Max-Planck-Institut für Mathematik Bonn

Non-triviality of the M-degree of the A-polynomial
by

Hans U. Boden

Non-triviality of the M-degree of the A-polynomial

Hans U. Boden

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
McMaster University
Hamilton, Ontario L8S 4K1
Canada

NON-TRIVIALITY OF THE M-DEGREE OF THE A-POLYNOMIAL

HANS U. BODEN

Abstract

This note gives a proof that the A-polynomial of any nontrivial knot in S^{3} has nontrivial M-degree.

Given a nontrivial knot K in S^{3}, in this note we prove that its A polynomial satisfies $\operatorname{deg}_{M} A_{K}(M, L) \neq 0$. This result is established by an argument similar to the one used by Boyer-Zhang and Dunfield--Garoufalidis in their papers on nontriviality of the A-polynomial [3, 10]. The question about $\operatorname{deg}_{M} A_{K}(M, L)$ comes up naturally in the study of the $S L(2, \mathbb{C})$ invariant of knots, and the examples in $[15,13]$ show that the A-polynomial of a knot can have a nontrivial L-factor. The result of $[3,10]$ implies that the A-polynomial detects the unknot, but it is extremely difficult to compute. Apart from the low-crossing knots, whose A-polynomials can be found at [4] thanks to M. Culler and J. Hoste, there are only a handful of infinite families of knots for which the A-polynomial is known, namely the torus knots [5], the twist knots and a sub-family of generalized twist knots [12], and two sub-families of pretzel knots $[11,16]$. Presumably, the M-degree of $A_{K}(M, L)$ is easier to compute than the full A-polynomial, and the main result in this paper shows that it is sufficient for detecting unknottedness.

We begin by introducing the notation for $S L(2, \mathbb{C})$ character varieties and the A-polynomial. For a finitely generated group Γ, we use $R(\Gamma)$ to denote the space of representations $\varrho: \Gamma \longrightarrow S L(2, \mathbb{C})$ and note that $R(\Gamma)$ is a complex affine algebraic set (see [8] or [17]). The character of a representation ϱ is the function $\chi_{\varrho}: \Gamma \longrightarrow \mathbb{C}$ defined by $\chi_{\varrho}(g)=\operatorname{tr}(\varrho(g))$ for $\gamma \in \Gamma$. We denote the set of characters by $X(\Gamma)$ and note that it also admits the structure of a complex affine algebraic set (see again [8] or [17]). For a manifold M, we write $R(M)$ for the variety of $S L(2, \mathbb{C})$ representations of $\pi_{1}(M)$ and $X(M)$ for its character variety.

Given a knot K, let $N_{K}=S^{3} \backslash \tau(K)$ be its complement and choose a standard meridian-longitude pair (μ, λ) for $\pi_{1}\left(\partial N_{K}\right)$. Let $\Lambda \subset R\left(\partial N_{K}\right)$ be the subset of diagonal representations, i.e.
$\Lambda=\left\{\varrho: \pi_{1}\left(\partial N_{K}\right) \longrightarrow S L(2, \mathbb{C}) \mid \varrho(\mu)\right.$ and $\varrho(\lambda)$ are both diagonal matrices $\}$,

2010 Mathematics Subject Classification. Primary: 57M27, Secondary: 57M25, 57M05.
Key words and phrases. knot; A-polynomial; character variety.
and define the eigenvalue map $\Lambda \longrightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}$ by sending $\varrho \mapsto(u, v) \in$ $\mathbb{C}^{*} \times \mathbb{C}^{*}$, where

$$
\varrho(\mu)=\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right) \text { and } \varrho(\lambda)=\left(\begin{array}{cc}
v & 0 \\
0 & v^{-1}
\end{array}\right) .
$$

This map identifies Λ with $\mathbb{C}^{*} \times \mathbb{C}^{*}$, and the natural projection $p: \Lambda \longrightarrow$ $X\left(\partial N_{K}\right)$ is a degree 2 , surjective, regular map.

The inclusion $i: \partial N_{K} \longrightarrow N_{K}$ induces a map on π_{1} which in turn gives rise to the map $i^{*}: X\left(N_{K}\right) \longrightarrow X\left(\partial N_{K}\right)$ which is regular. We define $V \subset X\left(\partial N_{K}\right)$ to be the Zariski closure of the union of the image $i^{*}\left(X_{j}\right)$ over each component $X_{j} \subset X\left(N_{K}\right)$ for which $i^{*}\left(X_{j}\right)$ is one-dimensional, and we set $D \subset \mathbb{C}^{2}$ to be the Zariski closure of the algebraic curve $p^{-1}(V) \subset \Lambda$, where we identify Λ and $\mathbb{C}^{*} \times \mathbb{C}^{*}$ via the eigenvalue map. Thus $D \subset \mathbb{C}^{2}$ is a plane curve, and we define $A_{K}(M, L)$ to be its defining polynomial. It is welldefined up to sign by the requirement that its coefficients lie in \mathbb{Z} and have greatest common divisor equal to one, and that it have no repeated factors. The component of abelian characters gives rise to the factor $L-1$, and for the unknot \bigcirc, one can easily show that $A_{\bigcirc}(M, L)=L-1$. By the main theorem in $[3,10]$, if K is a nontrivial knot in S^{3}, then $A_{K}(M, L) \neq L-1$.
Theorem 1. If K is a nontrivial knot in S^{3}, then its A-polynomial satisfies $\operatorname{deg}_{M} A_{K}(M, L) \neq 0$.

We point out that, just like nontriviality of the A-polynomial, the above statement is easy to verify in the case of a torus or hyperbolic knot.

Proof. Assume K is a non-trivial knot and set $N_{K}=S^{3} \backslash \tau(K)$. Suppose to the contrary that $\operatorname{deg}_{M} A_{K}(M, L)=0$. Then by Theorem 2.9 of [7] (see also Proposition 10.3 of [2]), it follows that

$$
A_{K}(M, L)=(L-1) f_{1}(L) \cdots f_{k}(L)
$$

where f_{1}, \ldots, f_{k} are distinct cyclotomic polynomials. Choose positive integers d_{1}, \ldots, d_{k} so that the roots of $f_{i}(L)$ have order d_{i} for each $i=1, \ldots, k$.

In [14], P. Kronheimer and T. Mrowka establish the existence of an infinite family $\left\{\varrho_{n}: \pi_{1}(M) \rightarrow S U(2)\right\}$ of irreducible representations, where ϱ_{n} extends over $1 / n$ surgery on K. Moreover, by Claim 2.1 of [10], it follows that the restrictions of ϱ_{n} to $\pi_{1}(\partial M)$ are all distinct as points in $X(\partial M)$. Let $\left(u_{n}, v_{n}\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*}$ denote the point corresponding to the restriction of ϱ_{n} to $\pi_{1}(\partial M)$, and by the surgery condition, it follows that $u_{n} v_{n}^{n}=1$. Further, all but finitely many of the pairs $\left(u_{n}, v_{n}\right)$ satisfy the A-polynomial $A_{K}(M, L)$. Fix $d=d_{1} \cdots d_{k}$ and consider the infinite family $\left\{\varrho_{n d} \mid n=1,2,3, \ldots\right\}$. Since all but finitely many of the pairs $\left\{\left(u_{n d}, v_{n d}\right)\right\}$ satisfy the A-polynomial, it follows that for at least one n, say $v_{n d}$, is a root of $(L-1) f_{1}(L) \cdots f_{k}(L)$. But every root ξ of this polynomial satisfies $\xi^{d}=1$, and this together with the surgery condition implies that $u_{n d}=\left(v_{n d}\right)^{n d}=1$. As $\varrho_{n d}$ is an $S U(2)$ representation, this implies $\varrho_{n d}(\mu)=I$, and since the meridian is a normal generator for the knot group $\pi_{1}(M)$, this implies that
$\varrho_{n d}: \pi_{1}(M) \rightarrow S L(2, \mathbb{C})$ is trivial, which contradicts irreducibility of the representation $\varrho_{n d}$.

There is an example due to T. Mattman [15] that helps to put this result into context. In order to describe it, we recall a definition of a refinement of the A-polynomial due to S . Boyer and X. Zhang. For every one-dimensional component X_{i} of $X\left(N_{K}\right)$ with image $i^{*}\left(X_{j}\right)$ also one-dimensional, they define an A-polynomial $A_{X_{j}}(M, L)$ in [2]. Basically, their idea is to apply the above construction to the given component X_{j} and to incorporate the degree of $\left.i^{*}\right|_{X_{j}}$ as the multiplicity of the resulting factor. Set

$$
\widehat{A}_{K}(M, L)=A_{X_{1}}(M, L) \cdots A_{X_{n}}(M, L),
$$

the product taken over all one-dimensional components X_{j} of $X\left(N_{K}\right)$ with one-dimensional restriction $i^{*}\left(X_{j}\right)$. For a small knot K in S^{3}, since by [8] no component of $X\left(N_{K}\right)$ can have dimension larger than one, it follows that $A_{K}(M, L)$ and $\widehat{A}_{K}(M, L)$ coincide up to repeated factors.
Example 2. In [15], Mattman shows that the character variety of the ($-2,3,-3$) pretzel knot contains a 0 -curve, and so consequently its A-polynomial has a nontrivial L-factor. (According to [13], this holds for all $(-2, p,-p)$ pretzel knots provided p is odd.) In other words, there exists a component X_{j} of $X\left(N_{K}\right)$ with A-polynomial satisfying $\operatorname{deg}_{M} A_{X_{j}}(M, L)=0$. This shows that Theorem 1 is not true in the more general setting of the Boyer-Zhang A-polynomials.

The tetrahedral gluing computations of the A-polynomial given by M . Culler (available from KnotInfo [4]) show that the A-polynomial of the knot 9_{38} has a nontrivial M-factor of the form $\left(M^{2}-1\right)^{2}$, and this raises the corresponding question about the L-degree of $A_{K}(M, L)$. Do there exist nontrivial knots K and one-dimensional components X_{j} in $X\left(N_{K}\right)$ with $\operatorname{deg}_{L} A_{X_{j}}(M, L)=0$? Indeed, can one find a knot K with $A_{K}(M, L)=$ $(L-1) f(M)$ or must $\operatorname{deg}_{L} A_{K}(M, L)>1$?

We outline an alternative approach to proving Theorem 1, which involves reducing to a case where one can use the identity

$$
\begin{equation*}
A_{K}(\pm 1, L)= \pm L^{a}(L-1)^{b}(L+1)^{c} \text { for integers } a, b, c \tag{1}
\end{equation*}
$$

(see section 2.8 of [5] and Corollary 4.5 of [6]). This formula holds for most but not all knots; among the computations, one finds that 9_{29} and 9_{38} give counterexamples. The Newton polytopes for both knots have a vertical edge, and indeed Corollary 4.5 in [6] includes the hypothesis that K is a small knot, meaning N_{K} does not contain an incompressible surface that is not boundary parallel.

The idea for reducing to this case is due to M. Culler, and it is based on the observation that Equation (1) holds for any knot whose Newton polytope does not have a vertical edge. The main result of [7] implies $A_{K}(\pm 1, L)$ is monic, and the argument in section 2.8 of [5] applies to show that Equation

Figure 1. Newton polytopes for 9_{29} and 9_{38}
(1) holds (cf. Corollary 4.5 in [6]). Moreover, by [5, Theorem 3.4], we see that Newton polytope has a vertical edge if and only if ∞ is a strongly detected boundary slope. In other words, if ∞ is not a strongly detected boundary slope, then Equation (1) holds.

Suppose then that ∞ is a strongly detected boundary slope. Then the vertical edge of the Newton polytopes ensures that $\operatorname{deg}_{M} A_{K}(L, M) \neq 0$, and so we are reduced to the case ∞ is not a strongly detected boundary slope. By Equation (1), if $A_{K}(L, M)$ were constant in M, then [3, 10] implies $A_{K}(L, M)=(L-1)(L+1)$. The proof is completed by arguing as in Theorem 1 with $k=1$ and the single cyclotomic polynomial $f_{1}(L)=L+1$.

Before concluding, we briefly indicate the relationship between this work and questions about the $S L(2, \mathbb{C})$ Casson knot invariant $\lambda^{\prime}(K)$ (see $[9,1]$ for more details). Using the surgery theorem for the $S L(2, \mathbb{C})$ Casson invariant, one can show that for any small knot K in $S^{3}, \lambda^{\prime}(K) \neq 0$ if and only if $\operatorname{deg}_{M} A_{K}(M, L) \neq 0$. Essentially, both quantities can be interpreted in terms of Culler-Shalen seminorms $\|\lambda\|_{C S}$ of the longitude, and in [1] we use this to prove nontriviality of $\lambda^{\prime}(K)$ for all small knots.

Whether $\lambda^{\prime}(K) \neq 0$ holds more generally is not immediately clear; in fact the invariant is at present only defined for small knots (cf. [9]). The general question whether $\lambda^{\prime}(K)$ detects the unknot is closely related to the question whether $\operatorname{deg}_{M} \widehat{A}_{K}(M, L) \neq 0$ for all nontrivial knots. Note that this does not follow from Theorem 1. In fact, despite the positive results in [3, 10], it is an open problem to show nontriviality of $\widehat{A}_{K}(M, L)$ for all nontrivial knots K. In terms of the character variety, this problem is related to the question of existence of irreducible $S L(2, \mathbb{C})$ representations ϱ of the knot group whose characters χ_{ϱ} lie on a one-dimensional algebraic component $X_{j} \subset X\left(N_{K}\right)$ whose image $i^{*}\left(X_{j}\right)$ in $X\left(\partial N_{K}\right)$ is also one-dimensional.

Acknowledgements. The author is extremely grateful to Marc Culler for his numerous contributions to this project. The author would also like to thank Steve Boyer, Cynthia Curtis, Stavros Garoufalidis, and Thomas Mattman for helpful discussions. The author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada, and he is also happy to acknowledge support from the Max Planck Institute for Mathematics in Bonn.

References

1. H. U. Boden and C. L. Curtis, The $S L_{2}(\mathbb{C})$ Casson invariant and two-bridge knots, 2012 preprint.
2. S. Boyer and X. Zhang, A proof of the finite filling conjecture, J. Diff. Geom. 59 (2001), 87-176.
3. S. Boyer and X. Zhang, Every nontrivial knot in S^{3} has nontrivial A-polynomial, Proc. Amer. Math. Soc. 113 (2005), 2813-2815.
4. J. C. Cha and C. Livingston, KnotInfo: Table of Knot Invariants, online at http://www.indiana.edu/ knotinfo, January 31, 2012.
5. D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994), 47-84.
6. D. Cooper and D. D. Long, Remarks on the A-polynomial of a knot, J. Knot Theory Ramific. 5 (1996), 609-628.
7. D. Cooper and D. D. Long, The A-polynomial has ones in the corners, Bull. Lond. Math. Soc. 29 (1997), 231-238.
8. M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3manifolds, Annals of Math. 117 (1983), 109-146.
9. C. L. Curtis, An intersection theory count of the $S L(2, \mathbb{C})$-representations of the fundamental group of a 3-manifold, Topology 40 (2001), 773-787.
10. N. M. Dunfield and S. Garoufalidis, Nontrviality of the A-polynomial for knots in S^{3}, Algebr. Geom. Topol. 4 (2004), 1145-1153.
11. S. Garoufalidis and T. Mattman, The A-polynomial for the $(-2,3,3+2 n)$ pretzel knots, New York J. Math. 17 (2011), 269-279.
12. J. Hoste and P. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramific. 13 (2004), 193-209.
13. M. Ishikawa, T. Mattman, and K. Shimokawa, Tangle sums and factorization of A-polynomials, 2011 preprint, arXiv: math.GT 1107.2640.
14. P. B. Kronheimer and T. S. Mrowka, Dehn surgery, the fundamental group and $S U(2)$, Math. Res. Lett. 11 (2004), 741-754.
15. T. Mattman, The Culler-Shalen seminorms of the $(-2,3, n)$ pretzel knot, J. Knot Thy Ramific. 11 (2002), no. 8, 1251-1289.
16. N. Tamura and Y. Yokota, A formula for the A-polynomials of $(-2,3,1+2 n)$-pretzel knots, Tokyo J. Math. 27 (2004), no. 1, 263-273.
17. P. Shalen, Representations of 3-manifold groups, Handbook of Geometric Topology, 955-1044 North Holland, Amsterdam (2002).
18. W. A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.

Department of Mathematics \& Statistics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada

E-mail address: boden@mcmaster.ca

