Root Vectors in Quantum Groups

Nanhua Xi

Institute of Mathematics	Max-Planck-Institut fur Mathematik
Academia Sinica	Gottfried-Claren-Straße 26
Beijing 100080	D-5300 Bonn 3
China	Germany

Root Vectors in Quantum Groups

Nanhua Xi

Abstract

In this paper we give a description for the set of all root vectors in a quantum group (Theorem 4.4). For type A_{n} we get a clear formula for the coproduct of a root vector (Theorem 5.5).

1. Introduction

Recall some basic concepts.
1.1. Let R be an irreducible root system with simple roots $\alpha_{i}(1 \leq i \leq n), R^{\vee}$ and α_{i}^{\vee} be the corresponding dual. Then $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is a Carten matrix, where $a_{i j}=<\alpha_{i}^{\vee}, \alpha_{j}>$. Assume that we are given integers $d_{i} \in\{1,2,3\}(1 \leq i \leq n)$ such that $d_{i} a_{i j}=d_{j} a_{j i}$. The quantum group U over $\mathbf{Q}(v)$ (v is an indeterminate) associated to ($a_{i j}$) is an associative algebra over $\mathbf{Q}(v)$, generated by $E_{i}, F_{i}, K_{i}, K_{i}^{-1}(1 \leq i \leq n)$ which satisfy the q-analog of Serre relations (see for exemple, [L2]). The algebra U is in fact a Hopf algebra, the coproduct Δ, antipode S, counit ϵ are defined as follows:

$$
\begin{gathered}
\Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i} \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i}, \quad \Delta\left(K_{i}\right)=K_{i} \otimes K_{i} \\
S\left(E_{i}\right)=-K_{i}^{-1} E_{i}, \quad S\left(F_{i}\right)=-F_{i} K_{i}, \quad S\left(K_{i}\right)=K_{i}^{-1} \\
\epsilon\left(E_{i}\right)=\epsilon\left(F_{i}\right)=0, \quad \epsilon\left(K_{i}\right)=1
\end{gathered}
$$

1.2. The root vectors in U are defined through elements of the Weyl group and some automorphisms of U (see [L2]). We recall the definition.

Let W be the Weyl group of R generated by simple reflections $s_{i}(1 \leq i \leq n)$ which are defined by $s_{i}(\alpha)=\alpha-<\alpha, a_{i}^{\vee}>\alpha_{i}, \alpha \in R$. Foe each i the automorphism $T_{s_{i}}=T_{i}$ is defined by Lusztig as follows (see [L2]):

$$
\begin{gathered}
T_{i} E_{i}=-F_{i} K_{i}, \quad T_{i} E_{j}=\sum_{r+s=-a_{i j}}(-1)^{r} v^{-d_{i} s} E_{i}^{(r)} E_{j} E_{i}^{(s)}, \text { if } i \neq j \\
T_{i} F_{i}=-K_{i}^{-1} E_{i}, \quad T_{i} F_{j}=\sum_{r+s=-a_{i j}}(-1)^{r} v^{d_{i} s} F_{i}^{(s)} F_{j} F_{i}^{(r)}, \text { if } i \neq j \\
T_{i} K_{j}=K_{i} K_{j}^{-a_{i j}} .
\end{gathered}
$$

where $E_{i}^{(N)}=E_{i}^{N} /[N]_{d_{i}}^{!}, \quad F_{i}^{(N)}=F_{i}^{N} /[N]_{d_{i}}^{!}, \quad[N]_{d_{i}}^{!}=[1]_{d_{i}}[2]_{d_{i}} \ldots[N]_{d_{i}}, \quad[N]_{d_{i}}$ $=\frac{v^{N d_{i}}-v^{-N d_{i}}}{v^{d_{i}}-v^{-d_{i}}}, N \geq 1$, and $[0]_{d_{i}}=[0]_{d_{i}}^{!}=1$.

These automorphisms satisfy the braid relations, thus for each element $w \in W$ we can define the automorphism T_{w} of U as $T_{i_{k}} \ldots T_{i_{2}} T_{i_{1}}$ where $s_{i_{k}} \ldots s_{i_{2}} s_{i_{1}}$ is a reduced expression of w (see [L2, 3.1-2]).
1.3. The following are some simple properties about these automorphisms T_{w} (see [L2]):
(al). Let $\Omega, \Psi: U \rightarrow U^{\text {opp }}$ be the \mathbf{Q}-algebra homomorphisms defined by

$$
\begin{gathered}
\Omega E_{i}=F_{i}, \quad \Omega F_{i}=E_{i}, \quad \Omega K_{i}=K_{i}^{-1}, \quad \Omega v=v^{-1} \\
\Psi E_{i}=E_{i}, \quad \Psi F_{i}=F_{i}, \quad \Psi K_{i}=K_{i}^{-1}, \quad \Psi v=v
\end{gathered}
$$

We have $\Omega T_{i}=T_{i} \Omega$ and $T_{i}^{\prime}=T_{i}^{-1}=\Psi T_{i} \Psi$. So $\Omega T_{w}=T_{w} \Omega$ and $T_{w^{-1}}^{-1}=\Psi T_{w} \Psi$ for any $w \in W$.

$$
\begin{equation*}
T_{w} E_{i}=E_{j}, \quad \text { if } w\left(\alpha_{i}\right)=\alpha_{j} \tag{a2}
\end{equation*}
$$

By (a2) and the definition of T_{w} we get the following equalities.

$$
\begin{equation*}
T_{i} E_{j}=E_{j}, \quad T_{i} F_{j}=F_{j}, \quad T_{i} K_{j}=K_{j}, \quad \text { if } a_{j i}=0 \tag{a3}
\end{equation*}
$$

$$
\begin{gather*}
T_{i}^{-1} E_{j}=T_{j} E_{i}, \quad T_{i}^{-1} F_{j}=T_{j} F_{i}, \quad T_{i}^{-1} K_{j}=T_{j} K_{i}, \quad \text { if } a_{j i} a_{i j}=1 \tag{a4}\\
T_{i}^{-1} E_{j}=T_{j} T_{i} E_{j}, \quad T_{i}^{-1} F_{j}=T_{j} T_{i} F_{j}, \quad T_{i}^{-1} K_{j}=T_{j} T_{i} K_{j}, \quad \text { if } a_{i j} a_{j i}=2 . \tag{a5}
\end{gather*}
$$

If $a_{i j} a_{j i}=3$, then we have

$$
\begin{gather*}
T_{i}^{-1} E_{j}=T_{j} T_{i} T_{j} T_{i} E_{j}, \quad T_{i}^{-1} F_{j}=T_{j} T_{i} T_{j} T_{i} F_{j}, \quad T_{i}^{-1} K_{j}=T_{j} T_{i} T_{j} T_{i} K_{j} \tag{a6}\\
T_{j}^{-1} T_{i}^{-1} E_{j}=T_{i} T_{j} T_{i} E_{j}, \quad T_{j}^{-1} T_{i}^{-1} F_{j}=T_{i} T_{j} T_{i} F_{j}, \quad T_{j}^{-1} T_{i}^{-1} K_{j}=T_{i} T_{j} T_{i} K_{j}
\end{gather*}
$$

We also have
(a8) $\quad T_{i}^{2} E_{i}=v^{2 d_{i}} K_{i}^{-2} E_{i}$.
(a9) $\quad T_{i}^{2} E_{j}=\left(1-v^{-2 d_{i}}\right) F_{i} K_{i} T_{i}\left(E_{j}\right)-v^{-d_{i}} E_{j} \quad$ if $a_{i j}=-1$.
If $a_{i j}=-2$, then
(a10) $T_{i}^{2} E_{j}=v^{-2}\left(1-v^{-2}\right)\left(1-v^{-4}\right) F_{i}^{(2)} K_{i}^{2} T_{i}\left(E_{j}\right)-v^{-1}\left(1-v^{-2}\right) F_{i} K_{i} T_{j}^{-1}\left(E_{i}\right)+v^{-2} E_{j}$.
If $a_{i j}=-3$, then

$$
\begin{equation*}
T_{i}^{2} E_{j}=v^{-6}\left(1-v^{-2}\right)\left(1-v^{-4}\right)\left(1-v^{-6}\right) F_{i}^{(3)} K_{i}^{3} T_{i}\left(E_{j}\right) \tag{a11}
\end{equation*}
$$

$$
-v^{-3}\left(1-v^{-2}\right)\left(1-v^{-4}\right) F_{i}^{(2)} K_{i}^{2} T_{i} T_{j}\left(E_{i}\right)+v^{-2}\left(1-v^{-2}\right) F_{i} K_{i} T_{j}^{-1}\left(E_{i}\right)-v^{-3} E_{j} .
$$

1.4. For any positive root $\alpha \in R^{+}$(the set of positive roots in R), if $w^{-1}(\alpha)=\alpha_{i}(w \in W)$ is a simple root in R, then we set $E_{\alpha, w}=T_{w}\left(E_{i}\right)$ (resp. $E_{-\alpha, w}=F_{\alpha, w}=\Omega E_{\alpha, w}=T_{w}\left(F_{i}\right)$) and call it a root vector in U of root α (resp. $-\alpha$).

The definition of root vectors looks very simple, however even for some simple questions, such as how many are there root vectors of a given root, the relations between root vectors, etc., we know little. Though there are several formulas concerned with the coproducts of root vectors (see [AJS, KR, LS]), there are no closed formula for these coproducts in general. It seems also no explicit formula for the antipode of a root vector at hand. Of course, everything becomes simple when $\alpha=\alpha_{i}$ is a simple root: there is only one root vector in U of root α which is E_{i} by (a2), the coproduct and the antipode of E_{i} are given by definition in 1.1. Sometimes we write $E_{\alpha_{i}}$ instead of E_{i}.

In this paper we give a description for the set of all root vectors in U (section 4) and give a clear formula for the coproduct of a root vector in a quantum group of type A_{n} (section 5). We only discuss root vectors of positive roots since through the homomorphism Ω all results can be transfered to those concerned with the root vectors of negative roots.

2. Some Facts on Root System and Weyl Group

2.1. In this section we prove some results concerned with roots and Weyl groups, on which our main results depend heavily.

First we recall some facts about root systems. We number the set $\mathcal{D}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of all simple roots of R as in [B, Planche V - IX] when R is of exceptional type and as in [B, Planche I-IV] composed with $i \rightarrow n+1-i$ when R is of classical type. Then we have

Type $A_{n}(n \geq 1): R^{+}=\left\{\alpha_{i j}=\sum_{i \leq m \leq j} \alpha_{m} \mid 1 \leq i \leq j \leq n\right\}$.
Type $B_{n}(n \geq 3): R^{+}=\left\{\alpha_{i j}=\sum_{i \leq m \leq j} \alpha_{m}, \beta_{k l}=2 \sum_{1 \leq m \leq k} \alpha_{m}+\sum_{k<m \leq l} \alpha_{m} \mid 1 \leq i \leq\right.$ $j \leq n, 1 \leq k<l \leq n\}$.

Type $C_{n}(n \geq 2): R^{+}=\left\{\alpha_{i j}=\sum_{i \leq m \leq j} \alpha_{m}, \beta_{k l}=\alpha_{1}+2 \sum_{1<m \leq k} \alpha_{m}+\sum_{k<m \leq l} \alpha_{m}, \gamma_{k}=\right.$ $\left.\alpha_{1}+2 \sum_{1<m \leq k} \alpha_{m} \mid 1 \leq i \leq j \leq n, 1<k<l \leq n\right\}$.

Type $D_{n}(n \geq 4): R^{+}=\left\{\alpha_{i j}=\sum_{i \leq m \leq j} \alpha_{m}, \alpha_{1 k^{\prime}}^{\prime}=\alpha_{1}+\sum_{2<m \leq k^{\prime}} \alpha_{m}, \beta_{k l}=\alpha_{1}+\alpha_{2}+\right.$ $2 \sum_{2<m \leq k} \alpha_{m}+\sum_{k<m \leq l} \alpha_{m} \mid 1 \leq i \leq j \leq n$, and $i=2$ when $j=2 ; 2<k<l \leq n$, $\left.2<k^{\prime} \leq n\right\}$.

Type $G_{2}: R^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}\right\}$. For details of other types see [B, Planche V-VIII].

Realizing R (resp. R^{\vee}) as a subset of an Euclidean space as in [B, Planche I-IX], we then may define the length of a root in R (resp. R^{\vee}), so we have the concept of long roots and short roots in R (resp. R^{\vee}). For a root α in R we denote its dual in R^{\vee} by α^{\vee}.

Let α, β be roots in R^{+}, the following facts are either standard or easy to check. (b1). If α is a short root, then $\left|<\alpha, \alpha_{k}^{\vee}\right\rangle \mid \leq 1$ for any simple root α_{k} in R.
(b2). $\left\langle\alpha, \alpha_{k}^{\vee}\right\rangle>0$ for some simple root α_{k}.
(b3). α and β (resp. α^{\vee} and β^{\vee}) have the same length if and only if $\beta=w(\alpha)$ (resp. $\beta^{\vee}=w^{\vee}\left(\alpha^{\vee}\right)$) for some $w \in W$ (resp. $w^{\vee} \in W^{\vee}$, see (b6) for the definition of W^{\vee}).
(b4). α is a long (resp. short) root if and only if α^{\vee} is a short (resp.long) root in R^{\vee}.
(b5). Assume that α, β have the same length, then $\alpha \leq \beta$ if and only if $\alpha^{\vee} \leq \beta^{\vee}$, where \leq is the usual partial order in the root lattice $\mathbf{Z} R$ (resp. $\mathbf{Z} R^{\vee}$).

Convention: the notation $\alpha<\beta$ (resp. $\alpha^{\vee}<\beta^{\vee}$) means that $\alpha \leq \beta$ (resp. $\alpha^{\vee} \leq \beta^{\vee}$) but $\alpha \neq \beta$ (resp. $\alpha^{\vee} \neq \beta^{\vee}$). We also use the symbol \leq for the Bruhat order in W or W^{\vee}. We extend $<,>$ to $\mathbf{Z} R \times \mathbf{Z} R^{\vee}$ as usual.
(b6). Let W^{\vee} be the Weyl group of R^{\vee} generated by simple reflections $s_{i}^{\vee}(i \in[1, n])$ which are defined by $s_{i}^{\vee}\left(\alpha^{\vee}\right)=\alpha^{\vee}-<\alpha_{i}, \alpha^{\vee}>\alpha_{i}^{\vee}, \alpha \in R^{\vee}$, then the map $s_{i} \rightarrow s_{i}^{\vee}$ defines an isomorphism between the Weyl groups W and W^{\vee}.

For $w \in W$ we denote its corresponding element in W^{\vee} by w^{\vee}, then $\ell(w)=\ell\left(w^{\vee}\right)$, moreover $w(\alpha)^{\vee}=w^{\vee}\left(\alpha^{\vee}\right)$, here ℓ is the standard length function on W or W^{\vee}.

Lemma 2.2. Given a root $\alpha \in R^{+}$. If $s_{k} \alpha<\alpha, s_{k^{\prime}} \alpha<\alpha$, and $\alpha, \alpha_{k}, \alpha_{k^{\prime}}$ are linearly independent, then $s_{k} s_{k^{\prime}}=s_{k^{\prime}} s_{k}$.
Proof: The set $\left(\mathbf{Z} \alpha+\mathbf{Z} \alpha_{k}+\mathbf{Z} \alpha_{k^{\prime}}\right) \cap R$ is an irreducible root system with simple roots $\alpha_{k}, w(\alpha), \alpha_{k^{\prime}}$, where w is the longest element in the group $\left\langle s_{k}, s_{k^{\prime}}\right\rangle$. The lemma follows from the fact that its Dynkin diagram is not a cycle.
2.3. For any root α in R^{+}, let $h^{\prime}(\alpha)=$ height of $\alpha-1$ if α is a short root, height of $\alpha^{\vee}-1$ if α is a long root. We denote \mathcal{D}_{α} the set $\left\{\alpha_{k} \in \mathcal{D} \mid \alpha_{k}\right.$ and α have the same length, $\left.\alpha_{k} \leq \alpha\right\}$. Note that the root system R_{α} generated by \mathcal{D}_{α} is irreducible. It is plain to check the following properties concerned with $h^{\prime}(\alpha)$ by using 2.1 (b1-6).
(c1). $h^{\prime}(\alpha)=0$ if and only if α is a simple root in R.
(c2). If $\alpha_{k} \in \mathcal{D}, w \in W$ such that $w\left(\alpha_{k}\right)=\alpha$, then $\ell(w) \geq h^{\prime}(\alpha)$, moreover $\ell(w)>h^{\prime}(\alpha)$ if $\alpha_{k} \in \mathcal{D}-\mathcal{D}_{\alpha}$
(c3). For a simple reflection s in W, if $0 \leq s(\alpha)<\alpha$, then $h^{\prime}(\alpha)=h^{\prime}(s(\alpha))+1$.
For an element $\left(w, \alpha_{k}\right) \in \mathcal{H}=\left\{\left(u, \alpha_{l}\right) \in W \times \mathcal{D} \mid u\left(\alpha_{l}\right) \in R^{+}\right\}$, we call it shortable if there exist $w_{1}, u_{1} \in W$ such that $w=w_{1} \cdot u_{1}$ and $u_{1}\left(\alpha_{k}\right) \in \mathcal{D}, \ell\left(u_{1}\right) \geq 1, u_{1} \in$ $\langle s, t\rangle$ for some simple reflections $s, t \in W$; we also call $\ell(w)$ its length. Here we use the convention: for $x, x_{1}, x_{2}, \ldots, x_{m} \in W$, we write $x=x_{1} \cdot x_{2} \cdots x_{m}$ if $x=x_{1} x_{2} \cdots x_{m}$, and $\ell(x)=\ell\left(x_{1}\right)+\ell\left(x_{2}\right)+\cdots+\ell\left(x_{m}\right)$.

Let $\left(w, \alpha_{k}\right),\left(u, \alpha_{l}\right) \in \mathcal{H}$, we write $\left(w, \alpha_{k}\right) \sim\left(u, \alpha_{i}\right)$ if there exists $u_{1} \in W$ such that $w=u \cdot u_{1}$ and $u_{1}\left(\alpha_{k}\right)=\alpha_{l}$. The relation \sim generates an equivalence relation in \mathcal{H}, we denote it also by \sim. The equivalence class containing $\left(w, \alpha_{k}\right)$ is denoted by $\left(\widetilde{w, \alpha_{k}}\right)$. The set of all equivalence classes in \mathcal{H} is denoted by $\widetilde{\mathcal{H}}$.
Proposition 2.4. Let $\alpha \in R^{+}$, we have
(i). For any $\alpha_{k} \in \mathcal{D}_{\alpha}$, there exists a unique $w \in W$ such that $w\left(\alpha_{k}\right)=\alpha$ and $\ell(w)=h^{\prime}(\alpha)$. we denote it by $w_{\alpha, k}$.
(ii). Assume that α is not a simple root in R, then for $\alpha_{k} \in \mathcal{D}_{\alpha}, w \in W, w=w_{\alpha, k}$ if and only if for any reduced expression $s_{j_{i}} s_{j_{i-1}} \ldots s_{j_{1}}$ of w, we have

$$
s_{j_{i}} s_{j_{i-1}} \ldots s_{j_{1}}\left(\alpha_{k}\right)>s_{j_{i-1}} \ldots s_{j_{1}}\left(\alpha_{k}\right)>s_{j_{1}}\left(\alpha_{k}\right)>\alpha_{k}
$$

where $i=h^{\prime}(\alpha)$.
(iii). Let s be a simple reflection in $W, k \in \mathcal{D}_{\alpha}$, then $s w_{\alpha, k} \leq w_{\alpha, k}$ if and only if $\alpha_{k} \leq s(\alpha)<\alpha ; w_{\alpha, k} s \leq w_{\alpha, k}$ if and only if $\alpha_{k}<s\left(\alpha_{k}\right) \leq \alpha$.
(iv). Let s, t be simple reflections in W such that $s w_{\alpha, k} \leq w_{\alpha, k}, t w_{\alpha, k} \leq w_{\alpha, k}$ (resp. $\left.w_{\alpha, k} \leq w_{\alpha, k}, w_{\alpha, k} t \leq w_{\alpha, k}\right)$, then $s t=t s$.
Proof: We assume that α is a short root, thanks to 2.1 (b3-6), it is sufficient to prove the proposition under the assumption.
(i). Now assume that $\alpha_{k} \in \mathcal{D}_{\alpha}$. First we prove that there exists $w \in W$ such that $w\left(\alpha_{k}\right)=\alpha$, and $\ell(w)=h^{\prime}(\alpha)$. Using 2.1(b1-3) we know that there exist some $\alpha_{k^{\prime}} \in$ $\mathcal{D}_{\alpha}, w^{\prime} \in W$ such that $w^{\prime}\left(\alpha_{k^{\prime}}\right)=\alpha$ and $\ell\left(w^{\prime}\right)=h^{\prime}(\alpha)$. If $k=k^{\prime}$, We set $w=w^{\prime}$. If $k \neq k^{\prime}$, then we can find a sequence $\alpha_{k^{\prime}}=\alpha_{k_{1}}, \alpha_{k_{2}}, \ldots, \alpha_{k_{1}}=\alpha_{k}$ in \mathcal{D}_{α} such that $a_{k_{m}, k_{m+1}}=-1(m \in[1, l-1])$.

We show that $w^{\prime} s_{k_{2}} \leq w^{\prime}$. Let $s_{j_{i}^{\prime}} s_{j_{i-1}^{\prime}} \ldots s_{j_{1}^{\prime}}\left(i=h^{\prime}(\alpha)\right)$ be a reduced expression of w^{\prime}. Since $\ell\left(w^{\prime}\right)=h^{\prime}(\alpha)$ and $\alpha_{k} \in \mathcal{D}_{\alpha}$, using 2.3(c2) and the definition of $h^{\prime}(\alpha)$ we know there is some $m \in[1, i]$ such that $s_{j_{m}^{\prime}}=s_{k_{2}}$ and $s_{j_{k}} \neq s_{k_{2}}$ if $1 \leq h<m$. If $w^{\prime} s_{k_{2}} \leq w^{\prime}$, then $m \geq 2$. We can assume that m is minimal in all possibilities, then there exists a subsequence $s_{j_{m}^{\prime}}=t_{p}, t_{p-1}, \ldots, t_{1}, t_{0}=s_{k^{\prime}}(p \geq 2)$ of $s_{j_{m}^{\prime}}, s_{j_{m-1}^{\prime}}, \ldots, s_{j_{1}^{\prime}}, s_{j_{0}^{\prime}}=s_{k^{\prime}}$ such that $t_{q} t_{q-1} \neq t_{q-1} t_{q}$ for any $q \in[1, p]$. Combine this and our assumption on k_{2} we know that the Dynkin diagram of R contains a cycle which is impossible. So we have $w^{\prime} s_{k-2} \leq w^{\prime}$.

Let $w_{2}=w^{\prime} s_{k_{2}} s_{k^{\prime}}$, then $w_{2}\left(\alpha_{k_{2}}\right)=\alpha$, moreover $\ell\left(w_{2}\right)=h^{\prime}(\alpha)$ since $\ell\left(w_{2}\right) \leq h^{\prime}(\alpha)$ by the above argument. Continue this process, finally, we get an element $w \in W$ such that $w\left(\alpha_{k}\right)=\alpha, \ell(w)=h^{\prime}(\alpha)$.

We need to prove the uniqueness of w.
We use induction on $h^{\prime}(\alpha)$. When $h^{\prime}(\alpha) \leq 2$, it is easy to check the uniqueness. Now suppose that $h^{\prime}(\alpha) \geq 3$. Let $w^{\prime \prime} \in W$ be such that $w^{\prime \prime}\left(\alpha_{k}\right)=\alpha, \ell\left(w^{\prime \prime}\right)=h^{\prime}(\alpha)$. Choose two simple reflections s, t of W such that $s w \leq w, t w^{\prime \prime} \leq w^{\prime \prime}$. By 2.3(c2), the definition of $h^{\prime}(\alpha)$
and our assumption on α, we have $s(\alpha)<\alpha, t(\alpha)<\alpha$. If $s=t$, the induction hypothesis implies that $s w=s w^{\prime \prime}$. If $s \neq t$, note that $h^{\prime}(\alpha) \geq 3$, using 2.2 , we see that $s t=t s$, therefore by 2.4(c2-3) and the definition of $h^{\prime}(\alpha)$ we get $\alpha_{k} \leq s t(\alpha)<s(\alpha), t(\alpha)<\alpha$ and $h^{\prime}(s t(\alpha))=h^{\prime}(\alpha)-2=h^{\prime}(s(\alpha))-1=h^{\prime}(t(\alpha))-1$. According to induction hypothesis, there exists a unique element $u \in W$ such that $u\left(\alpha_{k}\right)=s t(\alpha), \ell(u)=h^{\prime}(\alpha)-2$, and $s w=t u, t w^{\prime \prime}=s u$. So we get $w=w^{\prime \prime}=s t u$. This completes the proof of (i).
(ii). It follows from the uniquenss of $w_{\alpha, k}$ and the definition of $h^{\prime}(\alpha)$.
(iii). Using (ii) we see that the results hold.
(iv). Assume that $s=s_{k} \neq s_{k^{\prime}}=t, s w_{\alpha, k} \leq w_{\alpha, k}, t w_{\alpha, k} \leq w_{\alpha, k}$. Let u be the longest element in $\langle s, t\rangle$, then $\ell(w)=\ell(u)+\ell(u w)$, so $\alpha, \alpha_{k}, \alpha_{k^{\prime}}$ are linearly independent. By 2.2 we see that $s t=t s$. Another assertion follows from (ii) and the fact that the Dynkin diagram contains no cycles.

Theorem 2.5. (i). For each equivalence class $\left(\widetilde{\left(w, \alpha_{k}\right)}\right.$ in \mathcal{H}, there exists unique shortest element (u, α_{l}) in ($\widetilde{w, \alpha_{k}}$). Furthermore, we have $w=u \cdot u_{1}$ for some $u_{1} \in W$.
(ii). For two elements $\left(w, \alpha_{k}\right),\left(u, \alpha_{l}\right) \in \mathcal{H}$, choose arbitrary $\left(w_{1}, \alpha_{k_{1}}\right),\left(u_{1}, \alpha_{l_{1}}\right) \in \mathcal{H}$ such that $w_{1}^{-1} w=w_{1}^{-1} \cdot w, u_{1}^{-1} u=u_{1}^{-1} \cdot u$ and $w\left(\alpha_{k}\right)=w_{1}\left(\alpha_{k_{1}}\right), u\left(\alpha_{l}\right)=u_{1}\left(\alpha_{l_{1}}\right)$, then $\left(w, \alpha_{k}\right) \sim\left(u, \alpha_{l}\right)$ if and only if $\left(w_{1}, \alpha_{k_{1}}\right) \sim\left(u_{1}, \alpha_{l_{1}}\right)$. In particular, if w_{1} is a shortest element such that $w_{1}^{-1} w=w_{1}^{-1} \cdot w$, and $w_{1}^{-1} w\left(\alpha_{k}\right)$ is a simple root $\alpha_{k_{1}}$, then ($w_{1}, \alpha_{k_{1}}$) is the unique shortest element in $\left(\widetilde{w_{1}, \alpha_{k_{1}}}\right)$. We also denote $\left(\widetilde{w_{1}, \alpha_{k_{1}}}\right)$ by $\left(\widetilde{\left.w, \alpha_{k}\right)}\right.$.

We need the following result.
Lemma 2.6. If $w\left(\alpha_{k}\right)=\alpha_{l}$ and $\ell(w) \geq 1$, then (w, α_{k}) is shortable (see 2.3 for definition).
One can prove the lemma by using the method in [$\mathrm{L} 1,1.8$].
Proof of 2.5. (i). Let $\left(u, \alpha_{l}\right)$ be an element in $\left(\widetilde{w, \alpha_{k}}\right)$ with minimal length. We shall prove that $w=u \cdot u_{1}$ for some $u_{1} \in W$, this forces that (u, α_{l}) is the unique shortest element in $\left(\widetilde{w, \alpha_{k}}\right)$. Let $\left(u^{\prime}, \alpha_{l^{\prime}}\right),\left(w^{\prime}, \alpha_{k^{\prime}}\right) \in\left(\widetilde{w, \alpha_{k}}\right)$ be such that $u^{\prime}=u \cdot u_{1}^{\prime}, u^{\prime}=w^{\prime} \cdot w_{1}^{\prime}$, where $u_{1}^{\prime} \in W$ and w_{1}^{\prime} is one of the following elements: $s_{i}, \alpha_{i k^{\prime}}=0 ; s_{k^{\prime}} s_{i}, \alpha_{i k^{\prime}} a_{k^{\prime} i}=1$; $s_{i} s_{k^{\prime}} s_{i}, \alpha_{i k^{\prime}} a_{k^{\prime} i}=2, s_{i} s_{k^{\prime}} s_{i} s_{k^{\prime}} s_{i}, \alpha_{i k^{\prime}} a_{k^{\prime} i}=3$. Because (u, α_{l}) is an element in $\left(\widetilde{w, \alpha_{k}}\right)$ of minimal length, we get $u_{1}^{\prime}=x \cdot w_{1}^{\prime}$ for some $x \in W$, thus $w^{\prime}=u \cdot x$. According to the definition of \sim and 2.6 we see that there exists $u_{1} \in W$ such that $w=u \cdot u_{1}$.
(ii). Suppose that $\left(w, \alpha_{k}\right) \sim\left(u, \alpha_{l}\right)$. It is no harm to assume that $\left(u, \alpha_{l}\right)$ is the shortest element in $\left(\widetilde{w, \alpha_{k}}\right)$. By (i) we know that $w_{1}^{-1} u=w_{1}^{-1} \cdot u, u_{1}^{-1} u=u_{1}^{-1} \cdot u$ and $w_{1}\left(\alpha_{k_{1}}\right)=u\left(\alpha_{l}\right)=u_{1}\left(\alpha_{l_{1}}\right)$. Let $u_{0} \in W$ be such that $u_{0} u s_{l}=u_{0} \cdot u s_{l}=w_{0}$, the longest element of W. Then $u_{0}=x_{1} \cdot w_{1}=x_{2} \cdot u_{1}$ for some $x_{1}, x_{2} \in W$. Since $u_{0} u\left(\alpha_{l}\right)=\alpha_{m} \in \mathcal{D}$, we get $\left(w_{1}, \alpha_{k_{1}}\right) \sim\left(u_{0}^{-1}, \alpha_{m}\right) \sim\left(u_{1}, \alpha_{l_{1}}\right)$. The "only if" part is similar when one notes that $w^{-1} w_{1}=w^{-1} \cdot w_{1}, u^{-1} u_{1}=u^{-1} \cdot u_{1}$.

The theorem is proved.

Part (ii) of 2.5 gives a way to compute the shortest elements in \mathcal{H}.

3. Several Lemmas

3.1. In this section we give several lemmas concerned with the automorphisms T_{i}. We refer to [L3].

Let $s_{k_{1}} s_{k_{2}} s_{k_{s}} \ldots s_{k_{y-1}} s_{k_{p}}$ be a reduced expression of the longest element w_{0} of W. For any $c=\left(c_{1}, c_{2}, \ldots, c_{\nu}\right) \in \mathbf{N}^{\nu}, r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbf{Z}^{n}$, we set

$$
\begin{gathered}
E^{c}=E_{k_{1}}^{c_{1}} T_{k_{1}}\left(E_{k_{2}}^{c_{2}}\right) T_{k_{1}} T_{k_{2}}\left(E_{k_{3}}^{c_{3}}\right) \ldots T_{k_{1}} T_{k_{2}} \ldots T_{k_{y-1}}\left(E_{k_{\nu}}^{c_{v}}\right), \quad F^{c}=\Omega\left(E^{c}\right) \\
G^{c}=E_{k_{1}}^{c_{1}} E_{k_{2}}^{c_{2}} T_{k_{2}}\left(E_{k_{8}}^{c_{s}}\right) T_{k_{2}} T_{k_{s}}\left(E_{k_{4}}^{c_{4}}\right) \ldots T_{k_{2}} T_{k_{3}} \ldots T_{k_{\nu-1}}\left(E_{k_{\nu}}^{c_{v}}\right), \quad H^{c}=\Omega\left(G^{c}\right), \\
K^{r}=K_{1}^{r_{1}} \cdots K_{n}^{r_{n}}
\end{gathered}
$$

Let U^{+}is the subalgebra of U generated by all E_{i}. The following two lemmas are due to Lusztig (see [L3, 2.4])
Lemma 3.2. We fix $i \in[1, n]$. Let $O_{i}=\left\{\xi \in U^{+} \mid F_{i} \xi-\xi F_{i} \in K_{i}^{-1} U^{+}\right\}$. Let O_{i}^{\prime} be the $\mathbf{Q}(v)$-subalgebra of U^{+}generated by the elements $T_{i}\left(E_{j}\right), T_{i} T_{j}\left(E_{i}\right), T_{i} T_{j} T_{i}\left(E_{j}\right)$, $T_{i} T_{j} T_{i} T_{j}\left(E_{i}\right)$ for j such that $a_{i j} a_{j i}=3$, the elements $T_{i}\left(E_{j}\right), T_{i} T_{j}\left(E_{i}\right)$ for j such that $a_{i j} a_{j i}=2$, the elements $T_{i}\left(E_{j}\right)$ for j such that $a_{i j} a_{j i}=1$, and by E_{j} for $j \neq i$. Choose a reduced expression $s_{k_{1}} s_{k_{2}} s_{k_{3}} \ldots s_{k_{v-1}} s_{k_{\nu}}$ of w_{0} be such that $k_{1}=i$. Let $O_{i}^{\prime \prime}$ be the $\mathbf{Q}(v)$ subspace of U^{+}spanned by the elements E^{c} (defined in 3.1) for various $c=\left(c_{1}, \ldots, c_{\nu}\right) \in \mathbf{N}^{\nu}$ such that $c_{1}=0$. We have $O_{i}=O_{i}^{\prime}=O_{i}^{\prime \prime}=U^{+} \cap T_{i}\left(U^{+}\right)$.
Proof: It is clear that O_{i} is a $\mathbf{Q}(v)$-subalgebra of U^{+}. It is easy to check that the generators of O_{i}^{\prime} are contained in O_{i}. It follows that $O_{i}^{\prime} \subset O_{i}$.

By using the method in the proof $[\mathrm{L} 1,1.8]$ we see that $O_{i}^{\prime \prime} \subset O_{i}^{\prime}$. As the same way of the proof of $R_{i} \subset R_{i}^{\prime \prime}$ in [L3, 2.4] (notations in loc.cit) we get $O_{i} \subset O_{i}^{\prime \prime}$. The lemma is proved.
Lemma 3.3. We fix $i \in[1, n]$. Let $P_{i}=\left\{\xi \in U^{+} \mid F_{i} \xi-\xi F_{i} \in K_{i}^{-1} U^{+}\right\}$. Let P_{i}^{\prime} be the $\mathbf{Q}(v)$-subalgebra of U^{+}generated by the elements $T_{i}^{\prime}\left(E_{j}\right), T_{i}^{\prime} T_{j}^{\prime}\left(E_{i}\right), T_{i}^{\prime} T_{j}^{\prime} T_{i}^{\prime}\left(E_{j}\right)$, $T_{i}^{\prime} T_{j}^{\prime} T_{i}^{\prime} T_{j}^{\prime}\left(E_{i}\right)$ for j such that $a_{i j} a_{j i}=3$, the elements $T_{i}^{\prime}\left(E_{j}\right), T_{i}^{\prime} T_{j}^{\prime}\left(E_{i}\right)$ for j such that $a_{i j} a_{j i}=2$, the elements $T_{i}^{\prime}\left(E_{j}\right)$ for j such that $a_{i j} a_{j i}=1$, and by E_{j} for $j \neq i$. Choose a reduced expression $s_{k_{1}} s_{k_{2}} s_{k_{z}} \ldots s_{k_{\nu-1}} s_{k_{\nu}}$ of w_{0} be such that $k_{1}=i$. Let $P_{i}^{\prime \prime}$ be the $\mathbf{Q}(v)$ subspace of U^{+}spanned by the elements $G^{c}\left(\right.$ defined in 3.1) for various $c=\left(c_{1}, \ldots, c_{\nu}\right) \in \mathbf{N}^{\nu}$ such that $c_{1}=0$. We have $P_{i}=P_{i}^{\prime}=P_{i}^{\prime \prime}=U^{+} \cap T_{i}^{\prime}\left(U^{+}\right)$.

The proof is similar.
3.4. For $\lambda \in \mathrm{N} R^{+}$, we denote U_{λ} the set of all elements $\xi \in U$ such that $K_{i} \xi K_{i}^{-1}=$ $v^{d_{i}<\alpha_{i}^{v}, \lambda>} \xi$. Let $U_{\lambda}^{+}=U^{+} \cap U_{\lambda}$.
Lemma 3.5. Let $Q_{i}=O_{i} \cap P_{i}=\left\{\xi \in U^{+} \mid F_{i} \xi=\xi F_{i}\right\}$. We have $s_{i}(\lambda) \geq \lambda$ if $Q_{i} \cap U_{\lambda}^{+} \neq\{0\}$.

Proof: Let U_{A} be the $A=\mathbf{Q}[v]$-subalgebra of U generated by all $E_{j}, F_{j}, K_{j}, K_{j}^{-1}$. Regard \mathbf{Q} as a $\mathbf{Q}[v]$-algebra by specializing v to 1 . Thus we can get the \mathbf{Q}-algebra

$$
U_{1}=U_{A} \otimes_{A} \mathbf{Q} /<K_{1}-1, K_{2}-1, \ldots, K_{n}-1>
$$

which is just the universal enveloping algebra of the simple Lie algebra corresponding to the Cartan matrix $\left(a_{i j}\right)$. Let $f_{i}, U_{1}^{+}, U_{1, \lambda}^{+}$, be the images of $F_{i}, U^{+}, U_{\lambda}^{+}$, respectively. According to the commutation relations between root vectors in U_{1} and PBW Theorem one can check easily that the subalgebra $Q_{1, i}=\left\{x \in U_{1}^{+} \mid f_{i} x=x f_{i}\right\}$ is generated by $e_{\alpha}\left(\alpha \in R^{+}\right)$such that $\alpha-\alpha_{i} \notin R$, where e_{α} is a root vector in U_{1}^{+}of root α. Note that $\alpha-\alpha_{i} \notin R$ implies that $s_{i}(\alpha) \geq \alpha$, we see that $Q_{1, i} \cap U_{1, \lambda}^{+} \neq\{0\}$ implies that $s_{i}(\lambda) \geq \lambda$. Our assertion follows from this and that $Q_{1, i} \cap U_{1, \lambda}^{+} \neq\{0\}$ if $Q_{i} \cap U_{\lambda}^{+} \neq\{0\}$. The lemma is proved.
3.6. Remark: By 3.2 and 3.3 we know that $Q_{i}=O_{i} \cap P_{i}=U^{+} \cap T_{i}\left(U^{+}\right) \cap T_{i}^{\prime}\left(U^{+}\right)$. It is likely that Q_{i} is the $\mathbf{Q}(v)$-subalgebra of U^{+}generated by the elements $T_{k} T_{i}\left(E_{j}\right)$ for j, k with $a_{i j} a_{j i}>0, a_{i k} a_{k i}=1$, and by E_{j} for $j \neq i$.

4. Root Vectors

4.1. In this section we describe the set of all root vectors of a given root. The main result is Theorem 4.4.

Given a positive root α in R^{+}. Let Y_{α} be the set of all root vectors of root α. $\tilde{\mathcal{H}}_{\alpha}=\left\{\left(w, \alpha_{k}\right) \in \tilde{\mathcal{H}} \mid w\left(\alpha_{k}\right)=\alpha\right\}$. Fix a reduced expression $s_{j_{i}} s_{j_{i-1}} \ldots s_{j_{1}}$ of $w_{\alpha, j_{0}}$, $\alpha_{j_{0}} \in \mathcal{D}_{\alpha}$, Let $Y_{\alpha}^{\prime}=\left\{T_{\alpha, k, a}\left(E_{j_{0}}\right) \mid a \in I_{\alpha}\right\}$, where $i=h^{\prime}(\alpha), T_{\alpha, j_{0}, a}=T_{j_{i}}^{a_{i}} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}$, $a=\left(a_{i}, a_{i-1}, \ldots, a_{1}\right) \in\{1,-1\}^{h^{\prime}(\alpha)}=I_{\alpha}$. When $h^{\prime}(\alpha)=0$, we set $I_{\alpha}=\{e\}$ and $T_{w, e}=\operatorname{id} U$, where e is the neutral element of W.

$$
\text { Set } Y=\bigcup_{\alpha \in R^{+}} Y_{\alpha}, Y^{\prime}=\bigcup_{\alpha \in R^{+}} Y_{\alpha}^{\prime} .
$$

Lemma 4.2. Keep the notations in 4.1.
(i). Y_{α}^{\prime} is independent of the choice of the reduced expression and the choice of j_{0}, so only depends on α.
(ii). The elements $T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right), a \in I_{\alpha}$ are linearly independent over $\mathbf{Q}(v)$. In particular, the set Y_{α}^{\prime} contains $2^{h^{\prime}(\alpha)}$ elements.

Proof: (i). Using 2.4(iii) and induction on $h^{\prime}(\alpha)$ we see that Y_{α}^{\prime} is independent of the choice of the reduced expression. According to the proof of $2.4(\mathrm{i})$ and $1.3(\mathrm{a} 4)$ we know that Y_{α}^{\prime} doesnot depends on the choice of k.
(ii). If each $j \in[1, n]$ appears in the sequence $j_{i}, j_{i-1}, \ldots, j_{1}, j_{0}$ at most two times, then we can choose the reduced expression such that $j_{i}, j_{i-1}, \ldots, j_{p+1}$ is a subsequence (disregard
order) of $j_{p}, j_{p-1}, \ldots, j_{1}, j_{0}$ for some p. Thus for any $a \in I_{\alpha}, T_{j_{p}}^{a p} T_{j_{p-1}}^{a_{p-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right) \in U^{+}$, $T_{j_{i}}^{a_{i}} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{q}}^{a_{q}}\left(F_{q-1}\right) \in U^{-}=\Omega\left(U^{+}\right)$for any $q \geq p+2$, since $j_{i}, j_{i-1}, \ldots, j_{p+1}$ or j_{i}, j_{i-1}, \ldots, j_{p+1} are pairwise different. Combine these and using induction on i we see that in the expression

$$
T_{j_{i}} T_{j_{i-1}}^{a_{i-1} \ldots} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)=\sum_{\substack{c^{\prime}, c \in \mathbb{N}^{n} \\ r \in \mathbf{Z}^{n}}} \rho_{c^{\prime}, r, c} F^{c^{\prime}} K^{r} E^{c}, \quad \rho_{c^{\prime}, r, c} \in \mathbf{Q}(v)
$$

(resp.

$$
\left.T_{j_{i}}^{-1} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)=\sum_{\substack{c^{\prime}, c \in \mathbf{N}^{\nu} \\ r \in \mathbf{Z}^{n}}} \rho_{c^{\prime}, r, c}^{\prime} H^{c^{\prime}} K^{r} G^{c}, \quad \rho_{c^{\prime}, r, c}^{\prime} \in \mathbf{Q}(v),\right)
$$

if $\rho_{c^{\prime}, r, c} \neq 0$ (resp. $\rho_{c^{\prime}, r, c}^{\prime} \neq 0$), then $E^{c} \in O_{j_{i}}$ (resp. $G^{c} \in P_{j_{i}}$), where $F^{c^{\prime}}, E^{c}, G^{c^{\prime}}, H^{c}, K^{r}$ are defined as in 3.1, we choose the reduced expression of w_{0} such that $k_{1}=j_{i}$. According to 2.4 (ii) we see that

$$
\begin{equation*}
s_{j_{i}} s_{j_{i-1}} \ldots s_{j_{r}}\left(\alpha_{j_{r-1}}\right) \geq s_{j_{i-1}} \ldots s_{j_{r}}\left(\alpha_{j_{r-1}}\right) \text { for any } 1 \leq r \leq i-1 . \tag{*}
\end{equation*}
$$

Therefore if $\rho_{c^{\prime}, r, c} \neq 0$ (resp. $\rho_{c^{\prime}, r, c}^{\prime} \neq 0$), then $E^{c} \in U_{\lambda}^{+}$(resp. $G^{c} \in U_{\lambda}^{+}$) for some $\lambda \in \mathbf{N} R^{+}$such that $s_{j_{i}}(\lambda)<\lambda$. Using 3.5 we see that if

$$
\sum_{a \in I_{a}} \rho_{a} T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right)=0, \quad \rho_{a} \in \mathbf{Q}(v)
$$

then

$$
\sum_{\substack{a \in I_{a} \\ a_{i}=1}} \rho_{a} T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right)=0, \quad \sum_{\substack{a \in I_{\alpha} \\ a_{i}=-1}} \rho_{a} T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right)=0 .
$$

Using induction we know that $\rho_{a}=0$ for all $a \in I_{\alpha}$. Thus we have proved (ii) for type $A_{n}, B_{n}, C_{n}, D_{n}, G_{2}$.

In general we argue as follows.
Let

$$
T_{j_{i}}^{a_{i}} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)=\xi_{a}+\xi_{a}^{\prime}
$$

where

$$
\begin{aligned}
& \xi_{a}=\sum_{\substack{c^{\prime}, c \in \mathbf{N}^{v} \\
r \in \mathbb{N}^{n} \\
E^{\prime} \in O_{j_{i}}}} \rho_{c^{\prime}, r, c} F^{c^{\prime}} K^{r} E^{c}, \quad \xi_{a}^{\prime}=\sum_{\substack{c^{\prime}, c \in \mathbb{N}^{v} \\
r \in \mathbb{N}^{n} \\
E^{\prime} \mathscr{E} O_{j_{i}}}} \rho_{c^{\prime}, r, c}^{\prime} F^{c^{\prime}} K^{r} E^{c}, \quad \text { if } a_{i}=1, \\
& \xi_{a}=\sum_{\substack{c^{\prime}, c \in \mathbb{N}^{\nu} \\
r \in \in \mathbb{Z}^{n} \\
G^{c} \in P_{P_{i}}}} \rho_{c^{\prime}, r, c} H^{c^{\prime}} K^{r} G^{c}, \quad \xi_{a}^{\prime}=\sum_{\substack{c^{\prime}, c \in \mathbb{N}^{v} \\
r \in \mathcal{N}^{v} \\
G^{\in} \notin P_{j}}} \rho_{c^{\prime}, r, c}^{\prime} H^{c^{\prime}} K^{r} G^{c}, \quad \text { if } a_{i}=-1,
\end{aligned}
$$

$$
\rho_{c^{\prime}, r, c} \in \mathbf{Q}(v), \quad \rho_{c^{\prime}, r, c}^{\prime} \in \mathbf{Q}(v) .
$$

Note that
(**) The image of $T_{j_{i}}^{a_{i}} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{r}}^{a r}\left(F_{j_{r-1}}\right)(1 \leq r \leq i)$ in U_{1}^{-}(see the proof of 3.5) is not zero,
and $\alpha_{j_{i}}, s_{j_{i}} s_{j_{i-1}} \ldots s_{j_{r}}\left(\alpha_{j_{r-1}}\right), 1 \leq r \leq i$ are pairwise different. Using induction on i and the fact $\left(^{*}\right.$) it is not difficult to check that if $\rho_{c^{\prime}, r, c} \neq 0, E^{c} \in O_{j_{i}} \cap U_{\lambda}$ (resp. $\rho_{c^{\prime}, r, c}^{\prime} \neq 0$, $G^{c} \in P_{j_{i}} \cap U_{\lambda}$), then $s_{j_{i}}(\lambda)<\lambda$, and that the set $\left\{\xi_{a} \mid a_{i}=1\right\}$ (resp. $\left\{\xi_{a} \mid a_{i}=-1\right\}$) is $\mathbf{Q}(v)$-linearly independent. By these and 3.5 we see that (ii) is true.
4.3. Remark: By $\left(^{*}\right)$ and (**) in the proof of 4.2 we know that if $T_{j_{r}}^{a_{r}} T_{j_{r-1}}^{a_{r-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right) \notin$ U^{+}for some $r \leq i$, then $T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right) \notin U^{+}$.
Theorem 4.4. Keep the notations in 4.1. Let $\alpha \in R^{+}$, then
(i). $\Psi\left(Y_{\alpha}\right)=Y_{\alpha}$. In particular, $\Psi(Y)=Y$.
(ii). $Y_{\alpha} \subset Y_{\alpha}^{\prime} \cap U^{+}$. In particular, the set Y is linearly independent over $\mathbf{Q}(v)$.
(iii). The map $\left.\Phi: \widetilde{\left(w, \alpha_{k}\right.}\right) \rightarrow T_{w} E_{k}$ defines a bijection between $\tilde{\mathcal{H}}$ and Y, moreover $\Phi\left(\widetilde{\mathcal{H}}_{\alpha}\right)=Y_{\alpha}$.
(iv). $\Phi\left({\left.\widetilde{\left(w, \alpha_{k}\right.}\right)}^{*}\right)=\Psi \cdot \Phi\left(\widetilde{\left(w, \alpha_{k}\right)}\right)$.

Proof: Let $E=T_{w}\left(E_{l}\right) \in Y_{\alpha}$.
(i). Choose $u \in W$ be such that $u^{-1} w=u^{-1} \cdot w$ and $u^{-1} w\left(\alpha_{l}\right)=\alpha l^{\prime}$ for some l^{\prime}, according to 1.3(al-2) we get $\Psi(E)=T_{u}\left(E_{l^{\prime}}\right) \in Y_{\alpha}$.
(ii). We have $h^{\prime}\left(s_{j} w\left(\alpha_{l}\right)\right)<h^{\prime}(\alpha)$. Use induction hypothesis we see that there exist $a_{i-1}, \ldots, a_{1} \in\{1,-1\}$, such that $T_{u} E_{l}=T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$, where $u=s_{j_{i}} w$. Terefore $T_{w}\left(E_{l}\right)=T_{j_{i}} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$, if $\ell(w)=\ell\left(s_{j} w\right)+1 ; T_{w}\left(E_{l}\right)=T_{j_{i}}^{-1} T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$, if $\ell(w)=\ell\left(s_{j} w\right)-1$. Thus $E \in Y_{\alpha}^{\prime} \cap U^{+}$.
(iii). By 1.3(a2) we know that Φ is well defined and is surjective. We use induction on $h^{\prime}(\alpha)$ to prove that Φ is injective. If $\Phi\left(\widetilde{\left(w, \alpha_{k}\right)}\right)=\Phi\left(\widetilde{\left(u, \alpha_{l}\right)}\right.$. Let $w^{\prime}=s_{j_{i}} w, u^{\prime}=s_{j_{i}} u$. Using (i),(ii), 1.3(a1) and 2.5(ii) we may assume that $w^{\prime} \leq w, u^{\prime} \leq u$. By induction hypothesis we have $\left(\widetilde{w^{\prime}, \alpha_{k}}\right)=\left(\widetilde{\left.u^{\prime}, \alpha_{l}\right)}\right.$, using 2.5(i) we get $\left(\widetilde{\left(w, \alpha_{k}\right)}=\widetilde{\left(u, \alpha_{l}\right)}\right.$.
(iv). It follows from the proof of (i).

The theorem is proved.
Remark: (i). It is likely that $Y=Y^{\prime} \cap U^{+}$.
(ii). For any $v_{0} \in \mathbf{C}^{*}$, we regard $\mathbf{Q}\left(v_{0}\right)$ as a $A=\mathbf{Q}[v]$-algebra by specializing v to v_{0}. Let $U_{v_{0}}=U_{A} \otimes_{A} \mathbf{Q}\left(v_{0}\right)$. If $v^{2 d} \neq 1$ for any $1 \leq d \leq \max \left\{d_{i}\right\}$, the same argument show that 4.2-4 are true for $U_{v_{0}}$. If $v_{0}^{2}=1$, then for each $\alpha \in R$, there is a unique (up to ± 1) root vector of root α.

Corollary 4.5. Notations are as in 4.1. Let $E=T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right) \in Y_{\alpha}^{\prime}, a=\left(a_{i}, a_{i-1}, \ldots, a_{1}\right)$, $i=h^{\prime}(\alpha)$, then
(i). $E \in Y_{\alpha}$ if and only if $\Psi(E) \in Y_{\alpha}$; if $a_{i}=1$, then $E \in Y_{\alpha}$ if and only $T_{j_{i-1}}^{a_{i-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)=$ $T_{u}\left(E_{l}\right) \in Y$ for some $u \in W, l \in[1, n]$ and $s_{j_{i}} u \geq u$.
(ii). For any $1 \leq m \leq i, T_{j_{m}}^{a_{m}} T_{j_{m-1}}^{a_{m-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$ is a root vector if $E \in Y_{\alpha}$ (i.e. E is a root vector).
(iii). If $T_{j_{p}}^{a_{p}} T_{j_{p-1}}^{a_{p-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$ is not a root vector for some $1 \leq p<i$, then E is not a root vector, i.e., $E \notin Y_{\alpha}$.
Proof: (i). The first assertion follows from 4.4(i). The second follows from the proof of 4.4(ii).
(ii). Suppose that $E=T_{w}\left(E_{l}\right), w \in W$, as in the proof of 4.3(ii) we see $T_{w^{\prime}}\left(E_{l}\right)=$ $T_{j_{m}}^{a_{m}} T_{j_{m-1}}^{a_{m-1}} \ldots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$, where $w^{\prime}=s_{j_{m+1}} s_{j_{m+2}} \cdots s_{j_{i}} w$.
(iii). It follows from (ii).

For any $E \in Y$, we shall denote the shortest elements in $\Phi^{-1}(E), \Phi^{-1}(\Psi(E))$ by $\left(w_{E}, \alpha_{k_{E}}\right),\left(w_{E}^{*}, \alpha_{k_{E}^{*}}\right)$ respectively.
Corollary 4.6. Let α, j_{i} be as in 4.1 and let $E \in Y_{\alpha}$, then
(i). $s_{j_{i}} w_{E} \leq w_{E}$ if and only if $s_{j_{i}} w_{E}^{*} \geq w_{E}^{*}$.
(ii). $w_{E}, w_{E}^{*} \in W_{\alpha}, \alpha_{k_{E}}, \alpha_{k_{E}^{*}} \in \mathcal{D}_{\alpha}$, where W_{α} is the subgroup of W generated by these simple reflections s_{m} such that $\alpha_{m} \leq \alpha$.
(iii). We have $w_{E}^{-1} w_{E}^{*}=w_{E}^{-1} \cdot w_{E}^{*}$ and $w_{E}^{-1} w_{E}^{*}\left(\alpha_{k_{E}^{*}}\right)=\left(\alpha_{k_{E}}\right)$.

Proof: (i). Let $a \in I_{\alpha}$ be such that $E=T_{\alpha, j_{0}, a}\left(E_{j_{0}}\right)$ (notations as in 4.1). By 4.4(ii) and its proof we see that $s_{j_{i}} w_{E} \leq w_{E}$ if and only if $a_{i}=1$. Since $\Psi(E)=T_{j_{i}}^{-a_{i}} \cdots T_{j_{1}}^{-a_{1}}\left(E_{j_{0}}\right)$, we know that our assertion is true.
(ii). From the proof of 2.5 (ii) we see that $w_{E} \in W_{\alpha}$ if and only if $w_{E}^{*} \in W_{\alpha}$. Thus we may assume that $a_{i}=1$ to prove (ii). In this case, according to 4.5(i), 4.4(iii) and 2.5(i), it is obvious that we have $w_{E}=s_{j_{i}} w_{E^{\prime}}$, where $E^{\prime}=T_{j_{i-1}}^{a_{i-1}} \cdots T_{j_{1}}^{a_{1}}\left(E_{j_{0}}\right)$. Thus we can use induction on $h^{\prime}(\alpha)$ to prove the result since $h^{\prime}\left(s_{j_{i}}(\alpha)\right)=h^{\prime}(\alpha)-1$.
(iii). It follows from the proof of 2.5 (ii).

By means of Ψ we can describe the antipode $S(E)$ for a root vector $E \in Y_{\alpha}$.
Theorem 4.7. For any $E \in Y_{\alpha}, \alpha=m_{1} \alpha_{1}+m_{2} \alpha_{2}+\ldots+m_{n} \alpha_{n} \in R^{+}$, we have $S(E)=$ $\rho_{\alpha} K_{\alpha}^{-1} \Psi(E)$, where

$$
\begin{aligned}
& \rho_{\alpha}=(-1)^{m_{1}+m_{2}+\ldots+m_{n}} \prod_{k=1}^{n} v^{m_{k}\left(m_{k}-1\right) d_{k}} \prod_{k=1}^{n-1} v^{m_{k} d_{k}\left(m_{k+1} a_{k, k+1}+\ldots+m_{n} a_{k, n}\right)} \\
& K_{\alpha}=K_{1}^{m_{1}} K_{2}^{m_{2}} \cdots K_{n}^{m_{n}}
\end{aligned}
$$

Note that we have $\Psi(E) \in Y_{\alpha}$.
Proof: It follows from $K_{i}^{-1} E_{i} K_{j}^{-1} E_{j}=v^{d_{i} a_{i, j}} K_{i}^{-1} K_{j}^{-1} E_{i} E_{j}=v^{d_{j} a_{j, i}} K_{i}^{-1} K_{j}^{-1} E_{i} E_{j}$ and the definitions of S, Ψ.
Proposition 4.8. We have $\# Y_{\alpha} \leq 2^{h^{\prime}(\alpha)}$. The equality holds if and only if $j_{i}, j_{i-1}, \ldots, j_{1}, j_{0}$ (notations as in 4.1) are pairwise different.

Proof: The first part is obvious.
Thanks to 4.5 (i) and 4.6 (ii) we see the "if" part of the second assertion is true.
Assume that $j_{m}=j_{m^{\prime}}$ for some different m, m^{\prime}. Using 4.5(iii) we can suppose that α, R is one of the following cases: $\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}, D_{4} ; 2 \alpha_{1}+2 \alpha_{2}+\alpha_{3}, B_{3} ; \alpha_{1}+2 \alpha_{2}+\alpha_{3}, C_{3}$; $3 \alpha_{1}+2 \alpha_{2}, G_{2} ; 2 \alpha_{1}+\alpha_{2}, G_{2}$. Then it is easy to check that the following elements are not in U^{+}by using 1.3(a8-11): $T_{3}^{-1} T_{1} T_{2} T_{4}\left(E_{3}\right), D_{4} ; T_{2} T_{3}^{-1} T_{1}^{-1}\left(E_{2}\right), B_{3} ; T_{2} T_{3}^{-1} T_{1}^{-1}\left(E_{2}\right), C_{3}$; $T_{2} T_{1}^{-1}\left(E_{2}\right), G_{2} ; T_{1} T_{2}^{-1}\left(E_{1}\right), G_{2}$. In particular, they are not vector roots. The proposition is proved.
4.9. Remark: Let $\alpha=m_{1} \alpha_{1}+m_{2} \alpha_{2}+\ldots+m_{n} \alpha_{n} \in R^{+}$, using PBW Theorem and 4.8 we see that U_{α}^{+}is spanned by Y_{α} if all $m_{k} \leq 1$. It seems that U_{α}^{+}is not spanned by Y_{α} if $m_{k} \geq 2$ for some $k \in[1, n]$.

5. An Example, Type $\boldsymbol{A}_{\boldsymbol{n}}$

5.1. It is easy to say a little more for type A_{n}. In this section we shall assume that R is of type A_{n} and fix $\alpha=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}(i \leq j)$. We choose all d_{k} to be 1 . We have
(i). $h^{\prime}(\alpha)=j-i$.
(ii). $\mathcal{D}_{\alpha}=\left\{\alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{j}\right\}$.
(iii). $w_{\alpha, k}=s_{j} s_{j-1} \cdots s_{k+1} s_{i} s_{i+1} \cdots s_{k-1}, i \leq k \leq j$.
(iv). $W_{\alpha}=\left\langle s_{i}, s_{i+1}, \ldots, s_{j}\right\rangle$.
(v). We have $\# Y_{\alpha}=\# Y_{\alpha}^{\prime}=2^{j-i}$. So $\# Y=2^{n+1}-n-2$.
(vi). Let $E=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+1}^{a_{i+1}}\left(E_{i}\right),\left(a_{j}, \ldots, a_{i+1}\right) \in I_{\alpha}$, then we have
(i) $E= \begin{cases}v^{-1} E_{i} E^{\prime}-E^{\prime} E_{i}, & \text { if } a_{i+1}=1, \\ v^{-1} E^{\prime} E_{i}-E_{i} E^{\prime}, & \text { if } a_{i+1}=-1 .\end{cases}$
(ii) $E= \begin{cases}v^{-1} E^{\prime \prime} E_{j}-E_{j} E^{\prime \prime}, & \text { if } a_{j}=1, \\ v^{-1} E_{j} E^{\prime \prime}-E^{\prime \prime} E_{j}, & \text { if } a_{j}=-1,\end{cases}$
where $E^{\prime}=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+2}^{a_{i+2}}\left(E_{i+1}\right), \quad E^{\prime \prime}=T_{j-1}^{a_{j-1}} \cdots T_{i+1}^{a_{i+1}}\left(E_{i}\right)$. Moreover, $E_{j} E=$ $v^{ \pm a_{j}} E E_{j}, E_{i} E=v^{\mp a_{i}} E E_{i}$.

Proof: (i-v) is obvious by results in sections 2 and 4 . Now we prove (vi).
(i) is obvious. Note that $E=T_{i}^{-a_{i+1}} T_{i+1}^{-a_{i+2}} \cdots T_{j-1}^{-a_{j}}\left(E_{j}\right)$, we get (ii). The remain part of (vi) can be easily deduced from the definition relations of U.

Let $O_{i j}$ be the set of monomials $E_{i}, E_{i+1}, \cdots, E_{j}$ such that in any of which E_{k} ($i \leq k \leq j$) appears exactly once. It is obvious that $O_{i j}=\left\{E_{j} E, E E_{j} \mid E \in O_{i, j-1}\right\}$ (we define $O_{i, j-1}$ similarly), so there are at most 2^{j-i} elements in $O_{i j}$. But each element $E \in Y_{\alpha}$ is a $\mathbf{Q}(v)$-linear combination of elements in $O_{i j}$, thus (v) implies that $O_{i j}$ has exactly 2^{j-i} elements which are linearly independent over $\mathbf{Q}(v)$ (one also can get this from PBW Theorem).

Using (vi) and induction on $j-i$ it is easy to see that the determinate of the transformation matrix from the set Y_{α} to the set $O_{i j}$ is $\pm\left(v^{-2}-1\right)^{(j-i) 2^{j-i-1}}$.

We give some properties for ($w_{E}, \alpha_{k_{E}}$), $E \in Y_{\alpha}$. We need the following lemma.
Lemma 5.2. Given $\left(w, \alpha_{k}\right) \in \mathcal{H}$ and let $t_{q} t_{q-1} \cdots t_{2} t_{1}$ be a reduced expression of w. If

$$
t_{p} t_{p-1} t_{p-2} \cdots t_{1}\left(\alpha_{k}\right)<t_{p-1} t_{p-2} \cdots t_{1}\left(\alpha_{k}\right) \geq t_{p-2} \cdots t_{1}\left(\alpha_{k}\right) \geq \cdots \geq t_{1}\left(\alpha_{k}\right) \geq \alpha_{k}
$$

for some $1<p \leq q$, then $\left(w, \alpha_{k}\right)$ is shortable.
Proof: (w, α_{k}) is obvious shortable when there exists some simple reflection s in $\mathcal{R}(w)=$ $\left\{s_{i} \mid w s_{i} \leq w, i \in[i, n]\right\}$ such that $s\left(\alpha_{k}\right)=\alpha_{k}$. Suppose that there exists no s in $\mathcal{R}(w)$ such that $s\left(\alpha_{k}\right)=\alpha_{k}$, then $\# \mathcal{R}(w)=1$ or 2 . When $\# \mathcal{R}(w)=1$, it is easy to see that $w=u \cdot s_{k} s_{k-1}$ or $w=u \cdot s_{k} s_{k+1}$ for some $u \in W$, so $\left(w, \alpha_{k}\right)$ is shortable. When $\# \mathcal{R}(w)=2$, we have $\mathcal{R}(w)=\left\{s_{k-1}, s_{k+1}\right\}$, and $w=w_{1} s_{k} \cdot s_{m_{1}} s_{m_{1}-1} \cdots s_{k+2} s_{k+1} s_{n_{1}} s_{n_{1}-1} \cdots s_{k-2} s_{k-1}$ for some $m_{1}>k, n_{1}<k$, where $w_{1} s_{k}$ is the shortest element in the coset $w W_{k}^{\prime}, W_{k}^{\prime}$ is the subgroup of W generated by those s_{i} such that $i \neq k$. Our assumption on $\mathcal{R}(w)$ implies that $w_{1}=w_{2} s_{k} \cdot s_{m_{2}} s_{m_{2}-1} \cdots s_{k+2} s_{k+1} s_{n_{2}} s_{n_{2}-1} \cdots s_{k-2} s_{k-1}$ or $w_{2} s_{k} \cdot s_{m_{2}} s_{m_{2}-1} \cdots s_{k+2} s_{k+1}$ or $s_{n_{2}} s_{n_{2}-1} \cdots s_{k-2} s_{k-1}$ for some $m_{2}>k, n_{2}<k$, where $w_{2} s_{k}$ is the shortest element in the coset $w_{1} W_{k}^{\prime}$. If $m_{2} \geq m_{1}$ or $n_{2} \leq n_{1}$, we have $w=u \cdot s_{k} s_{k-1}$ or $w=u \cdot s_{k} s_{k+1}$ for some $u \in W$, so the assertion is true. If $m_{2}<m_{1}$ and $n_{2}>n_{1}$, we continue this process, finally we see that $w=u \cdot s_{k} s_{k-1}$ or $w=u \cdot s_{k} s_{k+1}$ for some $u \in W$, which is what we need.

Proposition 5.3. Let $E=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+1}^{a_{i+1}}\left(E_{i}\right) \in Y_{\alpha},\left(a_{j}, a_{j-1}, \ldots, a_{i+1}\right) \in I_{\alpha}$. Then
(i). $w_{E}=s_{i} w_{E^{\prime}}$ if $a_{i+1}=-1$, and $w_{E}=s_{j} w_{E^{\prime \prime}}$ if $a_{j}=1$, where

$$
E^{\prime}=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+2}^{a_{i+2}}\left(E_{i+1}\right), \quad E^{\prime \prime}=T_{j-1}^{a_{j-1}} \cdots T_{i+1}^{a_{i+1}}\left(E_{i}\right)
$$

(ii). $w_{E}=s_{k} s_{k+1} \ldots s_{j} w_{G}$ if $a_{j}=a_{j-1}=\ldots=a_{k+1}=-1, a_{k}=1, j>k>i$, where $G=T_{j-1}^{-1} \cdots T_{k}^{-1} T_{k-1}^{a_{k-1}} \cdots T_{i+1}^{a_{i}+1}\left(E_{i}\right)$.
(iii). $w_{E}=u_{E} \cdot w_{\alpha, k_{E}}$ for some $u_{E} \in W_{\alpha-\alpha_{i}-\alpha_{j}}$ (if $\alpha-\alpha_{i}-\alpha_{j} \notin R^{+}$we set $W_{\alpha-\alpha_{i}-\alpha_{j}}=$ $\{e\}$). We have $w_{E}=w_{\alpha, k_{E}}$ when $k_{E}=i$ or j.
(iv). $\#\left\{E \in Y_{\alpha} \mid k_{E}=k\right\}=C_{j-i}^{k-i}$. Note that C_{j-i}^{k-i} is also the number of different reduced expressions of $w_{\alpha, l_{E}}$.
(v). Set $Y_{\alpha, k}=\left\{E \in Y_{\alpha} \mid l_{E}=k\right\}(i \leq k \leq j)$, then $\Psi\left(Y_{\alpha, k}\right)=Y_{\alpha, j-k+i}$.

Proof: (i). Note that we also have $E=T_{i}^{-a_{i+1}} T_{i+1}^{-a_{i+2}} \cdots T_{j-1}^{-a_{j}}\left(E_{j}\right)$, we see that (i) was already proved in the argument of 4.6 (ii).
(ii). Let $w=s_{k} s_{k+1} \ldots s_{j} w_{G}$ and let $w_{E}=s_{h} s_{h+1} \ldots s_{j} w_{1}, i<h<j$. Then $T_{w}\left(E_{k}\right)=E$ for some $k \in[i, j-1]$ (in fact $k=k_{G}$). Since $w, w_{E} \in W_{\alpha}$, by $2.5(\mathrm{i})$ we can find some $x \in W_{\alpha}$ such that $w=w_{E} \cdot x$. But $w\left(\alpha_{k}\right)=\alpha$, we necessarily have $x \in W_{\alpha-\alpha_{j}}$. This forces that $k=h$. We then have $T_{w_{1}}\left(E_{k_{E}}\right)=T_{w_{G}}\left(E_{k}\right)$. Therefore $w_{1}=w_{G}$ since w_{E} is the shortest element in $\Phi^{-1}(E)$. (ii) is proved.
(iii). If $k_{E}=i$ or j, by 5.2 we see that $w_{E}=w_{\alpha, k_{E}}$. If $k_{E} \neq j$, by the proof of (ii) we see that $w_{E}=s_{h} s_{h+1} \cdots s_{j} w_{G}, k_{E}=k_{G}$ for some $h \in[i+1, j], G \in Y_{s_{j}(\alpha)}$. Using induction hypothesis we know that $w_{G}=u_{G} \cdot w_{s_{j}}(\alpha), k_{G}$ for some $u_{G} \in W_{s_{j}(\alpha)-\alpha_{i}-\alpha_{j-1}}$. So we have $s_{j} u_{G}=u_{G} s_{j}$. Note that $s_{j} w_{j_{j}(\alpha), k_{G}}=w_{\alpha, k_{E}}$, we see (iii) is true in this case.

From the proof of (ii) it is easy to see that $k_{E}=k$ if and only if $\#\left\{m \in[i+1, j] \mid a_{m}=\right.$ $-1\}=k-i$. Thus we get (v), and (iv) follows from 5.1(v).

The proposition is proved.
Remark: In general 5.2 is not true. For type D_{4}, let $w=s_{3} s_{1} s_{2} s_{4} s_{3} s_{1} s_{2} s_{4}$, then (w, α_{3}) is the shortest element in $\left(\widetilde{w, \alpha_{3}}\right)$, but $w\left(\alpha_{3}\right)<s_{3} w\left(\alpha_{3}\right)$, so 5.2 is false for type D_{4}.
5.4. We shall give a clear formula for the coproduct of a root vector. We need some preparation.

Let α be as in 5.1. For any $\beta \in \mathrm{N} R^{+}$, let $c(\beta)$ be the number of connected components of β. When $\beta \leq \alpha, c(\beta)$ is just the minimal number of roots in R^{+}whose sum is β.

Let $E=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+1}^{a_{i+1}}\left(E_{i}\right)=T_{i}^{-a_{i+1}} T_{i+1}^{-a_{i+2}} \cdots T_{j-1}^{-a_{j}}\left(E_{j}\right)$ be a root vector in Y_{α}. Let $\beta \in \mathbf{N} R^{+}$be such that $\beta \leq \alpha$. If $\beta=0$ we set $E_{\beta}=1, K_{\beta}=1$, if $\beta=\alpha_{k}+\alpha_{k+1}+$ $\cdots+\alpha_{l}(i \leq k \leq l \leq j)$ we set $E_{\beta}=T_{l}^{a_{l}} T_{l-1}^{a_{l-1}} \cdots T_{k+1}^{a_{k+1}} E_{k}, K_{\beta}=K_{l} K_{l-1} \cdots K_{k+1} K_{k}$, if $\beta_{1}, \cdots, \beta_{c(\beta)}$ are connected components of β and $\beta=\beta_{1}+\cdots+\beta_{c(\beta)}$, we set $E_{\beta}=$ $E_{\beta_{1} \ldots E_{\beta_{c(\rho)}}}, K_{\beta}=K_{\beta_{1}} \ldots K_{\beta_{c(\rho)}} . E_{\beta}, K_{\beta}$ are well defined since for different connected components β_{h}, β_{m} we have $E_{\beta_{h}} E_{\beta_{m}}=E_{\beta_{m}} E_{\beta_{h}}, K_{\beta_{h}} K_{\beta_{m}}=K_{\beta_{m}} K_{\beta_{h}}$.

We define X_{E} inductively as follows: If $j-i \leq 2$, we set

$$
X_{E}=\left\{\gamma \in \mathbf{N} R^{+} \mid \gamma \leq \alpha, \quad w_{E}^{-1}(\gamma) \geq 0\right\}
$$

Assume that $X_{E^{\prime}}$ is well defined for $E^{\prime}=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+2}^{a_{i+2}}\left(E_{i+1}\right) \in Y_{\alpha^{\prime}}, \alpha^{\prime}=\alpha-\alpha_{i}$, when $a_{i+1}=1$, we set

$$
X_{E}=\left\{\gamma+\alpha_{i}, \gamma^{\prime} \mid \gamma, \gamma^{\prime} \in X_{E^{\prime}}, \quad \alpha^{\prime}-\gamma^{\prime} \geq \alpha_{i+1}\right\}
$$

when $a_{i+1}=-1$, we set

$$
X_{E}=\left\{\gamma+\alpha_{i}, \gamma^{\prime} \mid \gamma, \gamma^{\prime} \in X_{E^{\prime}}, \quad \gamma \geq \alpha_{i+1}\right\}
$$

Now we can state our second main result.
Theorem 5.5. (i). Let α, E be as in 5.4, then

$$
\Delta(E)=\sum_{\gamma \in X_{E}}\left(v^{-1}-v\right)^{c(\alpha-\gamma)+c(\gamma)-1} K_{\gamma} E_{\alpha-\gamma} \otimes E_{\gamma}
$$

(ii). $S(E)=(-1)^{i-j+1} v^{i-j} K_{\alpha}^{-1} \Psi(E)$.

Proof: When $j=i$, it follows from the definition of the coproduct. Now assume that $j>i$. Let $E^{\prime}=T_{j}^{a_{j}} T_{j-1}^{a_{j-1}} \cdots T_{i+2}^{a_{i+2}}\left(E_{i+1}\right) \in Y_{\alpha^{\prime}}, \alpha^{\prime}=\alpha-\alpha_{i}$. We use induction on $j-i$. If $a_{i+1}=1$, then (see $5.1(\mathrm{vi})$) $E=v^{-1} E_{i} E^{\prime}-E^{\prime} E_{i}$, By induction hypothesis we get

$$
\begin{gather*}
\Delta(E)=v^{-1}\left(E_{\mathbf{i}} \otimes 1+K_{i} \otimes E_{i}\right)\left(\sum_{\substack{\gamma^{\prime} \in X_{K^{\prime}}^{\prime} \\
\beta^{\prime}=\alpha^{\prime}-\gamma^{\prime}}}\left(v^{-1}-v\right)^{c\left(\beta^{\prime}\right)+c\left(\gamma^{\prime}\right)-1} K_{\gamma^{\prime}} E_{\beta^{\prime}} \otimes E_{\gamma^{\prime}}\right) \tag{1}\\
-\left(\sum_{\substack{\gamma^{\prime} \in X_{E^{\prime}} \\
\beta^{\prime}=\alpha^{\prime}-\gamma^{\prime}}}\left(v^{-1}-v\right)^{c\left(\beta^{\prime}\right)+c\left(\gamma^{\prime}\right)-1} K_{\gamma^{\prime}} E_{\beta^{\prime}} \otimes E_{\gamma^{\prime}}\right)\left(E_{\mathbf{i}} \otimes 1+K_{i} \otimes E_{i}\right) .
\end{gather*}
$$

If $\gamma^{\prime} \geq \alpha_{i+1}$, then we have
(2). $E_{\mathrm{i}} K_{\gamma^{\prime}}=v K_{\gamma^{\prime}} E_{\mathrm{i}}, E_{\beta^{\prime}} E_{\mathrm{i}}=E_{\mathrm{i}} E_{\beta^{\prime}}$.
$v^{-1} E_{i} E_{\gamma^{\prime}}-E_{\gamma^{\prime}} E_{i}=E_{\gamma^{\prime}+\alpha_{i}}, E_{\beta^{\prime}} K_{i}=K_{i} E_{\beta^{\prime}}, c\left(\gamma^{\prime}+\alpha_{i}\right)=c\left(\gamma^{\prime}\right)$.
If $\beta^{\prime} \geq \alpha_{i+1}$, then we have
(3). $v^{-1} E_{i} E_{\beta^{\prime}}-E_{\beta^{\prime}} E_{i}=E_{\beta^{\prime}+\alpha_{i}}, K_{\gamma^{\prime}} E_{i}=E_{i} K_{\gamma^{\prime}}, c\left(\beta^{\prime}+\alpha_{i}\right)=c\left(\beta^{\prime}\right)$.
$E_{i} E_{\gamma^{\prime}}=E_{\gamma^{\prime}} E_{i}=E_{\gamma^{\prime}+\alpha_{i}}, E_{\beta^{\prime}} K_{i}=v K_{i} E_{\beta^{\prime}}, c\left(\gamma^{\prime}+\alpha_{i}\right)=c\left(\gamma^{\prime}\right)+1$.
If $a_{i+1}=-1$, then (see $\left.5.1(\mathrm{vi})\right) E=v^{-1} E^{\prime} E_{\mathrm{i}}-E_{\mathrm{i}} E^{\prime}$. By induction hypothesis we get

$$
\begin{gather*}
\Delta(E)=v^{-1}\left(\sum_{\substack{\gamma^{\prime} \in X_{1}, \beta^{\prime}=\alpha^{\prime}-\gamma^{\prime}}}\left(v^{-1}-v\right)^{c\left(\beta^{\prime}\right)+c\left(\gamma^{\prime}\right)-1} K_{\gamma^{\prime}} E_{\beta^{\prime}} \otimes E_{\gamma^{\prime}}\right)\left(E_{i} \otimes 1+K_{i} \otimes E_{i}\right) \tag{4}\\
-\left(E_{i} \otimes 1+K_{i} \otimes E_{i}\right)\left(\sum_{\substack{\gamma^{\prime} \in X_{E^{\prime}} \\
\beta^{\prime}=\alpha^{\prime}-\gamma^{\prime}}}\left(v^{-1}-v\right)^{c\left(\beta^{\prime}\right)+c\left(\gamma^{\prime}\right)-1} K_{\gamma^{\prime}} E_{\beta^{\prime}} \otimes E_{\gamma^{\prime}}\right)
\end{gather*}
$$

If $\gamma^{\prime} \geq \alpha_{i+1}$, then we have
(5). $E_{i} K_{\gamma^{\prime}}=v K_{\gamma^{\prime}} E_{i}, E_{\beta^{\prime}} E_{i}=E_{i} E_{\beta^{\prime}}=E_{\beta^{\prime}+\alpha_{i}}, c\left(\beta^{\prime}+\alpha_{i}\right)=c\left(\beta^{\prime}\right)+1$.
$v^{-1} E_{\gamma^{\prime}} E_{i}-E_{i} E_{\gamma^{\prime}}=E_{\gamma^{\prime}+\alpha_{i}}, E_{\beta^{\prime}} K_{i}=K_{i} E_{\beta^{\prime}}, c\left(\gamma^{\prime}+\alpha_{i}\right)=c\left(\gamma^{\prime}\right)$.
If $\beta^{\prime} \geq \alpha_{i+1}$, then we have
(6). $v^{-1} E_{\beta^{\prime}} E_{i}-E_{i} E_{\beta^{\prime}}=E_{\beta^{\prime}+\alpha_{i}}, K_{\gamma^{\prime}} E_{i}=E_{i} K_{\gamma^{\prime}}, c\left(\beta^{\prime}+\alpha_{i}\right)=c\left(\beta^{\prime}\right)$.
$E_{i} E_{\gamma^{\prime}}=E_{\gamma^{\prime}} E_{i}, E_{\beta^{\prime}} K_{i}=v K_{i} E_{\beta^{\prime}}$.
Combine (1-6) and the definition of X_{E} we see (i) is true.
(ii). It follows from 4.7.

The theorem is proved.
Remark: For other types it is not difficult to get the formula $\Delta(E)$ for $E \in Y_{\alpha}$ when the $j_{i}, j_{i-1}, \ldots, j_{1}, j_{0}$ are pairwise different (see 4.1 for notations).
5.6. We shall write $E_{i j}$ for the root vector $T_{j} T_{j-1} \cdots T_{i+1}\left(E_{i}\right)$. In particular we have $E_{i i}=E_{i}$. The set $\left\{E_{i j} \mid 1 \leq i \leq j \leq n\right\}$ first appears in $[\mathrm{J}]$ and corresponds to the reduced expression $s_{n} s_{n-1} s_{n} s_{n-2} s_{n-1} s_{n} \cdots s_{1} s_{2} \cdots s_{n-2} s_{n-1} s_{n}$ of the longest element of W (see [L2]). In this subsection we list some formulas concerned with $E_{i j}, F_{i j}=\Omega\left(E_{i j}\right), K_{i j}=$ $T_{j} T_{j-1} \cdots T_{i+1}\left(K_{i}\right)$, one can prove them by direct computations or see [L1, R] for some of them.

The indices i, j, k, l always indicate numbers in $[1, n]$, and M, N always indicate nonnegative positives, we also assume that $i \leq j$ and $k \leq l$.
$(\mathrm{d} 0) . \quad E_{i j} E_{k l}= \begin{cases}E_{k l} E_{i j}, & \text { if } j<k-1 \text { or } k<i \leq j<l, \\ v E_{k l} E_{i j}, & \text { if } k<i<j=l, \\ v^{-1} E_{k l} E_{i j}, & \text { if } i=k \leq j<l \text { or } i<k \leq j=l, \\ v E_{i l}+v E_{k l} E_{i j}, & \text { if } j=k-1, \\ E_{k l} E_{i j}+\left(v^{-1}-v\right) E_{i l} E_{k j}, & \text { if } i<k \leq j<l .\end{cases}$
we set $E_{i j}^{(N)}=E_{i j}^{N} /[N]!, F_{i j}^{(N)}=F_{i j}^{N} /[N]!$, where $[N]!=\prod_{i=1}^{N} \frac{v^{i}-v^{-i}}{v-v^{-1}}$ if $N \geq 1,[0]!=1$.
Let c be an integer, we set

$$
\left[\begin{array}{c}
K_{i j}, c \\
N
\end{array}\right]=\prod_{r=1}^{N} \frac{K_{i j} v^{c-r+1}-K_{i j}^{-1} v^{-c+r-1}}{v^{r}-v^{-r}}
$$

$$
\begin{align*}
& E_{i j}^{(M)} E_{k l}^{(N)}=E_{k l}^{(N)} E_{i j}^{(M)} \quad \text { if } j<k-1 \text { or } k<i \leq j<l . \tag{d1}\\
& E_{i j}^{(M)} E_{k l}^{(N)}=v^{M N} E_{k l}^{(N)} E_{i j}^{(M)} \quad \text { if } k<i<j=l . \tag{d2}\\
& E_{i j}^{(M)} E_{k l}^{(N)}=v^{-M N} E_{k l}^{(N)} E_{i j}^{(M)} \quad \text { if } i=k \leq j<l, \text { or } i<k \leq j=l . \tag{d3}
\end{align*}
$$

$$
\begin{equation*}
E_{i j}^{(M)} E_{k l}^{(N)}=\sum_{\substack{p \geq 0, q \geq 0 \\ p+q=N \\ q+r=M}} v^{r p+q} E_{k l}^{(p)} E_{i l}^{(q)} E_{i j}^{(r) \quad \text { if } j=k-1} \tag{d4}
\end{equation*}
$$

(d5).

$$
E_{i j}^{(M)} E_{k l}^{(N)}=\sum_{0 \leq t \leq M, N} v^{-\frac{t(t-1)}{2}}\left(v^{-1}-v\right)^{t}[t]!E_{k j}^{(t)} E_{k l}^{(N-t)} E_{i j}^{(M-t)} E_{i l}^{(t)}
$$

if $i<k \leq j<l$.
$(\mathrm{e} 0) . E_{i j} F_{k l}= \begin{cases}F_{k l} E_{i j}, & \text { if } j<k \text { or } k<i \leq j<l, \\ F_{k l} E_{i j}+v^{-1} K_{k, j}^{-1} E_{i, k-1}, & \text { if } i<k \leq j=l, \\ F_{k l} E_{i j}-F_{j+1, l} K_{i j}^{-1}, & \text { if } i=k \leq j<l, \\ F_{k l} E_{i j}+\left[\begin{array}{c}K_{i j}, 0 \\ 1\end{array}\right], & \text { if } i=k, j=l, \\ F_{k l} E_{i j}+v^{-1}\left(v-v^{-1}\right) F_{j+1, l} K_{k, j}^{-1} E_{i, k-1}, & \text { if } i<k \leq j<l .\end{cases}$
(e1). $\quad E_{i j}^{(M)} F_{k l}^{(N)}=F_{k l}^{(N)} E_{i j}^{(M)} \quad$ if $j<k$ or $k<i \leq j<l$.
(e2). $\quad E_{i j}^{(M)} F_{k l}^{(N)}=\sum_{0 \leq t \leq M, N} v^{t(N-t-1)} F_{k j}^{(N-t)} K_{k j}^{-t} E_{i j}^{(M-t)} E_{i, k-1}^{(t)} \quad$ if $i<k \leq j=l$.
(e3). $\quad E_{i j}^{(M)} F_{k l}^{(N)}=\sum_{0 \leq t \leq M, N}(-1)^{t} v^{t(M-t)} F_{j+1, l}^{(t)} F_{k l}^{(N-t)} K_{i j}^{-t} E_{i j}^{(M-t)} \quad$ if $i=k \leq j<l$.
(e4).

$$
E_{i j}^{(M)} F_{i j}^{(N)}=\sum_{0 \leq t \leq M, N} F_{i j}^{(N-t)}\left[\begin{array}{c}
K_{i j}, 2 t-M-N \\
t
\end{array}\right] E_{i j}^{(M-t)}
$$

(e5). $\quad E_{i j}^{(M)} F_{k l}^{(N)}=\sum_{0 \leq t \leq M, N} v^{-\frac{t(2 N+t-1)}{2}}\left(v-v^{-1}\right)^{t}[t]!F_{k l}^{(N-t)} F_{j+1, l}^{(t)} K_{k j}^{-t} E_{i j}^{(M-t)} E_{i, k-1}^{(-t)}$
if $i<k \leq j<l$.
We have $X_{E_{i j}}=\left\{0, \alpha_{i i}, \alpha_{i, i+1}, \ldots, \alpha_{i j}\right\}$ (see 2.1 for notations), so we get
(f0). $\quad \Delta\left(E_{i j}\right)=E_{i j} \otimes 1+K_{i j} \otimes E_{i j}+\left(v^{-1}-v\right) \sum_{i \leq k<j} K_{i k} E_{k+1, j} \otimes E_{i k}$.
(f1).

$$
\Delta\left(E_{i j}^{(M)}\right)=\sum_{\substack{m_{0}, m_{i}, m_{i}+1 \ldots, m_{j} \geq 0 \\ m_{0}+m_{i}+m_{i}+1+\cdots+m_{j}=M}} \xi_{\mathrm{m}} K_{\mathrm{m}} E_{\mathrm{m}} \otimes E_{\mathbf{m}}^{\prime}
$$

where $\mathbf{m}=\left(m_{0}, m_{i}, m_{i+1}, \ldots, m_{j}\right), K_{\mathbf{m}}=K_{i i}^{m_{i}} K_{i, i+1}^{m_{i+1}} \cdots K_{i j}^{m_{j}}$,

$$
\xi_{\mathrm{m}}=v^{-m_{0}\left(M-m_{0}\right)} \prod_{r=i}^{j-1}\left(v^{-1}-v\right)^{m_{r}}\left[m_{r}\right]!v^{\frac{m_{r}\left(m_{r}-1\right)}{2}}
$$

$$
E_{\mathrm{m}}=E_{j, j}^{\left(m_{j-1}\right)} E_{j-1, j}^{\left(m_{j-2}\right)} \cdots E_{i+1, j}^{\left(m_{i}\right)} E_{i, j}^{\left(m_{0}\right)}, \quad E_{\mathrm{m}}^{\prime}=E_{i i}^{\left(m_{i}\right)} E_{i, i+1}^{\left(m_{i+1}\right)} \cdots E_{i j}^{\left(m_{j}\right)}
$$

(g0).

$$
S\left(E_{i j}\right)=(-1)^{i-j+1} v^{i-j} K_{i j} \Psi\left(E_{i j}\right)
$$

(g1).

$$
S\left(E_{i j}^{(M)}\right)=(-1)^{M(i-j+1)} v^{M(i-j)+M(M-1)} K_{i j}^{M} \Psi\left(E_{i j}^{(M)}\right) .
$$

Note that $\Psi\left(E_{i j}\right)=T_{i} T_{i+1} \cdots T_{j-1}\left(E_{j}\right)$ is also a root vector.
Apply Ω one can get more formulas.

Acknowledgement

I would like to thank Professor H.H. Andersen for sending the preprint [AJS] and several e-mails. The appendix C in [AJS] motivated this work. Thanks also due to Professor J. Ye for pointing out some mistypings. I am grateful to Max-Planck-Institut für Mathematik for financial support.

References

[AJS] Andersen, H. H., Jantzen, J. C. and Soergel, W., Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p, preprint, September 1992.
[J] Jimbo, M., A q-analogue of $U(g l(N+1))$, Hecke algebra, and the Yang-Baxeter equation, Lett. Math. Phys. 11 (1986), 247-252.
[KR] Kirillov, A. N. and ReshetikhinK, N., q-Weyl group and a multiplicative formula for universal R-matrices, Comm. Math. Phys. 134 (1990), 421-431.
[L1] Lusztig, G., Finite dimensional Hopf algebras arsing from quantized universal enveloping algebras, JAMS. 3 (1990), 447-498.
[L2] Lusztig, G., Quantum groups at roots of 1, Geom. Ded. 35 (1990), 89-114.
[L3] Lusztig, G., Canonical bases arsing from quantized enveloping algerbas II, Progr. Theor. Phys. Suppl. 102 (1990), 175-201.
[LS] Levendorskii, S. Z. and Soibelman, Ya. S., Some appliations of the quantum Weyl groups, J. Geom. Phys. 7 (1990), 241-254.
$[\mathrm{R}] \quad$ Rosso, M., An analogue of P.B.W. theorem and the universal R-matrix for $U_{h} s l(N+$ 1), Comm. Math. Phys., 124 (1989), 307-318.

Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, 5300 Bonn 3, Germany
and
Institute of Mathematics, Academia Sinica, Beijing 100080, China.

