On a conjecture of Rodier on primitive roots

, .

Pieter Moree

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

MPI 96-117

. . . .

On a conjecture of Rodier on primitive roots

Pieter Moree

September 5, 1996

Keywords: Artin's conjecture, primitive root, natural density, uniform distribution. Let $\{p_j\}$ be the ordered sequence of primes p such that 2 is a primitive root mod p. Weakly uniform distribution (WUD) mod 28 of this sequence would imply a conjecture of Rodier. However, on the Generalized Riemann Hypothesis (GRH), it is shown that 1, 2 and 4 are the only values of d such that $\{p_j\}$ is WUD mod d. Moreover, Rodier's conjecture is disproved, on GRH.

1 Introduction

An integer a is said to be a primitive root mod p if its order in $\mathbb{Z}/p\mathbb{Z}$ is p-1 (and thus maximal). Let \mathcal{P}_{28} denote the set of primes p such that $p \equiv -1, 3, 19 \pmod{28}$ and 2 is a primitive root mod p. In [5] Rodier, in connection with a coding theoretical result involving Dickson polynomials, made the conjecture that the (natural) density of the set \mathcal{P}_{28} is A/4, where

$$A = \prod_{p \text{ prime}} (1 - \frac{1}{p(p-1)}) \quad (\approx 0.3739558136192),$$

is Artin's constant. On noticing that the primes $p \equiv -1, 3, 19 \pmod{28}$ are precisely those such that (p/7) = -1 and $p \equiv 3 \pmod{4}$, it follows from Theorem 1 that, on GRH, the prime density of \mathcal{P}_{28} is 21A/82. Thus Rodier's conjecture, if true, would imply the falsity of the Generalized Riemann Hypothesis.

Theorem 1 (GRH). Let l_1, \ldots, l_s be distinct odd primes and $\epsilon_0, \ldots, \epsilon_s \in \{\pm 1\}$. Let N(x) denote the number of primes $p \leq x$ satisfying

- i) 2 is a primitive root mod p,
- ii) $(p/l_j) = \epsilon_j, \ 1 \le j \le s.$

Then

$$N(x) = \frac{A}{2^s} \prod_{j=1}^s (1 - \frac{\epsilon_j}{l_j^2 - l_j - 1}) \frac{x}{\log x} + O(\frac{x \log \log x}{\log^2 x}).$$
(1)

Moreover, if in addition to i) and ii) it is required that $p \equiv \epsilon_0 \pmod{4}$, then (1) holds with $A/2^s$ replaced by $A/2^{s+1}$.

Taking an heuristic approach might lead one to think that the density of \mathcal{P}_{28} should be A/4. Let \mathcal{P} denote the set of primes p such that 2 is a primitive root mod p. Subject to GRH the density of \mathcal{P} is A, as was shown by Hooley in his classical memoir [1], in which he proved, on GRH, a quantitative version of a conjecture made by Emil Artin in 1927. Since there are $\varphi(28) = 12$ primitive congruence classes mod 28, the density of primes from \mathcal{P} in each of them would be A/12, on assuming WUD (see [4] for a definition) mod 28. Thus one arrives at a density of A/4 for the set \mathcal{P}_{28} . The sequence $\{p_i\}$ is, however, not WUD mod 28. Indeed Theorem 1 can be used to show:

Theorem 2 (GRH). The sequence $\{p_j\}$ is WUD mod d if and only if $d \in \{1, 2, 4\}$.

A. Reznikov [3], in the course of his investigations of a conjecture of Lubotzky and Shalov on three-manifolds, arrived at the problem whether for a given prime l, the set of primes p such that l is a primitive root mod p and $p \equiv \pm 1 \pmod{l}$ is infinite. Reznikov's question and Rodier's conjecture suggest a more general problem: Let $a \neq \pm 1$ be a integer and M a number field. Determine whether or not the set of primes p such that a is a primitive root mod p and, moreover, p splits completely in M, is infinite. In case it is infinite, determine whether it has a density, and if yes, compute the density. A first step in this is made by the following generalization of Hooley's classical result, that will be proved in the next section. Theorem 3 will be the starting point of the proof of Theorem 1, which on its turn is the starting point of the proof of Theorem 2. (As usual μ denotes the Möbius function.)

Theorem 3 Let M be Galois and $a \neq \pm 1$ an integer. Suppose the Riemann Hypothesis holds for the fields $M_r := M(\zeta_r, a^{1/r})$ for every squarefree r. Then $N_M(a; x)$, the number of primes p not exceeding x that split completely in M and such that a is a primitive root mod p, satisfies

$$N_M(a;x) = \delta(M) \frac{x}{\log x} + O(\frac{x \log \log x}{\log^2 x}),\tag{2}$$

where

$$\delta(M) = \sum_{r=1}^{\infty} \frac{\mu(r)}{[M_r : \mathbb{Q}]}.$$
(3)

(Since $[M_r : \mathbb{Q}] \ge [\mathbb{Q}_r : \mathbb{Q}] \gg r\varphi(r) \gg r^2/\log\log r$, the series for $\delta(M)$ is convergent.)

The author thanks Don Zagier for some helpful suggestions, Patrick Solé for pointing out Rodier's conjecture to him and F. Rodier for sending [5].

2 Proof of Theorem 3

Since the proof is a straightforward generalization of Hooley's proof in [1], we will only discuss the fine points. Let \mathfrak{P}_M denote the set of primes that split completely in M. Put $m_r = [M_\tau : \mathbb{Q}]$. The analysis of the error terms can be taken over unchanged on using that the set of primes that split completely in M is a subset of the set of all primes. Thus the problem reduces to showing that (2) holds with $N_M(a; x)$ replaced by $N_M(a; x, \zeta_1)$, which is defined as the cardinality of the set

$$\{p \leq x : p \in \mathfrak{P}_M, l \leq \zeta_1, l \nmid [\mathbb{F}_p^* :< a >] \}, l \text{ prime},$$

with $\zeta_1 = \log x/6$. By inclusion and exclusion one finds

$$N_M(a;x,\zeta_1) = \sum_{P(r) \le \zeta_1} \mu(r) \pi_{M_r}(x),$$

where

$$\pi_{M_r}(x) = |\{p \le x : p \in \mathcal{P}_M, \ r | [\mathbf{F}_p^* :< a >]\}|,$$

and P(r) denotes the greatest prime divisor of r. Now $r|[\mathbb{F}_p^* :< a >]$ and p splits completely in M if and only if p splits completely in M_r . Thus $\pi_{M_r}(x)$ is the number of primes not exceeding x that splits completely in M_r . The analysis of Hooley of this quantity ([1, §5]) in case $M = \mathbb{Q}$ rests on the fact that the discriminant of \mathbb{Q}_r is bounded by r^{cm_r} , where c is a constant and the fact that \mathbb{Q}_r is Galois. One checks that both properties are satisfied for M_r as well. Thus, we deduce that, under the Riemann Hypothesis for M_r , the following estimate holds true:

$$\pi_{M_r}(x) = \frac{\mathrm{li}(x)}{m_r} + O(\sqrt{x}\log(rx)),\tag{4}$$

where li(x) denotes the logarithmic integral and the implied constant depends at most on M. Thus, equation (29) of [1] now becomes

$$N_M(a; x, \zeta_1) = \mathrm{li}(x) \sum_{r=1}^{\infty} \frac{\mu(r)}{m_r} + O(\mathrm{li}(x) \sum_{r > \zeta_1} \frac{1}{r\varphi(r)}) + O(\frac{x}{\log^2 x}),$$

on using that $m_r \gg r\varphi(r)$. This simplifies to

$$N_M(a; x, \zeta_1) = \left(\sum_{r=1}^{\infty} \frac{\mu(r)}{m_r}\right) \frac{x}{\log x} + O(\frac{x}{\log^2 x}).$$

Thus (2) holds with $N_M(a; x)$ replaced by $N_M(a; x, \zeta_1)$.

Remark. An alternative way of establishing (4) is to make use of (11RH) of [2], which together with the upper bound r^{cm_r} for the discriminant of M_r , where c is a constant depending at most on M, yields that [1, (27)] is valid for M_r , under RH on M_r . From this estimate and the fact that M_r is Galois, (4) is easily deduced.

3 Proof of Theorem 1

We start by a few propositions involving degrees of certain number fields M_r , $r \ge 1$. Since these degrees are only used in the context of computing $\delta(M)$, see (3), it is enough to compute them for r squarefree only. As usual $\omega(d)$ denotes the number of distinct prime divisors of d. **Proposition 1** Put $n_r = [\mathbb{Q}(\zeta_r, 2^{1/r}) : \mathbb{Q}]$. Then, for $8 \nmid r$, $\mathbb{Q}(\zeta_r)$ and $\mathbb{Q}(2^{1/r})$ are linearly disjoint and hence $n_r = r\varphi(r)$.

Proof. Every subfield of $\mathbb{Q}(\zeta_r)$ is normal. All the normal subfields of $\mathbb{Q}(2^{1/r})$ are contained in $\mathbb{Q}(\sqrt{2})$. Since $\sqrt{2} \in \mathbb{Q}(\zeta_r)$ if and only if 8|r, it follows that for $8 \nmid r$, $\mathbb{Q}(2^{1/r})$ and $\mathbb{Q}(\zeta_r)$ are linearly disjoint and thus $n_r = r\varphi(r)$.

Proposition 2 Let l_1, \ldots, l_s be distinct odd primes. Put $l_j^* = (-1/l_j)l_j, \ 1 \le j \le s$. Let $r \ge 1$. Put $d = (l_1 l_2 \cdots l_s, r)$. Then, for $8 \nmid r, [\mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*}, \zeta_r, 2^{1/r}) : \mathbb{Q}] = 2^{s-\omega(d)}r\varphi(r)$.

Proof. Clearly $[\mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*}) : \mathbb{Q}] = 2^s$. Suppose $8 \nmid r$. Then, by Proposition 1, $[\mathbb{Q}(\zeta_r, 2^{1/r}) : \mathbb{Q}] = r\varphi(r)$. Thus the sought for degree equals

$$\frac{2^{s}r\varphi(r)}{\left[\mathbb{Q}(\sqrt{l_{1}^{*}},\ldots,\sqrt{l_{s}^{*}})\cap\mathbb{Q}(\zeta_{r},2^{1/r})\right]}$$
(5)

Since l_1, \ldots, l_s are the only primes that ramify in $\mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*})$ and primes not dividing 2r do not ramify in $\mathbb{Q}(\zeta_r, 2^{1/r})$, one has that

$$\mathbb{Q}(\sqrt{l_1^*}, \dots, \sqrt{l_s^*}) \cap \mathbb{Q}(\zeta_r, 2^{1/r}) \subseteq \mathbb{Q}(\bigcup_{l_i \mid d} \sqrt{l_i^*}).$$
(6)

Using that $\sqrt{l_i^*} \in \mathbb{Q}(\zeta_{l_i})$, it is seen that actually equality holds in (6). The (absolute) degree of the fields occurring in (6) is $2^{\omega(d)}$. This together with (5) completes the proof.

Proposition 3 [1] (GRH). $\delta(\mathbb{Q}) = A$.

Proposition 4 (GRH). $\delta(\mathbb{Q}(i)) = A/2$.

Proof. Put $M = \mathbb{Q}(i)$. For $4 \nmid r$, the fields $\mathbb{Q}(i)$, $\mathbb{Q}(\zeta_r)$ and $\mathbb{Q}(2^{1/r})$ are seen to be mutually linearly disjoint on using Proposition 1. Thus $[M_r : \mathbb{Q}] = 2n_r = 2r\varphi(r)$, by Proposition 1 again. Recalling (3) one finds,

$$\delta(M) = \sum_{r=1}^{\infty} \frac{\mu(r)}{[M_r : \mathbf{Q}]} = \frac{1}{2} \sum_{r=1}^{\infty} \frac{\mu(r)}{r\varphi(r)}$$

On using the fact that $\mu(r)/(r\varphi(r))$ is a multiplicative function and Euler's identity, the result follows.

Proposition 5 (GRH). Let l_1^*, \ldots, l_s^* be as in Proposition 2. For notational convenience put $\delta(l_1 \cdots l_s) = \delta(\mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*}))$. Then

$$\delta(l_1 \cdots l_s) = \frac{A}{2^s} \prod_{j=1}^s (1 - \frac{1}{l_j^2 - l_j - 1})$$

Proof. Put $M = \mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*})$ and $\lambda = l_1 \cdots l_s$. Let $r \ge 1$. If $(\lambda, r) = d$, then, by Proposition 2, $[M_r : \mathbb{Q}] = 2^{s-\omega(d)} r \varphi(r)$. Thus

$$\delta(\lambda) = \sum_{d|\lambda} \sum_{(\lambda,r)=d} \frac{\mu(r)}{[M_r:\mathbb{Q}]} = \frac{1}{2^s} \sum_{d|\lambda} \sum_{\substack{d|r\\(r,\lambda/d)=1}} \frac{2^{\omega(d)}\mu(r)}{r\varphi(r)}$$

On noticing that the inner sum equals

$$2^{\omega(d)} \frac{\mu(d)}{d\varphi(d)} \sum_{(r,\lambda)=1} \frac{\mu(r)}{r\varphi(r)},$$

one finds that

$$\begin{split} \delta(\lambda) &= \frac{1}{2^s} \sum_{d|\lambda} \frac{2^{\omega(d)} \mu(d)}{d\varphi(d)} \sum_{(r,\lambda)=1} \frac{\mu(r)}{r\varphi(r)} \\ &= \frac{1}{2^s} \prod_{l_j|\lambda} (1 - \frac{2}{l_j(l_j - 1)}) \prod_{p \nmid \lambda} (1 - \frac{1}{p(p - 1)}) \\ &= \frac{A}{2^s} \prod_{l_j|\lambda} (1 - \frac{1}{l_j^2 - l_j - 1}). \end{split}$$

This completes the proof.

Since, for $4 \nmid r$, $\mathbb{Q}(i)$ is linearly disjoint from $\mathbb{Q}(\sqrt{l_1^*}, \ldots, \sqrt{l_s^*}, \zeta_r, 2^{1/r})$, one has

$$\delta(\mathbb{Q}(\sqrt{l_1^*},\ldots,\sqrt{l_s^*},i)) = \delta(\mathbb{Q}(\sqrt{l_1^*},\ldots,\sqrt{l_s^*}))/2$$

Thus

Proposition 6 (GRH). Let l_1^*, \ldots, l_s^* be as in Proposition 2. Then

$$\delta(\mathbb{Q}(\sqrt{l_1^*},\ldots,\sqrt{l_s^*},i)) = \frac{A}{2^{s+1}} \prod_{j=1}^s (1-\frac{1}{l_j^2-l_j-1}).$$

Proposition 7 (GRH). Let l_1^*, \ldots, l_s^* be as in Proposition 2. Put $\lambda = l_1 \cdots l_s$. The density $\delta'(\lambda)$ of primes p such that 2 is a primitive root mod p and p does not split completely in any of the quadratic fields $\mathbb{Q}(\sqrt{l_1^*}), \ldots, \mathbb{Q}(\sqrt{l_s^*})$ equals

$$\delta'(\lambda) = \frac{A}{2^s} \prod_{j=1}^s (1 + \frac{1}{l_j^2 - l_j - 1}).$$

Proof. Let $\delta(1)$ denote the density of the primes p such that 2 is a primitive root mod p. The sought for density, $\delta'(\lambda)$, equals, by inclusion and exclusion,

$$\delta'(\lambda) = \sum_{d|\lambda} \mu(d)\delta(d).$$
(7)

By Proposition 5 δ/A is a multiplicative function on the odd squarefree integers. The same holds for the Möbius function and for δ'/A , the Cauchy product of δ/A and μ . Using Propositions 3 and 5 one finds, for $1 \leq j \leq s$,

$$\delta'(l_j) = \delta(1) - \delta(l_j) = \frac{A}{2}(1 + \frac{1}{l_j^2 - l_j - 1}).$$

In combination with the multiplicativity of δ'/A , this yields the result.

Remark (Don Zagier). Put $\epsilon_j = -1$, $1 \le j \le s$. Using Theorem 1 it is seen that the density of primes p satisfying i) and ii) of Theorem 1 and in addition $p \equiv 3 \pmod{8}$ is

$$\frac{A}{2^{s+1}}\prod_{j=1}^{s}\left(1+\frac{1}{l_{j}^{2}-l_{j}-1}\right)=\frac{1}{2^{s+1}}\prod_{p\nmid\lambda}\left(1-\frac{1}{p(p-1)}\right).$$

The density of the primes p satisfying ii) of Theorem 1 and $p \equiv 3 \pmod{8}$ equals 2^{-2-s} . Thus the relative density of primes p such that 2 is a primitive root is

$$2\prod_{p \nmid \lambda} (1 - rac{1}{p(p-1)})$$

By taking λ to be the product of the first *s* consecutive odd primes and *s* large enough, the relative density can be made arbitrary close to 1. The conditions imposed ensure that p-1 contains only 2 (to the first power) and some prime factors larger than the *s*th prime. Thus if 2 is not primitive mod p, 2 must have a small order mod p, which is something rarely happening. Another interpretation is obtained on noting that 1/(l(l-1)) in the factor 1 - 1/(l(l-1)), l odd, in Artin's constant is due to the primes that split completely in $\mathbb{Q}(\zeta_l, 2^{1/l})$, that is satisfy at least $p \equiv 1 \pmod{l}$. But (p/l) = -1 ensures $p \not\equiv 1 \pmod{l}$ and thus the factor 1 - 1/(l(l-1)) should be replaced by 1. For l = 2 the 1/2 in the factor 1 - 1/2 comes from the primes that split completely in $\mathbb{Q}(\sqrt{2})$. Since $p \equiv 3 \pmod{8}$ implies (2/p) = -1, this factor should be replaced by 1 as well.

Proof of Theorem 1. Let $J = \{j : \epsilon_j = 1\}$. Put $\lambda_1 = \prod_{j \in J} l_j$ and $\lambda_2 = \lambda/\lambda_1$. Except for at most finitely exceptions a prime p satisfies ii) if and only if p splits completely in $\mathbb{Q}(\sqrt{l_j^*})$, $j \in J$ and does not split completely in $\mathbb{Q}(\sqrt{l_j^*})$, for j not in J. By inclusion and exclusion the sought for density is seen to equal $\sum_{d|\lambda_2} \mu(d)\delta(d\lambda_1)$. By the multiplicativity of δ/A and (7) this equals $\delta'(\lambda_2)\delta(\lambda_1)/A$. Now (1) follows from Theorem 3, Propositions 5 and 7. The proof of the remaining part is similar, instead of Proposition 5 one now uses Proposition 6.

4 Proof of Theorem 2

The proof of Theorem 2 is an almost immediate consequence of Propositions 3 and 4 and Theorem 1.

Proof of Theorem 2. Clearly the sequence $\{p_j\}$ is WUD mod 1 and WUD mod 2. By Propositions 3 and 4 the sequence is WUD mod 4. Since $2^{(p-1)/2} \equiv 1 \pmod{8}$, for every prime p satisfying $p \equiv 1 \pmod{8}$, and hence none of these primes is such that 2 is a primitive root mod p, the sequence is not WUD mod 8. To finish the proof it is enough to show that for every odd prime l the sequence is not WUD mod l. Consider the set \mathcal{A}_l of residue class $a \mod l$ such that (a/l) = 1. Notice that $|\mathcal{A}_l| = \varphi(l)/2$. If the sequence $\{p_j\}$ were WUD mod l, then the density of primes $p \in \mathcal{P}$ such that $p \equiv a_j \pmod{l}$ for some $a_j \in \mathcal{A}_l$, would be A/2. On the other hand, using quadratic reciprocity, this density equals the density of $p \in \mathcal{P}$ such that p splits completely in $\mathbb{Q}(\sqrt{l^*})$. Now Proposition 5 with s = 1 and $l_1 = l$ leads to a contradiction.

References

- C. Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
- [2] S. Lang, On the zeta function of number fields, *Invent. Math.* 12 (1971), 337-345.
- [3] W. Narkiewicz, Uniform distribution of sequences of integers in residue classes, LNIM 1087, Springer.
- [4] A. Reznikov, Three-manifolds subgroup growth, in preparation. (With an appendix by P. Moree.)
- [5] F. Rodier, Estimation asymptotique de la distance minimale du dual des codes BCH et polynômes de Dickson, Discrete Math. 149 (1996), 205-221.

Pieter Moree Max-Planck-Institut für Mathematik Gottfried-Claren Str. 26 53225 Bonn Germany E-mail: moree@antigone.mpim-bonn.mpg.de