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In this paper we give an upper bound for the number of integral points on an elliptic curve E over Fq[T ] in terms of its

conductor N and q. We proceed by applying the lower bounds for the canonical height that are analogous to those

given by Silverman and extend the technique developed by Helfgott-Venkatesh to express the number of integral points

on E in terms of its algebraic rank. We also use the sphere packing results to optimize the size of an implied constant.

In the end we use partial Birch Swinnerton-Dyer conjecture that is known to be true over function fields to bound the

algebraic rank by the analytic one and apply the explicit formula for the analytic rank of E.

1 Introduction

Let q be a prime power and K = Fq[T ] be the field of polynomials in formal variable T with coefficients in a
finite field k = Fq of order p. Our main goal here is to prove the following theorem.

Theorem 1.1. Let E be an elliptic curve over Fq[T ] of a conductor N . Assume that the integral points on E
are on minimal model. Then the number of integral points on E satisfies

#E(Fq[T ]) ≤ exp

(
c

degNE
log degNE

)
,

where c is an absolute constant and NE is the degree of the conductor of E.

Notice, that we work in the context where the analogue of Siegel’s theorem is true (it is proven in
[19]). In particular, if E is an ellipic curve over Fq[T ] parametrized by a, b ∈ Fq, then E(Fq(T )) = E(Fq) and
#E(Fq[T ]) ≤ q + 1 + 2

√
q. For a more general function field Fq(C) with ring of integers A we can have E(A)

infinite. Notice that if E is constant, i.e. defined over Fq, then E(Fq(T )) = E(Fq), therefore Siegel theorem holds
in this case too. For the case of E being isotrivial (not defined over Fq and supersingular) Siegel theorem may
be false.

The tools that allow us to proceed are that the necessary part of the famous Birch and Swinnerton-Dyer
conjecture holds in the function field context, as well as the bounds for the analytic rank over a function field
are known, thanks to the explicit formula given by Brumer in [3]. We also extend the technique of Helfgott (see
[7]) to obtain an upper bound for the number of integral points on E in terms of its algebraic rank. However,
this brings us to results that do depend on the curve. To get rid of this dependence we have to work with the
estimation of the sort #E(Fq[T ])� crankE+m more carefully(here m stands for the number of multiplicative
places). Namely, we extend the method developed by Helfgott-Venkatesh in [8] based on the ideas of Silverman
[16]. We optimize the size of c by applying sphere packing results of Kabatiansky and Levenshtein [11].

The previously known bounds of such a type (see Theorem 1 of [15]) give us #E(Z ∩ I2)� |I| 13+ε, where we
are restricted to counting integral points lying in a small box of size |I|, where I is an ’interval’ of polynomials

defined in [15]. This result is analogous to Bombieri-Pila theorem [2], that gives the upper bound � N
1
d+ε,

where d is the degree of a curve and is equal to 3 in the case of elliptic curves, however the method of getting it
is different and mainly based on the ideas of Helfgott-Venkatesh [8] and the interpolation part used by Heath-
Brown [6]. Here we take the approach proposed by Helfgott in [8] and further developed by Helfgott-Venkatesh
in [8], but it turns out that this way of doing things is closely related to the one used in [2].

The paper is organized as follows. In Section 2 we review some basic definitions, that are going to be used
throughout the paper as well as some important facts (see (5) and (6), also (7)) that are crucial in our proof.
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Then we prove several standard results regarding canonical height on an elliptic curve E. Based on this we show
how to get a cheap, but useless bound for the number of points in E(Fq[T ]) of a bounded height. We introduce
local heights λv(·) to get rid of this problem and prove lower bounds for λv(·) under some ’good’ slicing, that
will bring us to another bound for the canonical height, namely Lemma 3.5, that is proved in the spirit of [8,
Proposition 3.4]. We also need a lower bound for the canonical height on E due to Silverman, see [16].

Further, in Section 3 we prove the bound for the number of S-integral points on E in terms of algebraic rank
of E using Lemmas from previous sections together with sphere packing results by Kabatiansky and Levenstein
[11]. Finally, in Section 5 we prove the main result by taking an advantage of working in function fields, where
Birch and Swinnerton-Dyer conjecture partly holds (see (5)) and apply the explicit formula for an analytic rank,
given in the expression (6) by Brumer.

2 Auxiliary results

We briefly review some tools that we use during the proof. For more detailed survey see the work of Ulmer
[18]. Let k = Fq be the finite field of cardinality q, with its characteristics char(k) = p. We write K for the
function field of a smooth, projective absolutely irreducible curve C over k. In what follows we consider C = P1,
thus K = Fq[T ] is the field of polynomials in a formal variable T with coefficients lying in k. For X ∈ K we
denote by |X| its norm: |X| = qdegX . We recall that an elliptic curve over K is a smooth, projective, absolutely
irreducible algebraic curve of genus 1 over K with a K-rational point O that plays the role of identity element
in the group E(K) of K-rational points lying on E (Mordell-Weil group of E). Lang and Néron generalized the
result of Mordell-Weil and proved that for a funstion field K E(K) is a finitely generated abelian group. As a
consequence of this result the torsion group E(K)tors (i.e. the group of K-points on E of finite order) is finite
and isomorphic to a group of the form

Z/mZ× Z/nZ,

where m divides n and p does not divide m. Define an algebraic rank(E) of an elliptic curve E/K as the number
of independent points of infinite order in E(K), so to say the number of copies of Z in E(K).

An equivalent definition of an elliptic curve E/K can be given due to the Riemann-Roch theorem: an elliptic
curve E/K can always be described as a projective plane curve of degree 3 with a (homogeneous) Weierstrass
equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, (1)

where all ai belong to K. As usually, the origin is the point at infinity, namely O = [0 : 1 : 0]. The condition of
smoothness of E is equivalent to the fact that its discriminant ∆ is not zero. The equation above can be also
given in an affine form by the change of variables (x, y)→ (x/z, y/z)

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2)

Let v be an equivalence class of valuations of K. Recall that a valuation on a field K is a generalization of
the p-adic norm. Concretely, it is a function | · |v from a field K to the real numbers R such that the following
properties hold for all x, y ∈ K:

◦ |x|v ≥ 0, |x| = 0 if and only if x = 0;
◦ |xy|v = |x|v · |y|v;
◦ |x|v ≤ 1 implies |1 + x|v ≤ C for some constant C ≥ 1 independent of x.

Notice that if a valuation | · |v satisfies the last condition above with C = 2, then it satisfies the triangle inequality

|x+ y|v ≤ |x|v + |y|v

for all x, y ∈ K and such a valuation is called archimedean. If the condition is satisfied with C = 1, then | · |v
satisfies the stronger ultrametric inequality:

|x+ y|v ≤ max(|x|v, |y|v)

for all x, y ∈ K and we call this valuation non-archimedean. Here we work only with non-archimedean valuations.
For every v denote by O(v) the ring of rational functions on C regular at v. In our case (C = P1) the finite

places correspond to monic irreducible polynomials f ∈ K = Fq[T ]. If such a place v corresponds to f , then

O(v) = {g/h. s.t. g, h ∈ K,deg(g) < deg(h)}.
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Assume that the degree of v =∞ is 1. Write Mv ⊂ O(v) for the maximal ideal (its elements are the functions

vanishing at v) and κv = O(v)/Mv for the residue field at v. Set deg(v) = [κv : k], qv = qdeg(v) for the norm of
v. Choose a minimal integral model for E in the form (2). Let āi ∈ κv be the reductions of the coefficients at v
and define the reduced curve Ev by

Ev : y2 + ā1xy + ā3y = x3 + ā2x
2 + ā4x+ ā6 (3)

over the residue field κv. We say that Ev has

◦ a good reduction at v if Ev defines an elliptic curve over κv (v - ∆),
◦ a multiplicative (nodal) reduction at v if Ev has a node at v. If the tangent lines at the node are rational

over the residue field κv, then we call this type of reduction split multiplicative. Otherwise non-split
multiplicative.
◦ an additive (cuspidal) reduction at v if Ev has a cusp at v.

Notice that terms multiplicative and additive are used here to emphasize that the non-singular part of the
reduced curve defined by E∗v = Ev/{singular point} is isomorphic to Gm (or Gm[·] for the non-split case) and
Ga respectively (here Gm stands for the multiplicative group, Gm[·] for the twisted multiplicative group and Ga

for the additive group). Elliptic curves, Ga, Gm and Gm[·] over K are the only irreducible algebraic curves over
K having group structures given by regular maps.

The reduced curve Ev may be singular, but yet the set of nonsingular points of Ẽv(Kv) forms a group.
Moreover E(K) admits the following filtration of abelian groups

E1(K) ⊂ E0(K) ⊂ E(K),

where E0(K) = {P ∈ E(K) : Pv ∈ Ẽv(Kv)} and E1(K) = {P ∈ E(K) : Pv = Ov} with Pv taken to be the image
of P ∈ E(K) under the reduction map E(K)→ Ẽv(Kv).

A model for E given by Ev with its coefficients āi ∈ O(v) is called integral at v. The minimal integral model
at v is the model Ev with the valuation of the discriminant ∆ of E being minimal. The local exponent nv of
the conductor at v is given by

nv =


0, if E has good reduction at v,

1, if E has multiplicative reduction at v,

2 + δv, if E has additive reduction at v,

where δv is the wild ramification

δv =

{
0, if p > 3,

> 0, if p = 2, 3.

Thus nv has the information about the ramification in the field extensions generated by the points of finite
order in the group law of the elliptic curve E. The conductor of E/K is given by a product of prime ideals and
associated exponents nv. The (global) conductor of E is a divisor N =

∑
v nv[v]. The degree of the conductor

is degN =
∑

v nv deg v. N is an effective divisor on P1 which is divisible only by the places v of bad reduction
of E. The L-function of E is defined be the Euler product

L(E, s) =

good∏
v-N

(
1− av

qsv
+

qv
qv2s

)−1
×

mult∏
v|N

(
1− 1

qsv

)−1
(4)

where ”good” stands for ”E has a good reduction at v”, ”mult” – for the case of either split multiplicative or
non split multiplicative reduction at v and, finally, av is an integer defined as

av =


qv + 1−#Ev(kv), if E has good reduction at v,

±1, if E has multiplicative reduction at v,

0, if E has additive reduction at v.

(av = 1 for the split multiplicative reduction and to −1 for the non split multiplicative reduction). Due to the
Hasse bound on av the first product of (4) converges absolutely for Re s > 3/2 and admits a meromorphic
continuation on C. As usually we define an analytic rank of E/K as the order of vanishing of its L-function at
s = 1

rankan(E) = ords=1 L(E, s).

We recall that an elliptic curve E/K is called constant if it can be defined by a Weierstrass equation (2) with
coefficients belong to k. It is called non-constant if it is not constant. Also E/K is called isotrivial if it becomes
constant over some finite extension of K, otherwise – non-isotrivial.
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Remark 1. In the non-constant case of E Theorem 9.3 of [18] gives us an upper bound of a type rankanE 6
N .

The famous conjecture of Birch and Swinnerton-Dyer connects the analytic behaviour of L-functions of
elliptic curves with the group of K-rational points on E/K, in particular (among some other relations) it
predicts that

rankan(E)
?
= rank(E).

While the original conjecture remains unsolved, much more is known in this context for the case of function
fields.

Theorem (Tate [17], Milne [12]). Let E be an elliptic curve over a function field K. Then

rankE ≤ rankanE. (5)

The usual technique for obtaining upper bounds of an analytic rank is using so-called explicit formula. We
refer here to the result given by [3].

Theorem (Brumer [3]). Let E be an elliptic curve over Fq[T ]. Then its analytic rank is bounded by

rankanE ≤
(bE − 4) log q

2 log bE
+O

(
nE log2 q
√
q log2 bE

)
, (6)

where bE is the degree of L-function as a polynomial in q−s.

For the case of Fq[T ] we have
bE = nE − 4,

where nE = degN and N is the conductor of an elliptic curve E/K. We note that if E has a additive reductions
and m multiplicative reductions, then

nE ≤ 2a+m.

This result is interesting if and only if nE is rather big, since the trivial bound for the rank is nE + 4gX − 4.
We thus have

rankanE ≤
(degN − 8) log q

2 log degN
+O

(
degN log2 q
√
q log2 degN

)
. (7)

The easy bound is
rankE ≤ rankanE ≤ bE = nE − 4.

If E is constant, then rankE = 0.

3 Heights and their properties

Here we investigate some properties of height function on an elliptic curve E over a field K = Fq[T ]. The crucial

fact here is that |ĥ− 1
2hx| and |ĥE − 1

3hy| are bounded on the set of all points of E. This allows us to give a

lower bound for ĥE(P ) as well as to estimate the number of points with ĥE < c2 under condition that E does

not have any non torsion points P with ĥE(P ) > c1. However, this path leads us to a problem that the bound
would depend on the curve. To avoid this difficulty we will use local heights as in [4] and establish the bound
λv(P −Q) ≥ min(λv(P ), λv(Q)) that fails only in the case of bad reduction with which we will deal separately.
We subdivide E(Kv) into small enough number of slices, so that λv(P −Q) ≥ min(λv(P ), λv(Q)) still holds true
on these slices with P , Q belong to the same slice (for more details see Lemma 3.3 and Lemma 3.4). Using that
we prove that integral points we wish to count are far apart from each other in the Mordell-Weil lattice. Recall
that any elliptic curve over K can be written in the following form

E : y2 = f(x), (8)

where f(x) ∈ K is a cubic polynomial defined by Weierstrass equation. We say that d ∈ K is square free if it
has no factor of the form g2 with g ∈ K and deg g ≥ 1. For any d ∈ K square free define a quadratic twist of E
as

Ed : dy2 = f(x). (9)
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Note that we restrict to the case of square free d, since if d has a squared factor, then by a change of variables
in (9) one can find a curve E∗d isomorphic to Ed. We write ĥE for the canonical height on an elliptic curve E,
and hx, hy for the height on E with respect to x and y:

ĥE((x, y)) = lim
n→∞

1

n2
hx([n](x, y)), (10)

where we use the notation [n]P = P + . . .+ P︸ ︷︷ ︸
n times

and

hx((x, y)) =

{
0, if P = O,
logqH(x), otherwise,

hy((x, y)) =

{
0, if P = O,
logqH(y), otherwise.

For any x ∈ K define its norm by |x| = qdeg x. We notice that ĥE is defined on all points of E(K̄) and ĥ is a
positive definite quadratic form on E(K̄) as well as on E(K)(in the sense that it maps non-torsion elements to
positive numbers).

For x = x0/x1 with x0, x1 ∈ K not having as polynomials any common factor other than a constant
polynomial in K (we encrypt this fact by (x0, x1)K = 1), one can write H(x) = max(|x0|, |x1|). Let L be any
algebraic field extension of Fq[T ]. Define H(y) by

H(y) = (HL(y))[L:K]−1

, HL(y) =
∏
w

max(|y|nw
w , 1),

where y ∈ L, the product is taken over all places w of L, nw stands for the degree of quotient field Lw/Kw[T ].
For example, if y = y0

y1
with y0, y1 ∈ K, then y ∈ Fq(T ) and for L = Fq(T ) H(y) = HL(y) = max(|y0|, |y1|). We

list some important properties of the canonical height in the following lemma.

Lemma 3.1. Let f(x) ∈ K = Fq[T ] be a monic polynomial of non-zero discriminant in (8). Let also d be a
square-free polynomial d ∈ K and P = (x, y) be a K-point on the quadratic twist Ed of E. Let P ′ = (x, d1/2y)
be a point on E1 = E associated to P . Then

1. ĥEd(P ) = ĥE(P ′), where the canonical heights are defined on Ed and E, respectively and, of course,
deg f = 3.

2. The height hy (y 6= 0) is bounded on E, namely hy(P ′) ≥ 3
8 deg d.

3. If deg f = 3, then ĥEd(P ) ≥ 1
8 deg d+ cf , where cf is a constant depending only on f .

Proof . 1. We do not put any change in the x-coordinate, so clearly hx(P ) = hx(P ′). For the sake of simplicity
we consider the case of char k 6= 2, 3. The proof goes analogously in the characteristics 2 and 3. Under this
assumption we can write an equation of E in so-called short Weierstrass form (see, for example, Theorem 2.1
in [13])

E : y2 = x3 + ax+ b, a, b ∈ K. (11)

Then the duplication law on E is given by

[2]P = P + P =

(
(3x2 + a)2 − 8xy2

4y2
,
Fa,b(x)

(2y)3

)
, (12)

where Fa,b(x) = x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2. The short Weierstrass equation for the twisted
curve Ed is given by the change of variables (x, y)→ (dx, d2y)

Ed : y2 = x3 + ad2x+ bd3.

Write X(P ) and Y (P ) for the coordinate functions of P . Then

X([2]P ′) =
(3x2 + a)2 − 8dxy2

4dy2
and X([2]P ) =

(3x2 + a)2 − 8dxy2

4y2
.
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Thus X([2]P ′) = X((P + P )′). Further,

Y ([2]P ) =
Fa,b(x)

(2y)3
and Y ([2]P ′) =

Fa,b(x)

d
3
2 (2y)3

,

which shows that Y ([2]P ′) = Y ((P + P )′). We conclude that (P + P )′ = P ′ + P ′. Notice that here the addition
is made on Ed on the left hand side and on E on the right hand side. Iterating this and using (10) we get

ĥ(P ) =
1

2
lim
n→∞

hx([2n]P )

22n
=

1

2
lim
n→∞

hx([2n]P ′)

22n
= ĥ(P ′).

2. Write y = y0
y1

for y0, y1 ∈ K, such that they do not have any common factor g ∈ K of a positive degree. For

a, b ∈ K we denote by 〈a, b〉 = 〈a, b〉K the biggest common factor (in the sense that there is no other polynomial
g ∈ K of a bigger degree, such that g is a factor of both a and b) of polynomials a, b. We have 〈y0, y1〉K = 1 and
we call such polynomials coprime. If g is a monic irreducible polynomial, such that g is a factor of 〈d, y21〉, then
g2 can not be a factor of 〈d, y21〉 (by the fact that d is a square free polynomial), but it is a factor of y1. Hence,
if g is not a factor of 〈d, y21〉, then write

〈d, y21〉 =
dy21
{d, y21}

,

where {d, y21} is a minimal polynomial that has both d and y21 as factors. Then using the fact that y0 and y1 are
taken to be coprime we conclude that g has a power −1 as a factor of dy2 = dy0y

−2
1 = d2y20〈d, y21〉−1{d, y21}−1.

Recall that P lies on our curve E, so dy2 = f(x) and if g has a non-negative degree as a factor of x, then it also
has a non-negative degree as a factor of dy2. But if g has a negative degree as a factor of x, then its degree in
dy2 drops to ≤ −3 leaving us with a contradiction. Therefore we conclude that |y1| ≥ 〈d, y21〉2. Since y ∈ K we
can write by the definition of H(y) and considering the Euclidean norm

H(y) = max
(
|y0||d−1〈d, y21〉|−

1
2 , |y1||〈d, y21〉|−

1
2

)
≥ max

(
|y0||d−1〈d, y21〉|−

1
2 , |〈d, y21〉|

3
2

)
≥ |d| 38 ,

where we used the fact that max gets its minimal value when |〈d, y21〉| = |d|
1
4 . Finally, hy(P ) = logH(P ) ≥

3
8 log qdeg d = 3

8 deg d.

3. It is a simple consequence of 1 and 2. If P ′ is a point on E = E1, then, by 1 ĥEd(P ) = ĥE(P ′). The

difference |ĥE − hEx | is bounded on E, thus by application of second part of 3.1 the result follows.

Corollary 3.2. Let E be an elliptic curve over K = Fq[T ]. If there are no non-torsion points P ∈ E(K) of a

canonical height ĥ(P ) > c1, then there are at most

O

((
1 + 2

√
c2
c1

)rankE
)

points in E(K) of a canonical height < c2.

Proof . Let’s take our canonical height to the square of the Euclidean norm. There is one to one correspondence
f : KrankE → KrankE such that ĥE(P) = |f(P)|2 for all vectors P ∈ KrankE of the length rankE with coordinates

in K. Since ĥE(P ) > c1 for all non-zero P ∈ K, then we are equipped by f(KrankE) with a lattice L, such that

for every element l ∈ L different from 0 we have |l| ≥ c
1
2
1 . For every point l ∈ L draw a sphere Spl centred at l of

the radius 1
2c

1
2
1 , so that they do not overlap. Each of the spheres Spl is contained in the bigger one Sp with the

radius c
1
2
2 + 1

2c
1
2
1 centred at the origin. By bounding the total volume of all spheres by vol(Sp) ≤ (c

1
2
2 + 1

2c
1
2
1 )rankE

we end the proof.

The implied constants c1, c2 do not have any dependency on the twist, but depend on the curve. This would
bring us to a problem once we want to bound the canonical height in terms of naive height (namely, we want
something of the sort h(P ) ≤ c3, where h(P ) is the naive height and c3 is an absolute constant), because then

the constant inside big O will change to (1 + 2
√
c3/c1)rankE , where c1 depends only on the curve, whilst c3

depends on both the curve and c2 (say, c2 = c3 +OE(1)). To avoid this difficulty we have to exclude the hidden
dependency by the method proposed in [8].
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Recall that κv is the residue field at v and dv = deg(v) = [κv : k]. Let Mk be the set of places v on K. For
each place v ∈ K, there exists a natural local height function λv such that the canonical height on E can be
given in terms of λv

ĥE(P ) =
1

[K : Q]

∑
v∈MK

dvλv(P ).

We say that an elliptic curve E over a non-archimedean local field K has potentially good reduction if it has
a model with good reduction in some extension of K. Similarly, E has potentially multiplicative reduction if it
does not have potentially good reduction.

Lemma 3.3. Let E be an elliptic curve over a non-archimedean local field Kv with potentially good reduction.
Let P,Q ∈ E(Kv) be two distinct points. Then

λv(P −Q) ≥ min(λv(P ), λv(Q)).

Proof . Consider an extension Lw of Kv on which E has good reduction. Choose a Weierstrass equation for E
over Lw such that v(∆) = 0. Then by [4, Proposition 2] we find that

λv(P ) = λw(P ) =
1

2
max(log |x(P )|w, 0).

Since v is non-archimedean, then |x+ y|v ≤ max(|x|v, |y|v) and the claim follows.

The following lemma is [8, Lemma 3.2] and the proof is completely analogous.

Lemma 3.4. Let E be an elliptic curve over a non-archimedean local field Kv with potentially multiplicative
reduction. Then for any ε > 0 small enough, there is a subdivision

E(Kv) = Wv,0 ∪Wv,1 ∪ . . . ∪Wv,dv � | log ε|,

such that for any two distinct points P,Q ∈Wv,0 we have

λv(P −Q) ≥ min(λv(P ), λv(Q)), λv(P1), λv(P2) ≥ 0,

and for any two distinct points P,Q ∈Wv,j , where 1 ≤ j ≤ dv we have

λv(P −Q) ≥ (1− ε) max(λv(P ), λv(Q)),

λv(P −Q) ≥ (1− 2ε) max(λv(P ), λv(Q)),

where the implied constant is absolute.

Now we have to adapt [8, Proposition 3.4], that will serve us for as a bound for the canonical height that
does not depend on the curve any longer. Here we assume that our two points are of the same reduction as well
as that they fall into the same W -class, so we can apply Lemma 3.4.

Since we are working in K = Fq[T ], we don’t have any archimedean valuations and thus, the proof can be
significantly simplified.

Lemma 3.5. Let E be an elliptic curve over K. Let S be a finite set of places of K = Fq[T ], that includes all
irreducible divisors of the discriminant ∆ of E. Let P1, P2 be two distinct integral points on E that belong to
the same set Wv,i for any place v among the ones with potentially multiplicative reduction. Suppose that∑

v∈T

dv|λv(P1)− λv(P2)| ≤ ε max
j=1,2

∑
v∈T

dvλv(Pj),

where ε > 0 sufficiently small and
T = {v ∈ S : λv(P1), λv(P2) ≥ 0}.

Assume that P1 and P2 have the same reduction modulo I, where I is any ideal not divisible by irreducible
elements of S. Then

ĥ(P1 − P2) ≥ (1− 2ε) max(ĥ(P1), ĥ(P2)) +
logNI

[K : L]
.
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Proof . If v is a finite place of good reduction, then λv(P ) ≥ 0. Recall that S contains all places that divide the
discriminant ∆ of E. Then by definition of a canonical height through local heights we have

ĥ(P1 − P2) ≥
∑
v∈S

dvλv(P1 − P2) +
∑
v/∈S

dvλv(P1 − P2)

=
∑
v∈S

dvλv(P1 − P2) +
∑

v finite
v(I)>0

dvλv(P1 − P2).

We now subdivide our set S as S = T ∪ S/T , where T is defined in the statement of the lemma. Let us consider
two differences

σ1 =
∑
v∈T

dvλv(P1 − P2)− (1− ε)
∑
v∈T

dv min(λv(P1), λv(P2)),

σ2 =
∑
v∈S/T

dvλv(P1 − P2)− (1− 2ε) max
j=1,2

∑
v∈S/T

dvλv(Pj).

The goal now is to show that these two quantities σ1, σ2 ≥ 0. Once we are done it remains to consider only finite
places v, such that v(I) > 0. We use the following notations

∑good
,
∑0

,
∑j

denote that P1, P2 are of potentially
good reduction, potentially multiplicative reduction and fall into Wv,0, potentially multiplicative reduction and
fall into Wv,j with j > 0 respectively. By Lemma 3.3 and Lemma 3.4 we have

σ1 ≥
good,0∑
v∈T

dv min
j=1,2

λv(Pj) + (1− ε)
j∑

v∈T

dv max
j=1,2

λv(Pj)− (1− ε)
∑
v∈T

dv min
j=1,2

λv(Pj)

= ε
∑
v∈T

dv min
j=1,2

λv(Pj)− ε
j∑

v∈T

dv max
j=1,2

λv(Pj) +

j∑
v∈T

dv
(

max
j=1,2

λv(Pj)− min
j=1,2

λv(Pj)
)

≥ ε
∑
v∈T

dv min
j=1,2

λv(Pj)− ε
j∑

v∈T

dv max
j=1,2

λv(Pj)

= ε

good,0∑
v∈T

dv min
j=1,2

λv(Pj) + ε

j∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)

= ε

good,0∑
v∈T

dv min
j=1,2

λv(Pj)− ε
good,0∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)

+ ε
∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)

= ε

good,0∑
v∈T

dv max
j=1,2

λv(Pj) + ε
∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)
.

Now we apply the assumption of our lemma and get

σ1 ≥ ε
good,0∑
v∈T

dv max
j=1,2

λv(Pj)− ε2
∑
v∈T

dv max
j=1,2

λv(Pj)

= (ε− ε2)

good,0∑
v∈T

dv max
j=1,2

λv(Pj)− ε2
j∑

v∈T

dv max
j=1,2

λv(Pj) ≥ 0
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by choosing ε small enough. Applying the same condition again we get∑
v∈T

dvλv(P1 − P2) ≥ (1− ε)
∑
v∈T

dv max
j=1,2

λv(Pj)

+ (1− ε)
∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)

≥ (1− ε)
∑
v∈T

dv max
j=1,2

λv(Pj) +
∑
v∈T

dv
(

min
j=1,2

λv(Pj)− max
j=1,2

λv(Pj)
)

≥ (1− ε)
∑
v∈T

dv max
j=1,2

λv(Pj)− ε
∑
v∈T

dv max
j=1,2

λv(Pj)

≥ (1− 2ε)
∑
v∈T

dv max
j=1,2

λv(Pj).

Similarly for σ2

σ2 =

good∑
v∈S/T

dv
(

min
j=1,2

λv(Pj)− (1− 2ε) max
j=1,2

λv(Pj)
)
> 0

with ε being small enough. Combining estimates for σ1, σ2 and using the fact that∑
v∈T

dv max
j=1,2

λv(Pj) ≥ max
j=1,2

∑
v∈T

dvλv(Pj)

one can see that∑
v∈S

dvλv(P1 − P2) ≥ (1− 2ε)
∑
v∈T

dv max
j=1,2

λv(Pj) + (1− 2ε) max
j=1,2

∑
v∈S/T

dvλv(Pj)

≥ (1− 2ε) max
j=1,2

∑
v∈S

dvλv(Pj).

Since S contains all places that do divide the discriminant, then we have

λv(P ) =
1

2
log+(|x(P )|v) = 0, for v /∈ S.

Then
ĥK(P1 − P2) ≥ (1− 2ε) max

j=1,2
ĥK(Pj) +

∑
v finite
v(I)>0

dvλv(P1 − P2).

It remains to consider only finite places v, such that v(I) > 0. Let pv be the corresponding prime ideal in OK
with its multiplicity nv in I. By reduction modulo pnv

v our point P1 − P2 becomes an origin O. Then

v(x(P1 − P2)) ≤ −2nv

and
λv(P1 − P2) ≥ nv

ev
log pv,

where ev is the ramification degree of Kv and pv is the rational irreducible element under v. Thus∑
v finite
v(I)>0

dvλv(P1 − P2) = logNI.

We are going to exploit Lemma 3.5 to give an upper bound on the number of S-integral points. In order to
get a good constant C, that appears in the main result of this paper we are going to apply sphere packings. We
first subdivide the set of integer points on E into ”good slices” and then apply sphere packing bounds to each
part separately. Here we use the remarkable result of Kabatiansky and Levenstein (see, for example, [11]).
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Lemma 3.6. [Kabatiansky-Levenstein [11]] Let A(n, θ) be the maximal number of points that can be arranged
on the unit sphere of Rn such that the angle between P1, O and P2 for any two P1, P2 of them is no smaller
than θ. Then for 0 < θ < π

2

1

n
log2A(n, θ) ≤ 1 + sin θ

2 sin θ
log2

1 + sin θ

2 sin θ
− 1− sin θ

2 sin θ
log2

1− sin θ

2 sin θ
+ o(1),

where the convergence is uniform and explicit for θ within any closed subinterval of
(
0, π2

)
. In particular, for

θ = π
3 , we have

1

n
log2A(m, θ) ≤ 0.40141 . . .

Lemma 3.7. Let c1, c2 be two positive real numbers, 0 < ε < 1
2 , n is a non-negative integer. For ~X =

(Xi)1≤i≤n ∈ Fnq [T ] consider

S = { ~X ∈ Fnq [T ] c1 ≤ | ~X| ≤ c2},

where | ~X| =
∑n

i=1 |Xi| =
∑n

i=1 q
degXi . Then there is a subset T ⊂ Fnq [T ] such that

#T ≤ Cnε−(n+1)

(
1 + log

c2
c1

)
,

where the implied absolute constant C is explicit and the balls B(~Y , ε|~Y |) cover all of S for ~Y ∈ T .

Proof . It is enough to show the covering by balls B(~Y , 2ε|~Y |). We wish to slice S into a union of regions where
| · | is almost constant, namely

T =
⋃

0≤m≤M

c1ε(1 + ε)m

n
Tm,

where

Tm = {~Y ∈ Fnq [T ] :
n

ε
(1− ε) ≤ |~Y | ≤ n

ε
(1 + ε)} and M = log1+ε log

c2
c1
.

Let ~X ∈ S. Consider

m( ~X) =

⌊
log1+ε

| ~X|
c1

⌋
and ~Z( ~X) =

⌊
n ~X

c1ε(1 + ε)m( ~X)

⌋
,

where b·c is the floor function. Define ~Y = c1ε(1+ε)
m

n
~Z( ~X). Then

|~Z( ~X)| ≤ n| ~X|
c1ε(1 + ε)m( ~X)

and thus |~Y | ≤ | ~X| < c2,

|~Z( ~X)| ≥ n| ~X|
c1ε(1 + ε)m( ~X)

− 1 and thus |~Y | ≥ | ~X| − c1ε(1 + ε)m( ~X)

n

≥ c1 −
c1ε(1 + ε)M)

n
≥ c1 −

c2ε

n
> c1.

We have just shown that given an ~X ∈ S one can find a point ~Y , that depends on ~X and lies in T . In addition
~Y has the following property

d( ~X, ~Y ) = | ~X − ~Y | ≤ 2ε|~Y |,

where d(·, ·) is the associated metric. It remains to estimate the size of T

#T ≤
(

1 + log1+ε

c2
c1

)
#Tm ≤

(
1 + log1+ε

c2
c1

)
(n(1 + 1

ε ) + n)n

n!
.

The result follows after application of Stirling formula.

We will need the following lower bound for a canonical height on E.
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Lemma 3.8. Let E be an elliptic curve over K. There is an absolute constant 0 < c < 1 such that, for every
non-torsion point P ∈ E(K) we have the bound

ĥ(P ) > cm max
(
1, h(j(E))

)
,

where m is the number of mulpiplicative places and j(E) is as usual a j-invariant of E.

Proof . This Lemma is an analogous result to the ones in [16] and [10]. In fact, a stronger result was

proven in [10], namely: ĥ(P ) ≥ cσEh(E), where σE is the Szpiro ratio (it gives ĥ(P ) ≥ c1h(E) when j(E) ∈
Fq(T )/Fq(T p)).

4 Bounding the number of S-integral points

In this section we prove the bound for the number of S-integer points on E/K of height less than h0. Here t is a
parameter to be optimized further. Then we are going to present a proof of the main result. It follows the way
proposed in [7], [16], [4] and later improved in [8]. By embedding E(K)/E(K)tors into E(K)⊗Z R ∼= RrankE we
can take the canonical height on E to be squared Euclidean norm. The key idea consists of the fact that the
points we are looking at have large distance between each other. Namely, by choosing a good division of the
area into small symmetric slices we can say that any two points are separated by almost 60 degrees. Then the
number of integral points on E is bounded above by 2rankE (this constant was later improved to (1 + ε) in [8]).
It remains to apply Theorem 5 and (7) for getting the result.

Theorem 4.1. Let E be an elliptic curve over K. Let also S be a finite set of places of K, including all
irreducible divisors of the discriminant of E. Then, for any h0 ≥ 1 and every 0 ≤ t ≤ 1, the number of S-integer
points P of E(K) with a canonical height ĥ(P ) ≤ h0 is at most

O
(
C |S|ε−2(|S|+[K:L])|S|[K:L](1 + log h0)2et[K:L]h0+(β(t)+ε) rankE

)
,

where C is an absolute constant and β(t) is defined for 0 ≤ t < 1 by

β(t) =
1 + f(t)

2f(t)
log

1 + f(t)

2f(t)
− 1− f(t)

2f(t)
log

1− f(t)

2f(t)
,

f(t) =

√
(1 + t)(3− t)

2
, β(1) = 0.

Proof . Briefly speaking, we subdivide S-integer points on E denoted by E(K,S) into points (mod I) for I
being a suitable ideal in OK . Then Lemma 3.5 states that after some manipulations on this partition the points,
that lie in the same class tend to be far away from each other in the Mordell-Weil lattice. Here we apply sphere
packing bounds of Kabatiansky and Levenstein, namely Lemma 3.6 to each part separately. These sphere packing
bounds will bring us to the term eβ(t) rankE on each part. Summation over all the classes gives rise to another
term e[K:L]h0 . We have only to take care of getting the right conditions to apply Lemma 3.5.

We firstly subdivide E(K,S) into a very few slices to force any two points of the same slice have comparable
canonical height. Consider a set

{P ∈ E(K,S) : ĥ(P ) ≤ h0}.

We want to cover it by sets of the form

{P ∈ E(K,S) : (1− ε)hi ≤ ĥ(P ) ≤ hi}.

By Lemma 3.8 it is enough to take � ε−1(log h0 + |S|) such sets. Then we are allowed to decrease the power of
(1 + log h0)2 just to 1, only for the set of points

{(1− ε)h0 ≤ ĥ(P ) ≤ h0}.

Suppose first that t 6= 0. Let S′ be the set of places below S. If

X = max(deth0e, |S̄|1+
1

[K:L] ),
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then there is an irreducible polynomial f in L, such that f /∈ S̄ and X ≤ |f | ≤ 2X. The ideal I of OK generated
by f satisfies

logN(I)

[K : L]
≥ h0t, N(I)�[K:L] s

[K:L]+1eth0[K:L].

The S-integer points of our curve E(K) fall into no more than O[K:L](N(I)) classes under the reduction modulo
the corresponding ideal I. Define R to be the set of all places of potentially multiplicative reduction. For any
place v ∈ R we subdivide the corresponding E(Kv) into nv + 1 subsets, where nv is defined as in Lemma 3.4(we
take ε

2 instead of ε). Consider arbitrary tuples of the form (av)v∈R, (bv)v∈R, such that 0 ≤ av ≤ nv and bv = 0, 1.
We define B as the set of non-torsion points P ∈ E(K,S), such that for each v ∈ R we have that P falls into
the corresponding W -class – P ∈Wv,av and that λv(p) ≥ 0 is equivalent to bv = 1. Now we bound the number
of elements in

Bh0
= {P ∈ B : (1− ε)h0 ≤ ĥ(P ) ≤ h0}.

The number of such sets B is bounded above by c20| log ε|s+[K:L]ε−2[K:L], that brings us to the desired
result. Define M = (S −R) ∪ {v ∈ R : bv = 1} and a map l(P ) = (dvλv(P ))v∈M . For v ∈ S −M we know that
λv(P ) < 0, so that one can apply Lemma 3.8 and get

|l(P )|1 > [K : L]κs max(1, h(j)).

Using [4, Proposition 3] we get the bound∑
v/∈M

dvλv(P ) ≥ − 1

24
hk(j)− 3[K : L].

On combining that we obtain
|l(P )|1 ≤ [K : L](h0 + 3 + h(j)/24)

for P ∈ Bh0
. By Lemma 3.4 we can cover l(Bh0

) by at most

O(cs1ε
−(s+1) log(h0 + 1))

balls B(x, ε8 |x|1) in the 1-norm. Take two points P1, P2 ∈ Bh0
with l(Pi) ∈ B(x, ε8 |x|1) for i = 1, 2. We then have

|l(P1)− l(P2)|1 ≤
ε

4
|x|1 ≤

ε

2
max
j=1,2

|l(Pj)|1.

If these points have the same reduction modulo I, then we apply Lemma 3.5 and get that

ĥ(P1 − P2) ≥ (1− ε) max
j=1,2

ĥ(Pj) +
logN(I)

[K : L]
≥ (1 + t− ε) max

j=1,2
ĥ(Pj).

Now we embed the Mordell-Weil lattice modulo torsion into RrankE by taking ĥ to be the square of the Euclidean
height. Since all ĥ(P1), ĥ(P2), ĥ(P1 − P2) are positive, then the images of P1, P2, say, Q1, Q2 ∈ RrankE aree

different from each other and from the origin, so that the angle between them is at least arccos 1−t+O(ε)
2 . We

now apply Lemma 3.6 and get that there are at most er(β(t)+O(ε))O[K:L](1) points of Bh0
with an image in a

given ball and with a prescribed reduction modulo I. Now we combine these results with the number of variants
for I, the number of possible sets B and the number of balls to get the theorem. Notice, that in the case t = 0
one simply proceeds without I.

The case t = 0 is the pure application of sphere-packing results of Lemma 3.6, while the case t = 1 is related
to the corresponding result of Bombieri-Pila type.

Corollary 4.2. Let E be an elliptic curve over K defined by a Weierstrass equation with integer coefficients.
Let S be a finite set of places of K, including all places dividing the discriminant of E. Then for every sufficiently
small ε the number of S integral points on E/K is at most

Oε

(
Csε−2(s+1) (log |∆|+ log p)

2
erankE(β(0)+ε)

)
.

We need as well upper bound for the canonical height. Here we adapt the result of Pacheco [14]. There
are known bounds over Q, see, for example [5]. Also one finds good bounds in [10], but they work only in
characteristic 0.



Bounds for the integral points on elliptic curves over function fields 13

Lemma 4.3. Let E be an elliptic curve overK defined by a Weierstrass equation y2 = f(x). LetOS be the ring of
S-inetegers and O∗S be the ring of S-units. Suppose that f(X) ∈ OS and the discriminant ∆ ∈ O∗S , p > 2. Define
a set Ξ in the following way. Let f(X) = (X − x1)(X − x2)(X − x3) be the factorization of f(X) in K̄[X].
Let P = (xP , yP ) ∈ OS . Define ξ2i = X − xi, i = 1, 2, 3. Let L = K(x1, x2, x3, ξ1, ξ2, ξ3). For any permutation
{i, l,m} of {1, 2, 3} define

Ξ =

{
(ξi − ξl)
(ξi − ξm)

,
(ξi − ξl)
(ξi + ξm)

,
(ξi + ξl)

(ξi − ξm)
,

(ξi + ξl)

(ξi + ξm)

}
.

Then for any η ∈ Ξ we have

ĥL(η) ≤ 2pe(2gL − 2 + |SL|),

where SL is the set of places of L lying over S and gL is the genus of L. Moreover, if p > 3, then for any
P = (xP , yP ) ∈ OS we have ĥK(y4P /∆) ≤ 48pe(2g − 2 + |S|).

We are now ready to give a version of Theorem 4.1 with an optimized parameter t.

Corollary 4.4. Let E be an elliptic curve over a field K. Let S be a finite set of places of K, that contains all
places dividing the discriminant of E. Let α(x) = min(xt+ β(t), 0 ≤ t ≤ 1), where β is as in Theorem 4.1. Let
also R = max(1, rankE(K)). Then for every h0 ≥ 1 and for every sufficiently small ε, the number of S-integral
points on E over K, that have canonical height less or equal to h0 is at most

Oε,[K:L]

(
C#Sε−2(#S+[K:L])#S[K:L](1 + log h0)2eRα([K:L]h0/R)+εR

)
,

where C is an absolute constant.

We derive some quantitative bounds on the height of integral points on elliptic curve. We follow exactly the
way proposed in [8]. A combintation of a bound of Hajdu-Herendi [5] together with our previous results gives
the following.

Corollary 4.5. Let E be an elliptic curve over a field K. Let S be a finite set of places of K, that contains all
places dividing the discriminant of E. Then the number of S-integral points on E is at most

Oε

(
C#Sε−2(#S+1)(log |f |+ log |∆|)2e(β(0)+ε) rankE

)
,

where C is a constant, f is the largest in norm element of S, ∆ is the disciminant of E. The calculation gives
β(0) = 0.2782...

Furthermore, in the same manner as in [8] we obtain the next corollary.

Corollary 4.6. Let ε > 0, E be an elliptic curve over a field K. Then the number of integral points on E is at
most

Oε
(
|∆|c+ε

)
,

where ∆ is the disciminant of E and the constant c = β(0)
log 2 = 0.20070...

5 Bounds on an algebraic rank

Here we get the desired bound for an algebraic rank and give a bound for the number of S integral points on E
in terms of its conductor. Due to the results of the previous section we have

#E(K)� crankE+m ≤ crankan E

≤ exp

(
log c

(
(degN − 8) log q

2 log degN
+O

(
degN log2 q
√
q log2 degN

)))
,

where we used the fact that rankE ≤ rankanE as well as the explicit formula given in Theorem 6. We see that
the term in O(·) is smaller than the main term, so we can simply rewrite

#E(K)� crankE+m ≤ exp

(
c
degN log q

log degN

)
.
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5.1 Comparison to Bombieri-Pila type bound

Let S be the set of all points of bad reduction of an elliptic curve E/K. Consider h0 > cmax(deg ∆, h(j)), where
∆ is the discriminant and j is the j-invariant of E/K for some constant c. The main contribution to Theorem
4.1 and, respectively, Corollary 4.4 is given by eRα(h0/R). The minimum in α is attained to the left of t = 1. Since
h0 > cdeg ∆, then α(h0/R) < (1− δ0)h0/R, where δ0 positive and depending only on c. Thus for any δ1 ≤ δ0
we obtain a bound

#E(K,S)� e(1−δ1)h0 ,

while Bombieri-Pila type result brings us to eh0 , thus this method gives an improvement in the exponent and
also improves the corresponding results from [9].

Another possible way to get this sort of bounds is using the work of Bhargava et al. on bounding the size of
2-torsion group, see [1]. The authors of [1] proved the first nontrivial bounds on the sizes of 2-torsion subgroups
of the class groups of cubic and higher degree number fields. This is also an improvement on the bounds on the
number of integral points given in [9]. They also gave a result for the function fields, see [1, Theorem 7.1].
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Bourbaki, 306:415–440.

[18] Douglas Ulmer. Elliptic curves over function fields. Arithmetic of L-functions; 211-280, IAS/Park City
Math. Ser., 18, Amer. Math. Soc., Providence, RI, 2011.

[19] Felipe Voloch. Explicit p-descent for elliptic curves in characteristic p. Compositio Math, 74(3):247–258,
1990.


	69_Sedunova_cover
	69_Sedunova

