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§o. Introduction and Statement of Results.

The purpose of this article is to give results concerning uwith
the Jacobi operator of a harmonic map which is arisen from the second
variational formula of the energy functional of the map. This article
is divided into three parts : Chapter I is treated with the
estimation of the index and the nullity of a general harmonic map.
In chapter 11, we will deal with the stability of the identity map
of a closed Riemannian manifold, i.e., a compagt Riemannian manifald
without boundary. Chapter 111 is devoted into the investigation of
the Jacobi operator of the Riemannian submersions with totally geodesic

fibers.,

More precisely, let (M,g), (N,h) be two Riemannian manifolds
of dimension m, n, respectively. We consider the energy functional
E on the set M{(M,N) of all smooth maps ¢ ; (M,9)—(N,h)
(cf.[E.L] ) ¢

1
E(¢) = 7 5” Z " h( pyeil ¢"‘Bi)*1 ’

i=1

where {61}1=T is a locally defined orthonormal frame field on M
and %1 is the volume element of (M,q). A critical point $ of
£ in WM(M,N) is called to be harmonic, The second variational
formula of E was obtained by E.Mazet [Ma] and R.T.Smith [sm] -
For every one-parameter deformation ¢, of § with ¢ =¢ , and

'g'{ ¢t|t-o | giving a vector field V along ¢ ’

= E(P)

d2
dt

= h(34V,V)*1 .
t=0 Jl"l ( ¢

Here 3, is a second order elliptic differential operator, called

a Jascobi operator analogeusly as a Morse theory of geodesics, acting

on the space of all vector fields along ﬂ . It is knoun that %f



has a discrete spectrum when M is a closed manifold. The index
of ® , denoted by Index(#® ), is the sum of the multiplicities of
the negative eigenvalues of Jg » and the nullity of ¢ , denoted by

Nullity(ﬂ ), is the dimension of the kernel of g -

When &2, is a relatively compact domain in a complete Riemannian
manifold l(M,g), we consider the variation of the energy functional
E on the set of all smooth maps ¢ ;6,—y N with the fixed boundary
values on 352, . In this case, the second variational formula yields
the eigenvalue problem of 37 on &2, with the Dirichlet boundary

condition :

Jp\l
v

where V 1is a vector field along ‘ﬁ .. The index of ¢ on S2,

AV on S2,
0 on 9S2,

denoted by Inda&sg¢), is also defined as the sum of the multiplicities
of the negative eigenvalues of this eigenvalue problem of Jg , and

the nullity of ¢ on &2, denoted by Nullitﬁﬁﬂ¢), is the dimension

of the zero eigen-space. If Index(¢) =0 (resp. Indeqﬁﬂ¢) =0 ),
that is, all the eigenyalues of J¢ are non-negative, the harmonic

map ¢ ; (M,9)—>(N,h) is called to be stable (resp. stable on S¢ ).

Main results of chapter I are as follouws : The crucial proposition

for us, which are the analogue of recent works of P.Bérard and S.Gallot

(cf.[b.c]) are :

B Proposition 2.1, Let M be a closed manifold and ¢ : (M,g)—

(N,h), a harmonic map. Then we have
' ¢ Ng?
Index($) + Nullity($) < n Inf{e Zy(t) 5 OCt<ooj

where n = dim N and NR¢ is the following quantity :




Nths s= Sup Sup 2" h(NR(ﬁ'ai,v)A‘ei,v)/h(v,v),

xemM \IGT¢(X)N i=1

NR is the curvature tensor of (N,h) (cf. §1). Zm(t) is the trace

of the heat kernel of the Laplace-Beltrami operator &y of (m,q)

acting on the space C (M) of all smooth functions on M.
—

~ Proposition 2.4. Let S be a relatively compact domain in
a complete Riemannian manifold (M,g), and ¢ : (Myg)—>(N,h), a

harmonic map. Then we have

N ¢
Index (§) + Nullity (§) <n Inf‘{et l;‘52‘253(1;) ; D(t<°°},

NS

where n = dim N and the quantity Ro, is defined by

LSRR A PR

(-]

Za(t)== Z e-t)‘i(sa) , where Ai(Q,), i=1,2,..., are the eigenvalues
i=1 .

counted with their multiplicities of the Dirichlet problem of Al'l

for the domain &2 :

us= 1] on 9% .

{Amuaxu on S,

As applications of these propositions, we have :

Theorem 2.5, Let (M,g) be a closed Riemannian manifold of
dimension m 2 2 , whose Ricci curvature l-'t;i.c’,,l is bounded below by a
positive constant : Ric, 2 (m-1)§ > 0. Let g: (Mmyg)—>(N,h) be
a harmonic map of (M,g) into arbitrary Riemannian manifold (N,h) of
dimension n., ‘Then we have :

(1) In case of m 23,

Index(@) + Nullity(P) < n (1+-}1\-)A {1+(m-1)! n ! A(1+A)m'1}:



where A:= NR?/mS .

(ii) In case of m=2,
Index(#) + Nullity(p) < n (1+3)8 L1eap?}

where B:= NR’/g .

—

Remark. The function (1+5)* satisfies that lim (1+1)% = 1

1.x x-0
and (1+;) < e, 0<x<wo,

~ Theorem 3.1, Let S2 be a relatively compact domain in a
complete Riemannian manifold (M,g), and ¥ : (M,g)—> (N,h) be a
harmonic map into arbitrary Riemannian manifold (N,h) of dimension n.
Then we have

(1) A,@) 2"“RE ) Indexq(¢) = 0 and Nullityg(d) < n .
(11) A @) > MRS = Indexg(®) = Nullity,(@) = 0.

Since A1GQ) grows to infinity and NR& remains still bounded when

&2 shrinks to'%mallz this theorem implies that ¢ is stable on a "small”
relatively compact domain in M , which was stated in '[Sm].

1t is known (cf.[C.L] ,[BZG] ) that there exists a constant C(M,q)
>0 depending only on (M,g) such that the eigenvalue A (82) of

the Dirichlet eigenvalue problem of Lsm for &2 satisfies
A @) 2 C(mg) vol(@)~2/M 12/, ia1,2, ...

Then we can estimate Indexp($) + Nullityo(®) by the quantity
D:= NR& l.?(l”l,g)"1 Vol@ﬁ)z/m - 1 (cf. Theorem 3.4).

In chapter 1l, we will treat with the Jacobi operator of the
identity map. The identity map of a closed Riemannian manifold (M,qg)

is harmonic and (M,g) is called to be stable (cf.[Na] ) if the



identity map is stable.
1t is known (cf. [Sm],[Na]) that a holomorphic map betwsen

Kéhler menifolds is always stable. Then the stability of the identity
map of a closed Kahler manifolada (M,g) yields the Kahler version of

a theorem of Lichnérowicz-Obata concerning the first non-zero
eigenvalue A1(N) of the Laplace-Beltrami operator Ly ¢
r. Theorem 4.2. (M.Obata) Let (M,g) be a closed Kahler manifold
whose Ricci curvature Ric

M is bounded below by a positive constant :

RicM Z x>0 . Then we have
A1(m) 2 2« .,

When the equality holds, the Lie algebra a of the group of holomorphic

L transformations of M is non-zero.

Remark. In the case that (M,g) is Einstein and K&hler,
this theorem was stated in [Db] . In this case, the equality
A, (M) = 2eL holds if and only if a *{0}.

Some instability results about Riemannian tori and the canonical

deformations of the standard unit sphere (S2n+1

,can) are obtained
(cf. 5.1 and 5.2). VY.L.Xin[x) showed that every non-constant
harmonic map of the standard unit sphere (S",can) into arbitrary

Riemannian manifold is unstable. On the contrary, we can state :

Proposition 5.6. Every spherical space form (Sn/G, g )
uﬁare G & {id} is a finite group acting fixed point freely on Sn,
is stable. Here g is the Riemannian metric on S"/G induced

from the standard metric can of s" with constant curvature 1.

—



Therefore svery closed Riemannian manifold of constant curvature
(positive, zero or negastive ) is stable except :2tyunit sphere (Sn,can)
(cf. Corollary 5.7). The analogous stability theorem for Yang-Mills
fields was stated in [B.L, p.223].
In chapter 111, we will deal with the Jacobi operator of Riemannian

submersions with totally geodesic fibers. The Riemannian submersion

¢ : (Myg)— (N,h) wuwith totally geodesic fibers is harmonic (cf.[E.5])).
The typical examples are (cf.[B.B]) :
4n+3,g)—ﬂ»(HPn,h),
2, 9) — (e, ),

(iii) The natural projection ¢ : (G/H,g)—(G/K,h),

(1) Hopf fibering @, ¢ (S
(ii) Hopf fibering P, : (s

where GDKDH are compact Lie groups.

For the Riemannian submersion ¢ , we will define the vertical

(resp. _horizontal ) Jacobi operator 3y (resp. a4 ) which satisfy
g ]

VvV -H .V . .H
[39, » %) =0 and 3y =04+ 25
(cf. Theorem 6.5 ). And we can compare Index(¢) (resp. Nullity(¢) )
of the submersion ¢ with Index(id,) (resp. Nullity(id,) of the
base manifold (N,h) :
r Proposition 6.3. Let (M,g) be a closed Riemannian manifold
and ¢ : (M,g)—>(N,h) , a Riemannian submersion with totally geodesic
fibers. Then we have the inequalities Index(®) 2 Indax(idN),
Nullity($) 2 Nullity(id,) and ,\1(3’,) < N(JidN)' In particular,
if the base manifold (N,h) is unstable, then the projection @ is

unstable.
~

Moreover, follouwing IP.B] , we define the canonical deformation
8y » 0(tCo®, of the Riemannian metric g on M with 9, =g
(cf. §7 ) such that the projection ¢ : (Mg )—>(N,h)  is still



a Riemannian submersion with totally geodesic fibers. For this
canonical deformation Oy » the Jacobi operator tq, of 56 ; (m.gt)-—+
(N,h) satisfies (cf. Proposition 7.2)

t -2.V H
= + .
g = 70 + 3
Then ws have :
r. Theorem 7.3. Ltet (M,g) be a closed Riemannian manifold and

3 ; (Myg)—y(N,h) be a Riemannian submersion with totally geodesic
fibers. Let 9t » 0t<w, be the canonical deformation of g with

94 = Q. Then there exists a positive number § such that
t

In particular, if (N,h) is stable, then ¢ : (M,gt)—-é(N,h) is

Lstable for all OCt<E.

As applications of Proposition 6.3 and Theorem 7.3, we have :

(i) since (HP",h) is unstable (cf.[sm], [Na]) ), the submersion
¢1 : (54n+3,g)——9(HPn{h) is always unstablae.

(i) Since (CPn,h) is stable, for the canonical deformation
9y 0(t<e, of g on S2n+1 with 9, = 9y there exists a positive
number € such that the submersion ¢2 : (52n+1,gt)——)(CP",h)
is stablse for each 0O<t< & (cf. Proposition 7.4).

On the other hand, when the holomony group of the submersion does
not act transitively on the fibers and the base manifold (N,h) is
unstable, the index of the submersion & ; (N,gt)——7(N,h) grows to
infinity as t-yc (¢f. Theorem 7.5). This is an extension of results
obtained by R.T.Smith in [ﬁm, Corollary 3.3) .

At last, we will express in terms of Lie algsbras, the Jecobi



operator of the homogenesous Riemannian submersions (iii) (cf.Theorem
8.11). As an application, we determine the spectrum of the Jacobi

operator of the Hopf fibering of S3 onto CP1 = 52 (Corollary 8.12).

Acknowledgement. I would like to express my hearty thanks
to Max~-Planck-Institut fir Mathematik for its hospitality during

my stay.



Chepter 1I. The Index and the Nullity of a General Harmonic Map.

§1. Preliminaries.

1.1, In this section, following [E.L] » we prepare the second
variational formula of the energy functional obtained in [Mal , [Sm].

Let (M,g),(N,h) be two Riemannian manifolds of dimension m,n,
respectively. Let @¢; M—N be a smooth map. Let E = 56'1TN be
the induced bundle by ¢ over M of the tangent bundle TN of N.
We denote by rKEX, the space of all sections Vv of E , that is,
v € M(E) implies that Vv is a map of M into E such that VvV €
T¢(x.)N for all xe.l"l . For XeT(Tm), we define ®Rx €[ (E) by
(¢*X)x:= g,xxxe T?(x)" s XEM, where ¢4'x is the differential of @
at x . For YET(TN), we also define Yel'(e) by Vx = Y¢(x)’ x€M.

‘We denote by V/, NV the Levi-Civita connections of (M,g),
(N,h), respectivsely. Then we give the induced connection 6 on E

by

(1.1) (%Jx")x* -:,-’1- Np¢(5’(t))-1 Va(t)

at t=0
where xémMm , ¥(t) is a curve through xf whose tangent vector at

t=p * X€T(TM), veT(E

N ) :
x is Xx » and p¢(8(t)) H T¢(X)N——+T¢(x(t))u. is the parallel
displacement along a curve $(¥(s)), 0¢s¢t, given by the Levi-Civita
connection NV of (N,h).

We define a tension field T(P)€ [ (E) of $ by

. .

-t(¢)3’ 2: (‘7; ﬂ+91 '7;‘7 91)’
i=1 i Bi

where {51}1-";. is a (locally defined) orthonormal frame field on M .

We call ¢ to be harmonic if T(f) =0 . For a relatively compact

domain &3 in M , the energy E(6,$) of ¢ on G2 is defined by



EQ,$) = S;f@”") *1

m
1

where e(¢)(x) := 5 2;31 h(ﬂ*ei,¢hei) and #1 is the volume element

of (M,q). We denote E(¢) := E(M,$) when defined. For an element

v in  ['(g), 1let ¢t ; M—3N be a one-parameter family of maps

from M into N with ¢° =¢, and %€ ¢t(x) =V, , xX€EM .

X

If Ve r(E) "has a compact support, it is known (cf.[E.S],[E.L],{Ma])
that

(1'2) 'g—t' E(¢t)|t=0 == ym h(“lt(?))*.‘ .

Moreover, if ¢'; (M,g)~—>(N,h) is harmonic and V€[ (E) has a
compact support,

2

(1.3) 3—7 E(P,) = Sm h(V,30)%1,

t !t:D

uhere the operator Jy ; [F(E)—T(E) , called the Jacobi operator

of ? » is a second order elliptic differential operator given by

(1.4) 3¢V = - ;L;T{veivaiv "tii\l} - Zm NR(?»ei’V)#);ei’

i=1

N

for VE€E r(E). Here R is the curvature tensor of (N,h) given by

(1.5)  MR(Mz="§ oz - ‘W'wz+ 'g'z
for X,Y,Z€[°(TN).

For o relatively compact domain &2, in M, let us consider the

Dirichlet eigsnvalue problem of JP as follous :

(106) &3’“ = A\ on Q,
V = 0 on 38,

If M 4is a closed manifold, we consider the eigenvalue problem of 3¢



(1.7) J,v = AV , VeJ(E).

It is known that the spectra of both problems (1.6), (1.7) consist

of discrete eigenvalues with finite multiplicities. The index of ¢

on S2, denoted by Indexg($), is defined as the sum of the eigenvalues
of the problem (1.6), and the index of ¢ , denoted by Index(P), is
also defined as the sum of the eigenvalues of (1.7) when M is a closed
manifold, The dimension of the zero eigenspace of (1.6) (resp. (1.7))
is called the nullity of ¢ on & (resp. the'nullity of 55), denoted
by Nullityn(¢) (resp. Nullity($) ). The harmonic map &; (M,9) —
(N,h) is stable (resp. stable on &,) if Index(¢') = 0 (resp. Indexsz‘(¢)

= 0 ).

1.2, For the estimation of the index and the nullity of a

¢

harmonic map, we have to introduce the quantity NR”'s or NRSZ as
follows. We retain the notations as in 1.1.

Definition 1.1. For a smooth map 95; (Myg)—3(N,h), we define
Np? by

(1.8) Npf .- Sup Sup p I h(NR(gei,v) ¢*ei,v)/h(v,v).

XeM VeT?(x)N i=1
. é
For a relatively compact domain & in M, we define also NRR by

1.9) MR® = s ™ h(VR( .8, sv)/h(v,v).
(1.9) o, = x:s‘;, 3:$¢(X)N %.1 ("R($,85,v) ¢85,V VyV

m
Note that these quantities dofmt depend on the choice of {ei}iﬂ .

We have immediately :

Lemma 1.2, Assume that the sectional curvature NK of (N,h)



is bounded above by & positive constant :
M) < a for all planes TT in TN, yen.
Then we have

(1.10) R? < 2a £7(¢) , and
<

N
(1.11)  MRE < 28 £°(2,9) .

Here ET(P):= Sup e(¢)(x) and E*R,P) := Sup e(p)(x).
- x€M X€eSY

In fact, it is obvious from that

at each point of M.
Note that E(R,4) < E7(Q,$) VolQ and E(P) < EX(P) Vol m if Vol mcw,

Example 1.3, Let ¢; (M,g)—>(N,h) be an isometric immersion.
Then e(¢)(x) = m/2 at each point. Therefore

(1.12)  €%($) = E%(Q¢) = m/2, and
(1.12')  MR§ <R < ma,

for every ralatively compact domain £2 in M. In particular, let

¢ ; [0,2x]—>(N,h) be a geodesic with the length L. Then
(1.13)  e%(§) = L2787 .
Example 1.4. Let ¢ ; (Myg)—>(N,h) be an Riemannian

submersion (cf. §6). Then we can choose an orthonormal local frame

{e,},.7 on m such that e, = e/ , 1<i¢n, and e, = 0, n+1¢igm,



wvhere m = dim M, n = dim N and {a{}i;; is an orthonormal local

frame on N. Then the Ricci curvature of (N,h), RicN(v), v€T¢(x)N,

is by definition " h(NR(¢,ai,v) ﬁei,v)/h(v,v). Therefore, since
i=1

¢ is surjective, we have

N5
(1.14)  NR? = sup Ric and VR® = sup Ric, .
oo 2 e N



§2. The Index and the Nullity of a Harmonic Map from a Closed Manifolad.

2.1, Method of Bérard and Gallot. At first, let us recall
a method of Bérard and Gallot (cf.[B.G]) houw to give estimations of Betti
number , dimension of the moduli space of Einstein metrics, and dimension
of harmonic spinors. Here let us apply their method to estimate the

index and the nullity of a harmonic map.

Let (M,g) be a complete Riemannian manifold of dimension m, and
E , a vector bundle over M with an inner product ¢ ,- and a connection

€7 compatiblé uith respect to ¢, , that is,
P P~ .
VX(S.8'> = (vxso 5'> +<50 VX5'> ’ XE['(TN). S , s'fr(-‘—)-
Then we can define the rough Laplacian A on E in such a way that

i=

T e em mie ~ & s , s ’
@10 fe= 1{veiv°is v‘éiei } € Tee)

where {ai}i-T is an orthonormal local frame field on M . In cace
that M is a closed manifold, the eigenvalue problem

-As =X s, sel(E),

has a discrete spsctrum : Ay ¢ Az $ +ee $A{ ¢ --- . Consider the

A

zeta function Z (t):= %° e 'A , t>0. And let 0 = A< A< ALS ..
i=1

< Aig"’ be the spectrum of the Laplace-Beltrami operator AN acting
- 0  -tA,
on C®(m). Then we can compare ZE(t) with Z,(t) = > e LAy
i=0
Theorem (H.Hess, R.Schrader and D.A.Uhlenbrock [H.S.U] )

Zg(t) ¢ LZy(t) , t>0.

Here f is the rank of the vector bundle ¢E.



Now our situation is as follous : The vector bundle E is the
induced bundle ® TN over M by a harmonic map @ ; (M,g)—>(N,h).

And the Jacobi operator Jy ; T(E)—T(E) is of the form (cf.(1.4))

(2.2) 3 = -Rv - ZiI:' “R(¢resu) fhe; 5 veT(E).

Here A is the rough Laplacian on the bundle E = ?71TN and the

operator of [*(E) defined by ViI— >" NR(¢*ei,V)4%ei s, becomes
i=1

~ Ay
a bundle map of E. Therefore, letting A, A,

A

el A

HA

so e be

the spectrum of 3¢ s we have

(2.3) X;Z iI-NRp » i=1,2,oou,

by (2.2), definition of Ng# , and Mini-max Principle of the
eigenvalue problem of the elliptic operators. Since Index(@)

+Nullity(¢) is the number of the non-positive eigenvalues of Jg ,

(2.4) Index(¢)+Nullity(p) < ng o=t
i=1
N ¢ T ’
< et R 3® o7t » 20,
- 1=

by (2.3). Here, using a theorem of Hess, Schrader, and Uhlenbrock,

ve have
tVR

(2.5) Indax(¢)+Nullity(¢) <ne Zm(t) , t>0,

noting that the rank of E coincides with dim N = n :
Proposition 2.1. Let M be a closed manifold, and @ ;
(m,g)—>(N,h) , a harmonic map. Then we have
tNg?
(2.6) Index(¢)+Nullity(¢) <n Inf{ Zm(t); 0<t<0°_}

wvhere n = dim N, Np?  is the quantity in §1, and Zm(t) is the

trace of the heat kernel of A, acting on c®(m).

“~



F’
Corollary 2.2. The situations are preserved as in Proposition

2.1, Then we have :
(1)  “RP <o D 1ndex(p)
(11) “R* ¢ 0 =) 1ndex(p)

0 and Nullity(¢) <n ,

Nullity(®) = o.

In fact, in the inequality

A N
(2.7) S et S et R Zy(t) , tyo,
i=1

the assumption Ng# < 0 implies that the right hand side has a limit
smaller than or equal to n as t tends to infinity since Zm(t)
goes to 1 as t goes to infinity. Therefore each eigenvalue ;ti
of J¢ must be non-negative, i.e., Index(¢) = 0. Moreover, the

left hand side of (2.7) 4is bigger than or equal to Index(¢)+Nullity(¢;
= Nullity(¢) for each t 0. Therefore Nullity(¢) <n. If we
assume VR? > 0, then the right hand side of (2.7) goes to O

as t tends to infinity. Therefore we have Index(p) = Nullity(¢) = O.
Therefore the problem is reduced to give the estimation of Zm(t).

2,2, Case of a Domain, The above procedure works well in
the case of the Dirichlet eigenvalue problem for a relatively compact
domain G2, in a complete Riemannian manifold (M,g).

Certainly, let
MR $ TR L e & O C e

be the spectrum of the Dirichlet eigenvalue problem of the rough
Laplacian A (2.1) of a vector bundle E with an inner product (' ,*)

and a connection Q;’ compatible with respect to (*,*) :

-As = A s on S,
s = 0 on 35?;.



where s is a section of E on the closure §, of §2. Consider

the zeta function EE Q(t) defined by
’

7E'&(t) 1= %1 et "1(9) , t>0.

Similarly, let

A2 X AL a0 AQ) S,

be the spectrum of the Dirichlet eigenvalue problem of the Laplace-
4

Beltrami operator 4y for the domain &2, , and ?sﬁt) be the zsta

function defined by

(2.8)  Zg(t) = Z‘: et X s,
i=

Then we have the analogue of a theorem of Hess, Schrader and Uhlenbrock :

Theorem 2,3.
(2.9)  Zp o(t) £ L 2g(t) »  t>0,
where { is the rank of E.

Proof. It can be proved in the similar way as the proof.in [B.G,
Assume that s(t,x)e E, » t>0, xe G2, , satisfies the heat equation

with the Dirichlet boundary condition :
(% -E) s(ty,x) =0 on (0,0x8 ,
S(t,x) = 0 on (0,”)"39..

For each €>0, let fe = ( |s|2 + 52)1/2 on (D,oo)xﬁ. Then it can

be proved by the same way as in [H.S.U] that
{-As,s) < fe ('AN fe ) on (0,09)%62.

Therefore fé satisfies



o
(3x -op) fe SO on (D,®)x §2 .
Then we can apply f¢ to the following Maximum Principle of

— Theorem (Maximum Principle) Let &2 be a relatively
domain in M, and let 0<T< o, Assume that u 1is a real

continuous function on [0,T]x) and satisfies the inequality

on (0,T)xS2.

d
3t Y "byvY

A
o

|_Then u attains its maximum on the set {0}x22 or [0,7]x3S2 .

For proof, see [F,p.204]).

heat kernel

compact

valued

Then , if f (0,x) < f(0,x)r €, then fe(t,x) < f(t,x)+ E,

Hence for every integrable section s of E on Q with the

condition s =0 on 8% , we have

(2.10) ("2 8)(x)| < (%) (x).

'3
Therefore applying s(z) = 2, S; y uj(z) to (2.10), where
i=1 '

Dirichlet

Z,Y

2
is the Dirac function at y and {uj(z)}j___1 is an orthonormal basis

of the fiber Ez at each point 2z in M, and noting [s(z)l =Q.§z y ?
»

we have the desired inequality (2.9).

QeE.De

We denote the spectrum of the Dirichlet sigenvalue problem of

Jg on L by

XN Q) € eee s

(2.11) X, @ ¢ @ ¢ i

A
.
.

A

~J L -~
and define ZQKt) := EE ) tAiaz) . Then by the similar way as 2.1, -

i=1
we have :



~

Proposition 2.4. Let £, be a relatively compact domain in a
complete Riemannian manifold (M,g). Let @ ; (m,g)—>(N,h) be a

harmonic map. Then we have
~ VRS,
(2.12) Indexn(®)+Nullityg(¢) < Zo(t) & n Inf{a Qgﬁt)30<t<@}n

where n = dim N, Nﬁ& is defined in §1 , and Zgn(t) is the zeta

function of the Dirichlet eigenvalue of A on S defined by (2.8).

M
2.3, To apply Proposition 2.1, we make use of the follouwing

proposition obtained also by Berard and Gallot [B.G] :

Proposition (P.Bérard and S.Gallot) Let (M,g) be a closed

Riemannian manifold whose Ricci curvaturs Ric' is bounded below by

f]
a positive constant : Ricm 2 (m-1)8§ > 0. Then the trace Zm(t)

of the heat kernel of (M,g) is estimated as
(2.13) Zm(t) < Zsm(St) ,

where m = dim M and Zsm(t) is the trace of the heat kernel of the

standard unit sphere (Sm,can) of constant curvature 1.

It is known (cf. [B.G.Mm]) that if m 2 2,
o -tk (k+m=1
Zgm(t) = ﬁ‘:;o my ( ), tyo,

m+k=~-2)!

where m, = R T (m=1

1 (m+2k-1) » k = 0’1’2’000 L]
Then the function Zsm(t) is estimated as follows :

(1) In case of m >3,

(2.14) Zsm(t) g 14, Z“ (mk)m-1 e-tMR

< 14 (m=1)1m™" T tM(1-g7tM)"M



(ii) In case of m = 2,

T (2k+1) o tk(k+1)

2.14! 2(t
(2141 z52(8) = L7

[P

00 - - - - -
142 232 k &% < 142 672t (2-e7Y) (1207872,

Therefore combining (2.13) with (2.14), we have

(i) in case of m 23,

Np¢
(2.15)  1nrfet R z,(t) ;5 octco)
N
< Inf{et Rﬁ/&§+(m—1)!mm-1e-tm(1-e-tm)'ﬁ}; D<t<w}.
Puting A = NR¢/m8 and 8 = 1+ﬁ R
. . 1.A m-1 m~1
the right hand side of (2.15) £ (1+ﬁ) {1+(m-1)!m A(1+A) }.

(ii) In case of m = 2 ,

N g N ¢ B
(2.151) Inf{at R Zm(t);0<t<oo}__§ Inf{et R /s flwze‘“(z-e‘t)m-e‘t) ‘

, 0¢ t<¢”}.
Letting B = NR?s and et = 1+% ’
the right hand side of (2.15') & (1+%)Bij+482} .
Therefore together with (2.6), we have :
r Theorem 2,5, Let (M,g) be a closed Riemannian manifold of

dimension m 2 2 whose Ricci curvature Ricm is bounded below by a
pasitive constant : Ricy 2 (m-1)§ >0 . Let ¢ (Myg)—>(N,n)
be a harmonic map of (M,g) into an arbitrary Riemannian manifold

(N,h) of dimension n. Then we have :

(1) In case of m 23,




Index($)+Nullity($) ¢ n (1+5)R {1+(m-1)!m“‘"a(1+n)'“"}.

vhere A:= NR‘/mS and VR? is the quantity in §1.

(ii) In case of m =2 ,
Index(§)+Nullity($) £ n (1+-;-)B {1+482 } ’

where B:= VRP/g .

Remark. The function (1+%)x s x>0 , satisfies lim(1+—})x = 1,
: x=0
1,x . 1, X . N ¢
(1+;) e, and 11m(1+;) = e « Therefore, when the quantity 'R
X—yeo

goes to zero, the bounds of the above inequalities in Theorem 2.5
tend to n . In the case that § is the identity map of the

n-dimensional flat torus, Index(¢) = 0 and Nullity(4) = n. That is,

the above estimate is optimal uhen NR¢ goes to zero.

By the way let us consider the case M = S1 = R/2%1. In this

case, we know that

2
” -
251(t)=1+2 otk

k=1

Then we have the sstimation of 251(t) ba the same way :

-t
(1) zg1(t) ¢ 2%, ty0, and
= 1-e”
(i) 251(1:) < 1+E , t>0,
and we have
P
Proposition 2.6. Let &; [0,2&_]—)(N,h) be a closed geodesic,

that is, ;(0) = g(2x) for the tangent vectors at ¢(0) = ¢(2x),

in an arbitrary Riemannian manifold (N,h) of dimension n . Then




Index (@)+Nullity($) < n (1+%)c min{1+2c, 1+ﬁ?ﬁ'+‘€} ,

wvhere i= ~R¢ defined in §1. In particular, assuming that the

sectional curvature N

constant : NK g a , the index and the nullity of a closed geodesic

K of (N,h) is bounded above by a positive

¢; [0,2x)— (N,h) of (N,h) satisfies

2
(2.16) Index(P)+Nullity(P) < n e {1+E_E } .
= 27
Remark. The estimate (2.16) is far from the optimal estimate

obtained by Morse-Schonberg (cf.[G.K.MJ).

2.4, Minimal Isometric Immersions, Let us consider an isometric
immersion @; (M,g)~— (N,h). Then it is known (cf.[E£.S],[E.L] )
that ¢ is harmonic if and only if ¢ is minimal. The second
variational formula of a volume for an isometric minimal immersion
is as follows (cf. [Si] ) : Let F:= Tm' be the normal bunule of
in N which is a subbundle of E = ¢-1TN . For a section V€ (),

let @, be a smooth variation of @ with @ =9 and v = g—f f,‘bL(X)f

1=¢

Xenm. Then

2 .
d x

—= Vol(Mm h)l =j h(LayV,V) %1 .
dt2 (", By t=0 Jmn ?°

The operator Lg 3 F(F)=— T'(F) is a second order elliptic differential
operator of the form :
12 4
(2.17) LV = =9 " v -B) - R (v), vel(Fr),

wvhere VJZ is the rough Laplacian on F given by

42 - m & 4
v v 2;:1 (§7ei i

v "7;75i V) o,
®

and V;V is the normal component of the connection NVXV , xe T
V¢ ’(F). The operator B; M (F)— TU(F) is dafinad hu



gagu):-'Z“'a v ,

i=1 ei"A ei

where B8 is the second fundamental form of ® defined by Bx
’
FS
("CQV) » the normal component of NU&Y » X, Ye[(Tm), and aY ;
"(TmM)—> T7(TM) is defined by h(Bx,Y,\l) = g(AYX,Y). The operator

R ; T(F)=— "(F) 4is the normal component of 3. NR(ei,V)ei.
i=1

Note that for our Jacobi operator Jg » its normal component (J¢V)L,

satisfies

(2.18)  (30)* = =g 2 v+ Bv) - R‘(V5; ve T(F).

Definition 2.7, (1) We denote by S-Index(¢) the sum of
the multiplicities of the negative eigenvalues of L¢ on [ (F),
and by S-Nullity(¢) the dimension of the kernel of Ly on [(F).
(ii) Let p(rasp. r ) be the supremum of the maximal eigenvalues
of the endomorphism g}(resp. R* ) of the fiber Fx of F where

x varies over M.

N

Note that under the assumption that the sectional curvature K
of (N,h) is bounded above by a positive constant : Ny < a,
we have
(2.19) rt § ma ,
where m = dim M (cf. Lemma 1.2 and Example 1.3). And note that
m
(2.20) < sup 2 ™h(e ,B ).
P = xe M i,j=1 Bi’Bj ei.aj
Then by the same way as 2.1 and 2.3, we have :
Proposition 2.8. Ltet (M,g) be a closed Riemannian manifold

and @; (myg)— (N,h) an isometric minimal immersion. Then
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S-Index(¢)+S—Nullity(¢) < (n-m) Inf«{at(5+r*) Zm(t) ; 0<t<w},

4
where m = dim M, n = dim N, P and r are adefined in Definition 2.7,

and Zm(t) is the trace of the heat kernel of the Laplace-Beltrami

operator 4, of (m,g).

-

g Proposition 2.9, Let (M,g) be a closed Riemannian manifold

of dimension m 2 2 .66 Ricci curvature Ricy is bounded below by

a positive constant : Ricm 2 (m=1)8 > 0. Let @ ; (m,g)—(N,h)
be an isometric minimal immersion of (M,q) into an arbitrary

Riemannian manifold of dimension n whose sectional curvature NK

is bounded above by a positive constant : NK g a, Then

(i) In case of m 2 3,
S-Index($)+S-Nullity($) < (n-m)(1+-}:.)“'{1+(m-1)!mm-1n.(1+A')”"’
where A':= (B+ma)/m§ .

(ii) In caese of m = 2,

S-Index (¢)+5-Nullity($) < (n-2) (144,)8" {1+4p?],

_where B':= (B+2a)/§ .

Proposition 2.10. Let ¢; [0,2)—> (N,h) be any closed geodesit

in an arbitrary Riemannian manifold (N,h).  Then
5-Index(P)+s-Nullity(¢) < (n=1)(1+)C min{1+2c, 1+ T fivc §,

vhere C = NR¢ defined in §1. In particular, assume that the

N

sectional survature 'K of (N,h) is bounded above by a positive

constant : NK s a. Then

S-Index(P)+s-Nullity(®) < (n-1) e {1%}




§3. The Index and the Nullity of a Harmonic Map from a Domain.
3.1. We retain the notations as in 2.2. We have :

B Theorem 3.1. Let S2. be a relatively compact domain in a
complete Riemannian manifold (M,g), ¢; (M,g)—>(N,h) , a harmonic
map of (M,g) into an arbitrary Riemannian manifold (N,h) of

dimension n . Then
(1) 2@ 2 "Ry ) Indexg(d) = 0 and Nullityg@®) < n ,
(ii) A, S > NRS_ [ Indexg($) = Nullityg(@) = 0.

That is, if A1@Q) 2 Nﬁs, then the harmonic map ¢ ;. (M,g)—>(N,h)

is stable on &.

=~ @ _ta (¢
Proof, By Proposition 2.4, the zeta function ngt) = 2:13 i
l=
of J¢ on & satisfies
N_.¢ N ¢ o -
'Zsz(t) < netha Zo(t) = n et ("Re "7‘1(‘2)){14-2 ot (X&) 7‘5_(5?»))},
= i=2

whers 1162) < AZQQ) € eee € AiGQ) ¢ ... is the spectrum of the
Dirichlet eigenvalue problem of the Laplace-Beltrami operator By
on S2. Noting the fact that Ai(ﬂ) > )\1(52,), i=2,3,... , the

assumption N

R ¢ A (Q) implies that the limit of the right hand

side of the above inequality is less than or equel to n when t-—mo,
N_¢

Then Indexg(#) = 0 and Nullityg(¢) < n. If TRg < )\1(.42), the

limit of the right hand side of the inequality is zero when t— %,

Therefore Indexg(¢) = Nullityo(9) = O. Q.E.D.

Corollary 3,.2. Let Br(o) be a geodesic ball with radius r

whose center is a certain point o in tha{ standerd unit sphere

m-dimencsional



(Sm,can) of constant curvature one. We choose the radius r with
0<r¢{T™/2 in such a way that 11(Br(o)) = m=1, Then , for every
domain & in S™ whose volume Vol(R) is less than or equal to the

volume Uol(Br(o)), the identity map id; (S",can)—s (S",can) is

stable on S2 .

Proof. By Example 1.4, we have Nﬁ$.= m-1 for every domain &2
in s™, In this case, Theorem 3.1 implies that , if K1GB) 2 m=1,
then the identity map ¢ = id ; (s",can)—y (s™,can) is stable on & .
By a theorem of P.Bérard and D.Meyer (cf.[B.M]), if Vol(R) < Vol(Br(o)),

then 7\1(93) 2 JL.I(Br(o)) = m-1. Q.E.D.

It is known that (cf. [C.L),[8.6), [u2]) that there exists a positive
constant C(M,g) depending only on (M,g) such that the eigenvalues
AiGQ) of the Dirichlet eigenvalue problem of the Laplace-Beltrami

operator Am on the domain &2 satisfy
(3.1)  A,(®@ 2z c(m,q) Vol (Q)~"2/™ /™ | io1,2,...,

vhere m = dim M, In particular,

(3.2) A& 2 C(mg) vor(@) /",

Then the above Theorem 3.1 implies that

B Corollary 3.3. Let S2 be a relatively compact domain in a
complete Riemannian manifold (M,g) , and ¢; (M,g)— (N,h), a harmonic

map, Then

c(m,g) Vol@E)-zlm 2 NQ; E:? ¢ is stable on 8 .

In particular, assume that the sectional curvature Ne of (N,h)

is bounded above by a positive constant : NK g a. Then



C(Mg) Vol@)™ /™ > 2aE”(Q,¢) =) # is stable on €2 .

1If & is " emall " in (M,g), then vol()™2/™ tends to infinity
and NR;, remains still bounded. Therefore Corollary 3.3 implises that
a harmonic map ¢ ; (M,g)——(N,h) is stable on a " sufficiently small"

domain S in M .

3.2, In this part, we estimate Indexp($) and Nullityg(4).

By Proposition 2.4 and (3.1), we have

Indexg($)+Nullityg(¢) < n Inf‘{a % Zo(t) 5 D<t 00}

N_# -2/m _2/m
¢ n Inf‘{et Re 1.7 gmtC(Mg)vol(@) /W™, o<t<oo}
- k=1

%t 19 _th/m
gnlnf{e 2:19 ;0<1}<°°} ’

where we put m = dim M, n = dim N, a:= N&; , and b:= C(M,qg) Volﬁa)-z/'
In case of a < b, we have Corollary 3.3. So we assume a > b,
We put % = 1+D , D>0. We express as
a a
=t o _,.2/m (2 =1)t ¢ _, . 2/m_
(3.3) e° Z: g~ tK . 2: 8 (k Nt .
k=1 k=1

(1) In case of m = 1,2,

(5 -1t T g-tk

the right hand side of (3.3) < e

-t -1

2 -1)t
a(E ) (1-e"°)

Putting at = 1+& s we have

8¢ oo 2
Inf {.B' 2‘:_. otk /n H 0<t<~} < (1‘%)0(1*0)-
=



(ii) In case of m >3,
00 2/m
T et (kMe1) Lt T -tk
k=1 k=2
< ‘|+etj” e-txz/m ax
= 1
o0 m_1
= 1+%t'm/2.3 z7 e”? dz
t
m -m/2_, =t £
145t prte™ L P &, if mo=2(p*1), p 21
k=0
<
- K
1+g-t-(m+1)/2p!e-tz P 'ET y if m=2p+1, p>1.
k=0 ° B
: t 1
Putting e” = 1+§ s we have
(1+8)P{1+P (D)}, if m=2(p+1),py1
a D <
Et % _th/m
Inf{e Z e 3 OCtenm) €
k=1 = 1.0
(1+5) {1+0(D)}, m=2p+1, px1,
where
pti1-k
(3.4)  P(D):= (p+1)! L P iy {——1—} , if m=2(p+1),p:
k=0 log(1+ )
(3.5) a(D):= % p! P 1 ! Pk if m=2p+1 1
. = % p! ———-—} , if m=2p+1, p>1.
Z k=0 KT {log(1+ﬁ)
(iii) We can give another estimate of Indexg($) and Nullity, (¢’

In fact, we have

L e

Ka=1

-tx2/m d
e

~tk2/m < S“
0

Therefore we obtain

Inf{'st z" a-tkz/"' ; D¢ t¢
k=1

-

X = F(%+1) £™2

r(+1)e"?

(m/2)

a m/2
m/2 (E

J ¢



-

b

Summing up, we obtain :

Theorem 3.4, Let &2 be & relatively compact domain in a
complete Riemannian manifold (M,q), and $; (M,g)—(N,h), a harmonic

map. Then Indexg(P) and Nullityg(¢$) are estimated by the quantity
Dim NRE‘C(N,Q)-1 Vol@2)2lm -1 as follous :

(i) In case of m = 1,2,

Indexg(¢)+Nullityg ($) < n (1+5)° {140},
(i1)  in case of m = 2(p*1), p 2 1,

Indexg ($)+Nullityg (#) < n (+f)°{1+p (D)} ,
(11i)  in case of m = 2p*1, p 2 1,

Indexg(p)+Nullityy @)  n (1+§)°{1+a(0)} .

(iv) In ell cases m 2 1,
(m+1)em/2

m/2

Indexg(¢)+Nullity&(¢) ¢ n (1+D) ’

(m/2)™ 2

where P(D) and Q(D) are the functions of O given by (3.4), (3.5),

respectively » and m =dim M, n = dim N.

1
log(1+%)
that f(D)~> 0 as D-—0 and f(D)~D as D—e, the functions

Remark Since the function f(D) = of D satisfiaes

P(D) and Q(D) satisfy

lim p(D) = 1im (D) = 0 , and
D=0 0-+0

P(D) ~ (m/2)1 ™2, a(0)~ 3% 0(™1/? as Do



.

3.3, Minimal isometric immersions, We preserve the notationc
as in 2,4, For a relatively compact domain $2 in a complete
Riemannian manifold (M,g), consider the Dirichlet eigenvalue problem

of the operator Ly acting sections of F = ™" on & :
LyV = AV on 2,

V= 0 on 938 .

Definition 3.5. (i) We denote by S-Indexg(¢) the sum of the
multiplicities of the negative eigenvalues of this problem, and by
S-Nullity,(#), the dimension of the zero eigenspace. (ii) Let
B(R) (resp. rLGQ)) be the supremum of the maximal eigenvalue of tne

&
endomorphism §3 (resp. R ) of the bundle F over the domain &
(cf. Definition 2.7). Note that B(Q) (B and r‘G2) < r’ uwhen

the right hand sides are finite.

Then by the same reason as 2.4 and 3.2, we have a series of

the following propositions :

Proposition 3.5. Let £2 be a relatively compact domain in &
complete Riemannian manifold (M,g), and ¢ ; (M,g)—(N,h), a minimsl

isometric immersion, Then

U<t<w},

vhere B(R) and t‘@l) are given in Definition 3.5 (ii) and Zg(t)

is the zeta function of the Dirichlet eigenvalue problem of 4, on S

Proposition 3.6. Under the same assumptions of Proposition 3.5,

(1) AR) 2 P(SZ)H*(Q.)C:) S-Index () = 0, S=NUllitva(®). n-m



(11) 2, &) > p(é)ﬂ‘(Q.) [) s-Indexg(p) = S-Nullity,(¢) = O,

where A1«z) is the first eigenvalue of the Dirichlet eigenvalue problen

of & on S2.

L M

Proposition 3.7. Under the same assumptions of Proposition 3.5,
c(m,g) vol(@)~2/™ 2 B)+r° @) [ # is stable on £,

| where c(m,g) 4is the constant in (3.1).

F Proposition 3.8. Under the same assumptions of Proposition 3.5,
S-Indexg(®) and S-Nullityg(¢) are estimated by the quantity D!

given by D' : {5@2)+r‘@2)}c(m,g)°1 Vol@%)z/m -1

(i) 1In case of m = 1,2,
S-Indexg (¢ )+5-Nullityg(¢) < (n-m)(1+57)° (14D1).
(ii) In case of m = 2(p+1), p 2 1,
S-Indexg($)+5-Nullityg(p) ¢ (n-m)(1+37)° (1+P(D1)),
(1ii) in case of m = 2p+1, p > 1,
5-Indexg($)+S-Nullityq(4) < (n-m) (1+gm)° (1+a(0")) .

(iv) In all cases m > 1,

. A aab L
S~Indexg($)+S-Nullityg(¢) & (n-m) (m72)"72

(1+0")™?2 ,

where the functions P(¢), Q(¢) are the same in Theorem 3.4 , m = dim

_and n = dim N.

Remark. (1) The similar ones as Proposition 3.7 were stated in

(mo] ,[H),[12). (41) In case of m = 1, let ¢ ;[0,2n]— (N,h) be



-

a geodesic in an arbitrary Riemannian manifold (N,h). The i-th
eigenvalue li((D,ZK)) of the Dirichlet sigenvalue problem of the
operator d2/dx2 on the interval (u,2R) is 12/4 y i=1,2,40. &

Then under the assumption that the sectional curvature Ng  of (N,h)

is bounded above by a positive constant : Nk { a, we have
p+1 = D141 ¢ LZan?

vhere L is the length of ¢ . Therefore

n [ L8
(I)  Indexg(p)+Nullityg($) ¢ ’

n , if L

[[ZaN

where €, is a positive constant depending only on n = dim N (cf.
Theorem 3.4 (i), (iv)). And
(n-1) J3= L
(I1) S-Indexg($)+S-Nullityg(P) ¢
| n=1, if L ¢

(cf. Proposition 3.8 (i),(iv)). On the other hand, a theorem of

M.Morse and I.Schonberg tells us that
5-Indexg($)+S=Nullityg(9) < (n-1) [LE ],

wvhere [x] expresses the integer part of x>0 (cf.[G.K.M, pp.176,142])

When L < I+ €, » oOur estimate (Il) is optimal, but in general, it is

Ja
far from the optimal one of Morsse and Schonberg since {%E = 2,066¢.. .



Chapter 11. Stability of the Identity Map.

§4. Kaéhler Version of Lichnérowicz-0Obata Theorem.

In this chapter, we treat with the Jacobi operator of the identity
map. Let (M,g) be a closed Riesmannian manifold of dimension m.
The identity map id, ; (M,g)—>(M,g) of (M,g) is harmonic (cf.[E.S]),
and the Riemannian manifold (M,g) is stable (cf.[Na]) if the
identity map idM is stabls. The corresponding Jacobi operator
J = Jidm is a differential operator acting on the space [(TM) of all

vector fields on M given by

(4.1) 2V = - E';‘ (Vo Ve v 'VVegi") - P(V), Vel (Tm),

where V is the Levi-Civita connection of (M,g), §(V):= ETR(Bi’V)ei
and  P(U,V) = g( P(u),v) = X" g(R(s;,U)e;,V) is the Ricci tensor
(cf.[ma], [sm]). Under the id::;l:ification of TMm with T*M with
respect to the metric g, the Hodge Laplacian A = d§ + §d on [(T°M)
induces a differential operator, denoted by the same lett;r and called
also as the Hodge Laplacian, on ['(TM), where & is the codifferential
operator of d with respect to the metric g on M. Then the
Weitzenbdck formula of the Hodge operator A tells us that

(402) AV = - Z:‘ (vaiveiu -Vveaiv) +P(v), vel(tm),

i= i
and then
(4.3) J=L-29,
Then we have immediately :

Lemma 4.1, Let h}(n) (resp. 31(N)) be the first (resp.

first non-zero) eigenvalue of the Hodge Laplacian (resp. the Laplace-



Beltrami operator ’Arﬂ on 1-forms (resp. smooth functions) on M. Then

(1) (M) is stable 2 Inf Ricy < A)(M) < A (1),

(ii) A}(M) 2 2 Sup Ricy, —> (Mmyg) is stable ,

vhere Inf Ricy (resp. Sup Ricm) is the infimum (resp. supremum) of

the Ricei curvature of (M,g) over M : Inf Ricy := Inf{f(u,u); ueTm,
g(u,u)=1}-, and Sup Ricy := {9(u,u); ueTm, g(u,u)=1}.
L

Proof. By (4.3), the stability of (M,g) implies that

f g(Aav,v)*1 - ZJ g(P(v),v)=
M M

jm g(av,v)*1 = 2(Inf Ricm) gmg(v,v)*1 ’

0 < 5 a(IV,V)x1 =
M

un

which gives the first inequality of (i). Taking V as the gradient
with the eigenvalue A (M)
of the eigenfunction of A

» we gat the second inequality of (i).

The statement (ii) is obvious from (4.3).

Q.E.D.

From Lemma 4.1, we obtain

Theorem 4.2. (M.Obata) Let (M,9) be a closed Kdhler
manifold whose Ricci curvature Ricm is bounded below by a positive
constant : Ricy, 2« 0.

=

Then the first non-zero sigenvalue A1(M)
of 4, on c®(m) satisfies
A1(M) 2 2«.,

When the equality holds, the Lie algebra a

of the group of holomorphic
~transformations of M is non~zero.

Proof. Since every closed Kdhler manifold (M,g) is stable

(cf.[Sm],[Na]), by Lemma 4.1(i), we have the inenuality A1(M) Z 2« .



Assume that the equality A.'(M) = 2« holds. We take V as the
gradient of the eigenfunction of Al'l with the eigenvalue 2«, Then

AV = 2ay, By (4.3), we have

2ujmg(v,v)*1 = Smg(zw,v)ﬂ
= 5M9(3v,\l)*1 + ijg(f'(\l).\l)*1
Z 2"‘8 g(v,v)*1 ,
M

since (M,g) is stable and Ricy, 2 a. Hence we have S g(dv,v)*x1 =0
- M
and 5 g(p(v),v)s1 = «j g(v,v)x1 . The former implies JV =0 , and
M M
then V belongs to a due to a theorem of Lichnérowicz (cf.[L]))

since (M,g) is a closed Kdhler manifold. Q.E.D.

Remark 1. In [0b}], the above theorem was stated in case of
a closed Einstein K&hler manifold (M,g). In this case, i.8., § = xQ ,
the equality 2, (M) = 2¢  holds if and only if a ¥{0}. The author
does not know whether or not the equality holds if a #{0} without

the assumtion that (M,g) is Einstein,

Remark 2. A theorem of Lichnérouicz-Obata tells us that for

a closed Riemannian manifold (M,g), if Ricy 2 o = (n-1)8§ >0, then

n n
A(M) 2nE=-Dr . Note that o3 ¢ 2 and qo7 = 2¢5) n=2.



§5. Some sxamples.

In this section, we give three examples concerning with stability

or unstability of closed Riemannian manifolds.

S.1. By (4.1) and Corollary 2.2, we know (cf.(Sm]) that

if Ricci curvature Ric of a closed Riemannian manifold (M,g) 1is

]
non-positive, then Index(idm) = 0 and Indax(idm)+Nullity(idM) g m =
dim M. By the similar way as the proof of Proposition 5.6 in [B.G,p.30)
noting only the difference of the constant terms of (4.1) and (4.2),

we have

Proposition 5.1. There exists a positive constant €20
depending only on m such that for every closed Riemannian manifold
(M,g) of dimension m with Ric, ¢ & , the index and the nullity of

the identity map of M satisfies

Index(idh)+Nullity(idm) < m.

However one can not expect a positive answer of the following
question : " Is there a positive constant € >0 such that for
every closed Riemannian manifold (M,g) of dimension m the assumption

Ric implies the stability of (M,g), i.e., Index(idm) =072"

M s Em

In fact, we have the following example :

m be the m-dimensional torus

Example 5.2. Ltet T" = &"/12
with the canonical coordinate (x1,...,xm). Let f(x1) be a positive
valued smooth function on R/Z1 = S1 o Consider the Riemannian metric

9 on T" defined by

Qr - dx12 + r(x1)2(dX22+.o'+dxm2) .



Lemma 5,3, The vector field X, = f(x1)3%— on T" is a
1

conformal vector field,i.e., the Lie derivative Lx1gf of 9 by X,

satisfies Lx19f = % div(x1) 9¢, 8Nd  X; = 3%; y i=2,,..,m, are Killing,

Lioeo, ingf\ = 0.
Proof follows from a straightforward computation.

Since for a vector field V on a closed Riemannian manifold (M,q),
2 .
Smg(JV,U)*1 = Sm{%lL“gl - dlv(U)z}#1 ,

vhere [Lugl is the norm of L,g induced by g and div(v) 1is the

divergence of V (cf.[Y.B]), we have
(IX., X, )41 = (3 - 1) div(Xx )2*1
™ 9 17" m " 1 *

Since div(X,) = m f'(x,) where f'(xq) is the derivative of f(xq),

we have :

Proposition 5.4, tet T" = B"/I™ be the m-dimensional torus

with the canonical coordinate (x1,...,xm). For a positive valued

12 B/Y , consider the Riemannian metric

g oOn T" defined by Q¢ = dx12 + f(x1)2(dx22+...+dxm2). Then,

smooth function f(x1)' on S

in case of m 2 3 , the Riemannian manifold (Tm.gf) is stable if and

only if the function f(x1) is constant.

On the other hand the sectinnal curvature K of the Riemannian
manifold (Tm,gf) is given (cf.[B.0)) as follous :

For sach plane T in the tangent spacs T(x1’ , X )Tm, let
L N ] m

{x-ﬁ%— +v,y é%— + uw} be an orthonormal basis of [ , where x,y €ER ,
1

1

and Vv,ué€ T(x , X )Tm' « Then the sectional curvature K(TT) is
2%°°° m )



K(m = - -"l;-&:%1{xzefm.u)-zxygf(u.v)+y29f(v.v>}

£1(x,)>
- f(:ﬁ?{gf(v’v)gf(”’“)'gf(v’”)z}’

Then the sectional curvature K of (Tm,gf) satisfies that

lenl | £22
K < —?—"" .
IKlg ==+ =
For example, we can taks a smooth function Fe(x1) on S = E/1 as

Q&x1):= 1+ ¢ sin(2Wx1) » where €& is a small positive constant. Then
due to Proposition 5.4, the Riemannian manifold (Tm,gF ) , m >3, is
e Z

unstable, but its sectional curvature Ke satisfies
2
£ &
%] 4“2{1:?*;?&)7}'

which goes to zero as £-—0 . Therefore we can not take a constant
€,>0 such that for every closed Riemannian manifold (m,g) of

dimension m, the assumption Ricm <€ implies the stability of (M,q).

+
5.2, The next example is the odd dimensional unit sphere 52n 1,

2n+1,g)——9(cpn,h) be the Hopf fibration. Here

S2n+1

n>1. Let ¢; (S

g is the standard metric on of constant curvature one and

h is the Fubini-Study metric on CP" of constant holomorphic sectional

curvature 4. Let ¥ be the Killing vector field of (52n+1,g)

such that g(§,8) = 1 everywhere SZM'1 and & is tangent to the

2n+1. Let M be the 1~-form

fiber ¢'1(¢(x)) at each point x in §
dual to &. Then the projection ? ; (52n+1.g)——+(CPn,h) is a
Riemannian submersion with totally geodesic fibers (cf. §6) and
g = ¢“‘h + e . Let us consider the canonical variation 94 s D too,

!

of the metric g defined by

(5.1) gy = ¢h+ t¥neg= g + (t7-1)n®7.



2n+1

Now let us investigate the stability of (S ,gt) making use of

Lemma 4.1,

(i) The first eigenvalue A}(gt) of the Hodge Laplacian.
Put m:= 2n+1. Note that g, =s {5-19 + s°1(sm-1)QeQ}, where si= t2/"
In his paper CT1, Proposition 2.8] s S.Tanno showed that the first

eigenvalue h:(gt) of the Hodge Laplacian on 1-forms is estimated as
Aq(gt) < Min {5‘1-2(m-1)sm+1, 5-1(ms-s(1-s-m))} ’
that is,

(5.2)  al(g,) € min {4nt?, 2n+t™2},

(S2n+1

(ii) Ricci curvature of ,gt) . Let us recall a work

of G.R.Jensen [J]. We denote

s= SU(n+1),
Hem s(U(nIxU(1) = {(§ O) €su(nt1) 5 eeu(r), Aeu(n)},

-1/
Hye= {6 x?n) s eeu(), ¥= e/},
Hy := {(a 2) ; Aé‘SU(n)} P

where In is the unit matrix of order n. Then the natural projection

gives the Hopf fibration : ¢ 52n+1

= K/Hy—CP" = K/H. Let k
(resp. h , h, , h2) be the Lie algebra of K (resp. H, H, , Hz).

Let F be the Killing form of k and m , the orthocomplement of h
in k with respect to F. Then we have the orthogonal decomposition
of k : k=h, ® h, ®m . The metrics 9, (5.1) are K-invariant
on K/H2 which come from the Ad(Hz)-invariant inner product (-,-)t

on h.' ® m such that
(XX ¥ it 3, = (a(m#1)) " 20t2b (0, )+ (0 ¥5) |
Xq+KpsVq*Vo % n+ 1071 20 Y2) o

for X,»¥,€h,, Xp, Y, € m , where the inner product b on k is



given by b = - F, In fact, it is known that the restriction of b

to m coincides with 4(n+1) ®h, and b(X,X) = 2(n+1)2/n for X :=

1 o 1
Fﬁ(o -n~ ) , and §° is the tangent vector at o:= (?)6 g2n+1 o
n o

the curve 6 +——exp(6 X))o .

We denote by Sﬁ the Ricci tensor of the metric g on K/H,
corresponding to the inner product 4(n+1)(-,-% on m . Then 55 is
8 K~invariant tensor field on K/H2 which is completely determined by
the bilinear form on h1 ® m , denoted by the same letter 55 . Noting

that the numbers k, ¢, r, and dim m in [J] are given in this case by

k =1/2, ¢ = 0, v = dim h1 = 1, and dim m = 2n ,

and due to Proposition 11 in [J], the bilinear form Sa is given by

1/,2n 2,
s§(x1+x2,v1+v2) = Z(ETT)t a(n+1)<x1,\(1>,c

1 1 ,/2n 2
+Hm = e GEItO) 4t )X, Y, 00

X1,Y1€ h1, X2,Y2€ m . Therefore, since the infimum Inf Rica (resp.

2n+1 ~
’Q)

supremum Sup Rica) of the Ricci curvature of (S is given by

2
1 2 i
Inf Rica = Min{i - tn+1 ’ 71%;77t } (resp. Sup RJ.Ca = Max.{n; u});

the one Inf Ric (resp. Sup Ric_, ) of the metric g, (5.1) is
9 9

(5.3)  Inf Ric = min {2(n+1)-2t%, 2nt?}
t

(resp. Sup Ricg = Max{n.u} ). Putting T:= t2, let us observe the
t

(5.3) (cf. Figure 5.1)

behavior of AJ( ) (5.2) 'and 2-Inf Ric
119¢ Q
t

Figure 5.1. The graphs of the functions 4nT,2n+T-1.

and 4(n+1)-4T.
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Therefore we have :

i Proposition 5.5. Let 9 be the canonical variation (5.1)

of the standard metric g on 52n+1 of constant curvature one with

2

9, =9 : gt =g + (t2-1)Q®Q . Then for svery t in the open

interval («,p), the Riemannian manifold (S2n+1

n+Jn2+4n n+2+Jn2+4n

Here o= ——7—— (resp. f:= —=—Z— ) is a root of the eguation

,gt) is unstable.

L 4nT = 2n+771 (resp. 4(n+1)-4T = 2n+7"" )

5.3, The third example is a spherical space form. Here we

state the following :

Proposition 5.6. Every spherical space form (S"/G,g) ,
where G ¥ {id} is a finite group acting fixed point freely on s",
is stabls. Here the metric g 4is the Riemannian metric on the

n

quotient space Sn/G induced from the standard metric can on § of

constant curvature one.

In fact, this follows immediately from Proposition 2.1 in [Sm].
since (s"/G,g) is Einstein,i.e., the Ricci tensor § of g

satisfies § = (n-1)g , the manifold (Sn/G,g) is stable if and only if

the first non-zero eigenvalue A1(Sn/G,g) of the Laplace-Beltrami
operator Ay, on ﬁ”(sn/G) is bigger than or equal to 2(n-1). The

eigenvalues of AM of (sn,can) are given by k(k+n-=-1), k=0,1,2,...,

and k(k+n=1) >2(n=1) if k2 2. mMoreover the eigenfunctions of the

first non-zero eigenvalue n with k=1 of (S",can) are given by

Rn+1 into B and id.n is

S
the natural inclusion of s" into 8™"'. Therefore we have only to

n+1

Foidsn » where F is a linsear map of

show that every linear G-invariant function F on R must be zero.

But this follows immediately from the assumption that G acts fixed



“«q4

point freely on s", Certainly, F(x) ={x,y), x¢ g"t? , for some

y in B™'.  The G-invariance of F implies that ¥.y = y for all
¥ € G. Unless F vanishes, the point y/|y| € s" must be a fixed

point of G.

Since every compact Riemannian manifold of positive constant
curvature is as in Proposition 5.6 (cf.ﬂJ, Lemma 5.11, p.154]) and
every compact Riemannian manifold of constant zero or negative curvature

is stable (cf.[sm]), we have :

Corollary 5.7. Every compact Riemannian manifold of constant

curvature is stable except only the standard unit sphere (Sn.can).

Remark. The similar stability theorem for Yang-Mills fields

was stated in[B.L,p.223] .



Chapter 111, Riemannian Submersions with Totally (Ceocesic iibter

§6. The vertical Jacobi Operator.

6.1. Definition of Riemannian Submersions. Following [t.n],
or [b.B], let us recall the definition of the Riemannian submersicne.
It is known (cf. [E.L,p.127] ) that the projection of a Riemannian
submersion is harmonic if and only if each fiber of the submersion is &
minimal submanifold. In particular, the projection of the Riemarnian
submersion with totally geodesic fibers is harmonic. The Riemannian
submersions are the next simple examples after Riemannian prooucts, but
would be rich objects to study. In this chapter, ue devote ourself
to study the Jacobi operators of the projections of the Riemannian
submersions with totally geodesic fibers analogously as in the theory of

the Leplace-Beltrami operators (cf.[B.B]).

Definition 6.1, Let (m,g), (N,h) be two closed Riemannien
manifolds of dimension m,n, respectively. A map @; (M,g)—> (N,n)

is a Riemannian submersion (cf.[0.N],[B.B]) if for each point p in @,

the tangent space Tpm of M at p has the following orthogonal

decomposition ToM = H, @ v, with rdspect to 9,
(i) The subspace V, is the kernel of the differential %
of ¢ at p , which is called as the vertical space.
(1i) The restriction of ﬁm) to the subspace H_, callec tne

horizotal space, is an isometry of (prgp) onto (T¢(p)N’“¢(p))'

In this chapter, we further assume that each fiber F = ¢71(¢(D))
through p admitting the Riemannian metric induced from g is totally

geodesic in (M,g).



6.2, Definition of the vertical Jacobi operator. We take

an orthonormal local frame field {ai i=1

on M such that

(1) {ei}i-? is basic associated to an orthonormal local frame
field {ei'}iﬂ? on N, i.e., e; , 1¢i¢n, are the horizontal 1ifts of
ai','1§i£n, and

(ii) e;,n+1¢i¢m, are vertical.
Then it is known (cf.[0.N]Jor [B.B]) that ‘%iei » 1¢ign , are basic
associated to the vector fields Nﬁéia{ and V%iai, n+1¢i¢m, are

vertical since all the fibers are totally geodeéic. In the following

we retain the notations in §1.

Definition 6.2, Let ®; (M,g)—(N,h) be the Riemannian
submersion with totally geodesic fibers and 3, , the Jacobi operator
acting on F(¢~1TN). We define the vertical Jacobi operator acting
on (¢ 'TN) by

vV ... m ~ o . ,
I §=n+1 (V“iv"i %iei )

and the horizontal Jacobi operator acting on r(qf1TN) by JPH:=

v
3?"3’ .

Then it is easy to see that the definitions of J,V and J;H do not
depend on the above choice of the orthonormal local frame field {ei}iﬂ?
on M (cf. Remark below). Diese definitions are the analogue of the

vertical or horizontal Laplacians' Av "AH acting on C”Uﬂ) defined

in |B.B A, = " (v - ) s &, =4, ~A where
[e-2] v ?—nﬂ( oyVe, V‘Ziai L

m .
A= 2;-1(VL;V;1 -Ck% o ) is the Laplace-Beltrami operator of (N,g{.

Then A

v? Oy and A, are commutative mutually (cf. [8.8,Theorem 1.5)

Each section W in F(¢'1TN) can be expressed locally as

(6.1) WalZ D p o0



wvhere fi’ 1§i$n, are locally defined smooth functions on ™M and
L 1<isn are local sections of ¢'1TN defined b e 1 = @, !
i 0 TR0 Y B x'T 81 p(x)’

xe M., Then by definition of ¥ and fe; = 0, n+igi<m , we have

n ~ S~ .
(6.2) %'eiu = %‘;1 {(eifj) ej' + fjvaiej' }, 1£igm,

(6.2') T u= T" (e;'f) o7 , n+1<idm .
ey J=1 33 ==

In particular,

~o
(6.3) == 2" (aF.) et
¢ 3=1 v 3T
Remark. (The intrinsic meaning of the vertical Jacobi operator)
For each fiber Fo = ¢r1(¢(p)) through pé€mM, the composition ﬁoip ;
Fp-—~é N of the inclusion ip of Fp into M and the projection ¢
is constant, so harmonic., The associate Jacobi operator :¥d. acting
on r%(ﬂ-ip)‘1TN) is well-defined. Then r((¢-ip)-1TN) consists

of all the restrictions to Fp R UIF , of elements U in F(¢“1TN) and
P
-1
(3,°) (p) = J;a.ip(“]rp)(P) ,  WET( 'TN).

6.3, Fundamantai Properties of va and JfH . Note that,

by definitions of Vand Ur, w'e T(Tn),
’q\/
& N i ==
(6.4) ¥ u' = U =
ey V%Pi

o, n+1§i;m ’
for W'€ [(TN). Then we have
~ S—
(6.5) 3,V (W) = 0, and 3 MWUT) =23, (W),
d |4 id,

for W' € T(TN), by (6.4) and definition of J,v and J¢H. Therefore

we obtain :



i Proposition 6.3. Let ¢; (M,g)— (N,h) be the Riemannian

submersion with totally geodesic fibers. Then
Index(¢) 2 Index(idN), Nullity(¢) 2 Nullity(idN) ’

and A1(J¢) < A1(Jid ). In particular, if the base manifold (N,h)
N

_ is unstable, then the submersion ¢ is unstable.

In fact, suppose that W'é€ [ (TN) satisfies Jjg uw' = au'. Then
N

the element w'e T($ 'TN) satisfies

3,0 = 2 M) =3 U =AW
| 2 4 T Yid, ’
by (6.5). Therefore if A is the eigenvalus of djg » then X is
N
also the one of 3’ . Q.E.D.

B Proposition 6.4.

(1) Let F = Fp be the fiber through pe M of the Riemannian
submersion ¢ ; (M,9)— (N,h) with totally geodesic fibers. For
each U ¢ r'(9.1TN), we have

Lh(a,"u,u) dvp = iZinL Lh(veiu,veiu) oV

wheres dvF is the volume element on F with respect to the metric 9¢
induced from the metric g on M.

(ii) mMoreover, for sach U¢E r(9-1TN), J’Vu =0 if and only if

We=Tu' for some W'e [(TN).

| (iii) Each eigenvalue of va is non-negative .

Proof. (1) For each U ¢ r"(¢'1TN), we have

v m T+ m =7 o=

+ 2 " nV, . wu) .

f=n+1 .0



Here there exists an slement X in T[(TF) such that gp(X,Y) =
h(V&u,U) for each Y €[ (TF). Then since V. e; »nt1¢igm , are vertical
i =12
Z " Joun(@, uw) - n(T  ww}

i=n+1 %l l

is the gradient of X on (F,gF). Therefore we have (i).

(ii) By (6.5), we have only to prove that if J¢VU =0, then U =
U7 for some W'e C(TN). Assume that 3¢VU = 0. Then by (i) we
have §7 W= » NHILigm. We choose a local coordinate system

(xu,...,x ) on a neighborhood U in N. Then W can be expressed

n -1
locally as U, = ZL (x)(——w)¢(x) ,» x€ ¢ '(U), uwhere £,
60, =1 -1 : :
C(¢ (u)). sSince We [T(¢ "IN), it satisfies that
axi

6.6) f, . = ne =4 -1 Ty

@O et Bisdd o oo,
for another coordinate system (xc,...,xC) on V . By (6.2'),
0 = §7 U = 2: (elf‘U J) ( = ) Therefore e;f, 5 = 0, n+1<igm,

that is, fu j are constant along each fiber, which implies that
t4

f ., o= ! . ' . y . . ! .

U, ] f U,3'¢ for some f u,j€ C (u) By (€.6), f U,

n i j
satisfies f'U i = }; f'u j@xulaxa) on UA V. Therefore

n ., 3=1
'{§i1 f U,J a/axu:} defines a section W' in [7(TN) such that
W=U'. (iii) follous immediately from (i). 1In fact, suppose that
J,VU =AW, 0% Ue-r(¢—1TN). Then there exists a fiber F such

that j h(W,W) dvp >0. We apply (i) to this fiber F and ue
F

have (iii). 0.E.D.



6.4, Commutatibity of 34" , 34" ang 4.

Theorem 6.5. Let ¢; (Mmyg)—>(N,h) be the Riemannian
submersion with totally geodesic fibers. Then the operators Jpv ’
J¢H and JP are commutative each other.

H

Proof. We have only to prove J,V Jg = J¢H J,V . For each

W e r(?-1TN), we have

H ~N A~ f\z'
(6.7) 34" 3% = - gk;;{(ve Ve, - v‘E o ) U(8,F3)53")

+(A f . ) R(ek ,85 ')e }

~ A
kv%kej

AL GRIRI T ANCa

- = Z (A f. )NR(ak 03 ')3 ’

Jak=1

2 ~ ad &
;gk : &, (Avfj)ejv+2ek(avfj)tgkej'+(Avfj)vg
K= .

by definition of J,H and (6.3). Since e,  and Cgkek » 14k&n

are basic , and AV is commutative with basic vector fislds (cf.[B.B,
Lemma 1.6]), the first term of the right hand side of (6.7) becomes

- n 2e yeTr+2A (e F.)<T 67
E; B Av(ak f‘j)aj v(ek j)‘%keJ

-°h(‘%k8kfj)5§“ - (8, f )V%stkégﬁ ‘}

l-l-(Avf":j )Vekveké;'
2, \o VAR A AN

= - jz’,k':‘ J’V{(Bk fj)eJ +2(ekfj)vekej +ijgkvakej
- ((7 By j ' - fj‘7 a }'

by (6.3) and (6.4). Therefore we obtain

J H J U - - zl'l J, {(Qkﬁak "%‘ ek)u - NR(BK',U)ﬂk'}
k

ke



= 3¢v :JfHU . O.E-Dc
Therefore we have immediately :

Corollary 6.6, The Hilbert space of all L2 sections of
¢-1TN with respect to the inner product (V,U):= J‘ h(v,u)x1 ,
M
for sections V, W, has a complete orthonormal basis consisting of

the simultaneous eigensections of J’V, JPH, and %¢.




§7. The Canonical Variation of a Riemannian Submersion.

T7e1e Definition of the Canonical Variation. We retain the
situations in §6. Let ¢; (M,g)—3(N,h) be the Riemannian submersion

with totally geodesic fibers.

Definition 7.1. (cf.[B.B, p.191]) For each positive real number

t, let 9 be the unique Riemannian metric on M such that

(i) gt(uav) = g(u,v) for U:Ver's pemM,

(ii) The subspaces Hp and Vp are orthogonal each other

with respect to 9, at sach point p in M, and

(i15) g, (u,v) = t%a(u,v)  for u,veVy, pen.

Then @3 (M,gt)——e(N,h) is a Riemannian submersion with totally
geodesic fibers (cf.[B.B » Proposition 5.2]), which is called ths

canonical variation.

1en+1,...,t"1em} is an orthonormal

For each t> 0, {91,...,en,t-
local frame field on (m,gt) such that {t-1ei}i=n21 are vertical and
{ei}iB? are the horizontal lifts of {ai'}i=? with respect to g, .
Then the vertical (resp. horizontal) Jacobi operator tJ¢V (resp. tJ,H)

of the canonical varistion @; (M,g9.)— (N,h) satisfies that

b3gY = t72 3V, ana FaM oo g M
Therefore we have :
Proposition 7.2. The following formula hold :

t -2 H -2 -2 H
g =t 3," +3g70 =70 gy 4 (1-t7%) 34" .

Remark. This is the analogue of Proposition 5.3 in [B.B].



7.2, Due to Corollary 6.6 and Proposition 7.2, each eigenvalue

of tJP can be written as
(7.1) A+t

where A is the eigenvalue of 39H and M >0 is the eigenvalue of

J,V . Then the following two cases occur :

(1) g >0 , OT
(i1) p = 0.

In case of .(i), A+ t-2ﬁ goes to infinity when t—0. In
case of (ii), A + t-?r = X which does not depend on t . Since the
number of the eigenvalues of Jg smaller than a given number is finite,
there exists a small positive number ¢ such that for each 0<t< ¢,

the first eigenvalue A1(t3¢) coincides with the smallest eigenvalue

of tJﬁ vhen the case (ii) occurs. Then we have
t . v -1,
A ("2g) = Min {A; JoW = AW and Jg W = 0 for some OxWe[(¢ T
1V ¢ # #
= A,.(2 )
1Y idy 7!
because of Propositions 6.,4(ii) and 6.3. Therefore we obtain :
Theorem 7.3. Let ¢; (Myg)—3(N,h) be a Riemannian submersion
with totally geodesic fibers, and 9y » 04 t< o, the canonical variatio

(cf. Definition 7.1) of g with g4 = 9. Then there exists a

number §£€>0 such that for each 0¢t< g , we have
A (53g) = A (354)
10738 M Qg )

In particular, if (N,h) is stable, then the submersion ¢; (m,gt)-—ﬁ'

L (N,h) is stable for every 0Ct<E.



7.3. The typical examples of the Riemannian submersions with
totally geodesic fibers are the homogeneous Riemannian submersions
(cf.[B.B,§2]): Let G be a compact connected Lie group, and K H
closed subgroups of G. Let g (resp. k , h) be the Lie algebra of
G (resp. K , H). We choose subspaces h, (resp. p) of k (resp. g )
such that

k=h®h1 ’ with Ad(H) h, = h, , and

g=k®p , with Ad(K) p =9p .
Put m:= h1®p. Then

h@®m , with Ad(H) m =m .

Tn]
"

Let (-,-)h (resp. (',-)p ) be an Ad(H)-invariant (resp. Ad(K)=-
1
invariant ) inner product on h, (resp. p). Then we can define an

Ad(H)-invariant inner product (°")m on m by
(x1+x2,v1+vz)m i= (x1,v1)h1+(x2,vz)p, XqsYq €hy , Xp,Yo € po

Then the inner product (-,-)h1 (resp. (',')p » (*s°), ) ogives a
K-invariant (resp. G-invariant) Riemannian metric k (resp. h, g)

on K/H (resp. G/K , G/H ) 1t is knoun (cf.[B.B]) that the projection
#$; G/HD> xH+—>xK € G/K gives the Riemannian submersion of (G/H,q)

onto (G/K,h) with totally geodesic fibers (K/H,k).

In particular, these give the Hopf fibrations :

(1)  #, 3 5*™3 = sp(n+1)/3p(n) ——HE" = Sp(n+1)/5p(1)xSp(n

(11) $, 5 %"= su(n+1)/su(n)—> ce™ = su(n+1)/5(u(1)xu(n)).

Note that Sp(n+1)-invariant (resp. SU(n+1)-invariant) metrics h on

Hp" (resp. CPn) are unique up to a constant factor,.

since (HP",h) (resp. (CP™,h) ) is unstable (resp. stable )

I_.»P,’rcﬂ N rNi.‘\, e | osvey e



Proposition 7.4.

(1) For each Sp(n+1)-invariant metric g on g4n*3d _

Sp(n+1)/sp(n), the Riemannian submersion Py (54n+3,g)——>(HPn,h) is
unstable.,
(ii) For each Su(n+1)-invariant metric g on g2n*t

Su(n+1)/su(n), there exists a number € >0 such that for sach 0¢ t< €,

. the canonical variation ¢2 ; (52n+1,gt)——+(cpn,h) is stable.
The proof follows from Proposition 6.3 and Theorem 7.3.

Remark. Proposition 7.4 asserts that each odd dimensional

unit sphere 52n+1

» nz1, with the canonical wvariation 9y D t< E,
admits g non-constant stable harmonic map. 0On the contrary,

YeLoeXin [x]shoued that sach non~-constant harmonic map from the standard
unit sphere (Sm,can) » m23 , of constant curvature into arbitrary

Riemannian manifold is unstabls.

7.4, Next, let us study the case when t goes to infinity.
We retain the situations as in 7.1, Let us recall that the holonomy
group G of a fiber F of the submersion ¢g; (M,g)—(N,h) with
totally geodesic fibers is the group of all isometries of the fiber F
induced by the horizontal transports along the horizontal 1lifts of loops
in N based at the projection of F. It is known ([0.N, Theorem 5])
that G ={id} if and only if the submersion @ ; (M,9)—>(N,h) is
trivial, that is, there exist an isometry 72 of (M,g) and a
submanifold F of M such that M 1is the Riemannian product F xN

and 9!- pre1 , where pr is the projection of FxN onto N.

Theorem 7.5. Let ¢ ; (M,g)—(N,h) be the Riemannian

submersion with totally geodesic fibers. Assume that the holonomy



—

group G of a fiber F of the submersion ¢ ; (M,g)— (N,h)
does not act transitively on the fiber, and Index(idN)>'0 . Then the
index of the canonical veriation g ; (m,gt)—-a(N,h) goes to infinity

when t —oo,

Proof. Let CEYF) be the space of all functions f on C“«F)
invariant under the actions of G, Since each G-orbit has an open
G-invariant tubular neighborhood in M (cf.[Br, Theorem 2.2,p.306]),
there exists a non-constant function f in C:(F). Then the dimension
of CSYF) is infinite. Each element f in CE?F) can be extended
to a function f in the space C:(N) of all elements in C™(M) which
are invariant under the horizontal transport. Since the parallel
transport is isometry, the vertical Laplacian s, preserves C:YM)
invariant. Therefore there exist an infinite number of the eigenvalues
0¢ Fqis FZg eee € Fig... s of Av counted with their multiplicities

such that

o0
(7.2) - AV fi = Pi fi ’ 0 * fiGCv(f‘l), i = 1,2,.0. .

Now suppose that Indax(idN)>'D , that is, there exists a non-zero

slement W' in [(TN) such that Jjqu'=Aru" and ACO.

N

Then we have

t (FUT) = (t‘za Vaa,M (f f.:\?) (by Proposition 7.2 )
gl i S i

= t72(-a, £ 00T + £, 3 MUY (by (6.3) and FLECs (M)

!

(t™2p +A ) (F,U7) (by (6.5) and (7.2) ) .

That is, tJ, has the eigenvalues t-2ﬁ1+?~, i=1,2, see o When t
goes to infinity, the eigenvaluss t-2f& +A tend to the eigenvalue X .
Since A0, for each i=1,2,..., there exists a number N >0 such

that t"2W +A<O0 for tN. Therefore we have the desired conclusion.

Remark, Theorem 7.5 is a generalization of Corollar 3.3 in ISm]



§8. Homogeneous Riemannian submersions.

8.1. In this section, we consider the homogeneous Riemannian
submersions, OQur purpose is to express the Jacobi operator of the
homogeneous Riemannian submersions in terms of Lie algebras and
calculate the spectrum of the Jacobi operator of the Hopf fibration
using these results. We retain the situations as in 7.3.

Let G be a compact connected Lie group, and K,H, closed subgroups
of G. Let g be the Lie algebra of G consisting of all left invariar
vector fields on G. Let k,h be the subalgebras corresponding to K,H.
Put s:= dim G, m:= dim G/H , and n:= dim G/K. We choose an Ad(G)-~
invariant inner éroduct (*y*) on Ag » and h, (resp. p ) , the

orthogonal complement of h (resp. k) in k (resp. g). Then

k = h® h1 with Ad(H) h1 = h1 , and

g=k®p with Ad(K) p=1p .
Put m:= h1 @ p, then
g=h®@m with Ad(H) m = m.

In this section, we always assume the following :

Assumption (A) : We take the inner products (°")h1 , (-,-)p

(-,-)m es the restrictions to h,, p, m of the above Ad(G)-

’
invariant inner product (-,-) on g , respectively.

Now we consider the Riemannian submersion ﬁ ; G/H—» G/K admitting
the Riemannian metric g (resp. h) on G/H (resp. G/K) corresponding
to the inner product (:,+*) on m (resp. p ). since the induced
bundle E:= ¢ 'T(G/K) is identified with the sssociate bundle Gx, p ,
which is the space of the equivalence classes of (x,X)é& Gxp wunder the

equivalence relation (xh,Ad(h)X)~~—(x,X), for heH , we can identify



the space I"(E)'of‘ its sections with the following space :

Definition 8.1, Let C”(G,p) be the space of all smooth maps

of G into p. UWe define the subspace C:(G,p) of C°(G,p) by

ChEsp) = §FEC(G,p) 5 F(xn) = Aa(n)F(x), x€G, heH .

The identification § of [(£) with C(G,p), & Ch(6,p)—T(E), is

(8.1) P(Fr)(xH) := T“f(x)m s X €G-

Hera‘ F(x}K} is the tangent vector of G/K at the origin {K} correspon-
ding to f(x)&p , and Tx"' is the differential of the translation

Ty 3 G/K 3 yK+—> xyK € G/K. Then it turns out that ® is an isomor-
phism of C:(G,p) onto T(E). Under the G-actions on [(E) or
r:‘;|°(c;,p) defined by

(’l:x,,v)yH i= ’tx,vx-1yH s X,y€G, VE€T(E),

(‘CXF)(Y) = f(x-‘]Y) ’ x,ye 6 , f€ C:(G,p),

® is a G-isomorphism, that is,
. o0
(8.2) Q'Txf = TX,Q("): x€eG , f¢ CH(GsP)-

Note that the Jacobi operator Jy ; T(e)—>(e) is G-invariant,
that is,

(8.3) Ip( TowV) = Teal3gv) »  VET(E).

In fact, here we denote also by Ty» is the differential of the

translation T on G/H or G/K by x€&G. Then we have

» and 6317;(*" = T&ﬁc vV,

e =
Tx-1,VGi i x-1-. ej_

I;(-‘I*ei Tx-1* 6

for VET(E), x¢ G, where {ei}i_:‘ is an orthonormal local frame

i

field on (G/H,9). . Because of the expression (1.4) of Jg » we have



Furthermore we identify c:(c.p) with the subspace (C™(6)®p),

of the tensor product C (G)®p :

Definition 8.2. (c”(c)®p),, is by definition the subspace of

')
C*(G)®p consisting of all elements 2, f ®X, € CM(G)Qp satisfying
i=1

e ¢ >k
' 1Rh i@Ad(h)xi = - f®; for all heH.

Here (R F)(x) t= P(xh) , he€H, xeG, fec(c).

Under the G~action of C”(G)@p defined by
T (f®X) := T, feX , x , yeG, fE€C (G) , X€p ,

the subspace (t.':""(l’.:)@;:l)H is a G-submodule. The identification P/ of
c‘,’j(c,p) with (C*(G)ep), is given by

60
(8.4) V(f) = Z: fiexi ’ fé CH(G,D),
l=
where f(x) = Zn f‘i(x) xi s X€ G, and {xi}i—? is 8 fixed orthonormal
i=1 . -

basis of p with respect to ( , ). Then it turns out that ¥V is

a G-isomorphism of C:(G,p) onto (c”(c)sp)H :
(8.5) \Yﬁ-tx = Txiv [ XGG.

Definition B8.3. - Via @ and \If, we can define a G~invariant
~ o
operator J on (C (G)ep)H from the Jacobi operator Jg in such a

way that the following diagram is commutative :

-l
F(E) —2—s c2(6,p) — L (C(6)0p),

5 N

F(e) —F— c*(6,p) —E— (c™(0)8P),




By (8B.2), (B.3) and (B.5), the operator J is G-invariant , that is,

(8.6) et = 1.7, xeo.

Therefore the problem to determine the spectrum of Jﬂ is reduced to
the one of the operator J on (C“(G)@p)H . The main purpose of this
section is to express the operator 3 in terms of the Lie algebra g

of G for the above aim (cf. Theorem 8.11).

8.2, For the calculus, we take a neiborhood U in G and

a subset N (resp. NK) of G (resp. K) in such a way that

(1) N = Un exp(p), NK = Un 9"9(“1):

(ii) The map NxNKa(y,k)k—)yke NN, 1is a diffeomorphism,

K
(iii) The projection t, of G onto G/K is a diffeomor-
phism of N onto a neighborhood ﬂk(N) of the origin {K} in G/K, and
(iv) the projection 7m, of G onto G/H is a diffeomor-
phism of NeN  onto a neighborhood ﬂh(N~NK) of the origin {H} in G/H,
uhere NeN  i= {yk ; y€N, keNK}.

Nouw for an element X¢m = h, ® p , define a vector field x* on
the neighborhood ﬂh(N3NK) of {H} in G/H by

' .= L]
(8.7) Xew 7= G Xg€ Tuub/H 5 X € NN o

Similarly, for an element X €p , define a vector field X on the

neighborhood Ik(N) of {K} in G/K by

Let {xi}iaT be an orthonormal basis of (m,( , )) such that {xi}isf
Ay m
(resp. {xi}i=n$1) is a basis of p (resp. h1). Then {Xi}1'1 is an

orthonormal frame field on T (NeN.) such that x;, n+t1¢i¢m, are



vertical and x:, 1<i<n , ' are horizontal. And {Yi}i—? is also an

orthonormal frame field on Kk(N).

Remark. In general, X;, 1<i<n, are not necessarily basic vector

fields,

For esvery fec:(G,p), we can express V = P (f)e [(E) as

n
Vo = %::1 Pi(x) TuXygq » X€G

where f(x) = " fi(x) X; » X€G. Moreover, putting

Ci=
n
(8.9) Ad(k)X; = 2;1 aij(k)xj , kek ,
(8.10) Fi(ykH) 2= ‘:3,: Pi(yk) ag5(k) » yeN , ken ,

the section V can be expressed on the neighborhood ﬂh(N'NK) as
~ v
(8.11) v S"F.X.,
Sor 373
~ ~

whers fj is a function (8.10) on ﬂh(N.NK) and xj is a local
section of E corresponding to the vector field Yj on nh(N-NK)(cf.1.‘
Then we have for Xé&m,

(8.12) TV = Z”(x‘?’.)?f+?.6§'\7 on T, (N°N,).
X" 1 J J J x".] H K

Here (V&Xj)xH » x&N°N,, is given as follous :

(8.13) M) = VT Dk o

where W is a locally defined vector field on G/K satisfying Wk =
y&x;H (cfe (1.1) or (6.4)), and NV’ is the Levi-Civita connection

of (G/K,q). This vector field W can be actually chosen as follouws @

(8.14) U = 0 for XE h1 »



(8.15) W = (Ad(k(+))X) (cf. (B8.8)), for Xxep.

In fact, since q;x;H = 0 for X¢h,, we have (8.14). For (8.15),
let X € p. For a fixed point x = y(x)k(x), y(x)é€ N, k(x)e-NK ’

we have

X = Tyix)s Ti(x)n
T, (x)e (A (K (x))X)g

= (ﬁﬁ(k(X))x)y(x)K ’
so we can choose W as in (B8.15). By (8.14), we get, for Xehy o

(8:16)  (uVdyy = Z 1 TFHOH) Rydyyy -

By (8.15), we get in particular, for Xép ,
(8.17) MO K= ("W ¥
. K= VX X3k -
Morsover we get, for Xeé¢p ,
(8.18) (Vﬁﬁj){w% ([x,[x,xj]p]p){,qe TKE/K

wvhere Xp is the p-component of X corresponding to the decomposition
g =k + p.
Proof of (8.18). Let us recall the following :

Lemma B,4, For every Y,Z¢p ,

NV%~7 = %([Z.Yjp) , along the curve E(t)K in G/K

_for a sufficiently small t such that §(t) := exp(tZ) belongs to N.

This lemma follows from Theorems 8.1, 10.1 and 13.2 in [No], due

to the assumption (A).



~ oA N -
(6.19) (Ve Xy = OOy Nvuxj)ia}.
where W is in (B8.15). Then for the curve 6(t):= exp(tX)K in G/K,
the right hand side of (8.19) = ¢ NP¢(t)-1(NVu7j)s(t>lt=o ,

where Npc(t) is the parallel transprort of (G/K,g) along the curve
6(t). Here us(t) = Ys(t) » because (8.15) and axp(tx) € N, and
then k(€(t)) = e. Then we have

(Nvuyj)G(t) B (NVY Xi)s(t) -2 (DX 3T ()
by Lemma 8.4, Therefore

'g_t Npc;(t)“‘l (X, X 56(t)'t=(

the right hand side of (8.19) j]p

[}
N =

(VR T T kg

[\ Y

nl-

([X’ [X'xj]p]p){K} ’

again by Lemma 8.4, which implies (8.18).

Summing up ths above, we have :

Lemma B8.5. Far V = &(f), feéC.(G,p), we have
(1) (ﬁx.%u)w: %;';' %(x“'f\:_'j) Xjsky  » for Xeny
(11) V¥ vy, = };: Xl X F3) Xyt Ogf TN T
+ 3 TGO T g
for X¢€p.

» ¥y x>
OQur next task is to calculate ﬁH}rj and ﬁH}x fj , for Xém .,



B Lemma B8.6.

(i) For X€h, , we have
x":}F’J = XfJ(e) + ?g: fi(B) ([X,xi], Xj) R and
X X5 = x2fj(e)+z Zi'.g:(xfi)(e)([x,xi],xj)

+ ¥=? Fi(e)([xp[xsxi]]oxj) .

(ii) For X€ép , we have

] XT3 = xf3(e) »  and w'FY = xfy(e) .

Proof follows immediately from the definition of FS (8.9),(8.10) and
X (8.7).
Lemma 8.7.

(fZ&‘x.v)H =0 for all Xé¢m , and VeJ(E).

Proof, Due to the assumption (A), we have
(V§~X‘kﬂ}= 0 for X€ém,
by Theorems 8.1, 13.1 in [No). By (8.13) or (1.1), we have Lemma B.7.

Moreover, it is known (cf.[K.N]) that under the assumption (A),

the curvature tensor NR of (G/K,h) is given by
-(NR(X‘Y)Z){K}- '};'[x’[Y'Z]plp - -}[Y,[X,Z]p]p = %[[X’Y]p’z]p
= [[X,Y]R,Z] ’ XsY,2€P »

wvhere we identify X¢p with the tangent vector ﬁqe RMG/K. Then we g€



r

Lemma 8.8. For Vv = &(f) , re'c:(c,p), we have

0 s XE€ h1

- ("R(#X® ,V)¢.x'){K} =
?.:'1‘ fi(e){%[X.[Xi.X]p]p - —}[[x,xi]p,x]p

- Ux,xi]k,x] } , XEp.

Summing up Lemmas 8,5 ~8.8, we obtain :

Proposition 8.9. For V = §(f) , f = 2N fiXy EC:(G,P).
i=1

the evaluation of 34V at the origin {H} in G/H is given by

(J’V)'].H}g Zm Zn (szfj)(E) Xj{K}

k=1 Jj=1

-z " (xkfj)(e)[xk’xj}p{}(_}

kK, j=1

-2 2 "L (e [ xslg

k=n+1 j=

- 2" 2" (e [.xk’[.xk’xj]]{}(}

k=n+1 j=1

" rs(e) [[xk,xj]k,xk]{K} .

Ky §=1

8.3. Before we state Theorem 8.11, we have to prepare some

notations :

Definition 8.10. Ve define the operators D0y, i=0,1,..0,56,

acting on C”(G)@p by

2
D.:= 2.° X . “®1,
o k=1 k

Dy:= Z"' szel ’
k=1

02:- §-: XKGPp.ad(Xk) »



m
TN X, ®ad (X, )
3 L L R (X)),

Dyi= 185 " ad(x)?,
K=n+1

Dgi= 1 e>gi: ad (X))o P, sad (X, ),

2
Det= 2, % x ‘@1
6 kemt1 K
where Pp » P are the projection of g =k®p onto p, k , respec-
tively, {xk}k=? is an orthonormal basis of (g,( , )) such that
2] m S : .

{xi}i=1 (resp. {xi}i=n+1’ {Xi}i=m+1 ) is a basis of p (resp. h,sh )
I is the identity operator of C (G), p or C (G)p, and  (XF)(x):=

%{ f(x exp(tx))lt=U , for Xé€g , f¢€ Cw(G), and xe¢G.

It turns out all Di’ i=0,1,+¢.,6, do not depend on the choice of
the above basis {Xk}k‘? and they are G-invariant, i.e., Di' T, =

Ty*D; » for ,all xe¢G. Noting that
Ry eXf = Ad(h)X (R,F) , FeC (G), heH, and Xeg ,

all Di preserve the subspace (C"(G)Gp)H invariant , because of

independency on the choice of the basis {xk}k=? . We also note that

8 2 -]
(8.21) Dg = IakZ;.m” ad(X, ) on (C®(G)®p), »

because of definitions of (C”(G)ep)H and Dg . Then by Proposition 8.

we obtain :

Theorem B8.11. Let ¢ be the Riemannian submersion of (G/H,9)
onto (G/K,h) whose metrics g , h come from the Ad(G)=-invariant
[oned

inner product ( , ) on the Lie algebra g . Then the opsrator J

of (c"(G)GP)“ corresponding to the Jacobi operator Qﬂ of the



submersion ¥ coincides with the operator

vhere all Di are defined in Definition 8.10.

Proof. Proposition 8,9 angd (8.21) say that

T (ve ) (e) =0 (V3 ) (e),

for every V& [T(E). For every x¢ G, we have

]

TR = T_+T(WE ) (e)
X

Jva! T19)(0)

o(m'“cx V) (e)

-1»

T 1 D(¥E W) (e) = D(WE W) (e). n.E.D.
X
As applications of Theorem 8.11, we obtain

Corollary B.12. Let ¢ be the Riemannian submersion of (G/H,qg
onto (G/K,h) whose metrics g , h come from thé Ad(G)-invariant
inner product (+,¢) on the Lie algebra g. Assume that (G/K,h)
is Riemannian symmetric, g is semi-simple , and (X,Y) := - F(X,Y),

X,Yég , wvhere F 1is the Killing form of g .

(i) Then the operator 3 of (C“(G)@p)H corresponding to the

Jacobi operator Jy of the submersion $ coincides with
D:= - DD - 203 + 206 .
Morsover we assume H = {id}. Then the operator 3 coincides with

0:3-00-203,



where Do’ D3 and 06 are defined in Definition 8.10.

(ii) In particular, the spectrum of the Jacobi operator Jg
of the Hopf fibering @¢; (su(2),g) = (53,9)——9(SU(2)/S(U(1)xU(1)),h) =
(Sz,h) is given as follouws :

The eigenvalues : %!(Q+1)+i, %Q(£+1)-i ,
their multiplicities : 20+1,

where L varies over the sst {lé% 1; 0z U} ', and 1 varies over
the set §£,2-1,...,1-2,-2}. Then the index and the nullity are given

_ as Index(p) = 4 and Nullity(¢) = 7.

Proof. (i) since (G/K,h) is symmetric, i.e., [p,p]C k ,

we have Dy = 0 and Dg = I®'kzn at:i()(k)2 . Moreover, we have
=1

Og = - % 1 and D, + Dg = - % 1, which implies (i). For it follous

from that (2" 2d(x)(0),Y) = 7 F(KY), and (X ° ad (X, )2 (X), ¥

= % F(X,Y) , for X,Y€p (cf.[T.K, p.212]). The second equality is
clear from that Dg = 0 when H = {id}.

(ii) Let us recall the computation in [U1,§5]; In this case,

G = su(2), =0

K = s(u(1)xu(1)) ={(BD é—g-w>3 O¢ B } '

(X,Y) = - 4 Trace(XY), X,Y€g = su(2) ,
k = {H1}n ’

p={W/Z, WAZ Yy s

=1 1 0 -1,0 .. o=1,01
where H,:= ~— Ug = 27 ' ( ) and VvV, := 2" '( ) .
1% 05 (g -1)» U« oo « 10

{H1 s W/d2, uu/li} is an orthonormal basis of (g,(,)). We have only

00
to know the actions of D, = H1®ad(H1) and D, = C®I on C (G)or,

2

where C is the Casimir operator C := Hqyo ot ukz/z + V¢2/2-



A complete orthogonal basis of the space C:(G) of complex valued

smooth functions on G with respect to the inner product J f(x) Fr{x)d:
G

f, f1¢ CE(G), with the Haar measure dx, is given as follous (Peter-
Weyl theorem) : Let D :={9_og ;Q(—% 1,02 0}. For ) =Qa¢D ,
let (UA,RA) be the irreducible unitary representation of G with
highest weight A, and {Vi}i;‘?‘\’ d, := dim(V,), an orthonormal basis

of V, with respect to the G-invariant inner product (( , )) on V.

Put Wikj(x) 1= ((nk(x)vi,vj)), 1€1, j<d, . Then

X vc;j(x) = ((n“(x)vc"(x)vi,vj)). Xe g, 158,350

and {I;H s AED -, 1§i,j§dx} is an orthogonal basis of Cﬁ(G).

For A =1« with 16% 1,220, V, has an orthonormal basis {vm ;
m=l’ 2-1 pgoeeey 1"1""-} SUCh that

N

'n.’\(H,l)vm =>=—mv_ , for each m .

J2
Since ™(C) = %l(ﬁ+1) I on V, , we get
J=

A : A

c wN(x) = ZERH1) TR (x) , For 1,3 = L,A-1,..0,1-0,-0
On the other hand,
1 1
ad (H,) (U /J2) = _F'z'("“/ﬁ) and ad(Hqy) (W /J2) = - T‘E(U“/ﬁ)'

A o
Then the action of D5 = H1@ad(H1) on ‘9)\@‘]’ where 3&*{7(13' ; 1&1,39:1*}&

is equivalent to the matrix

>
o
o
[}
-

S)l-
(@)



=

where A, := 7§r i, i=f,0-1,00e,1-0,~1. Therefore the eigenvalues of
D3 on Jxe;: are given by + % s 1 =0,0-1,00e,1=0,-2, Hence the spectru

of D= - D, --2D3 is given as in (ii). Q.E.D.

Instead of the assumption of Corollary 8.12, we now assume that
K = H. In this case, we obtain the formula of J of the Jacobi
operator Jid of the identity map of a normally homogeneous space
(G/H,g). Here we have k = h, hy =0, m=p and Dy =D, =20 .

Then we obtain :

Corollary B8.13. Let (G/H,g) be a normally homogeneous space,
that is, the metric g is induced from the Ad(G)-invariant inner
product (*,*) on the Lie algebra g. Then the operator T of
(C"(G)@m)H corresponding to the Jacobi operator J;, of the identity

map of (G/H,g) coincides with
D = - Da - 02 + DS + 06 ,

where m is the orthogonal complement of h in g with respect to
(¢+,+) and Dy » Dy, Dg and Dg are defined in Definition 8.10.

In particular, assume that (G/h,g) is Riemannian symmetric, g is
semi-simple, and (X,Y):= - F(X,Y), X,Y g, where F is the Killing

form of g. Then

D.-Do-l’

where I is the identity map of (C“(G)@m)H.

-

Proof. The last formula follows from 02 =0 and DS+06=~I

Remark, The last formula D = =- D, = 1 for the Jacobi operator

of the identity map of a Riemannian symmetric Space was stated in [Na].
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