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S1. IntroductIon .

Let r be a group. let R be a commutatlve Noetherlan ring. and let

Go< Rf) denote the Grothendleck group of flnltely generated Rr-modules.

Let X be 8 elass of groups. and let Go ( Rr. X> denote the subgroup of

Go(Rr) generated by the classes of modules of the form M 8RH Rr. where

H Is 8 X-subgroup of r end M Is· 8 flnltely generated RH-module. Let

F be the class of finite groups.

Suppose r Is torslon-free polycyellc-by-1Inlte. Then (1) 15 the only

F-subgroup of r. so Go(Rr. F) 15 the Image of the Induetlon map

Go(R> -+ Go(Rr> When R = Z • the eartan homomorph15ms

Ko(Z) ~ Go(Z). Ko(Zr> .... Go(zr> are Isomorphlsms. slnce zr has finite

global dimension. A result of Farrell and Hsiang l51 asserts that

Ko(Z)" ~ Ko<zr) Is also an Isomorphism.
/"

thls ease.

Henee Go<zr> = Go(zr. F> In

The situation when r has" torsion is somewhat more compllcated.

However. we shall prove the followlng result. (A eommutatlve Noetherlan r1ng

Is rsgu/ar 11 all Its flnltely generated modules have projectlve resolutions of

finite length t and 15 Hllbert If aach of Its prime" Ideals Is 8n Intersaction of

maximal Ideals.)

Z
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THEOREM A Let r be 8 flnltely generated group wlth an abellan normal

subgroup of finite Index a. Let h be the Hirsch number of r. Let R

be a commutatlve Noetherlan regular Hllbert ring of tin/te Krull dimension d.

Then Go(Rr)/Go(Rr.F) Is perlodlc. of exponent dlvldlng ah+d .

We know of no example where GoCRr. F) ~ Go(Rr) . The restrlctlon to

.abelian-by-flnite groups Is essential for our praof of Theorem A. but most of

our prellminary results hold for 8 polycycHc-by-finlte group r. We have

stated these resutts in thelr most general form.

When r Is abellan-by-finlte. same Inslght Into the structure of Go ( zr)

mey be obtained from the action of crystallographlc groups on Euclldean

spacB. In fact. samething along the same IInes 15 true for polycycllc-by-flnlte

groups In general.

THEOREM B Let r be a po/ycycllc-by-flnlte group wlth Hirsch number h.

Then r Bcts smoothly and slmpllc/ally on same smooth triangulation of

Euclldean space ]Rh, \II/th compact quotient end finite Isotropy groups.

There Is nothing essentlally new In Theorem B. The ingredients are

readlly avallable In the lIterature . Indeed. samething akln to Theorem B seems

to be Impllcit in [161. Nevertheless. It seems to be worthwhlle to Include a

pra01 here. In vlew of the followlng interestlng algebraic consequence. wh~h.

when r 15 torsion-free. Is just the well-known fact that Z has a finite free

zr-resolution 01 length h.

COROLLARY C

sequence

( R)

Let r be 8S In Theorem B.

o - 0h - . .. - O~ - 0 0 - z - 0

Then there ex/sts 8n eX8ct
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of rlght zr-modules. where s8ch 01 Is 8 finite dlrect sum of modules of the

form

I 8zH zr

for verlous finite subgroups H of r.

The paper 15 organlsed as folIows. In §2 we prove Theorem Band

Corollary C. and In §3 astranger form of the latter Is deduced (Theorem

S. 2). Thls result provldes the startlng point In §4 tor an inducUve proof of

Theorem A. AreBult on the uniform dImension of prime factor rings. whlch 15

needed In the proof of Theorem A and whlch may have some Independent

Interest. Is proved In §5.

I As appllcatlons 01 Theorem A. we offer

COROLLARY 0 Let R snd r be ss In Theorem A. Suppose R Is a

Dedel<lnd ring for whleh the Jordan-Zassenhaus Theorem holds.

(I) Go< Rr) = T x F • where T Is the torsion subaroup, end F 18

free 8bellsn of finite rank. t say. Further , T contalns a finite subgroup

TO such thst TI T0 haB exponent dlvldlng ah+d .

t <; I: I irr( RB) I
BEB

If R Is a fleld. then

where H Is a set of representatlves of the conjugacy classes of maximal finite

subgroups of r. end Ilrr( RH) I 18 the number of Isomorphlsm c/a88es of

Irreduclb/e RH-modules.

(11) Suppose R 18 a fleld of charactsrlstlc p. ThS cokernel of the

Cartan homomorph18m of Ko( Rr> Into Go ( Rr> 18 torsIon 0 t exponent d lvid Ina

prah • where pr 18 the maximal order of a p-subgroup of r.

. These follow Immedlately from Theorem A and [19. proof of Theorem 3.8]
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end [4. Theorem 21. 221 respectlvely.

52. Topology.

Throughout thls 8ectlon r ls an arbltrary polycycllc-by-flnlte group of

Hirsch number h . Th8 proof of Theorem B follows that of Theorem 1 of [1]

In constructlng a smooth action of r on JJIl wlth finite Isotropy groups and

compact quotient. (The only dIfference belng that. In [ 11. r Is assumed to

be tor510n-free . 80 that the quotient JIIt 1r Is a K(r. 1) -space) .

Expllcitly. there 8xlsts a commutatlve diagram

1-. b. ~ r -toG-+1

1 I·
]. -.. 0(6) -.. rD(6) -+ G -+ ].

wlth exact rows and vertlcsl monomorphlsms. where A 18 a torslon-free

subgroup 01 flnlte Index In r. and 0(6) 18 a soluble Lle group contalnlng

6 8S a dlscrete co-compact subgroup. As In (1). let K be a maximal

compact subgroup of rO(,6.). Then K\rO(A) 15 dlffeomorphlc to fIIt.

8nd 6 acts 1reely and smoothty on the rlght. so that the quotient space M

18 a smooth manl1öld. Moreover. the finite group G = r/6 aets smoothly

on At. so by [91 there exists a smooth G-equlvarlant triangulation T0 # of

At. Thls lifts to 8 smooth r-equlvarlant triangulation T of ui'. and the

proof of Theorem B 18 complete.

For the proof of the Corollary. take (Jl) to be the slmplicial ehaln oomplex

of T. Thus asch 01 15 a frae abeUan group. wlth basis the I-slmpllces

of T. A5 a zr-module. 01 15 8 permutation module (slnce r
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1
J

.1

permute8 slmpllces). wlth finite stab111zers (slnce r has finite Isotropy

groups). and flnltely generated (slnce TIr 18 a finite complex).

a module has preclsely the form stated In the Corollary.

53. Modules

But such

We shall" need the followlng version of Frobenius reclproclty [19. Theorem

2.2].

LEMMA 3.1

group G.

Let R be a commutatlve ring end let H be a subgroup of a

Let W be 8 tinlte/y generated RH-module and le"t X be 8

11nltsly Qenerated RG-modu/e. Then r as RG-modu/es r

(W -RH RG) eR X iII (weR XIH) -RH RG.

whefe s8ch tensor product ovsr R is equlpped wlth the diagonal group action.

Pfaof It 18 routine to check that the map (w 8 g) 8 x ........ (w 8 xg-J.) 8 9

is well-deflned and glves an Isomorphism of RG-modules.

THEOREM 3.2 Let R be 8 commutatlve Noetherlan ring. Let r be a

potycycllc-by-flnlte group. and let V be an Rr-modu/e whlch Is flnlte/y

Qenerated 8S an R-modu/e. Then [V] t! Go(Rr, F) .

Proof By corollary C there Is 8n exact sequence

of Zr-modules. wlth each Qi a finite dlrect sum of modules

. z 8zH zr

for varlous finite subgroups H of r.

Apply the functor (-) 8z R to (1) to get 8 sequence

o .. P't1.. ••. ..,. P 1. ... Po + R.. 0

(1)

(2)

..



-6-

01 Rr-modules. Then (2) 15 exact. 81nce (1) consl8t5 01 1ree z-module5.

Furthermore each PI 18 a finite dlrect 8um 01 modules

(Z 8zH zr) 8z R • R -RH Rr

for varlaus flnlte subgroups H of r.

Flnally. apply the functor (-) eR V to (2) (where e8ch term Is glven the

Rr-module structure wlth diagonal r-8ctlon). The resultlng sequence 15

exact. slnce the modules In (2) are free R-modules. By Lemma 3. 1. Its

terms are 11nlte dlrect sums of modules

(R eRB Rr) eR v .. Via eRB Rr

The sequence obtalned Is 8 sequence' 01 Rr-modules. slnce 11

11: PI ~ PI-1 r then ('/8 1) PI8 V .... PI-1 8 V takes (1T. v)g = nQ 8 vg

to

ft(ng) • vg - ft(w)g. vg

- (ft(~) 8" v)g

[Cf'!. • 1) (TT 4) v)]g

The result now 1ollows from the 1act that V Is flnltely generated as an

R-module.

'4. Abellan-by-flnlte groups

We begln thls sectlon by recalllr:-g some well-known 1acts and definitions

concernlng a Noetherlan ring S. Let M be an S-module. We say that M Is

uniform 11 11 15 non-zero and. 11 X and Y are any two non-zero 5ubmodltle5 of

M. then X n Y ~ O. The uniform dimension of M. u-dlm (M) Is 0 11 M = O. t

11 M contalns an essential dlrect sum of t uniform submodule5. end CI) 11 no

such finite dlrect Bum exlsts: If M 15 flnltely generated . then u-dlm (M) < (1).

See [14. eh. 10. §4] for details. An element m of M 15 torsion 11 me = 0

for some regular element e 01 S: end M Is torsion free 11 It contalns no

non-zero torsion elements.
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Let P be a prime Ideal of S. By Goldls's theorem (14. Theorem

10.4.101. SIP has a simple Artlnlan quotient ring Q: Q 15 a ring of t x t

matrlces over a division ring. where t Is the uniform dimension of SI P (ss

rlght or left module). Let U and V be uniform rlght Ideals of S/P. Thus

U .S/P Q and V .SIP Q are both Irreduclble rlght Q-modules. and so

Isomorphie. It follows easlly that U and V are subisomorphie as S-modules;

In other words eseh Is Isomorphie to s submodule of the other. More

generslly. If X and Y are flnltely generated torsion -tree SI P-modules of the

same uniform dimension. then X embeds In Y and the cokernel Is torsion as

an SIP-module. These 1acts are clear when S/P 15 a 11nlte module over

Its centre (the only case we requlre here). Far the general ease. one may

consult no. Lemma 2.2.131. 10r example.

Let M be a 11nltely generated S-module. ChoOSQ a uni10rm submodule·

Ut 01 M whoSQ annihIIator Pt 16 maximal among annihiIators 01 non-zero

submodules of M. It 15 easy to see that Pt 15 prime. Repeat thls proeess

for MI Uf. and so on; we get a ehaln (1Inlte. slncs" M 15 Noetherlan)

o c U, c U2 C C Un = M 01 submodules whose' fsetors VII U/-1 are

uniform. every non-zero submodule of U//U/-1 havlng annihiIator PI.

Suppose now that S 15 flnltely generated as a module over Its centre. Let

U be 8 flnltely generated uniform S-module all of whose non-zero submodules

have prime annihIIator P. We can form the quotient ring Q of SIP by

Invertlng the non-zero elements of the centre of SIP (slnce the r9sl1ltlng

partial quotient ring 18 a finite dimensional algebra over a fleld and hence

Artinlan) . Thus. If e + P Is a regular element of SIP. (eS + P) IP must

have non-zero Intersectlon wlth the centre of SI P. It follows that U Is a

torsion free SIP-module. end so. by the prevlous paragraph. U 15 (Isomorphie

to) a uniform rlght Ideal of SIP. Ta surn up:
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Let S be 8 Noetherlsn ring whlch Is 8 flnlte/y genersted

module over Its c9ntr9.

(I) Let M b9 8 tlnlte/y g9nerated S-modu/e. Then M has a finite s9r/e3

of submodules w/th successlve lactors Isomorphlc - to uniform rlght Ideals 01

prime factor rings ot S.

( 11> Let P be a prime Ideal of Sr wlth u-dlm(S/P) = t. Let U be a

uniform rlght Ideal of S/P. Esch of U (t) and S/P embeds In the other, the

col<9rnel hsvlng snnlhl/stor strlctly contslnlng P.

Wa shall usa Inductlon arguments Involving the Krull dimension. k-dlm(M).

of an S-module M. Details may be found In [6]; but It Is almost enough to

know that. for Sand M as In 4.1.

(Kl) k-dlm(S) 18 the supremum of the lengths of descendlng chaln5 of

prime Ideals of S;

(K2) If 0 ... A -+ B ... C l' 0 Is an exact sequence of S-modules.

k-dlm (B) = max (k-dlm (A). k-dlm (C») ;

(KS) 16. Theorem 9. 2 and 18. Lemma 8] If R Is 8 commutatlve

Noetherlan ring of finite Krull dimension d and r Is a flnltely generated

abellan-by-flnlte group of Hirsch number h. then k-dlm( Rr) = h+d.

The next result cont81n5 the crux of the Inductlve step In the pro01 01

Theorem A. Let R be a commutatlve Noetherlan ring and let G ~e a

polycycllc-by-flnlte group. For 8 non-negative Integer n. deflne subgroups of

Go ( RG) as foliows:

G o ( RG) n = <[V]

Go(RG)n- = <lV)

k-dlm(V) < n>.

k-dlmeV) < n>.

PROPOSITION 4.2 Wlth the SbOV9 notstlon. let P be s prime Idesl of RG
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and set n:: l<-dlmCRG/PJ. Then, In Go(RG).

CRG/Pl E GoCRG, F) + Go(RG) n- •

Proof Let Hand N be subgroups of G. wlth N normal. U M 18 a flnltely

generated RH-module wlth 1Ml f! GoCRH. F). then

iM -RH RGl E GoCRG. F) . Hence. In vlew of Theorem 3.2. Inflation from

RCG/NJ- to RG- modules maps Go(RCG/NJ,F) to Go(RG.F). Moreover.

under thls map GoCRCG/NJ)n- 15 80nt to Go(RG)n-. Thus. in provlng the

proposition we may aS5ume that {g E G : (Q-1 J f! P) = 1.

In tho not8tlon of [l7J. set H = nlo (GJ • an orbltally sound normal

subgroup of finite Index In G. We argue by Inductlon on IG : H I. Suppose

first that G = H. or more generally that P n RH = 0 Is a prime Ideal of

RH. Then {g f! G : (g-1 J f! Q) = 1. 80 Q = (0 n RbJRH. by

[17. Theorem Cll. where 11 15 the -FC-subgroup (see [14. §4.1] for

definition) of Hand of G. By [12. Lemma 2. 1]. QRG = (Q n Rb) RG 18

a prime Ideal of RG whlch . Is contalned In P by constructlon. Since

ORG n RH = P n RH = 0, we conclude that QRG = P by lncomparablllty [13.

Theorem 1. 21. Now. If 110 denotes the Cfinite) torsion subgroup of 11. then

11/1:.0 Is free abellan of finite rank and so RI1 15 an Iterated 8kew Laurent

extension of RA.o . The so-called tWisted Grothendleck Theorem [15.

Exerclse followlng Theorem 8. §61. or [20. . Proposition 4. 1 C2) 1 therefore

Implles that Con5eqyently.

[RG/P] = [CRt./O n R6J -RI1 RG] 6 GoCRG. F)

We may therefore a85ume that P n RH = K'2G OX for some prime Ideal

o of RH wlth B = {g E G : OQ = Q} 8 proper subgroup of G. Let

J = (xJ,. ••••• Kr) be a right transversal to B In G. By [12. Theorem 1. 7].

there Is a unlque prime Ideal L of RB wlth L n RH = Q end

where L, L
X,

denotes for I = 1 ..... t. Let e denot9 the
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natural ernbeddlng 01 RG/P In ~(RG/LIRG) a8 rlght RG-modules. wlth

'"
cokernel Y. We claim that

k-dlm (Y) (n. (,)

Let us complete the prooe assuming that (1) 15 true. By definition.

[Y] E Go(RG) n-. and so. setting BI = BXI.

[RG/P) = ~ [(RB,/LI) eRB RG) - [Yl.
4.

By [2. Lemma 4.2]. k-dlm(RBIIL/) = n for 811 I. By Inductlon on

IG : H I . [RB,/L/] e Go (RBI. F) + Go (RB,) n- 10r 811 /. By [18. Lemma 8]

end the first paragraph of the proof.

rar 81t I. Thus (1) shows that [RG/P] 15 In the requlred subgroup of

G o ( AG) . It remalns therefore to prove (1).

For I = 1, ... , t. let "r ~RG/LIRG --. RG/LJRG be the projection

map. Since 01: = OX, c L, n RH ,

o ~ Tr.jo8( ~ Lf.RG n RB)RB.j + P/P) ,- x C RB.j +L.jRG/L.jRG a: RB.j/L.j.
"'~.j

Further, i (L1.RG n RB) 18 the ann1h1lator in RB of Q.j/(P n RB), anO aB

"'~J

such 18 Invariant under conjugatlon by Bj. Hence. X la 8 non-zero two-sided

Ideal of Since 18 a prime Ideal.

k-dlm«RBI/Lj) IX) ( k-dlm(RBIILJ)' by [61. (ar by (K1) 11 we assume G 18

abellan-by-flnlte) . Therefore. Identlfylng RBI/LI wlth RBI + LIRG/LJRG,

< •- n,

a.nd so, by [18, LeJIIna 8],

By [~8, LeDlDa 8) once ~re,

(

(

k-ol.m
RG

( RG/L jRG) = n.

n •

(2)

Since (2) holde for all j = t, ... , ~, (1) 18 proveO.
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Let p be a prime. A finite group 18 p-hypere/ementary If It has the form

<Je) :J P. wlth x an element of order prime to p. and P a p-group. Let

G be 8 finite group. We denote by H the class of fini te groups

are p-hyperelementary for some prime p.-

Brauer-Berman-Wltt Induetlon theorem:-

We need aversion of the

THEOREM 4. S Let R be a commutatlve Noetherlan ring. Let G be 8

finite group. Then G o ( RG. H) = Go(RG) ,

"\

Proo' The theorem Is true when R '15 a fleld by [4. Theorems 21, 6 .and

21. 151 and [19. Corollary 2. 91. uslng the fact [3. Proposition 5. p, 23 and

Proposition 1e.
~-

p..1 :'7'] that every fleld 01 eharaeterlstlc p arlses as the

resldue fleld of some dlserete valuatlon ring of charaeterlstlc 0 Th9 proof

proceeds by Induetion on k-dlm(R). Since 8 flnltely generated RG-module

M has 8 finite serles of submodules 0:::: Mo C ••• c M, c •.• C Mn = M

wlth asch factor M//M'+1 havlng prime snnlhllstor In R. we may assume

that R 15 prime. Let K be the quotient fleld of R,

commutatlve diagram

There 15 a

~ Go((JVpR)G) ~ Go(l~) Go (lCG) --+ 0

~~R

l l l •

r!'J Go((R/pR)G,B) --Ilo Go(RG,B) ----. Go(XG,B) ----. 0,
ChtpeR

In whlch the vertlesl arrows are Ineluslons, and by [19. Theorem 1, 61 the

rows are exact, By the Induetlon hypothesis and the result for flelds the auter

maps are surjectlon5. Hence. so 18 the mlddle map.
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A commutatlvQ Noetherlan ring R 15 regular If every flnltely generated

R-module has 8 finite resolution by prolectlve R-modules. let G be a

finite group. The abelian group wlth generators [Ml. where M Is 8 flnltely

generated RG-module whlch 15 R-prolectlve. end relations glven by short

exact sequences. 18 denoted by GoR (RG) . 11 R 18 regular.

GoR (RG) = Go (AG) [19. Theorem 1. 2], The group GoR (RG) can be glven

a ring structure by setting [MHNI = [M eR NI. [19. Theorem 1. 51. Note that

[RI Is the Identlty element of thls ring.

THEOREM A Let

finite Krull dimension

group w/th Hirsch

subgroup of r,

Go(Rr) IGo(Rr :F)

R be a commutatlve Noethor/an regular Hllbert ring of

d • and let r be a flnlte/y generated abellan-by-flnlte

number h • Let A be 8 maximal Abellan normal

end set G = r/A put 1G I = e . Then

/8 por/adle. wlth exponent dlvldlng ah+d .

Prao' The ring Rr Is Noetherian and Is a finite module over Its centre. [14.

Corollary 10. 2. 8 and proof of lemma 4. 1 . 101. so ws can make use of the

facts end concepts glven at the start of §4.

Step 1. Reductlon to the case where G Is hyper-elementary.

let R( r) be the set of Inverse images In r of the H-groups In

By Theorem 4.3.

G.

Go(RG,B) - Go(RG). (3)

As polnted out above. the hypotheses on Rensure that Go(RGJ 15 a ring

wlth Identlty element. Viewlng Go(RrJ a5 8 Go (RG) -moc:;lule via Inflation and

-eR-·

Go(Rr).Go(RG,B) C Go(Rr,i(r»,

by lemma 3.1. By (3) and (4).

(4)
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Go(Rr) = Go(Rr,ft(r».

It follows from (5) that there 15 a &urjeetlon indueed by Induetlon.

(5 )

'f!A Go(RX)/Go(RX,P) ---. Go(Rr)/Go(Rr,P). (6)
xei( r)

Sinee IXIAI h+d dlvldes ah+d for all X t! 'Rer), (6) shows that WB may

1\
replace r by ans of the groups X In HCr) In provlng the theorem.

Step 2. The Induetlon set-up.

We shall deduee the theorem from the followlng more preelse set of

statements:

Let p be a prime 10e&1. of RI", with

~ w.[RI"/P) E Go(Rr,P).

Since R 15 Hllbert. every flnltely generated Artlnlan Rr-module Is flnltely

generated as an R-module [11. Theorem 31). Thus Theorem 3.2 shows that

( 7: 0) 15 true.

we cla.1.m that

1f m >: 0 anO 1f (7,1.) 18 true for all 1 ... m,

Agaln. Theorem 3.2 allows U5 to 8ssume that m) 0 and that (8;!) 15 true

for all ! < m By Proposition 4. 1 and (K2). Go (Rr) m Is Qenerated by

[M]. where M 15 a uniform rlght Ideal of Rr/P and P ranges over the

set of 811 prime Ideals for whlch k-dtm(Rr/P) I( m. Let M be one such

rlght ideal. of Rr I P. say. Let t = u-dlm (Rr I P) .

therB is an eX8ct sequencB

By Proposition 4. 1 ( 11)

By Proposition 4.1 (11) end (Kl). (K2). k-dlm(X) = I < m.

(9)

Hence. by

(8; I). 8m-~. 00 E Go(Rr. F). By (7;m) and (9). tam-~. [M] E Go(Rr. FL

Thus (8; m) follows from thls. Proposition 5.2 (11). and Step 1.
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Proposition 4. 2 shows that the statements ( 8; 1). 10r

together Imply (7; m). Thus the proof is complete,

= 0 ... , . m-1.

· ~

and let R be a commutatlve

QG denotes the blggest Ideal of

see [121.

55 Uniform dimension of prime fsetors

Our alm here Is to prove Propostion 5. 2. part of which was used in the

proof of Theorem A.

Let H be a subgroup 01 8 group G

ring. LetQ be an Ideal 01 RH. Then

RG Inside QRG. 80 QG = gQG CQRG) g

LEMMA 5. 1 Let R be 8 commutatlve ring. and let G be s

polycycllc-by-tlnlte group conts/nlng a subgroup H of finite Index.

CI) Let P be a prime Idesl of RG and let QJ., •.•• Qr be fhe prime

Idesls of RH minimal aver P n RH.· Then there exIst positive Integers

l1. •••• ,Zr such that u-dlmCRG/P) = EI Z/.u-dlmCRH/O,).

(11) Let Q be a prime Ideal of RH end let P1.' •••• Ps be the primas

of RG minimalover QG. Then there exlst positive Infegers wJ.' •.•• Ws

such that EI w/' u-dlm (RG/PI) = IG: H ,. u-dim (RH/QL

Praof By factoring by P n R In (I) and by Q n R In (11). and then

Invertlng the non-zero elements of R. ws reduce to the ease where R 18 a

fleld. Thus all rings Involved here are. Noetherlan. In partlcular there are

Indeed finite sets 01 primas Iylng over P and Q In (I) and (11)

respecttvely,

(I) Thls slmply expresses the fact that the Incluslon of rings RH c RG

8atls11e5 the addltlvlty prlnciple [21. Corollary 2 and precedlng remarks1.

(11) Put I = QG and V = RG/QRG. Thus V Is an (RH-RG) -blmodule

wlth rlght annihIIator I. end
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RH IV • r;e(RH/Q)f a (RH/Q) (U ,

where T = (x1."'" Xt) 18 8 rlght transversal for H In G. and f denotes

the Image of )( in V. Thus

A . - RG/I E B . - EndRH(V) • MtCRHIQ).

end (11) will follow If we can show that the Ineluslon A S B s8tl5f1es the

addltlvlty prlnelple. By (21. Corollary 21. It sulflees to show that B 15 flnltely

generated a5 a rlght and as 8 left A-module.

For thls. fix 8 normal subgroup N of G wlth NEH and

I G : NI< CD. and 8et Ao = RN/I n RN ~ A. Under the embeddlng

A ~ Mt CRH/Q) • Ao cOHesponds to the subring

D = [
o

o ]. I T e Ag 1
?t

denotes Images In RH/Q. Clearlv the elementary

matrlces (Eil : 1 < I, I < t) generate Mt (A o) as a left end 85 a rlght

D-module; and MtCRH/Q) 18 finltely generated as a left and 88 a rlght

module over M,(A o), slnce thls holds for RH/Q aver A o' Therefore B

is flnltely generated on both sides over Ao •

required.

For any ring 5. set

and hence over A. a5

u(5) supt u-dlm (SIP) I P a prime Ideal 01 5).

a positive Integer or CI). Then. In the situation of Lemma 5. 1. we have

u(RH) ~ u(RG) ~ lG: H). u(RH)

To derlve thls from Lemma 5. 1 one uses the fact that each prime Ideal of RH

15 minimalover P n RH for a sultable prime Ideal P 01 RG. and each

prime Ideal 01 RG 18 minimalover QG for same prime Q of RH. The

details are falrly routine and are left to the reader.
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Wo can now 6tet9 and provo tha mein resul\ of thls 69ction,

PROPOSITION 5.2 Let N be 8 normBI :Jubgroup 0' finite Index 8 In B

polycycllc -by -'1n Ire group r. Let R be B commutatlve ring. end let P be

B prime Ides' 0' Rf. Let p be thg chBracterlstlc 0' RIP n R. Let Q be

B prime Idesl or AN mInImal ovsr P n RN , wlth P n RN = ...,,'ir oy ·

Thsn

CI) u-dim CRN/O) I u-dlm CRf/P).

ClI)
,..

Let C denote the 81aebralc closure 0' the centre C 0' the simple

Art/nlen ring 0' quotlents F of RNIQ. Let CN denate 'the subrlna of

C eC F Qenerated by e
p-soluble, then

end RNIQ • If either pla or f/N is

d ' I ' A Au- 1m(Rr/p) a. u-dim(CN/Q)

lying over the zero
A
CN

A

where Q is a suitable prime ideal of

ideal of RN/Q.

In particular if N is Abeli?n, and either pla or f/N
is p-soluble, then

u-dim (Rf /P) I a

Proo' As In Lemma 5.1 we reduce at ooca to the case where R 15 8 fleld.

Sy [17. Lemma 51 WB have P n RN = ..."Qr 0""'· . Since

u-dlm CRNIQ) = u-dlm CRN/QYJ tor all Y f! r. (I) Is 8 special ease of

La m m 8 5, 1 ( l) . •

C11) We argue by Inductlon on 8. For 8 = ,. the claim Is that

u-dlm(Rr/P) I u-dlm(CrIP) for some prime Ideal of Cr wlth

P n Rr = P . B t 1 such ~P.u. or Bny RrlP E cr/P 15 a centrallzlng

extension of prime Noetherlan rings. so the assertion follows from [21.

Theorem 31. tor example. Thus wo may 8ssume th8t (Ill Is true tor 811

proper subgroups H ot r wlth N ~ H.
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Let M be a proper normal 8ubgroup of r wlth N E M and such that

P n RM 18 n2! prIme. Then P c p 1
r for some prime Ideal P 1 of RM l'

where M =M1. c r. by [12. Theorem 1.71. By Lemma 5. l(U).

u-dlmCRr/P) I u-dlmCRM~/PJ.J. IG:M.l1.

80 the Inductlve hypothesis applled to M.l ylelds the result. (Note that the

prlmes of AN minimalover P.l n RN are minimalover P n RN. and

hence r-conJugate to Q.) Thus we may assume that. 10r 811 normal

subgr~ups M 01 r wlth N ~ M. P n RM Is prime.

In partlcular. Q = P n RN Is prime. Standard arguments along the

IInes of (12. Lemma 1. 5] show that the set C 01 regular elements of RN/Q

'orms an Ore set of regular elements In Rr/QRr end In Rr/p. By

10081181ng 8t C we obtaln the cla5slc81 rings of Quotients of the rings under

consideretlon:

A (RN/QJ C-J, = Q (RN/QJ E B : c CRr/P) C-.l = Q CRr/P)

1 /
CRr/QRr)c-J, = QCRr/QRrJ

(Here we are abuslng notation by wrltlng C for Its image In Rr/QRr end

Rr/P.) Note that B has the structure of a crossed product over A.

B ll! A -G wlth G = r/N. Let rinn be the normal subgroup of r

conslsting 0' those elements actlng by Inner automorphisms on the simple

Artinlan ring A. end set G/nn = r/nnlN ~ G. By our assumptIon •

P n Rr'nn Is prime. Let denote Images modulo ORr. Thus

T : = CP n Rrt nn)C-J, Is a prime Ideal of A-G'nn ~ B, and. by [13.

Theorem 2. 5 (I) l. P': = PC- ~ = r· B. ' Llfted back to Rr, thls ylelds

p = CP n Rr/nn) Rr, end so If rinn '# r the Inductlon hypothesis end

Lemma 5. 1(11) agaln glve the result. We may therefore 8ssume that r = rinn.

Let E denote the centrallser of A in B. end let C be the oentre of
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A. Then E aI CtG 18 a twisted group algebra 01 G over the fleld C.

-wlth B ~ A ec E. and moreover. P' = (p' n EJB: S8e [13. §2]' Let C

denote the algebralc closure 01 C and choose 8 prime Ideal p. of

~ ::::: e .C E a etG wlth p. n E = P' n E. (Slmply take p. to be

maximal among Ideals 01 E wlth n E = P' n E. > Then

where

via.

( 1>

( 2)

by Lemma 5.3 below.

S : = B/P' iI A.C (E/P' n EJ c A.C (E/P-)
....

I! Mv(A.C C).

It follows from the addltlvlty prlnclple [21. Lemma 1] that the compositlon

length of S dlvldes u-dlm (Mv(A .C C)): that is. that

u-dlm (Rr/P) v. u-dlm(A .C e). ( 3>

Now A.C e Is a simple ring. and the map from RN to A.C e
ylelds 8 map from fN to A.C e whose kernel 0 Is 8 prime Ideal of

eH wlth a n RN = Q and u-dlrn<eNltj> = u-dlm(A .c e> Wlth (2)

and (3). thls completes the proof of the proposition. except that we stili have

to establlsh

LEMMA 5. 3 . Let G be 8 finite group of order a, let K be an

a/gebralcally closed fleld of characterlstlc p , be a twisted

group algebra of G over K.

(I) P ß 8

Assume that e/ther

or (11) G Is p-solub/e.

Then tor 8ny sImple KtG-modu/e V, dlmK (V) I 8.

Prao' ease (I) Is essentl811y covered by (4. Proposition 11. 441. where we

can replace the hypothesis that char K = 0 by conditlon (I). by uslng the
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generallzed form of Ito's Theorem [7. Satz V. 12. 11] at the approprlate point In

the proof.

For (11). note that there is a finite central extension H of G such that

V 18 a. simple KH-module (4. Theorem 11 . 40 (1)]. Since H Is also

p-soluble. the Fong-Swan-Rukolalne theorem (4. Theorem 22.1] en8ures that

V can be ·lIfted to characterlstic zero·. Hence. by Ito's theorem [4.

Theorem 11. 33]. d ImK (V) dlvldes IH/Z (H) I . (where Z (H) denotes the

centre of H). Thus. dlmK (V) dlvldes IGI. as requlred.

Lemma 5.3. (end so also Proposition 5.2 (11) Is false wlthout the

hypothesis (I) or (il)., aven for ordlnary group algebras.. For example. If K

Is algebralcally closed with char K =7 I then G=SL (2.7) has a 5-dirrensional

simple module ovar K. and 5 l 336 = IG I (cf. ,[8. p. 41». Also

.... A

CN/O cannot In general be replaced by RN/O In the situation of Proposition

~,
'j
1,

5.2 (11). An expllclt counterexample 18 a8 folIows. Take G = Oe x C 3 •

the dlrect product of the quaternion group of order 8 and the cycllc group of

order 3. and let R = IR be the .fleld of real numbers.

as multlpllcattve subgroups of the quaternions H

Vlewlng Oe and

and the complex

numbers respectlvely. we obtaln surjectlons end

\&I : IRfGl - .!::! 8m c I! M~(C) • Thus. wlth Q = Ker 4>. P = Kar \&I. end

N = Oe. the hypotheses 01 Proposition 5.2 (11) are satlslled. yet

u-dlm(IR[Gl/P) = 2 does not dlvlde (G: Nl. u-dlm(IRlN]/O) = 3 .
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