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Abstract

In this paper we prove that given a point p ∈ Mn, where Mn is a
closed Riemannian manifold of dimension n, the length of a shortest
geodesic loop lp(M

n) at this point is bounded above by 2nd, where
d is the diameter of Mn. We also prove that the length of a shortest
geodesic loop α(Mn) on a closed Riemannian manifold Mn is bounded
above by 6nFillRadMn, where FillRadMn denotes the filling radius of
Mn. Moreover, we show that on a closed simply connected Riemannian
manifold Mn with non-trivial second homotopy group either there exist
at least three geodesic loops of length less than or equal to 2d at each
point of Mn, or the length of a shortest closed geodesic on Mn is
bounded from above by 4d. We believe that the last result can be
generalized for an arbitrary closed Riemannian manifold, although we
will not show that in this paper.

Introduction and main results.

Let Mn be a closed Riemannian manifold of dimension n. In 1983 M.
Gromov asked whether one can bound above the length of a shortest closed
geodesic l(Mn) on Mn by c(n)vol(Mn)

1

n , where vol(Mn) is the volume of
Mn and c(n) is a constant that depends on the dimension of M n only. A
similar question can be asked about the relationship between l(M n) and the
diameter of a manifold d. The fact that on each manifold there exists a
closed geodesic was shown by L. Lusternik and A. Fet. A similar argument
shows that there exists a geodesic loop at each point of a closed Riemannian
manifold. So, one can also ask if there exists a constant k(n) such that for
each point p ∈ Mn, the length of a shortest geodesic loop lp(M

n) at this
point is bounded above by k(n)d, and, in particular, whether lp(M

n) ≤ 2d.
Note, that it is quite easy to see that lp(M

n) ≤ 2d in case of a closed
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Riemannian manifold that is not simply connected. Note also, that for
no constant C(n) we can bound above lp(M

n) by C(n)vol(Mn)
1

n for every
p ∈ Mn. For example, consider a prolate ellipsoid E, that is an ellipsoid
generated by an ellipse rotating around its major axis. Let us denote its
polar radius by R. Let p ∈ E be the north pole of E. Then all geodesics and,
thus, geodesic loops passing through p are ellipses, (see fig. 1). Therefore,

the ratio
lp(E)√
A(E)

will approach infinity as R goes to infinity, and the smaller

semiaxis is fixed.

R

p

l  (E)p

Figure 1: Prolate Ellipsoid.

Let Mn be a closed Riemannian manifold of dimension n. Here is the
main result of our paper.

Theorem 0.1 Let q denote the smallest integer for which πq(M
n) 6= {0}.

Then for each p ∈ Mn there exists a geodesic loop based at p of length ≤ 2qd,
where d is the diameter of Mn. In particular, the length of a shortest geodesic
loop based at p is ≤ 2nd.

A related problem is the probelm of estimating the length of a shortest
geodesic loop, α(Mn) on the closed Riemannian manifold Mn. Here the base
point is not fixed. The first such curvature-free estimates were obtained in
2004 and are due to S. Sabourau, who established that α(M n) is bounded

above by c(n)vol(Mn)
1

n for some constant c(n) that was not explicitely

calculated in his paper [S2]. He also demonstrated that α(M n) ≤ (8·3n
−2)d
3 .

In this paper we obtain an estimate for α(M n) in terms of the Filling Radius
of Mn. The following definition is due to M. Gromov, (see [G]).
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Definition 0.2 Filling Radius. Let M be a Riemannian manifold topo-
logically imbedded into an arbitrary metric space X. Then Filling Radius
FillRad(M ⊂ X) is the infimum of ε > 0, such that M bounds in the ε-
neighborhood Nε(M). Filling Radius of an abstract Riemannian manifold is
FillRad(M ⊂ X), where X = L∞(M), i.e. the Banach space of bounded
Borel functions f on M , and the embedding of M into X is a map that to
each point p of M assigns a distance function p −→ fp = d(p, q), (see [G]).

Theorem 0.3 Let Mn be a closed Riemannian manifold. Then the length of
a shortest geodesic loop, α(Mn) on Mn is bounded above by 6nFillRadMn.

The volume inequality then follows from the previous theorem and from
the volume upper bound for the Filling Radius due to Gromov.

Corollary 0.4 Let Mn be a closed Riemannian manifold Mn. Then the
length of a shortest geodesic loop α(M n) ≤ 6(n+1)nn+1(n+1)!

1

2 vol(Mn)
1

n ,
where vol(Mn) is the volume of Mn.

Proof. This corollary follows from the above theorem and from the Gro-
mov’s estimate for the filling radius of M n in terms of the volume of Mn,
namely FillRadMn ≤ (n + 1)nn(n + 1)!

1

2 vol(Mn)
1

n , (see [G]).

2

This corollary provides an explicit value for the constant c(n). We be-
lieve that this value is better than the one that can be obtained after some
computations using the methods of [S2].

At present there do not exist similar curvature-free upper bounds for
the length of a shortest closed geodesic l(M n) in the general case of a closed
Riemannian manifold Mn, though such bounds do exist for stationary 1-
cycles, ([NR2]) and minimal surfaces, ([NR3]) as well as for some topological
types of Riemannian manifolds, namely, 2-dimensional sphere, ([C], [M],
[S1], [NR1], [R1], [R2]), and 1-essential manifolds, ([G]). (Gromov’s estimate
generalizes results of many people, who worked on estimating systoles in case
of surfaces, namely, C. Loewner, P. Pu, R. Accola, C. Blatter, C. Bavard,
Ju. Burago and V. Zalgaller, J. Hebda and others (see [BZ], [CK])). Thus
one of the central problems in this subject remains to find upper bounds of
similar nature for l(Mn). With this goal in mind, we will prove the following
theorem.
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Theorem 0.5 Let Mn be a simply connected closed Riemannian manifold
with π2(M

n) 6= {0}. Then either the length of a shortest closed geodesic
is bounded above by 4d, or at each point of M n there exist three distinct
geodesic loops based at that point of length bounded above by 2d.

One can view this theorem in the following way: unless there are three
geodesic loops of length ≤ 2d based at each point of M n, which seems to
be unlikely for many Riemannian manifolds, there exists a closed geodesic
of length ≤ 4d. Our methods can be used to generalize this theorem to
arbitrary closed Riemannian manifolds, though not with constant 4.

1 The proof of Theorem 0.1.

Here are some useful observations: We will begin with the following lemma.

Lemma 1.1 Let Mn be a Riemannian manifold. Let p, q ∈ Mn. Let
γ1(t), γ2(t) be two curves connecting the point p to the point q of lengths
l1, l2 respectively. Consider the curve γ2 ∗ −γ1, that is a product of γ2 and
−γ1. This curve is a loop based at p. If this loop is contractible to p by a
path homotopy along the curves of length ≤ l1 + l2 then there is a path ho-
motopy hτ (t), τ ∈ [0, 1], such that h0(t) = γ1(t), h1(t) = γ2(t) and the length
of curves during this homotopy is bounded above by 2l1 + l2. (Note, that by
a path homotopy we mean homotopy that fixes the end points of a curve).

Proof. Let h̃τ (t) be a homotopy that connects γ2 ∗ −γ1 with a point
p, (see fig. 2 (a) and (b)). Then let us consider the following homotopy
γ1 ∼ h̃1−τ ∗γ1 ∼ γ2 ∗−γ1 ∗γ1 ∼ γ2, (see fig. 2 (a)-(g)). The length of curves
during this homotopy is ≤ 2l1 + l2.

2

(A similar argument is used by C.B. Croke to prove Lemma 3.1 in [C].)
In order to prove our theorems, we will also need the following observa-

tion.
Observation. Let Mn be a complete Riemannian manifold. Let p ∈

Mn. Suppose that the length of a shortest geodesic loop lp(M
n) based at

p is greater than L. Then given any piecewise differentiable closed curve
γ : [0, 1] −→ Mn, of length ≤ L such that γ(0) = γ(1) = p there exists a
length decreasing path homotopy that connects this curve with p. Moreover,
this homotopy depends continuously on a curve γ. In other words the space
of loops of length ≤ L based at p is contractible.
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γ1(t) γ 2 (t)

p
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γ 2(t)γ1(t) γ 2 ∗_ γ1
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Figure 2: Illustration of the proof of Lemma 1.1.

Let us first provide a short explanation of the proof of Theorem 0.1. The
proof of Theorem 0.3 will be similar.

In order to do that, let us first consider a manifold with π1(M
n) 6= {0},

this is the case of Theorem 0.1 in which q = 1. Here we can easily show that
the length of a shortest closed geodesic loop at p is bounded above by 2d for
any p ∈ Mn. For let us consider any non-contractible map f : S1 −→ Mn.
Suppose S1 is partitioned (triangulated) into very small segments, so that
the diameter of each edge in the induced triangulation on f(S1) is smaller
than some δ > 0. Let D2 be the standard disc that is triangulated as a cone
over S1. Assume that for some p ∈ Mn the length of a shortest geodesic
loop lp > 2d + δ. We will show in that case we can extend f : S1 −→ Mn

to D2, thus reaching a contradiction with the fact that this map is non-
contractible. The extension procedure will be inductive to skeleta of D2.
0-skeleton of D2 consists of one additional simplex, namely, the center of
the disc that we will denote by p̃. We will let f(p̃) = p. Next to extend
to 1-skeleton, consider an arbitrary edge of the form [p̃, ṽi], where ṽi is the
vertex of triangulation of S1. We will assign to this edge a minimal geodesic
segment [p, vi] connecting the point p with vi = f(ṽi). Next to extend to
2-skeleton, consider a 2-simplex [p̃, ṽi, ṽi+1]. The boundary of this simplex
is mapped to a closed curve of length ≤ 2d+ δ, consisting of two minimizing
geodesic segments and an edge [vi, vj ] of length ≤ δ. This curve passes
through p. Let us apply a curve shortening process with a fixed p. Since
we have assumed there is no geodesic loops of length ≤ 2d + δ based at p,
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this curve is contractible to p. Thus, we can assign to the above 2-simplex,
surface generated by the homotopy contracting this curve to p. Therefore,
we have succeeded at extending f : S1 −→ Mn to D2, which contradicts
our assumption about non-contractibility of f .

This shows that there must be a geodesic loop of length ≤ 2d + δ based
at p. We conclude by letting δ approach 0.

At the next step, for the sake of simplicity, assume that π1(M
n) = {0},

but π2(M
n) 6= {0}. This is the case of Theorem 0.1, in which q = 2.

Let f : S2 −→ Mn be a non-contractible map from the standard 2-
dimensional sphere to Mn. Suppose S2 is endowed with a fine triangulation
in such a way that the diameter of any simplex in the induced triangulation
of f(S2) is smaller than some δ > 0. Furthermore, suppose that D3 is a
disc that is triangulated as the cone over S2. Assume that lp(M

n) > 4d
for some p ∈ Mn. We will extend the map f : S2 −→ Mn to D3, thus
reaching a contradiction. The procedure will be inductive to skeleta of D3.
We will begin by extending f to 0-skeleton of D3 that consists of a single
additional point p̃ at the center of the disc. We will let the image of p̃ be the
given point p ∈ Mn. Next, let us extend to 1-skeleton as follows: we will
assign to an edge [p̃, ṽi] that connects the center of the disc with the vertex
ṽi a minimal geodesic segment [p, vi] connecting the point p with the vertex
vi = f(ṽi). Next we extend to 2-skeleton. Consider an arbitrary 2-simplex
σ̃i = [p̃, ṽi1 , ṽi2 ]. Its boundary ∂σ̃2

i = [p̃, ṽi1 ] − [p̃, ṽi2 ] + [ṽi1 , ṽi2 ] is mapped
to a closed curve of length ≤ 2d+ δ. Assuming that the length of a shortest
geodesic loop based at p is greater than 2d+ δ, this curve can be contracted
to a point by a length-decreasing homotopy that fixes p, i.e. all the curves
in the homotopy will pass through p.

We will map the 2-simplex to the surface generated by this homotopy,
that will be denoted as σ2

i . Note that we should not be able to extend map
f any further. That means that there exists a 3-simplex σ̃3

i , such that f :
∂σ̃3

i −→ Mn is not contractible. On the other hand, let σ̃3
i = [p̃, ṽi1 , ṽi2 , ṽi3 ].

Then ∂σ̃3
i = Σ3

j=0(−1)j [ṽi0 , ...
ˆ̃vij , ..., ṽi3 ], where ṽi0 = p̃. Let us denote

[p̃, ṽij ] = ẽj and [p, vij ] as ej . Since [vi1 , vi2 , vi3 ] can be made arbitrarily
small we will treat it here as a point q for the sake of simplicity of the
exposition, (see the Remark below). Note also, that assuming that there is
no geodesic loops based at p of length ≤ 4d we can contract f : ∂σ̃3

i −→ Mn

to a point as follows:
1. By Lemma 1.1 there is a path homotopy between e1 and e2 that passes
through curves eτ12 , where 1 ≤ τ12 ≤ 2 of length ≤ 3d. This homotopy, we
claim, can be used to construct a homotopy between the above sphere and
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a point.
2. We will define S2

τ12
as follows: consider the two points p and q joined by

two geodesic segments e2, e3 and the curve eτ12 , (see fig. 3 (a)). Assuming
that there is no geodesic loops based at p of length ≤ 4d, both curves
e2 ∗−eτ12 and eτ12 ∗−e3 are contractible to point p without length increase.
Let us call the discs obtained during this homotopy (D2

2)τ12 , (see fig. 3
(b)) and (D2

3)τ12 respectively. They change continuously with τ12. Then
S2

τ12
is obtained by the obvious gluing of the three discs: σ2

i0,i2,i3
, (D2

2)τ12
and (D2

3)τ12 along their boundaries. Note that when τ12 = 1, S2
τ12

is the
original sphere and when τ12 = 2 it is a sphere construced as follows: we
begin with two points p and q, join them with three segments two of which
coincide: e2, e2, e3. Next obtain three discs: one of which is degenerate
and constructed by contracting a curve e2 ∗ −e2 along itself, and the other
two coincide, but have opposite orientation: one is obtained by contracting
e2 ∗ −e3 and the second one, by contracting e3 ∗ −e2, (see fig. 3 (c)). So,
obviously, the sphere that we obtain consists of two identical discs but with
opposite orientation glued along their boundary, and is contractible along
itself. Thus, we obtain a homotopy between the above sphere and a point
and, therefore, reach a contradiction.

−e  2 −e  1 e  2 −e  3e  3 e  1, ** , * e  1As we continuously change

e  2to e τ12along curves

The original sphere obtained by conracting three pairs of curves:

as loops.

sphere will also change continuously.

e τ12
e 2e 3

p

q

e 1 e 2
e 3

p

q

D2
2 τ 12

( ) e 2 e τ12

τ 12 τ 12

−

e 1−e 2

Here                is obtained by conracting                           to the point.
This disc changes continuously with          .  At          it is a disc obtained
by contracting                         .

*

*

e 1

e 2

p

q

e τ12

e 2

D2
2 τ 12p

q

( )

e 3
e 1

p

q

τ 12 =2at time                 .
τ 12

2This is a sphere S

It is a disc taken twice
with the opposite 
orientation.

(a)

(b)

(c)

Figure 3: Construction of S2
τ12

Remark. Let us consider a sphere in the manifold M n obtained by
taking a small 2-simplex [vi1 , vi2 , vi3 ] and a point p, connecting p with each
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vij by a minimal geodesic segment ej , j = 1, 2, 3, and finally, by contracting
each of the closed curves ej +[vij , vij mod 3+1

]−ej mod 3+1, where j = 1, 2, 3 to
the point p as loops, (see fig. 4). Denote this sphere by S0. We claim that for
all practical purposes [vi1 , vi2 , vi3 ] can be treated as a point q. Simply take
a point q ∈ [vi1 , vi2 , vi3 ] connect it with each vij in [vi1 , vi2 , vi3 ] by a short
segment σj , (see fig. 4 (b)), j = 1, 2, 3 of length ≤ δ. Then instead of curves
ej we can just consider the new curves e∗j = ej +σj of length ≤ d+δ, (see fig.
4 (c)). Note that each of the digons of the form e∗j mod 3+1∗−e∗j is contractible
to p as loops without the length increase, (see fig. 4 (d)). Therefore, one
can apply Lemma 1.1 to show that e∗j is path homotopic to e∗j mod 3+1 and
the length of curves in this path homotopy is bounded by 3d + 3δ. These
three homotopies give rise to three discs. Gluing them together results in
a sphere that we will denote by S1. It is easy to see that spheres S0 and
S1 are homotopic, when δ is small enough. The intermediate spheres St are
depicted on fig. 5. Therefore, if S1 is not contractible whenever S0 is not
contractible. We can eventually let δ go to 0.

σ1 σ 2

σ3
v

i1
v

i2
v

i
3

q

e
1
* e2*

e3*

p

q
v

i1
v

i

(d)

2
v

i
3

e2* e
1
*−*

p

q

is contractible to p

v
i1

v
i2

v
i
3

e
1

e2

e3

v
i1

v
i2

v
i
3

p (a) (b)

(c)

Figure 4: Small 2-simplex can be ignored.

Now, let us present the proofs of theorems.
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i 1
v

i 2
v

i 3

The sphere S  is obtained by gluing
four discs.  One disc is the star−shaped
center of the small simplex                      .

to the point p by path homotopy.

The other three discs are obtained by 
contracting three corresponding loops

v
i 3

v

v
i 1

v
i 2

p

t

Figure 5: Spheres St.

2 Proof of Theorem 0.1.

Before giving the proof of Theorem 0.1 let us describe the main ideas. Let
Mn be a closed Riemannian manifold, and suppose that q > 0 is the small-
est natural number, such that πq(M

n) is not trivial. We consider a non-
contractible sphere f : Sq −→ Mn and show that, assuming there is no
“short” geodesic loops, it can be filled by a disc. To construct this disc we
use the following bootstrap procedure of constructing spheres and discs of
progressively growing dimensions: One begins with two points p and q joined
by k segments. Now, to construct a sphere of dimension s < k, one selects
s+1 segments. The sphere is constructed by a natural gluing of s+1 s-discs.
These discs are glued as the simplices in the boundary of s + 1-dimensional
simplex, where one of the simplices degenerates to a point.

Each such disc corresponds to s segments that are selected out of the
given s+1 segments, and is generated by a family of s−1-dimensional spheres
that start with a sphere that is constructed from on those s-segments on the
previous step of induction and ends with a point.

Proof of Theorem 0.1. Let f : Sq −→ Mn be a non-contractible map.
Assume Sq is triangulated into fine simplexes, and that f(Sq) has induced
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triangulation, such that diameter of any simplex in this triangulation is
smaller than δ. Let Dq+1 be triangulated as a cone over Sq. Assuming that
the length of a shortest geodesic loop based at p ∈ M n is greater than 2qd
we will extend our map to Dq+1, thus reaching a contradiction. We will
first extend to 0, 1, 2, and 3-skeleta, as described above in section 1. Let us
denote the image of a 3-simplex σ̃3

i0,...,i3
= [ṽi0 , ṽi1 , ..., ṽi3 ], where ṽi0 = p̃ by

σ3
i0,...,i3

.

Now suppose we want to extend our map to 4-skeleton. Let us con-
sider an arbitrary simplex σ̃i0,i1,i2,i3,i4 = [p̃, ṽi1 , ṽi2 , ṽi3 , ṽi4 ]. Its boundary
is mapped to the following 3-sphere Σ4

j=0(−1)jσi0,..,̂ij ,...,i4
. Now let us con-

struct the following homotopy contracting this sphere to a point. Again,
without loss of generality, assume that simplex [vi1 , ..., vi4 ] is so small that
it can, for our purposes, be treated as a point, that we will denote by q.
Each of the four edges [p, vij ] will be denoted by ej . We know that e1 is
homotopic to e2 by a path homotopy along the curves eτ12 , 1 ≤ τ12 ≤ 2
of length ≤ 3d, (see Lemma 1.1). Let us “move” e1 to e2 and construct
a homotopy of the 3-sphere that will “follow” this move. That is for each
τ12 we want to construct a sphere S3

τ12
that continuously depends on τ12.

This sphere will be made of four discs glued together. These discs are glued
as four simplices in the boundary of the 4-simplex, where the fifth simplex
degenerates to a point.

Disc (D3
1)τ12 will stay constantly equal to σ3

i2,i3,i4
.

p

q

e τ12 τ 12
e τ3 e 3

p

q

e 3e τ12 e 4

(a)

q

p

e τ12 e 4

p

q

e 3e 4
e 3

q

p

e τ12

p

q

τ 12
e τ3 e 4

p

q

τ 12
e τ3 e 3

p

q

e 3e 4

(b)

(c)
(d)

Figure 6: Constructing (D3
2)τ12 .

(D3
2)τ12 is constructed as follows: take two points p, q connected by three

segments: eτ12 , e3, e4, (see fig. 6 (a)). We know that in this situation, we
can construct a sphere S2

τ12
and also to continuously deform it to a point as
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follows:

1. We construct S2
τ12

by taking three loops e3 ∗ −eτ12 , e4 ∗ −e3, eτ12 ∗ −e4

and contracting them to p by a length decreasing path homotopy, (see fig.
6 (b)). Here we use the assumption that the length of a shortest geodesic
loop at p is greater than 2qd, and, thus, greater than 4d. So each of the
loops is contractible to p without the length increase.

2. Now, by Lemma 1.1 there exists a path homotopy that connects eτ12 with
e3 along the curves eτ3τ12

, 1 ≤ τ3τ12 ≤ 2 of length ≤ 5d. This is due to the
fact, that the loop eτ12 ∗−e3 is contractible to p without the length increase,
(see fig. 6 (c)).

3. As eτ12 moves to e3, we use the fact that the length of a geodesic loop is
also greater than 6d to construct a family of 2-dimensional spheres S2

τ3τ12
that

continuously depends on τ3τ12 and that coincides with S2
τ12

, when τ3τ12 = 1.
That is we repeat Step 1, but with eτ3τ12

replacing eτ12 . Note also, that
when τ3τ12 = 2, we obtain a degenerate sphere, consisting of a 2-disc taken
twice with the opposite orientation, that can be contracted to a point. This
family of spheres corresponds to a 3-disc (D3

2)τ12 . Note that at τ12 = 1 it is
σ3

i1,i3,i4
and at τ12 = 2 it is −σ2

i2,i3,i4
.

4. The other two discs (D3
3)τ12 and (D3

4)τ12 are obtained in a similar way.

5. The sphere S3
τ12

is obtained by the obvious gluing. Furthermore, S3
1 is

the original sphere and S3
2 is a sphere that is obtained by gluing σ3

i2,i3,i4
and

−σ3
i2,i3,i4

, and so it is contractible to a point. We will map σ̃4
i0,...,i4

to the disc
generated by this family of 3-spheres. Let us denote this disc by σ4

i0,...,i4
.

Now suppose we have extended the map f to the k-skeleton of Dq+1 in
a similar fashion and now we want to extend it to (k + 1)-skeleton. Con-
sider an arbitrary (k + 1)-simplex σ̃k+1

i0,...,ik+1
. Its boundary is mapped to

Σk+1
j=0(−1)jσk

i0,...,̂ij ,...,ik+1

. As before, we assume that σi1,...,ik+1
can be treated

as a point denoted by q and we denote edges [p, vij ] as ej . We know that there
is a path homotopy between e1 and e2 that passes through the curves eτ12 of
length ≤ 3d. We can extend this homotopy to the homotopy between the un-
derlying map of the boundary of a simplex σ̃k+1

i0,...,ik+1
and a k-sphere that will

then be contracted to a point. This homotopy can be explained as follows.
Its image is a q+1-dimensional disc σk+1

i0,...,ik+1
that is generated by the family

of spheres Sk
τ12

, 1 ≤ τ12 ≤ 2, such that Sk
1 = ∂σk

i0,...,ik+1
= f(∂σ̃k

i0,...,ik+1
) and

Sk
2 is a sphere that is contractible along itself. This family of spheres Sk

τ12

is constructed by taking two points p, q joining them by eτ12 , e2, ..., ek+1 and
repeating the whole process of constructing k-sphere based on two vertices
and k+1 curves connecting them, but with eτ12 replacing e1. (We learned to
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construct such k-spheres on the previous step of induction). As the length
of eτ12 can exceed the length of e1 by 2d, so the length of curves in all of
the homotopies can increase by 2d as well. At this step we use the assump-
tion that lp(M

n) > 2qd > 2kd. Recall that the family of spheres Sk
τ12

is
constructed by gluing of k discs. The disc (Dk

1 )τ12 will be constantly equal
to σk

i2,...,ik+1
. And, of course, (Dk

2 )τ12 = Dk
2 (τ12) is constructed using the

previous step of an inductive construction: we begin with the two points
p, q joined by k segments: eτ12 = e(τ12), e3, ..., ek+1. The disc is constructed
by constructing a family of spheres Sk−1

τ3τ12
that start with a sphere Sk−1

τ12
and

with a sphere that is easily contractible to a point, which we already learned
to do at the previous stage, etc.

Thus, we can continue until we extend to (q+1)-skeleton of Dq+1, reach-
ing a contradiction.

2

Proof of Theorem 0.3. Assume that α(Mn) > 6nFillRadMn. The defini-
tion of the filling radius implies that M n bounds in the (FillRadMn + δ)-
neighborhood of Mn in L∞(Mn). Let W denote the chain that fills Mn

in this neighborhood of Mn. That is, Mn = ∂W , if Mn is orientable, and
Mn = ∂W mod 2, if Mn is not orientable. Without any loss of generality
we can assume that W is a polyhedron, (see [G]).

Suppose that W together with Mn is endowed with a fine triangulation,
i.e. diameter of any simplex in this triangulation is ≤ δ. We are going to
construct a singular (n + 1)-chain on M n, such that the boundary of that
chain is homologous to the boundary of W , thus reaching a contradiction.
We will construct this chain by induction with respect to the dimension of
skeleta of W . That is to each k-simplex of W we will assign a singular k-chain
on Mn. Let us begin with the 0-skeleton of W . To each vertex ṽi of W we will
assign a vertex vi of Mn, such that d(vi, ṽi) = d(ṽi,M

n) ≤ FillRadMn + δ.
Now suppose that vi, vj come from the vertices ṽi, ṽj of some simplex in W .
Then d(vi, vj) ≤ 2FillRadMn + 3δ. Thus, to extend to 1-skeleton, we will
assign to any 1-simplex [ṽi, ṽj ] ⊂ W\Mn a minimal geodesic that connects vi

and vj of length ≤ 2FillRadMn +3δ. We can see that the boundary of each
2-simplex in W is mapped to a closed curve of length ≤ 6FillRadM n + 9δ.
(We are assuming that all simplices in M n are already short).

Let σ̃2
i0,i1,i2

= [ṽi0 , ṽi1 , ṽi2 ] be an arbitrary 2-simplex. Next, we are going
to extend to 2-skeleton of W . Since, we assumed that there are no “short”
geodesic loops on Mn the curve that corresponds to the boundary of this
simplex in Mn is contractible as loop without the length increase to ver-
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tex vi0 . We will map σ̃2
i0,i1,i2

to the surface generated by this homotopy.
Now to extend to 3-skeleton, consider an arbitrary 3-simplex σ̃3

i0,i1,i2,i3
. We

know that its boundary is mapped to Σ3
j=0σ

2
i0,...,̂ij ,...,i3

. Take σ2
i0,i1,i2

in this

boundary. By Lemma 1.1 there exists a path homotopy connecting the curve
[vi0 , vi2 ] with the curve [vi0 , vi1 ]+[vi1 , vi2 ] passing through the curves e(τ012)
of length ≤ 8FillRadMn + 11δ. Similarly, there is a path homotopy con-
necting the curve [vi1 , vi3 ] with the curve [vi1 , vi2 ]+ [vi2 , vi3 ] along the curves
e(τ123) also of length ≤ 8FillRadMn +11δ, (see fig. 7). Here we use the as-
sumption that the length of a geodesic loop is greater than 6FillRadM n +ε,
where ε is some multiple of δ.

vi 0

vi1

vi 2

vi 3

vi 0
vi1

vi 2

vi1 vi 2

vi 3

Figure 7: Homotopies between [vi0 , vi2 ] and [vi0 , vi1 ] + [vi1 , vi2 ] and between
[vi1 , vi3 ] and [vi1 , vi2 ] + [vi2 , vi3 ]

Now we can construct homotopy connecting the spherical cycle
Σ3

j=0(−1)jσ2
i0,...,̂ij ,...,i3

with a point, (see fig. 8).

1. Let us begin by moving the curve [vi0 , vi2 ] to the curve [vi0 , vi1 ]+ [vi1 , vi2 ]
along the curves e(τ012). We can generate a family of spheres S2(τ012) that
begin with the given spherical cycle, and that are constructed as follows.
We replace [vi0 , vi2 ] by e(τ012). S2(τ012) will be obtained by gluing of the
four discs. Two discs: σ2

i1,i2,i3
and σ2

i0,i1,i3
will stay constant. The other two

discs will be obtained by contracting loops e(τ012) + [vi2 , vi1 ] + [vi1 , vi0 ] and
[vi0 , vi3 ] + [vi3 , vi2 ] − e(τ012) to a point vi0 , (see fig. 8 (b)).

Let us describe S2(2). This is a sphere that is obtained by gluing of the
two constant discs σ2

i1,i2,i3
and σ2

i0,i1,i3
, one degenerate disc, that is obtained

by contracting a curve [vi0 , vi1 ] + [vi1 , vi2 ] − [vi1 , vi2 ] − [vi0 , vi1 ] along itself,
and, finally a disc that is obtained by contracting a curve [vi0 , vi3 ]+[vi3 , vi2 ]+
[vi2 , vi1 ] + [vi1 , vi0 ] to the point vi0 , (see fig. 8 (c)).

2. Let us next move the curve [vi1 , vi3 ] to the curve [vi1 , vi2 ] + [vi2 , vi3 ]
along the curves e(τ123), 1 ≤ τ123 ≤ 2. We can generate a family of
spheres S2(τ123), such that S2(τ123 = 1) coincides with S2(τ012 = 2). Now
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S2(τ123 = 2) is a sphere that consists of one disc taken twice with the op-
posite orientation, (see fig. 8 (d), (e)), and, thus, is contractible. (Here we
use the fact that our assumption implies that all “short” loops β based at
any point p can be contracted to p by a length-decreasing homotopy, and
this homotopy continuously depends on β. The fact that these two discs
coincide up to orientation is due to the fact that they both are obtained by
contracting the broken line [vi1 , vi0 ] + [vi0 , vi3 ] + [vi3 , vi2 ] + [vi2 , vi1 ] as a loop
based at vi0 .) Therefore, we obtain a (possibly singular) disc σ3

i0,...,i3
, which

will be assigned to σ̃3
i0,...,i3

The proof then becomes analogous to that of Theorem 0.1. We continue
the extension procedure until we reach (q+1)-skeleton of W . In the proof of
Theorem 0.1 we “collpased” k-spheres built out of k + 1 segments connect-
ing two points p and q by connecting two of these segments by a homotopy
until they became a degenerate set of k + 1 segments. These homotopies
of k-spheres gave rise to k + 1 discs that were then glued into (k + 1)-
dimensional spheres, etc. Now our k-spheres are formed out of 1-skeletons
of (k + 1)-dimensional simplices. In order to “collapse” the 1-skeleton we
collapse edges [vi0 , vi1 ], [vi2 , vi3 ], [vi4 , vi5 ], ..., [vik , vik+1

] for even k and edges
[vi0 , vi1 ], [vi2 , vi3 ], ..., [vik−1

, vik ], [vik , vik+1
] for odd k, (the edge [vi0 , vi1 ] is

contracted to [vi0 , vi2 ]+[vi2 , vi1 ], [vi2 , vi3 ] is contracted to [vi2 , vi4 ]+[vi4 , vi3 ],
etc. by path homotopies. We always use the verthex with the smallest num-
ber as a base point for loops and apply Lemma 1.1. For odd k. [vik , vik+1

]
is path homotopic to [vik , vi0 ] + [vi0 , vik+1

]. We will leave out the ackward
details of the computation leading to the upper bound, for the sake of ex-
position.

2

Now we are going to prove Theorem 0.5.

Proof of Theorem 0.5. Once again, let us begin with a non-contractible
map f : S2 −→ Mn, where S2 is the standard 2-sphere endowed with
a fine triangulation. Let p ∈ Mn. We will try to extend this map to
D3 triangulated as a cone over S2, which, of course, is impossible. The
procedure will be inductive to skeleta of D3. We will begin as usual, by
extending to 0-skeleton. This is done by assigning to the center of the
disc, p̃ a given point p. Next we extend to 1-skeleton, by assining to an
edge [p̃, ṽi] a minimal geodesic segment [p, vi], of length smaller than d.
Next we extend to 2-skeleton. Consider an arbitrary 2-simplex σ̃i0,i1,i2 . Its
boundary is mapped to a closed curve of length ≤ 2d + δ. This curve is
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vi0

vi 1

vi 2

vi 3

(a)

vi0

vi 1

vi 2

vi 3

(b)

vi 1

vi0

vi 2

vi 3

(c)

vi0

vi 1

vi 2

vi 3

(d)

vi0

vi 1

vi 2

vi 3

(e)

Figure 8: Contracting Σ3
j=0(−1)jσ2

i0,...,̂ij ,...,i3
to a point.

either contractible to p by a path homotopy, or there exists a geodesic loop
based at p of length ≤ 2d. In such a case we will release the point and will
let the curve contract to a point by a regular (not path) homotopy, (see fig.
9). In either of these cases, the image of this simplex will be disc generated
by the homotopy connecting the curve with a point. We will denote it as
σi0,i1,i2 .

It is impossible to extend f : S2 −→ Mn to 3-skeleton of D3. Therefore,
there exists a 3-simplex σ̃i0,i1,i2,i3 such that the map f : ∂σ̃i0,i1,i2,i3 −→ Mn

is a non-contractible sphere. Let us consider this sphere. It consists of
three “big” discs: −σ̃i0,i2,i3 , σ̃i0,i1,i3 , −σ̃i0,i1,i2 , and a “small” one σi1,i2,i3 .
The “small” one is so small that it can be regarded as a point q for all
practical purposes. The rest of the discs were obtained by contracting their
corresponding boundaries to a point. Moreover, those three discs were either
generated by path homotopy that connects the boundary to a point, or by a
homotopy that was a path homotopy until we encountered a critical geodesic
loop, and that then became a regular homotopy, (see fig. 9).

Let us consider the following three cases.

(1) The boundary of each face gets “stuck” on a distinct geodesic loop
based at p of length ≤ 2d + δ.

(2) The boundary of one of the simplices is contractible to p via path
homotopy;
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p

q

e1

e 2

Critical loop.

Figure 9: Extending to 2-skeleton.

(3) None of the boundaries are contractible to p via length-decreasing
path homotopy, but at least two of the geodesic loops that obstruct this
coincide.

In the first case, we are done. We have three distinct loops based at p

of length ≤ 2d + δ. We just need to let δ go to 0.

In the second case, without loss of generality, assume that e2 ∗ −e1 is
contractible to a point p with a length-decreasing path homotopy. Then, by
Lemma 1.1, we know that e1 is path homotopic to e2 through curves eτ12 of
length less than or equal to 3d. Assume e1 ∗ −e3 is contractible to a point
q1 along the curves γ(τ) and that e2 ∗−e3 is contractible to a point q2 along
the curves α(τ) of length ≤ 2d, (see fig. 10 (a)).

Therefore, we can construct the following homotopy in the space ΛM n of
closed curves. Here is a loop in ΛMn. q1 ∼ γ(1−τ) ∼ e1∗−e3 ∼ eτ12 ∗−e3 ∼
e2 ∗ −e3 ∼ α(τ) ∼ q2 ∼ q1, (see fig. 10 (b)-(d)). This loop corresponds to
the non-contractible sphere f : ∂σ̃3

i0,...,i3
−→ Mn, as it was obtained from

the above sphere by a sweep-out. Therefore, it is a non-contractible loop
that passes through curves of length ≤ 4d. Therefore, there exists a closed
geodesic of length ≤ 4d.

Finally, in the third case, we will construct a non-contractible loop in
the space ΛMn as follows.

Let us assume that e1 ∗ −e2 and e2 ∗ −e3 get “stuck” on the same loop
α1, (see fig. 11 (a)), e1 ∗ −e3 gets “stuck” on the loop α2, which might
or might not coincide with α1. Those loops are then contractible to points
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τ 12
e

(   )τγ
(   )ταe 2

e 3

q1 q
2

e 1

q1

(   )τγ

e 1 e 3

q1 e 1 e 3*
_is homotopic to 

e 1 e 2 e 3

τ 12
e

e 1 e 3*
_

e 2 *
_e 3is homotopic to 

e 2

e 3

(   )τα

q
2

e 2 *
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(a) (b)

(c) (d)

Figure 10: Loop in the space ΛM .
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γτ 13
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γτ 12
γτ 23*

Figure 11: Loop in the space ΛM .
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q̃1 and q̃2 respectively, (see fig. 11 (a) and (b)). Denote the curves in the
homotopy that connects α1 with q1 by ατ , 1 ≤ τ ≤ 2. Further, denote the
curves in the homotopy that connects e3 ∗ −e1 and q2 by γτ13 , 1 ≤ τ13 ≤ 2.
Finally, denote the curves in the homotopy that connects e1 ∗ −e2 and α1

by γτ12 and the curves in the homotopy that connects e2 ∗ −e3 and α1 by
γτ23 , 1 ≤ τ12, τ23 ≤ 2.

We will now describe a non-contractible loop in the space ΛM n, (see fig.
11 (c)). It will be a sweep-out of the non-contractible sphere f : ∂σ̃3

i0,...,i3
−→

Mn by short loops.
q1 ∼ ατ ∗ ατ , (that is we go around α1τ twice).
ατ ∗ ατ ∼ α1 ∗ α1 ∼ eτ12 ∗ eτ23 ∼ e1 ∗ −e2 ∗ e2 ∗ −e3 ∼ e1 ∗ −e3 ∼ γτ13 ∼

q2 ∼ q1.
2
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