tjpp # T the Induction hypothesis ‘and
Lemma 5.1¢i) again glive the result. We may therefore assume that I' = Tjpp.

Let E denote the centraliser of A in 8. and let C be the centre of
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A. Then FE = C!G 18 a twisted group algebra of G . over the field C,
with B = A ec £. and moreover, P’ = (P' n E)B: see [13. §2]). Let c
denote the algebrhlc closure of C and choose a prime Ideal P° of
E:=CecE w» €G wth P "nE = P nE. (Simply take P" 1o be

maximal among ideals ! of E with I nE=P nE) Then

Brpe w Myl (N
where
via, : (2)
by Lemma 5.3 below.
S := B/P m Aec (E/P nE) < Aec (B/P") = My(A ec C).

It follows from the additivity principle {21, Lemma 1] that the composition
length of S divides u-dim(My(A ©C E)J: that is. that
u-dim(Ar/P) | v.u-dim(A ec C). (3)
Now A e¢ & s a simple ring. and the map from AN to A eC c
yields a map from N 1o A ec € whose kernel 6 iIs a prime |deal of
N with GnAN=Q and u-dimEN/& = u-dimaec & .  With (2

and (3). this completes the proof of the proposition. except that we still have

to establish

LEMMA 5.3 . Let G be a finite group of order a , let K be an
algebraically closed tieid of characteristic p , and tet‘KtG‘ be a twisted
group algebra of G over K. Assume that either ‘ ¢

(i pAes
or (i) G s p-soluble.

Then for any simple K!G-module V , dimg(V) | a.

Proof Case (i) Iis essentially covered by (4, Proposition 11.44], where we

can replace the hypothesis that char K = 0 by condition (i), by using the
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generalized form of Ito’s Theorem [7. Satz V.12.11] at the appropriate point in
the proof.

For (i), note that there is a finite central extenslon H of G such that
v is a,simple KH-module (4, Theorem 11.40(p)}. Since H is also
p-soluble. the Fong-Swan—-Rukolalne theorem [4, Theorem 22.1] ensures that
V can be ‘iiffted to characteristic zero*. Hence. by Ito’'s theorem [4.
Theorem 11.83]. dimg(V) dlivides |H/Z(H)|., (where Z(H) denotes the

centre of H). Thus. dimg(V) divides 1Gi. as required,.

Lemma 5.3. (and s0 also Proposition 5.2 (D) is f{false without the
hypothesis () or (i), even for ordinary group algebras. For example, i K
is algebraically closed with charK=7, then G=SL(2.7) has a 5-dimensional
simple module over K ., and 5 [ 338 = lél (et. (8. p. 41D, Aiso
5N/6 cénnot in general be replaced by "AN/Q in the situation of Proposition
5.2 (D). An expliclt counterexample Is as foliows. Take G = Qs x Cs .
the direct prod'uct of the quaternion group of order 8 and the cyclic group of
order 3, and let R =R be the field of real numbers. Viewing Q, and
C, as multiplicative subgroups of the quaternions H and the cbmpiax
numbers C respectively, we obtaln surjections ¢ RQal - H and

V. RGl - Herp €C = M(C) . Thus, with Q = Ker ¢ . P and

n
X
]
-
€

N = Qs . the hypotheses of Proposition 5.2 (i) are satlisfled. vyet

u-dim(RIG1/P) = 2 does not divide I[G:N).u-dim(IRIN}/Q) = 8 . ¢
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