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Root Vectors in Quantum Groups

Nanhua Xi

Abstract: In this paper we give a description for the set of all root vectors in a quantum
group (Theorem 4.4). For type A, we get a clear formula for the coproduct of a root vector
(Theorem 5.5).

1. Introduction

Recall some basic concepts.

1.1. Let R be an irreducible root system with simple roots a; (1 < ¢ < n), RV and a)
be the corresponding dual. Then (a;;)i<i j<n is a Carten matrix, where a;; =< ay, a; >.
Assume that we are given integers d; € {1,2,3} (1 < i < n) such that dia;; = dja;;. The
quantum group U over Q(v) (v is an indeterminate) associated to (ai;) is an associative
algebra over Q(v), generated by E;, F;, K;, K (1 < i < n) which satisfy the ¢-analog
of Serre relations (see for exemple, [L2]). The algebra U is in fact a Hopf algebra, the
coproduct A , antipode S, counit ¢ are defined as follows:

A(E)=E;®1+K;®E;, AF)=F@K'+1®F, A(K:)=K:®K;,

S(E,) = —K'-—IE.', S(F) =-FK;, S(Ki)= K'-_l,
e(Ei)=¢F;)=0, ¢K;)=1

1.2. The root vectors in U are defined through elements of the Weyl group and some
automorphisms of U (see [L2]). We recall the definition.

Let W be the Weyl group of R generated by simple reflections s; (1 < 7 < n) which
are defined by si(a) = a— < a,a > a;, a € R. Foe each i the automorphism T,; = T; is
defined by Lusztig as follows (see [L2]):

T.E;=-FK;, TEj= Y (-1yv*E"EE?, ifi#}

r+as=-a;;

T,F, =K 'E;, TFi= Y. (-)vFORFD, ifi4j],

r+a=-—a;;
T.K; = KiK; .

where E™ = EN/IN), F™ = FN/INY, Nl = [l [N, [N
= 2w N > 1, and [0)g; = [0)Y, = 1.
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These automorphisms satisfy the braid relations, thus for each element w € W we can

define the automorphism T\, of U as T;,...T;,T;, where s,,...3;,3;, is a reduced expression
of w (see [L2, 3.1-2)).

1.3. The following are some simple properties about these automorphisms T, (see [L2]):
(al). Let Q, ¥ : U — U°PP be the Q-algebra homomorphisms defined by

QE; =F;,, QF;,=E, QK,‘=K.-_1, Qv =v"1,
VE;=E;, VYF,=F,, ‘I‘K."=Ki—l, Yv =v.

We have QT; = T;Q and T! = T."! = ¥T,¥. So QT = T, and T;_ll = ¥T,V¥ for
any w € W.

(a2) ToEi = E;, if w(ai) = a;.
By (a2) and the definition of T,, we get the following equalities.

(&3) T,'EJ'=EJ', ‘T,'FJ‘=FJ', T.'KJ'=KJ', ifaj.'=0.
(8.4) T,-_IE_,' =T, E;, T.-—IFJ' = T;F;, Ti_lKj =T;K;, ifajia;;=1.

(8.5) T‘-_lE,’ =T,T:E;, T‘-_le = T;T,F;, T'-_IK_," =T;T;K;, ifaijaj=2.

If a;ja;; = 3, then we have

(a6)  T7'E; = ;LI;LE;, T7'F;=T,LT,LF;, T7'K;=T,LT,T.K,,

(a?) Tj_lTi_lEj = LT T E;, Tj_lT‘-—le = T\T;T;F;, Tj_lj}_lKj = T\T;TiK;,

We also have
(a8) T?E; = v*% K *E;.
(&9) TizEJ' = (1 - v_zd‘)FiKin(Ej) - U-d‘EJ‘ if a;; = —1.
If a;; = —2, then

(al0) T2E; = v=3(1 —v=2)(1 v ) FPK!T(E;) — v 1 — v )R KT (Ei) +v2E;.
If Qy; = —3, then
(all) T?E; = v™°(1 = v™)(1 - v™)(1 - v ) FV KT E;)
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—v73 (1 = v )1 — v Y FPKITT(E) + v (1 — v )FKT; (B - vE;.

1.4. For any positive root @ € R* (the set of positive rootsin R), if w~!(a) = ; (w € W)
is a simple root in R, then we set E, w = Tw(Ei) (resp. E_q,w = Fa,w = QEq,w = Tu(F))
and call it a root vector in U of root a (resp. —a).

The definition of root vectors looks very simple, however even for some simple ques-
tions, such as how many are there root vectors of a given root, the relations between root
vectors, etc., we know little. Though there are several formulas concerned with the coprod-
ucts of root vectors (see [AJS, KR, LS)), there are no closed formula for these coproducts
in general. It seems also no explicit formula for the antipode of a root vector at hand. Of
course, everything becomes simple when a = «; is a simple root: there is only one root
vector in U of root a which is E; by (a2), the coproduct and the antipode of E; are given
by definition in 1.1. Sometimes we write E,; instead of E;.

In this paper we give a description for the set of all root vectors in U (section 4) and
give a clear formula for the coproduct of a root vector in a quantum group of type A,
(section 5). We only discuss root vectors of positive roots since through the homomorphism
2 all results can be transfered to those concerned with the root vectors of negative roots.

2. Some Facts on Root System and Weyl Group

2.1. In this section we prove some results concerned with roots and Weyl groups, on which
our main results depend heavily.

First we recall some facts about root systems. We number the set D = {ay, az,...,an}
of all simple roots of R as in [B, Planche V - IX] when R is of exceptional type and as in
[B, Planche I - IV] composed with i = n+1—1 when R is of classical type. Then we have

Type An (n21): Rt ={ay;= ) am}l<i<j<n}

i<m<;
Type B, (n23): Rt ={aij= Y, am, fu=2 Y am+ Y am|1<i<
i<m<; 1<m<k k<m<l

i<n,1<k<l<n}.
Type Cp (n 2 2): R+={Ot,'j= Yo amy fr=a1+2 Y am+ Y, @m, k=

i<m<;j 1<m<k k<m<l
a1+2 Y am|1<i<j<n,1<k<li<n}
1<m<k
Type D, (n 2 4): R* = {aij = E Tm, a'lk' =a; + E Ay Pri = ay +az +
i<m<) 2<m<k!

2 Y am+ Y am|1<i<j<n adi=2whenj =2 2<k<!<n,
2<m<k k<m<!
2<k <n}.

Type G3: RY = {ay, a2, ) + a3,2a; + a3, 301 + a2, 3a; + 2a3}. For details of other
types see [B, Planche V-VIII].



Realizing R (resp. RY) as a subset of an Euclidean space as in [B, Planche I-IX], we
then may define the length of a root in R (resp. RY), so we have the concept of long roots
and short roots in R (resp. RY). For a root a in R we denote its dual in RY by aV.

Let a, B be roots in RY, the following facts are either standard or easy to check.
(b1). If « is a short root, then | < a,a) > | < 1 for any simple root a; in R.
(b2). < a,a) >> 0 for some simple root ay.

(b3). « and A (resp. oV and 8Y) have the same length if and only if 8 = w(a) (resp.
BY = wY¥(aV)) for some w € W (resp. w¥ € WY, see (b6) for the definition of WV).

(b4). « is a long (resp. short) root if and only if aV is a short (resp.long) root in RY.

(b5). Assume that a, B have the same length, then o < § if and only if a¥ < Y, where
< is the usual partial order in the root lattice ZR (resp. ZRY).

Convention: the notation a < 8 (resp. ¥ < ) means that a < f (resp. a¥ < gY)
but a # B (resp. a¥ # $Y). We also use the symbol < for the Bruhat order in W or WV.
We extend <,> to ZRXZRY as usual.

(b6). Let WY be the Weyl group of RY generated by simple reflections s) (i € [1,n]) which
are defined by sY(a") = a¥— < a;,a¥ > aY, a € RY, then the map s; — sY defines an
isomorphism between the Weyl groups W and WV.

For w € W we denote its corresponding element in WV by wV, then £(w) = £(wV),

moreover w(a)Y = w¥(aV), here £ is the standard length function on W or WV.

Lemma 2.2. Given a root a € Rt. If sa < a, spa < a, and o, ax, ap are linearly
independent, then sgsx = s 8%.

Proof: The set (Za + Zay + Zay) N R is an irreducible root system with simple roots
ag, w(a), ap, where w is the longest element in the group < s, sg >. The lemma follows
from the fact that its Dynkin diagram is not a cycle.

2.3. For any root a in R*, let h'(a) =height of a — 1 if « is a short root, height of a¥ — 1
if @ is a long root. We denote D, the set {ax € D | a; and « have the same length,
air < a}. Note that the root system R, generated by D, is irreducible. It is plain to check
the following properties concerned with k'(a) by using 2.1 (b1-6).

(c1). h'(a) =0 if and only if « is a simple root in R.

(c2). If ax € D, w € W such that w(ax) = a, then &(w) > h'(a), moreover £(w) > h'(a)
if ap € D—Dqy

(¢3). For a simple reflection s in W, if 0 < s(a) < «, then h'(a) = h'(s(a)) + 1.

For an element (w,a;) € H = {(u,a4) € W x D | u(a;) € R}, we call it shortable
if there exist wy, uy € W such that w = w; - u; and uy(ax) € D, f(u1) 2 1, uy €
< 8,t > for some simple reflections s,t € W; we also call £(w) its length. Here we use the
convention: for z,z,,z9,...,2m €E W, wewritez =2y - 27+ Ty ifz=12122- -2, and

Uz)=£(z1) + l(z2) + - + £(zm).



Let (w,ax), (u,a;) € H, we write (w,ax) ~ (u, aq) if there exists u; € W such that
w = u-u; and uj(ax) = a;. The relation ~ generates an equivalence relation in H, we

i

denote it also by ~. The equivalence class containing (w,ai) is denoted by (w,ax). The
set of all equivalence classes in J{ is denoted by H.

Proposition 2.4. Let « € R*, we have

(i). For any a; € D, there exists a unique w € W such that w(a;) = a and ¢(w) = h'(«a).
we denote it by wq k.

(ii). Assume that a is not a simple root in R, then for ay € Do, w € W, w = wy i if and
only if for any reduced expression s;3;;_,...8j, of w, we have

85:85iy 85 (k) > 85, .85 (ax) > 8, (ax) > ax,

where 1 = h'(a).

(iii). Let s be a simple reflection in W, k € Dg, then swy i < we i if and only if
ax < s(a) < @; Wa,k8 < Wa,k if and only if ax < s(ax) < .

(iv). Let s,t be simple reflections in W such that swa i < Wak, HWak < Wak (resp.
Wa, k8 < Wo ky Wa,kt < Wo k), then st = ts.

Proof: We assume that « is a short root, thanks to 2.1(b3-6), it is sufficient to prove the
proposition under the assumption.

(i). Now assume that a; € D,. First we prove that there exists w € W such that
w(ag) = a, and {(w) = h'(a). Using 2.1(b1-3) we know that there exist some ay €
Do, w' € W such that w'(apr) = a and f(w') = h'(a). If k = k', We set w = w'. I
k # k', then we can find a sequence ay = ai,, ag,, ..., ar, = o in D, such that
Bk kmgy = =1 (m € [1,1=-1]). '

We show that w'sg, < w'. Let sjsj ...s; (i = h'(a)) be a reduced expression of
w'. Since £(w') = h'(a) and a; € D,, using 2.3(c2) and the definition of A'(a) we know
there is some m € [1,:] such that s;; = s;, and sj, # 84, f 1 < h <m. K w'sg, £ v,
then m > 2. We can assume that m is minimal in all possibilities, then there exists a
subsequence s;; = t,, ty-1, ..., t1, to = sp (p > 2) of 851 , sy

m=1’

cory Sj;, Sja = Sy
such that tgt,_, # t4_1t, for any ¢ € [1,p]. Combine this and our assumption on k; we
know that the Dynkin diagram of R contains a cycle which is impossible. So we have
wsp_3 <w'.

Let wy = w'sg, sk, then wo(ak,) = a, moreover #(w;) = h'(a) since £(w3) < h'(a) by
the above argument. Continue this process, finally, we get an element w € W such that
w(ai) = a, f{w) = h'(a).

We need to prove the uniqueness of w.

We use induction on h'(a). When h'(a) < 2, it is easy to check the uniqueness. Now
suppose that A’'(a) > 3. Let w" € W be such that w"(ai) = a, {(w") = h'(a). Choose two
simple reflections s,t of W such that sw < w, tw" < w". By 2.3(c2), the definition of h'(a)
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and our assumption on a, we have s(a) < a, t(a) < a. If s =1, the induction hypothesis
implies that sw = sw”. If s # ¢, note that h'(a) > 3, using 2.2, we see that st = ts,
therefore by 2.4(c2-3) and the definition of A'(a) we get ax < st(a) < s(a), t(a) < a and
h'(st(a)) = h'(a) — 2 = h'(s(a)) — 1 = h'(t(a)) — 1. According to induction hypothesis,
there exists a unique element u € W such that u(ox) = st(a), £(u) = h'(a) — 2, and
sw = tu, tw" = su. So we get w = w" = stu. This completes the proof of (i).

(ii). It follows from the uniquenss of wq & and the definition of A'(a).
(iii). Using (ii) we see that the results hold.

(iv). Assume that s = sg # sp =1, swa i < Wak, tWa,k < Wa k. Let u be the longest
element in < s,t >, then £(w) = £(u) + {(uw), so a, a,ay are linearly independent. By
2.2 we see that st = ts. Another assertion follows from (ii) and the fact that the Dynkin
diagram contains no cycles.

Theorem 2.5. (i). For each ec.luiv'a.lence class (w, ax) in H, there exists unique shortest

element (u, ;) in (w, a}). Furthermore, we have w = u - u, for some u; € W.

(i1). For two elements (w, ax), (u,a;) € H, choose arbitrary (wy, ag, ), (u1,a:,) € H such
that wi'w = wi' - w, u7'v = u7! - u and w(ai) = wi(or,), v(ar) = ui(ay,), then
(w,ax) ~ (u,a;) if and only if (wy,ar,) ~ (u1,0q). In particular, if w; is a shortest
element such that w;'w = w;! - w, and wy'w(ay) is a simple root ay,, then (wy,ax,) is

the unique shortest element in (wy, ax, ). We also denote (wy, ax, ) by (w,ax) .
We need the following result.

Lemma 2.6. If w(ag) = a; and £(w) > 1, then (w, ai) is shortable (see 2.3 for definition).
One can prove the lemma by using the method in [L1, 1.8].

e

Proof of 2.5. (i). Let (u,a;) be an element in (w,ay) with minimal length. We shall
prove that w = u - u; for some u; € W, this forces that (u,a;) is the unique shortest

A e
element in (w, ax). Let (v/,ar),(w',ar) € (w,ar) be such that u' = u-uj, v' = v W},
where u} € W and w! is one of the following elements: s;, ajxr = 0; spr8i, aiprapi = 1;
et

3iSk18i, QikGiri = 2, 8,3k 8i8k 8, ipap; = 3. Because (u,q;) is an element in (w, ay) of
minimal length, we get u] = z - w] for some £ € W, thus w’ = u . z. According to the
definition of ~ and 2.6 we see that there exists u; € W such that w = u - u;.

(ii). Suppose that (w,ax) ~ (u,a;). It is no harm to assume that (u,q;) is the

shortest element in (w,ax). By (i) we know that wi'u = wi' - u, uy'y = uJ' - v and

wy(ak,) = u(ar) = vi(ay,). Let ugp € W be such that uous; = ug - us; = wp, the longest
element of W. Then up = 17 - w; = z3 - u; for some z;,z7 € W. Since uvou(oy) = a, € D,
we get (w1, ax,) ~ (ug?,am) ~ (41,0, ). The "only if” part is similar when one notes that
w"lwl =w-l. wy, u-lul =yl uj.

The theorem is proved.



Part (ii) of 2.5 gives a way to compute the shortest elements in K.

3. Several Lemmas

3.1. In this section we give several lemmas concerned with the automorphisms T;. We
refer to [L3].

Let sk, Sk, Sk - - - Sk,_, Sk, be areduced expression of the longest element wy of W. For
any ¢ = (¢1,€2,...,¢y) € N, r = (rq,...,ra) €Z", we set

E°= Ei:Tkt(E::)Tthz(E::)' "TL‘lTkz o -Tk.-l(Ef:): Fe= Q(Ec)

G® = E::Ez:Tk:(Ei:)Tka Tka(E::)' Ty Ty - . Tku-l(E:: )y H=QG°),
K =K ---K".

Let U™ is the subalgebra of U generated by all E;. The following two lemmas are due to
Lusztig (see [L3, 2.4])

Lemma 3.2. We fix i € [1,n]. Let O; = {¢ € Ut | Fi¢ — ¢F; € K7'Ut}. Let O}
be the Q(v)-subalgebra of U' generated by the elements T;(E;), T:T;(E;), T:T;T:(E;),
T.T;T.T;(E;) for j such that a;jaj; = 3, the elements T;(E;), TiT;(E;) for j such that
aijaj; = 2, the elements T;(E;) for j such that a;;a;; = 1, and by E; for j # i. Choose a
reduced expression Sk, Sk, Sk, - - - Sk, ., Sk, Of wo be such that k; = i. Let O} be the Q(v)-
subspace of Ut spanned by the elements E° (defined in 3.1) for various ¢ = (cy, ...,¢,) € N”
such that ¢; = 0. We have 0; = 0! = 0! =Ut NnT;(U™).

Proof: It is clear that O; is a Q(v)-subalgebraof U*. It is easy to check that the generators
of O are contained in O;. It follows that O} C O;.

By using the method in the proof [L1, 1.8] we see that O C O;. As the same way
of the proof of R; C R! in [L3, 2.4] (notations in loc.cit) we get O; C O!. The lemma is
proved.

Lemma 3.3. We fixt € [1,n). Let P, = {¢( € Ut | Fi( — ¢F;, € K;'U*). Let P!
be the Q(v)-subalgebra of Ut generated by the elements T}(E;), T/T;(E;), T!T;T!(Ej;),
T;T;T;T;(E;) for j such that a;ja;; = 3, the elements T;(E;), T/T;(E;) for j such that
aija;; = 2, the elements T;(E;) for j such that a;;ja;; = 1, and by E; for j # ¢. Choose a
reduced expression Sg, Sk, Sk, - - - Sk, _, 8k, of wg be such that ky = i. Let P!’ be the Q(v)-
subspace of U™ spanned by the elements G (defined in 3.1) for various ¢ = (¢1, ...,¢,) € N*
such that ¢; = 0. We have P; = P! = P!’ = Ut nT!(U*).

The proof is similar.

3.4. For A € NRY, we denote Uy the set of all elements £ € U such that K;¢K; ! =
vd‘<°¥"\>5. Let U:\" =U*NnU,.

Lemma 3.5. Let @; = O; NP, = {£ € Ut | Fi¢ = ¢tF;}. We have s;(\) > A if
Qi U} # {0).



Proof: Let Uy be the A = Q[v]-subalgebra of U generated by all E;, F;, K;, K;'. Regard
Q as a Q[v]-algebra by specializing v to 1. Thus we can get the Q-algebra

IR =UA®AQ/<K1—1,K2—1,...,Kn—1 >,

which is just the universal enveloping algebra of the simple Lie algebra corresponding
to the Cartan matrix (a;;). Let f;, U, Ut,, be the images of F;, U, Uy, respectively.
According to the commutation relations between root vectors in U/; and PBW Theorem
one can check easily that the subalgebra @, = {z € U} | fiz = zf;} is generated by
ea (@ € RY) such that a — a; € R, where e, is a root vector in Uj" of root a. Note that
a — a; ¢ R implies that 3;(a) > a, we see that @y ; N U?:,\ # {0} implies that s;(A) = A.
Our assertion follows from this and that @4, N Ui';\ # {0} if Q; NUY # {0}. The lemma
is proved.

3.6. Remark: By 3.2 and 3.3 we know that Q; = O; N P, = Ut NT;(UH)NT{(U*). It
is likely that Q; is the Q(v)-subalgebra of Ut generated by the elements Ty Ti(E;) for 7,k
with ajjaj; > 0, ajrag; = 1, and by EJ' for -'ﬁ .

4. Root Vectors

4.1. In this section we describe the set of all root vectors of a given root. The main result
1s Theorem 4.4.

Given a positive root « in RY. Let ¥, be the set of all root vectors of root a.

Hoe = {(m) € H | w(er) = a}. Fix a reduced expression s;,s;j;,_,...8;, of Wajo,
aj, € Do, Let Y2 = {Tok,o(Ej,) | @ € I}, where i = h'(a), T4 jo,a = T;:‘T;:i‘:...Tﬁ‘,

a=(ai,@i_y,...,a;) € {1,=1}*'(@} = I When h'(a) = 0, we set I, = {¢} and T}, . =idy,
where e is the neutral element of W.

SetY = U Y, Y= U Y!.
a€R+ aERYt

Lemma 4.2. Keep the notations in 4.1.

(i). Y, is independent of the choice of the reduced expression and the choice of jy, so only
depends on a.

(ii). The elements Ty j, o(E;},), @ € I, are linearly independent over Q(v). In particular,
the set Y! contains 2%'(*) elements.

Proof: (i). Using 2.4(iii) and induction on h'(a) we see that Y is independent of the
choice of the reduced expression. According to the proof of 2.4(i) and 1.3(a4) we know
that Y, doesnot depends on the choice of k.

(ii). If each j € [1,n] appears in the sequence j;, Ji—1, ..., J1,Jo 8t most two times, then
we can choose the reduced expression such that j;, ji—1, ..., fp+1 i3 a subsequence (disregard
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order) of jp,jp-1,..,J1,Jo for some p. Thus for any a € I,, T"'T""’ T“‘(E,o) e Ut
TG‘TJc.:.:" a'(F "'1) eU~ _Q(U+)f°r any g > p+2, Slnce]u]s 1y 1Jp+1 OF Jiy Ji=1,-
Jp+1 8are pa.xrwlse different. Combine these and using induction on i we see that in the

expressmn

TJ' TJa.'-l Tjall(Ejo) = E PC',r,ch'KrEc, Pectrc € Q(U),
¢’ ,cEN"”
rez"
(resp.
TTITJG'. 1‘ Tnl(EJD) - E pc‘ rch Kch p::‘,r,c € Q(v)a)

¢’ ,cEN*
rez”

if per,r,c # 0 (resp. p . #0), then E€ € Oj; (resp. G° € Pj;), where F< E°,G° H°, K"
are defined as in 3.1, we choose the reduced expression of wg such that k; = j;. According
to 2.4(i1) we see that

(*) sju'sjl'—l"'sjr(ajr—l) Z sji—l"'sjr (ajr—l) for a'ny 1 S r S t - 1‘

Therefore if pei,rc # 0 (resp. pli .. # 0), then E® € U} (resp. G° € UY) for some
A € NR* such that s;(A) < A. Using 3.5 we see that if

Y PaTajoa(Bio) =0, pa € Q(v),

a€l,
then
Z PnTa,jo,a(Ejo) = 0’ z PaTa,ju,a(Ejo) = 0'
CEI¢1. aEI,]

Using induction we know that p, = 0 for all @ € I,. Thus we have proved (ii) for type
Aﬂ,Bﬂ, Cn, Dn, Gz.

In general we argue as follows.
Let
Ta.Tal_ TGI(EJo) - EG + Ea’

-1

where

N pencFYKES, £= Y . F'KTE,, ifa;=1,

C',CGN' C',CEN’
rez"” reZ”
E“€0;; E*€O0;;

Z pc""'ch'Kch’ E:; = E P’c‘,r,ch‘Kch, if agi = —1,

¢, cEN* ¢ ,ceN*
rcez". rCEZ".
G°€P;, G¢P;,

9



PC’,",C E Q(v)5 p::',r,c e Q(v)'
Note that

(**) The image of T}, T,' .. T;" (Fj,_,) (1 £ r <) in Uy (see the proof of 3.5) is
not zero,

and aj;, 85 85;_,...9;. (aj,_,), 1 £ r <1 are pairwise different. Using induction on i and
the fact (*) it is not difficult to check that if per,rc # 0, E° € O;, NUj (resp. pp . # 0,
G° € Pj; NUy), then s;,(A) < A, and that the set {£a | ai = 1} (resp. {£a | @i = —1}) is
Q(v)-linearly independent. By these and 3.5 we see that (ii) is true.

4.3. Remark: By (*) and (**) in the proof of 4.2 we know that if T, T;"~'.. T} (E;,) ¢
U for some r < i, then Ty ;,.a(E;,) € U

Theorem 4.4. Keep the notations in 4.1. Let « € RY, then
(). ¥(Ya) = Yo. In particular, ¥(Y) =
(ii). Yo C Y. NU*. In particular, the set Y is linearly independent over Q(v).

T ™

(iii). The map ® : (w,ax) — T,Ey defines a bijection between ¥ and Y, moreover
®(H,) =Y,

(iv). ¥((w,ax) ) =¥ - &((w, ax)).
Proof: Let E = Tyw(E)) € Y.

(i). Choose u € W be such that v 'w = v~ - w and v~ 'w(e;) = ay for some I',
according to 1.3(al-2) we get ¥(E) = Ty(Ep) € Y,.

(ii). We have h'(sjw(a;)) < h'(a). Use induction hypothesis we see that there exist
@i-1,., 01 € {1,-1}, such that T,E; = T, '..T}'(Ej;), where u = s;;w. Terefore
To(Er) = Tj,TE T8 (Ez,), i £(w) = s;w) + 15 Tu(Er) = T;ATE . TE(Ey,), if
f(w)=4¢(s;w)—1. Thus E€ Y, NU™.

(iii). By 1.3(a2) we know that & is well defined and is surjective. We use induction
on h'(a) to prove that & is injective. If ®((w,ax)) = ®((u, ;). Let w' = sj;w, u’ = sj;u.
Using (i),(ii), 1.3(al) and 2.5(ii) we may assume that w' < w, ' < u. By induction

e

hypothesis we have (w', ai) = (u', ar), using 2.5(1) we get (w, ax) = (u, ar).
(iv). It follows from the proof of (i).
The theorem is proved.

Remark: (i). It is likely that Y = Y' N U*.

(i1). For any vy € C*, we regard Q(vo) as a A = Q[v]-algebra by specializing v to v.
Let Uy, = Usa ®4 Q(vo). If v2¢ # 1 for any 1 < d <max{d;}, the same argument show
that 4.2-4 are true for U,,. If v} = 1, then for each @ € R, there is a unique (up to 1)
root vector of root a.
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Corollary 4.5. Notations are as in 4.1. Let E =T, j, «(Ej,) € Yo, a = (ai,ai-1,...,01),
i = h'(a), then

(). E € Yo if and only if ¥(E) € Ya; if a; = 1, then E € Y, if and only T3 .. T2 (Ej,) =
Tu(E1) €Y for some u € W, | € [1,n] and sj,u > u.

(ii). Forany 1 <m <4, T, T, ™" T;}(Ej,) is a root vector if E € Y (i.e. E is a root
vector).

(iii). If T;;’ T;" .T;'(Ej,) is not a root vector for some 1 < p < 1, then E is not a root
vector, i.e., E € Y,. '

Proof: (i). The first assertion follows from 4.4(i). The second follows from the proof of
4.4(ii).
(ii). Suppose that E = T,(E;), w € W, as in the proof of 4.3(ii) we see T, (E) =

a Gm 1 a1 . P . . e
T: "‘TJm e le (Ej,), where w' = 85mt1Simen """ S5 W

(iii). It follows from (ii).
For any E € Y, we shall denote the shortest elements in ®~!(E), ®~!(¥(E)) by

(wg, arg), (W, ax; ) respectively.

Corollary 4.6. Let «,j; be as in 4.1 and let F € Y, then

(i). sj;wg < wg if and only if s, w} > wi.

(ii). wg,wy € Wa, aig,ar; € Do, where W, is the subgroup of W generated by these
simple reflections s, such that a,, < a.

(iii). We have wp'wg = wgp' - wg and wg' wi(aks ) = (akg).

Proof: (i). Let a € I, be such that E = Ty j, «(E;j,) (notations as in 4.1). By 4.4(ii) and
its proof we see that s;;wg < wg if and only if a; = 1. Since ¥(E) = T;“‘ . 'T;“‘(Ejo),
we know that our assertion is true.

(i1). From the proof of 2.5(i1) we see that wg € W, if and only if w; € W,. Thus we
may assume that a; = 1 to prove (ii). In this case, a.ccording to 4.5(1), 4.4(iii) and 2.5(i),
it is obvious that we have wg = s;,wg/, where E' = T;'7' .- T;*(Ej,). Thus we can use

Fi-
induction on h'(a) to prove the result since h'(sj, (a)) = h’(a) - L

(iii). It follows from the proof of 2.5(ii).

By means of ¥ we can describe the antipode S(E) for a root vector E € Y,.

Theorem 4.7. For any E € Y,,a = mya; + maag + ... + mpa, € RY, we have S(E) =
pa K1 U(E), where

n—1
= ( 1)m1+mz+ +my H pme(ma—1)ds H muydp(mep18n 641+ Fmpay, n)
k=1 k=1

- my rrma m
Ko=K™MKM ... K™
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Note that we have ¥(E) € Y.

Proof: It follows from K,-_IE.'KJ-_IE_,' = vd“"JK'-"lK;lE.'E_,- = vdi“iv‘K.-_lK;lE.'Ej and
the definitions of S, ¥.

Proposition 4.8. We have #Y,, < 24'(®), The equality holds if and only if j;, fi=1, ..., j1, jo
(notations as in 4.1) are pairwise different.

Proof: The first part is obvious.
Thanks to 4.5(i) and 4.6(ii) we see the "if” part of the second assertion is true.

Assume that j,, = jm' for some different m,m'. Using 4.5(iii) we can suppose that a, R
i one of the following cases: a; + a2 +2a3+ay, Dy; 2ay +2a2+ a3, Bi; a1+ 202+ a3, Cs;
3ay + 2a2, G2; 2ay + a2, G3. Then it is easy to check that the following elements are not
n U+ by using 1.3(&8—11): T;1T1T2T4(E3), D4; T2T3—1T1 (Eg), Ba, Tz lT-l(Ez) 03,
T, T (E;), Ga; ThTy; ' (E1), Ga. In particular, they are not vector roots. The proposition
is proved.

4.9. Remark: Let a = mya; + maaz + ... +mpa, € RY, using PBW Theorem and 4.8
we see that UY is spanned by Y, if all m; < 1. It seems that U} is not spanned by Y, if
my > 2 for some k € [1,n].

5. An Example, Type A,

5.1. It is easy to say a little more for type A,. In this section we shall assume that R is
of type A, and fix @ = a; + ai+1 + - - + a; (¢ £ 7). We choose all dy to be 1. We have

(i). K'(a)=j—1.

(). Do = {ai, @141, . a5}

(311). Wak = 8;8j—1 - Sk418i8i41 - 9k—1, 1 Sk < J.

(iv). Wo =< 8i, 8i41,..0y 85 >.

(v). We have #Y, = #Y! =277 So #Y =2"*1 —n -2,

(vi). Let E = TJ‘.‘J’ TJf‘iI‘ -~ TET(Bi), (a5, ..., ai41) € I, then we have
v 1E;E' — E'E;, ifai1=1,

(1) E= { U_IE’E;‘ - E,‘E', if ai41 = -1.

(i) E= { U_IE"EJ‘ — E;E", ifaj=1,
v_]E'E" - E"Ej, if a; = -1,

where E' = T, T}i1 - T3 (Eiya), E" = Tji7'---T.}'(Ei). Moreover, E;E =
v:h""EEj, E;E = vF*“ EE;.

Proof: (i-v) is obvious by results in sections 2 and 4. Now we prove (vi).
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(1) is obvious. Note that E = T, **' T, (... T, (E;), we get (ii). The remain
part of (vi) can be easily deduced from the definition relatlons of U.

Let O;; be the set of monomials E;, Ei4,, ---,E; such that in any of which E;
(1 < k £ j) appears exactly once. It is obvious that O;; = {E;E,EE; | E € O;,;-1}
(we define O j—, similarly), so there are at most 2/~ elements in O;;. But each element
E € Y, is a Q(v)-linear combination of elements in O;;, thus (v) implies that O;; has
exactly 2/~ elements which are linearly independent over Q(v) (one also can get this from
PBW Theorem).

Using (vi) and induction on j — 1 it is easy to see that the determinate of the trans-
formation matrix from the set Y, to the set O;; is +(v=2 — 1)G=92'~ -

We give some properties for (wg, aig), £ € Yo. We need the following lemma.

Lemma 5.2. Given (w,ax) € H and let t ¢, - - - t2t; be a reduced expression of w. If
tptp_1tp—2 - tar) <tp_itp_a - ti{ox) 2 tpma - ti(ag) 2 - 2 ty(ax) 2 oy

for some 1 < p < ¢, then (w, ay) is shortable.

Proof: (w,ax) is obvious shortable when there exists some simple reflection s in R(w) =
{si | wsi € w, 1 € [t,n]} such that s(ax) = ax. Suppose that there exists no s in
R(w) such that s(ax) = ai, then #R(w) =1 or 2. When #R(w) =1, it is easy to see that
W= 8kSk—1 OF W = u-3;8;4) for some u € W, so (w, ay) is shortable. When #R(w) =2,
we have R(w) = {8k=1,Sk+1}, 80d W = W18k * S, Smy~1 " Sk+25k+15n,Sny—1 -~ Sk—25k—1
for some my > k, n; < k, where ws; is the shortest element in the coset wWj, W, is the
subgroup of W generated by those s; such that ¢ # k. Our assumption on R(w) implies that
W) = W28k *SmySmg—1 "' " Sk+29k+13n,8n,—1 " * Sk—28k—1 OF W28k *8my8my~1 """ Sk4+28k+1 OF
85,8n,—1" - Sk-28k—1 for some mz > k, na2 < k, where w;3; is the shortest element in the
coset wyW. If ma > m; or ng < n;, we have w = u - 8483 or w = u - 35854 for some
u € W, so the assertion is true. If ma < m; and nz > n;, we continue this process, finally
we see that w = u - 84841 OFr w = u - 838341 for some u € W, which is what we need.

Proposition 5.3. Let E = T“’ T;'il‘ . :H‘(E } € Ya, (aj,a5-1,...,Gi4+1) € In. Then

(1). wg = siwg if aiy1 = -1, and wg = s;wgr if aj = 1, where

B = TPTP TP (Bewn), B = T35 TP ().

(ii). wg = sksk.,.l...sng ifa; = ajo1 = ... =ag41 = -1, axg =1, j > k > 1, where
gty —1Oa=1  paitt
G=T_, T Tty T (E).

(ili). wg = g - Wa,kg for some ug € Wo—g;ma; (ifa—ai —a; ¢ Rt we set Wa-ai—a; =
{e}). We have wg = wq iz when kg =1 or j.

(iv). #{E €Yo | kg =k} =C;= ¥~ Note that C Jk:.' is also the number of different reduced
expressions of wq ig.
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(v). Set Yox = {E €Yy | lg =k} (1 <k <j), then (Yo i) = Yo, j—k+i-

Proof: (i). Note that we also have E = T, **'T; {"** ... T; Y (E;), we see that (i) was
already proved in the argument of 4.6(ii).

(i1). Let w = spsp41...8jwg and let wg = spSp41...8jw1,t < h < j. Then T, (Ex) =FE
for some k € [1,7 — 1] (in fact k = kg). Since w,wg € W,, by 2.5(1) we can find some
z € W, such that w = wg - z. But w(ai) = «, we necessarily have z € Wy_,;. This
forces that k = h. We then have T\, (Exg) = Twy(Er). Therefore w; = wg since wg is
the shortest element in ®~1(E). (ii) is proved.

(iii). If kg =t or j, by 5.2 we see that wg = waxg. If kg # j, by the proof of (ii)
we see that wg = saspy1- - sjwg, kg = kg for some h € {1 + 1,7],G € Y,;(a). Using
induction hypothesis we know that wg = ug - w,;(a),ks for some ug € W, (a)—a;—a;_,- S0
we have sjug = ugs;. Note that s;w,;(a),kg = Wa,kg, We see (iii) is true in this case.

From the proof of (ii) it is easy to see that kg = k if and only if #{m € [{+1,]] | am =
—1} = k — 1. Thus we get (v), and (iv) follows from 5.1(v).

The proposition is proved.

Remark: In general 5.2 is not true. For type Dy, let w = $381528483819234, then (w, a3)
is the shortest element in (w, a3), but w(as) < szw(as), so 5.2 is false for type Dy.

5.4. We shall give a clear formula for the coproduct of a root vector. We need some
preparation.

Let a be asin 5.1. For any 8 ENR, let ¢(8) be the number of connected components
of A. When f < @, ¢(f) is just the minimal number of roots in R* whose sum is /.

Let E=TYT)iT" - T (B) = T, " T 07 - T, (E;) be a root vector in Yq.
Let # ENR* besuch that § < a. f f=0weset Eg=1, Kg=1,if § = ar+ art1 +
ot ap (1 k<1< j) weset Eg = T;”Tﬂ;l --'T:_;':IE/;, Kg = KiK;—1 -+ Ki g1 K,
if B1, -+, Be(p) are connected components of 8 and 8 = By + -+ + (), we set Eg =
Eg,..Ep,,,, Kg = Kp,...Kp,,,- Ep, Kp are well defined since for different connected
components 8y, Bm we have Eg, Eg = Ep_FEgs,, Kg,Kpg,, = Kg, Kg,.

We define Xg inductively as follows: If j — 1 < 2, we set
={yeNR* |y<a, wg'(y)20}.

Assume that Xg: is well defined for B’ = T, T 7" - T\ #*(Ei1) € Yor, o = a — i,
when a;4; = 1, we set

Xp={v+ai, ¥ |77 €Xp, & —=72ain};
when a4 = —1, we set
Xe={v+ai, 7|77 €Xpy, 72 aip1}

14



Now we can state our second main result.
Theorem 5.5. (i). Let a, E be as in 5.4, then

A(E) = E (v —p)le Mt B @ E,.
Y€XE

(ii). S(E) = (=1)i~it1yi~iK1Y(E).

Proof: When j = 1, it follows from the definition of the coproduct. Now assume that

j>i Let B'= Tn’ T;il‘ . '_,'_;’(E..,.l) €Yy, o =a— a;. We use induction on 3 —1.

If a;4) =1, then (see 5.1(vi)) E = v E;E' — E'E;, By induction hypothesis we get

1) AE)=v Y EQRI+K®E) Y (v —v) 1K Ep@E,)

‘Y’GXB!
.3'=0"—‘"{’

(Y, (7 —oy IR By © Ey)(Ei ® 1+ Ki @ Ei).

‘1'6)(;:
ﬁ'=a‘_7’

If ' > a;41, then we have
(2). EiKy = vKyEi, EpE; = E;Ep.
v 1E;Ey ~ EyEi =Eyi4;, EgKi=Ki;Ep, c(v + a;) = c(v').
If ' > a;41, then we have
(3). v 'E;Ep — EgE; = Egigo;y, Ky Ei = E;Koy, ¢(f' + a;) = ().
E,Ey, =EyEi=Eyiq4;,, EgKi=vKEg, c(v +a;)=c(v")+ 1.
If ajt1 = —1, then (see 5.1(vi)) E = v 'E'E; — E;E'. By induction hypothesis we get

() AE)=v( Y (7 o) K By @ By)(Ei @1+ K; © Ed)

T’EXEJ
ﬂ‘=0‘l—‘)"

~(Bi®1+Ki®@E)( Y, (v —v) ) 0~1K, Ee @ Ey).
"Y'eXEr
ﬂlzal__'l

If v' > @41, then we have
(5). EiKy =vKyEi, EgEi = EiEg = Egiya;, o(f' + i) = ¢(f') + 1.
‘U-IE‘Y'E{ _ EiEqr’ = E.!;_‘_a“ Eng,' = K,‘Eﬂ:, c(,-},f + a,') = C('T')'

If ' > a;+1, then we have
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(6). v"'Eg Ei — E:Egr = Egrya, Ky Ei = EiKoy, ¢(B' + o) = (B').
E,E, =E,E; EgK; =vK,Eg.
Combine (1-6) and the definition of X g we see (i) is true.
(ii). It follows from 4.7.
The theorem is proved.

Remark: For other types it is not difficult to get the formula A(E) for E € Y, when the
JiyJi=1y .-y J1,Jo are pairwise different (see 4.1 for notations).

5.6. We shall write E;; for the root vector T;Tj_; -+ Ti}1(E;). In particular we have
Ei;i = E;. Theset {E;; |1 <1 < j < n} first appears in [J] and corresponds to the reduced
€XPIession $p8n—19n87—28n—185 " *3182 '+ " In—~28n—18n Of the longest element of W (see
[L2]). In this subsection we list some formulas concerned with E;;, Fi; = Q(E;;), K;i; =
T;Tj—1 - - Tis1(K;), one can prove them by direct computations or see [L1, R] for some of
them.

The indices ¢, j, k, ! always indicate numbers in [1,n], and M, N always indicate non-
negative positives, we also assume that 1 < j and k < I

( EyEyj, fj<k—lork<i<j<l,
vEnE;ij, fk<i<j=l,
(d0). Ei;Exy = W v EnE;j, fi=zk<j<lori<k<j=l,
vE + vEuE;;, ifj=k-1,
\ EnEyj + (v™! —v)Ey By, fi<k<j<l

»
L3

N .
N N v—v'
we set E{) = EN/[N)!, FY) = F}Y/[N)!, where [N]! = ‘1:]1 L=V N >1,[0) =1
Let ¢ be an integer, we set

N - t -
Kij, c] H K.'_,'vc r41 _Kij p—ctr-1
- Y o a—r
N st vt —v

@). EQVEQ =E{"E("  j<k-lork<i<j<l
2.  EJUER =oMNEPE]D  ik<i<j=lL

@3).  EMEWMN = p-MNEMEM jfick<j<lori<k<j=1

(d4). EMEG = Y orHEREPED ifj=k-1
p20,420
p+eg=N
g+r=M
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(d5). EMEN = ¥ o T v — o) EWES T E PEY

0<t<M,N
fi<k<ji<l
( FuEij, ifj<kork<i<j<l,
FuEi; + v 'K Ei g, fi<k<j=l,
(e0). EijFi={ FuFEij— Fij41,K7', fi=k<j<l
FuE; + [%5 9], ifi=k, j=1,
\ FuEij + v (v— v‘l)Fj“,;K‘:}Ei'g_], fi<k<j<l

1.  EMEYV=FE} ifj<kork<i<j<l

(e2). E.(JM)FSV) — Z t(N-!-l)F(N t)K-:E(M t)E‘(tz , ifi<k<i=1
0<t<M,N

(63). Es(JM)FJSlN) — Z ( l)t (M- t)F(f) ,F(N ‘)K—!E(M t) ifi=k S] <l
<M

j+1,
o<t

iy 2 — M — -
(ed). EPFRN = Y FY- ‘)[ 3 2= M= N g0
0<i<M,N t

M N _t IN+$i—-1 - N -
(€5). EMFY = S oo o) EN R, KGEMTVESY,
0<t<M,N

fi<k<j<l.
We have Xg,; = {0, aii, @ it1, ..., @ij} (see 2.1 for notations), so we get
(fO). A(E.‘j) =FE;;®1+K;; ® E;; + (v‘l - v) E KiEry1,; Q@ Ei.
i<k<j

() A(E(M)) - Z {mKmEm ® By,
Mo, M ,Mi41...,M; 20
motmit+migr+-+m;=M

i LT mj
where m = (mo, mi,miy1,...,m;j), Km = K7 K.-"-_'fll - K

13
j-1 \
em — v—mo(M—mo) H(‘)—l _ v)m,- [mr]!v_r_(.s.t_l,
r=t
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Em=E{T-VEM -2 B M) Bl = BT

J=1,3 i+1,7%4,;
(80). S(Eij) = (1)1 K W(Eij).
(81). S(EGT) = (~)MU=i+D MU=+ MM-D g My (ELD).

Note that W(E;;) = TiTi41 - - Tj—1(E;) is also a root vector.

Apply Q one can get more formulas.
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