On a conjecture of Rodier on primitive roots

Pieter Moree

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
Germany

On a conjecture of Rodier on primitive roots

Pieter Moree

September 5, 1996

Keywords: Artin's conjecture, primitive root, natural density, uniform distribution. Let $\left\{p_{j}\right\}$ be the ordered sequence of primes p such that 2 is a primitive root mod p. Weakly uniform distribution (WUD) mod 28 of this sequence would imply a conjecture of Rodier. However, on the Generalized Riemann Hypothesis (GRH), it is shown that 1,2 and 4 are the only values of d such that $\left\{p_{j}\right\}$ is WUD mod d. Morcover, Rodier's conjecture is disproved, on GRH.

1 Introduction

An integer a is said to be a primitive root $\bmod p$ if its order in $\mathbb{Z} / p \mathbb{Z}$ is $p-1$ (and thus maximal). Let \mathcal{P}_{28} denote the set of primes p such that $p \equiv-1,3,19(\bmod 28)$ and 2 is a primitive root $\bmod p$. In [5] Rodier, in connection with a coding theoretical result involving Dickson polynomials, made the conjecture that the (natural) density of the set \mathcal{P}_{28} is $A / 4$, where

$$
A=\prod_{p \text { prime }}\left(1-\frac{1}{p(p-1)}\right) \quad(\approx 0.3739558136192)
$$

is Artin's constant. On noticing that the primes $p \equiv-1,3,19(\bmod 28)$ are precisely those such that $(p / 7)=-1$ and $p \equiv 3(\bmod 4)$, it follows from Theorem 1 that, on GRH, the prime density of \mathcal{P}_{28} is $21 A / 82$. Thus Rodier's conjecture, if true, would imply the falsity of the Generalized Riemann Hypothesis.

Theorem 1 (GRH). Let l_{1}, \ldots, l_{s} be distinct odd primes and $\epsilon_{0}, \ldots, \epsilon_{s} \in\{ \pm 1\}$. Let $N(x)$ denote the number of primes $p \leq x$ satisfying
i) 2 is a primitive root mod p,
ii) $\left(p / l_{j}\right)=\epsilon_{j}, 1 \leq j \leq s$.

Then

$$
\begin{equation*}
N(x)=\frac{A}{2^{s}} \prod_{j=1}^{s}\left(1-\frac{\epsilon_{j}}{l_{j}^{2}-l_{j}-1}\right) \frac{x}{\log x}+O\left(\frac{x \log \log x}{\log ^{2} x}\right) \tag{1}
\end{equation*}
$$

Moreover, if in addition to $i)$ and ii) it is required that $p \equiv \epsilon_{0}(\bmod 4)$, then (1) holds with $A / 2^{s}$ replaced by $A / 2^{s+1}$.

Taking an heuristic approach might lead one to think that the density of \mathcal{P}_{28} should be $A / 4$. Let \mathcal{P} denote the set of primes p such that 2 is a primitive root mod p. Subject, to GR.H the density of \mathcal{P} is A, as was shown by Hooley in his classical memoir [1], in which he proved, on GRH, a quantitative version of a conjecture made by Emil Artin in 1927. Since there are $\varphi(28)=12$ primitive congruence classes mod 28 , the density of primes from \mathcal{P} in each of them would be $A / 12$, on assuming WUD (see [4] for a definition) mod 28 . Thus one arrives at a density of $A / 4$ for the set \mathcal{P}_{28}. The sequence $\left\{p_{j}\right\}$ is, however, not WUD mod 28. Indeed Theorem 1 can be used to show:

Theorem 2 (GRH). The sequence $\left\{p_{j}\right\}$ is WUD mod d if and only if $d \in\{1,2,4\}$.
A. Reznikov [3], in the course of his investigations of a conjecture of Lubotzky and Shalov on three-manifolds, arrived at the problem whether for a given prime l, the set of primes p such that l is a primitive root $\bmod p$ and $p \equiv \pm 1(\bmod l)$ is infinite. Reznikov's question and Rodier's conjecture suggest a more general problem: Let $a \neq \pm 1$ be a integer and M a number field. Determine whether or not the set of primes p such that a is a primitive root mod p and, moreover, p splits completely in M, is infinite. In case it is infinite, determine whether it has a density, and if yes, compute the density. A first step in this is made by the following generalization of Hooley's classical result, that will be proved in the next section. Theorem 3 will be the starting point of the proof of Theorem 1, which on its turn is the starting point of the proof of Theorem 2. (As usual μ denotes the Möbius function.)

Theorem 3 Let M be Galois and $a \neq \pm 1$ an integer. Suppose the Riemann Hypothesis holds for the fields $M_{r}:=M\left(\zeta_{r}, a^{1 / r}\right)$ for every squarefree r. Then $N_{M}(a ; x)$, the number of primes p not exceeding x that split completely in M and such that a is a primitive root mod p, satisfies

$$
\begin{equation*}
N_{M}(a ; x)=\delta(M) \frac{x}{\log x}+O\left(\frac{x \log \log x}{\log ^{2} x}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(M)=\sum_{r=1}^{\infty} \frac{\mu(r)}{\left[M_{r}: \mathbb{Q}\right]} \tag{3}
\end{equation*}
$$

(Since $\left[M_{\mathrm{r}}: \mathbb{Q}\right] \geq[\mathbb{G}: \mathbb{Q}] \gg r(r) \gg r^{2} / \log \log r$, the series for $\delta(M)$ is convergent.)
The author thanks Don Zagier for some helpful suggestions, Patrick Solé for pointing out Rodier's conjecture to him and F. Rodier for sending [5].

2 Proof of Theorem 3

Since the proof is a straightforward generalization of Hooley's proof in [1], we will only discuss the fine points. Let \mathfrak{F}_{M} denote the set of primes that split completely in M. Put $m_{r}=\left[M_{T}: \mathbb{Q}\right]$. The analysis of the error terms can be taken over unchanged on using that the set of primes that split completely in M is a subset of the set of all
primes. Thus the problem reduces to showing that (2) holds with $N_{M}(a ; x)$ replaced by $N_{M}\left(a ; x, \zeta_{1}\right)$, which is defined as the cardinality of the set

$$
\left\{p \leq x: p \in \mathfrak{P}_{M}, l \leq \zeta_{1}, l \nmid\left[\mathbb{F}_{p}^{*}:<a>\right]\right\}, l \text { prime }
$$

with $\zeta_{1}=\log x / 6$. By inclusion and exclusion one finds

$$
N_{M}\left(a ; x, \zeta_{1}\right)=\sum_{P(r) \leq \zeta_{1}} \mu(r) \pi_{M_{r}}(x),
$$

where

$$
\pi_{M_{r}}(x)=\left|\left\{p \leq x: p \in \mathcal{P}_{M}, r \mid\left[\mathbf{F}_{p}^{*}:<a>\right]\right\}\right|,
$$

and $P(r)$ denotes the greatest prime divisor of r. Now $r \mid\left[\mathbb{F}_{p}^{*}:<a>\right]$ and p splits completely in M if and only if p splits completely in M_{r}. Thus $\pi_{M_{r}}(x)$ is the number of primes not exceeding x that splits completely in M_{r}. The analysis of Hooley of this quantity $([1, \S 5])$ in case $M=\mathbb{Q}$ rests on the fact that the discriminant of \mathbb{Q}_{7} is bounded by $r^{c n_{r}}$, where c is a constant and the fact that \mathbb{Q}_{r} is Galois. One checks that both properties are satisfied for M_{r} as well. Thus, we deduce that, under the Riemann Hypothesis for M_{r}, the following estimate holds true:

$$
\begin{equation*}
\pi_{M_{r}}(x)=\frac{\operatorname{li}(x)}{m_{r}}+O(\sqrt{x} \log (r x)) \tag{4}
\end{equation*}
$$

where $\mathrm{li}(x)$ denotes the logarithmic integral and the implied constant depends at most, on M. Thus, equation (29) of [1] now becomes

$$
N_{M}\left(a ; x, \zeta_{1}\right)=\operatorname{li}(x) \sum_{r=1}^{\infty} \frac{\mu(r)}{m_{r}}+O\left(\mathrm{li}(x) \sum_{r>\zeta_{1}} \frac{1}{r \varphi(r)}\right)+O\left(\frac{x}{\log ^{2} x}\right),
$$

on using that $m_{r} \gg r \varphi(r)$. This simplifies to

$$
N_{M}\left(a ; x, \zeta_{1}\right)=\left(\sum_{r=1}^{\infty} \frac{\mu(r)}{m_{r}}\right) \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

Thus (2) holds with $N_{M}(a ; x)$ replaced by $N_{M}\left(a ; x, \zeta_{1}\right)$.
Remark. An alternative way of establishing (4) is to make use of (11RH) of [2], which together with the upper bound $r^{c m_{r}}$ for the discriminant of M_{r}, where c is a constant depending at most on M, yields that $[1,(27)]$ is valid for M_{r}, under R.H on M_{r}. From this estimate and the fact that M_{r} is Galois, (4) is casily deduced.

3 Proof of Theorem 1

We start by a few propositions involving degrees of certain number fields $M_{r}, r \geq 1$. Since these degrees are only used in the context of computing $\delta(M)$, see (3), it is enough to compute them for r squarefree only. As usual $\omega(d)$ denotes the number of distinct prime divisors of d.

Proposition 1 Put $n_{r}=\left[\mathbb{Q}\left(\zeta_{r}, 2^{1 / r}\right): \mathbb{Q}\right]$. Then, for $8 \nmid r, \mathbb{Q}\left(\zeta_{r}\right)$ and $\mathbb{Q}\left(2^{1 / r}\right)$ are linearly disjoint and hence $n_{r}=r \varphi(r)$.

Proof. Every subfield of $\mathbb{Q}\left(\zeta_{r}\right)$ is normal. All the normal subfields of $\mathbb{Q}\left(2^{1 / r}\right)$ are contained in $\mathbb{Q}(\sqrt{2})$. Since $\sqrt{2} \in \mathbb{Q}\left(\zeta_{r}\right)$ if and only if $8 \mid r$, it follows that for $8 \nmid r$, $\mathbb{Q}\left(2^{1 / r}\right)$ and $\mathbb{Q}\left(\zeta_{r}\right)$ are linearly disjoint and thus $n_{r}=r \varphi(r)$.

Proposition 2 Let l_{1}, \ldots, l_{s} be distinct odd primes. Put $l_{j}^{*}=\left(-1 / l_{j}\right) l_{j}, 1 \leq j \leq s$. Let $r \geq 1$. Put $d=\left(l_{1} l_{2} \cdots l_{s}, r\right)$. Then, for $8 \nmid r$, $\left.\left[\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}, \zeta_{r}, 2^{1 / r}\right): \mathbb{Q}\right]=$ $2^{s-\omega(d)} r \varphi(r)$.

Proof. Clearly $\left[\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right): \mathbb{Q}\right]=2^{s}$. Suppose $8 \nmid r$. Then, by Proposition 1 , $\left[\mathbb{Q}\left(\zeta_{r}, 2^{1 / r}\right): \mathbb{Q}\right]=r \varphi(r)$. Thus the sought for degree equals

$$
\begin{equation*}
\frac{2^{s} r \varphi(r)}{\left[\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right) \cap \mathbb{Q}\left(\zeta_{r}, 2^{1 / r}\right)\right]} \tag{5}
\end{equation*}
$$

Since l_{1}, \ldots, l_{s} are the only primes that ramify in $\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right)$ and primes not dividing $2 r$ do not ramify in $\mathbb{Q}\left(\zeta_{r}, 2^{1 / r}\right)$, one has that

$$
\begin{equation*}
\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right) \cap \mathbb{Q}\left(\zeta_{r}, 2^{1 / r}\right) \subseteq \mathbb{Q}\left(\cup_{l_{i} \mid d} \sqrt{l_{i}^{*}}\right) . \tag{6}
\end{equation*}
$$

Using that $\sqrt{l_{i}^{*}} \in \mathbb{Q}\left(\zeta_{l_{i}}\right)$, it is seen that actually equality holds in (6). The (absolute) degree of the fields occurring in (6) is $2^{\omega(d)}$. This together with (5) completes the proof.

Proposition 3 [1] (GRH). $\delta(\mathbb{Q})=A$.
Proposition 4 (GRH). $\delta(\mathbb{Q}(i))=A / 2$.
Proof. Put $M=\mathbb{Q}(i)$. For $4 \nmid r$, the fields $\mathbb{Q}(i), \mathbb{Q}\left(\zeta_{r}\right)$ and $\mathbb{Q}\left(2^{1 / r}\right)$ are seen to be mutually linearly disjoint on using Proposition 1. Thus $\left[M_{r}: \mathbb{Q}\right]=2 n_{r}=2 r \varphi(r)$, by Proposition 1 again. Recalling (3) one finds,

$$
\delta(M)=\sum_{r=1}^{\infty} \frac{\mu(r)}{\left[M_{r}: \mathbb{Q}\right]}=\frac{1}{2} \sum_{r=1}^{\infty} \frac{\mu(r)}{r \varphi(r)} .
$$

On using the fact that $\mu(r) /(r \varphi(r))$ is a multiplicative function and Euler's identity, the result follows.

Proposition 5 (GRH). Let $l_{1}^{*}, \ldots, l_{s}^{*}$ be as in Proposition 2. For notational convenience put $\delta\left(l_{1} \cdots l_{s}\right)=\delta\left(\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \cdots, \sqrt{l_{s}^{*}}\right)\right)$. Then

$$
\delta\left(l_{1} \cdots l_{s}\right)=\frac{A}{2^{s}} \prod_{j=1}^{s}\left(1-\frac{1}{l_{j}^{2}-l_{j}-1}\right) .
$$

Proof. Put $M=\mathbb{Q}\left(\sqrt{l_{l}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right)$ and $\lambda=l_{1} \cdots l_{s}$. Let $r \geq 1$. If $(\lambda, r)=d$, then, by Proposition 2, $\left[M_{r}: \mathbb{Q}\right]=2^{s-\omega(d)} r \varphi(r)$. Thus

$$
\delta(\lambda)=\sum_{d \mid \lambda} \sum_{(\lambda, r)=d} \frac{\mu(r)}{\left[M_{\tau}: \mathbb{Q}\right]}=\frac{1}{2^{s}} \sum_{d \mid \lambda} \sum_{\substack{(r \mid \tau) \\(r, \lambda / 4)=1}} \frac{2^{\omega(d)} \mu(r)}{r \varphi(r)} .
$$

On noticing that the inner sum equals

$$
2^{\omega(d)} \frac{\mu(d)}{d \varphi(d)} \sum_{(r, \lambda)=1} \frac{\mu(r)}{r \varphi(r)},
$$

one finds that,

$$
\begin{aligned}
\delta(\lambda) & =\frac{1}{2^{s}} \sum_{d \mid \lambda} \frac{2^{\omega(d)} \mu(d)}{d \varphi(d)} \sum_{(r, \lambda)=1} \frac{\mu(r)}{r \varphi(r)} \\
& =\frac{1}{2^{s}} \prod_{l_{j} \mid \lambda}\left(1-\frac{2}{l_{j}\left(l_{j}-1\right)}\right) \prod_{p \nmid \lambda}\left(1-\frac{1}{p(p-1)}\right) \\
& =\frac{A}{2^{s}} \prod_{l_{j} \mid \lambda}\left(1-\frac{1}{l_{j}^{2}-l_{j}-1}\right) .
\end{aligned}
$$

This completes the proof.
Since, for $4 \nmid r, \mathbb{Q}(i)$ is linearly disjoint from $\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}, \zeta_{r}, 2^{1 / r}\right)$, one has

$$
\delta\left(\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}, i\right)\right)=\delta\left(\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}\right)\right) / 2
$$

Thus
Proposition 6 (GRH). Let $l_{1}^{*}, \ldots, l_{s}^{*}$ be as in Proposition 2. Then

$$
\delta\left(\mathbb{Q}\left(\sqrt{l_{1}^{*}}, \ldots, \sqrt{l_{s}^{*}}, i\right)\right)=\frac{A}{2^{s+1}} \prod_{j=1}^{s}\left(1-\frac{1}{l_{j}^{2}-l_{j}-1}\right) .
$$

Proposition 7 (GRH). Let $l_{1}^{*}, \ldots, l_{s}^{*}$ be as in Proposition 2. Put $\lambda=l_{1} \cdots l_{s}$. The density $\delta^{\prime}(\lambda)$ of primes p such that 2 is a primitive root $\bmod p$ and p does not split completely in any of the quadratic fields $\mathbb{Q}\left(\sqrt{l_{1}^{*}}\right), \ldots, \mathbb{Q}\left(\sqrt{l_{s}^{*}}\right)$ equals

$$
\delta^{\prime}(\lambda)=\frac{A}{2^{s}} \prod_{j=1}^{s}\left(1+\frac{1}{l_{j}^{2}-l_{j}-1}\right)
$$

Proof. Let $\delta(1)$ denote the density of the primes p such that 2 is a primitive root mod p. The sought for density, $\delta^{\prime}(\lambda)$, equals, by inclusion and exclusion,

$$
\begin{equation*}
\delta^{\prime}(\lambda)=\sum_{d \mid \lambda} \mu(d) \delta(d) . \tag{7}
\end{equation*}
$$

By Proposition $5 \delta / A$ is a multiplicative function on the odd squarefree integers. The same holds for the Möbius function and for δ^{\prime} / A, the Cauchy product of δ / A and μ. Using Propositions 3 and 5 one finds, for $1 \leq j \leq s$,

$$
\delta^{\prime}\left(l_{j}\right)=\delta(1)-\delta\left(l_{j}\right)=\frac{A}{2}\left(1+\frac{1}{l_{j}^{2}-l_{j}-1}\right)
$$

In combination with the multiplicativity of δ^{\prime} / A, this yields the result.

Remark (Don Zagier). Put $\epsilon_{j}=-1,1 \leq j \leq s$. Using Theorem 1 it is seen that the density of primes p satisfying i) and ii) of Theorem 1 and in addition $p \equiv 3(\bmod 8)$ is

$$
\frac{A}{2^{s+1}} \prod_{j=1}^{s}\left(1+\frac{1}{l_{j}^{2}-l_{j}-1}\right)=\frac{1}{2^{s+1}} \prod_{p \nmid \lambda}\left(1-\frac{1}{p(p-1)}\right) .
$$

The density of the primes p satisfying ii) of Theorem 1 and $p \equiv 3(\bmod 8)$ equals 2^{-2-s}. Thus the relative density of primes p such that 2 is a primitive root is

$$
2 \prod_{p \nmid \lambda}\left(1-\frac{1}{p(p-1)}\right)
$$

By taking λ to be the product of the first s consecutive odd primes and s large enough, the relative density can be made arbitrary close to 1 . The conditions imposed ensure that $p-1$ contains only 2 (to the first power) and some prime factors larger than the s th prime. Thus if 2 is not primitive $\bmod p, 2$ must have a small order $\bmod p$, which is something rarely happening. Another interpretation is obtained on noting that $1 /(l(l-1))$ in the factor $1-1 /(l(l-1)), l$ odd, in Artin's constant is due to the primes that split completely in $\mathbb{Q}\left(\zeta_{l}, 2^{1 / l}\right)$, that is satisfy at least $p \equiv 1(\bmod l)$. But $(p / l)=-1$ ensures $p \not \equiv 1(\bmod l)$ and thus the factor $1-1 /(l(l-1))$ should be replaced by 1 . For $l=2$ the $1 / 2$ in the factor $1-1 / 2$ comes from the primes that split completely in $\mathbb{Q}(\sqrt{2})$. Since $p \equiv 3(\bmod 8)$ implies $(2 / p)=-1$, this factor should be replaced by 1 as well.

Proof of Theorem 1. Let $J=\left\{j: \epsilon_{j}=1\right\}$. Put $\lambda_{1}=\prod_{j \in J} l_{j}$ and $\lambda_{2}=\lambda / \lambda_{1}$. Except for at most finitely exceptions a prime p satisfies ii) if and only if p splits completely in $\mathbb{Q}\left(\sqrt{l_{j}^{*}}\right), j \in J$ and does not split completely in $\mathbb{Q}\left(\sqrt{l_{j}^{*}}\right)$, for j not in J. By inclusion and exclusion the sought for density is seen to equal $\sum_{d \mid \lambda_{2}} \mu(d) \delta\left(d \lambda_{1}\right)$. By the multiplicativity of δ / A and (7) this equals $\delta^{\prime}\left(\lambda_{2}\right) \delta\left(\lambda_{1}\right) / A$. Now (1) follows from Theorem 3, Propositions 5 and 7. The proof of the remaining part is similar, instead of Proposition 5 one now uses Proposition 6.

4 Proof of Theorem 2

The proof of Theorem 2 is an almost immediate consequence of Propositions 3 and 4 and Theorem 1.
Proof of Theorem 2. Clearly the sequence $\left\{p_{j}\right\}$ is WUD $\bmod 1$ and WUD mod 2. By Propositions 3 and 4 the sequence is WUD $\bmod 4$. Since $2^{(p-1) / 2} \equiv 1(\bmod 8)$, for every prime p satisfying $p \equiv 1(\bmod 8)$, and hence none of these primes is such that 2 is a primitive root mod p, the sequence is not WUD mod 8 . To finish the proof it is enough to show that for every odd prime l the sequence is not WUD mod l. Consider the set \mathcal{A}_{l} of residue class $a \bmod l$ such that $(a / l)=1$. Notice that $\left|\mathcal{A}_{l}\right|=\varphi(l) / 2$. If the sequence $\left\{p_{j}\right\}$ were WUD mod l, then the density of primes $p \in \mathcal{P}$ such that $p \equiv a_{j}(\bmod l)$ for some $a_{j} \in \mathcal{A}_{l}$, would be $A / 2$. On the other hand, using quadratic reciprocity, this density equals the density of $p \in \mathcal{P}$ such that p splits completely in Q $\left(\sqrt{l^{*}}\right)$. Now Proposition 5 with $s=1$ and $l_{1}=l$ leads to a contradiction.

References

[1] C. Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
[2] S. Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337-345.
[3] W. Narkiewicz, Uniform distribution of sequences of integers in residue classes, LNIM 1087, Springer.
[4] A. Reznikov, Three-manifolds subgroup growth, in preparation. (With an appendix by P. Moree.)
[5] F. Rodier, Estimation asymptotique de la distance minimale du dual des codes BCH et polynômes de Dickson, Discrete Math. 149 (1996), 205-221.

Pieter Moree
Max-Planck-Institut für Mathematik
Gottfried-Claren Str. 26
53225 Bonn
Germany
E-mail: moree@antigone.mpim-bonn.mpg.de

