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GLOBAL BOUNDS FOR THE BETTI NUMBERS OF REGULAR

FIBERS OF DIFFERENTIABLE MAPPINGS

Y. Yomdin

INTRODUCTION

It is well known, that the Betti numbers of any fiber
p-1(€) of a polynomial mapping p : R" » g , are bounded
by some constants, depending only on n, m and the degree
of p ( see e.g. [7] )."

Now let £ be a k times differentiable mapping of a boun-
ded domain, with all the Jerivatives of order k , bounded
by a constant Mk . We can think Mk as the measure of a
deviation of £ from a polynomial mapping of degree k-1 ;
as far as the &eviation in a Cj ~ norm is concerned, j S k-1,
the Taylor formula gives the precise expression for it.

The important general phenomenon is that also in much more
delicate questions, concerning the topology and the geometry
of the mappinq‘ f , its "deviation" from the "polynomial
behavior” can be bounded in terms of My .

In [11] this fact was established for the structure
of critical points and-values of £ , and in [12] for
some geometric properties of its fibers.

The aim of the present paper is to extend in the same



spirit to k-smooth mappings the propcrty_of'po;Ynonial<
'onés. given above: the boundness of thgrnqtg;‘numbers of the
fibers.

Clearly, it is impossible to bound the Betti numbers of
@ich fiber: any closed set can be the set of zeroes of a
¢® - smooth function. So the proper way éo‘gcneralize.tha
above property of polynomials is the ’fgl_loﬁu‘;g :

First, we prove for any £ the exiitchéc of fibers with
the Betti numbers, bounded by constants, depending only on.
Hk A( and, of‘courso, on k and on thg'dimbnsionj and the
qizé of the doniin and the image of ‘ff).

Secondly, we estimite, in the same terms, the integral
éomplexity of the fibers of f . 1In particulér, we an:ﬁer
the question, concerning the'conditions of 1ntéqfability
of the Banach indicatrix of a differentiahlc mappinq, which
was open for a long time ( see [1], (2] [91 ).

All the inequalities below have the following form: they
cdn:ist‘of a term, corresponding to the case of pblYnomialS,
and of a "correction term", containing the factor M . Thus,
for M =0, i.e. for £ a polynomial of degree k-1, we
obtiin, up to constants, the usual bounds.

Another important remark concerns the existense results
helow:vin many cases we prove the existence of at least one
value £ in the image of £ , for which the Betti numbers
of the fiber £ '(f) are bounded by suitable constants.
Although we do not touch in this paper the question of the
axp;icit finding of such values, we éhoul@ mention that.the
corresponding results can be brought to a rather effective

form: for instance, we can prove that in any regular net



with a sufficiently small ( explicitly given ) step, there

are points § with the required properties.

The author would like to thank the Max-Planck-Institut
fiir Mathematik, where this paper was written, for its support
and kind hospitality.

§1. CONNECTION BETWEEN TOPOLOGY.OF FIBERS AND GEOMETRY OF
CRITICAL VALUES

Although all the results below remain valid, with minor
modifications, for any compact manifold, we shall consider
only the mappings, defined on a closed ball Bg of radius
b o in R" . In this case all the constants involved can be
given explicitly.

We say that the mapping £ : Bg + R®  is q - -smooth,
where g=p+a, p21 - an integer, 0 <a £ 1 , if
£ is p times continuously differentiable on B? . and the

P = th derivative aPs satisfy on Bg the H8lder condition:
(1) laPe(x) - aPen) |l s Llx - yl® ,

with some constant L .

Let M, (f) = max [la'tw)l ., 1=0,1, ..., p,
y € Br

M (f) = infinum of L in (1), and let Ry(f) = Mj(f)rj ,
j=0,1, ... , Prq . ( All the Euclidean spaces R® and
the spaces of their linear and multilinear mappings are

considered with the usual Euclidean norm ).



We always assume below that n 2 m. Let Z(f) Dbe
the set of critical points of f, i.e. of points x € er‘ ’
where rank df(x) < m , or, if x belongs to the boun-

dary s’;" of B‘l‘_ , rank d(f/s§'1) < m. Let

A(f) = f£(I(f)) e« R® be the set of critical values of f .

For £ € R® we denote by Y the fiber f-1(E) of £

3
over § . If £ is a regular value of f , i.e. § ¢ A(f),
YE is a compact n-m - dimensional manifold. We denote

by bi(YE) y 1i=0, ... . n=-m, the i-th Betti number

of Yg .

Let p(E) = d(E,A(f)) be the distance from £ to A(f).

Theorem 1.1. Let £ : BI; - R® be a g-smooth mapping,
g =p +a . Then for any regular value § € R® of f ’

and i=0, ... , n=m,

B, » p(g) 2 Rq(f)

bi(Y ) s

q
Bi(Rq(f)/P(E)) ¢+ pP(E) = Rq(f)

where the constants Bi r 1=0, ... , n-m , depend only

on n,m and p .

Proof. Below K j denote the constants, dependir7y only
on n, m, p. We also omit sometimes the index £ in the
notations of A(f), Mi(f) and Ri(f) .

Denote by B an open ball of radius p(E) , centered
at the given regular value £ € R®~ A(f). all the points
§' € B are the reqular values both of f and of the res-

triction f/si?,-1 . Hence f : N+ B, where N = f.1 (B) ,



is a trivial fibration, and, in particular, we can find a

retraction ®n : N+ Y n/Y = Id.

E ?
We shall construct a semialgebraic set S « N , containing

YE . such that the Betti numbers of S satisfy inequalities

of theorem 1.1. The existence of a retraction =« : S =+ Y

g
then shows that the Betti numbers of YE do not exceed
those of S .

§
For a given § > 0 let I be the cube
g k1...kpn
{x = (%gs.c0x ) € R? / ky8 S xg 5 (k+1)8 . 3 = 1,...,0)
ky €% . Let Ig , B=1, ... , K(6) , be those of

the cubes I;s( k. ? which intrsect 8t . Clearly, for
10.0 n r

§ s r, K(§) s K, (x/8)" .

For each B8 =1, ... , K(§) , take some point

Xg € Ig n B'; + and let Pg be the Taylor polynomial

of degree p of f at Xg - By Taylor formula we have

§ . - pb q
for each x € Ip : | £(x) PB(x)II S K, Mqé .

Now take § = min ( r, (p(E)/4K2Mq)1/q ) and let

6 [ 1
s = {xe€ I2nBL/[|Pa(x) - &|| S 50(E0}, S = U S, .
B 8" /ll®g s 3 1585K(8) B

S is a semialgebraic set and we have ch S « N .

Indeed, by the choice of & , | f(x) - Pg(x)ll s 1p(g) for

$

X € Ig . Hence, if x € ¥Y_.n IB ' ”pg(x) -]l =

g

Il Pg(x) - £(x)]|| s %o(s) » l.e. x € S; c §.
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Conversly, for x € 8§ HE(x) -~ E||s||£(x) - Pg(x)“ *

8 ’
“‘Pg(x) -€|l s %p(g) + %p(g) < p(g) . i.e. X € N .

It remains to estimate the Betti numbers of S . Each
sB is defined by polynomial inequalities, whose number
depend only on n , and whose degrees do not exceed 2p .

The same is true for any nonempty intersection of SB

s

( which occurs only if the corresponding cubes IB

are
adjoint ). Hence for each i =0, ... , n-m,

bt( s&1n... nSBj ) 4 Bi , where the constants Bi

_dépend 6nly on n,m and p ( Some explicit estimates
of Bi one can find by methods of [6},([7]),[8])] or[10] ).

Using the Mayer - Vietoris sequence, we obtain immedi-
: _ n
ately, that b;(Ss) s BJ Ky K(§) s B} K, K, (x/8)" =
B K3 X, (k™MD Yo(en™T < By (R /0(en™9 .

These computations are valid for p(g) $ Rq s 4!(211q ’
since in this case r 2 (p(E)/dxzuq)”q , and we take
§ equal to the last number. But for plE) > Rq we

can restrict our consideration to the ball of radius R

at £ . Theorem 1.1 is proved.

Eaiy examples show that the bound of theorem 1.1 is
sharp, up to constants.
§2. EXISTENCE OF FIBERS WITH SIMPLE TOPOLOGY

In this section we combain the result of theorem 1.1

with the information on the geometry of critical values of £,



obtained in [11] .

For a q - smooth £ : 82 + R define R1q(f) as

follows: R

- m=1 1/m
1q(f) 2(Vm A (R1 (£) +Rq(f)) Rq(f)) ’

where Vm is the volume of the unit ball in Rm , and

A = A(n,m,p), depending only on n, m, p, is the
maximum of the constants ii(n,m,p), i=0,...,m, defined
in theorem 1.1, [11] .
Denote n-m+1 by s . Below we assume that the smoothness
q of £ 1is greater than s , and hence, by the Sard theorem,

almost all values of f are regular.

Theorem 2.1. Let £ : Bg - R® be a g - smooth

mapping, q > s . Then in any set G c R® there is

a reqular value £ of £ , such that for i = 0,...,n=-n,

m

Bi ’ ' m({G) 2 R1q

(£)

)
-s m
si(n1q(f)/m(c)) a=s , m(G) $R1q(f)

where m(G) denotes the Lebesgue measure of G .

Proof. Let G c R® with m(G) =n > 0 be given.
According to theorem 1.1, it is sufficient to find a point
E € G, which is "far away” from A(f).

We shall use theorem 1.1, [11], wich gives an upper bound
for the ¢ - entropy of A(f) ( see [2] ), or, which is
the same, for the minimal number M(e,A(f)) of balls of
a given radius ¢ > 0, covering A(f). The following form
of this bound, which can be deduced easily from the original

general one, is appropriate for our case:



For any ¢ $ Rq(f).

(2) Mle,8(8) 5 A (/)™ R (£)/6)%/ TR, (21 4R

Now let ¢ > 0, ¢ § Rq + be fixed. Cover A by
M(e,A) balls of radius ¢ , and let Qe be the union
of open balls of radius 2¢ , centered at the same points.
ae contains an ¢ - neighborhood of A , and hence for
any £ € o~ ne P da(£,4) 2 € and by theorem 1.1,

n/q
bi(Y ) 8 Bi(Rq/e) .

3
Denote by Ci(t) the set of points £ ¢ Rp, for
n/q
which bi(YE) > t . We obtain Ci(Bi(Rq/e) ) e q

for ¢ s R_, or Ci(t) c Q

q + where ¢ (t) Rq(Bi/t)

e (t)
t 2 Bi L]
By (2) for the measure of QE we have:

m 1 - s8/q v m-1
m{Q_) s vmi'e M(e,A) s vmm (;/nq) (R1+Rq) Rys OF

m 1 - s/q
(3) m(Qe) S R1q(e/Rq)v .

Substituting here the value of ¢(t) as above, we

obtain the following:

Proposition 2.2.

A n‘;‘ , 0St<B
m(Ci(t)) s { q-s
m n

Rig (Bilt;) ' t2B

The first inequality here means simply, that b,(x) >0



cly for £ € £(B), ad £(8)) clearly is contained in
a ball of radius R, .

Now if m(Ci(t)) < n = mG, then G cntains same
points ¢ ¢ Ci(t) + 1l.e. with bi(YE) S t . It remains
to note that by proposition 2.2, m(ci(t)) < n is satis-
for t = By , if n > R?é + and for any

n

m, s m
t > Bi (R1q/”) ¢+ forn s R

1q Theorem 2.1 is proved.

Notice that the use of the € = entropy of critical
values instead of the Lebesgue or the_Hausdorff measure,
and, respectively, the use of the stronger theorem 1.1 [11]
instead of the Sard theorem, is the crucial point here:
no bounds on the measure of A(f) allow to find points
"far away" from this set.

The fiber Y£ in theorem 2.1 can occure to be
empty, for instance, if all the points of B: are critical
for £ . Now we consider situations, where nonempty
fibers with simple topological structure can be found.
Corollary 2.3. Let f : B. + ™ be gq - smooth,

q > 8, and let m(f(Bg)) ®=n > 0 . Then there exists

3 nonempty fiber YE of £ with

B, , : n 2 R1q(f)
bi(YE) s { _n_
m g-s m
B, (R1q(f)/n) ' n s R1q(f) .

Especially simple form these inequalities have in the

case m=1:
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cOroll;ry 2.4. Let £ : B: + R be a g - smooth function,
q > n. Then in any set G « R with m(G) > 0,
there is a point ¢ with

bi(Yc) s : n
qn S 4AR_(£)
Bi(émq(f)/m(G)) »m(G) S a
In particular, for a = min f, b = max £, there is
c, a < c¢c < b, such that

By b-a 2 ‘IARq(f)

b, (¥.) s { , _n_
By (4AR_(£)/(b-2)) T, b-a' s 4AR_ ()

Let us formulate separately one important special case:

Corollary 2.5. Let £ : er‘ + R be a g - smooth function,
q >n, and let max £ - min £ 2 ‘tARq(f). Then
there exists ¢, min £f < ¢ < max £ , such that h.i(Yc) s Bi‘

where the constant B i depends only on n and p.

This corollary can be interpreted as the appearance of
a "near-polynomiality” effect: if f is sufficiently
close to a polynomial, in the sense that Rq(f) is suffi-
ciently small with respect to max £ - min £ , then the
Betti numbers of at least one nonempty fiber of f satisfy
exactly the same kind of inequalities as the Betti numbers
of the polynomial fibers.

It is interesting to compare this fact with the result
of [12], which indicates another appearance of the same
effect: if for a q - smooth f , ma;cf - min £f 2
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qlzqnq(f), then any fiber Yc of £ is similar to the fibers

of a polynomial of degree p in the following sense: Yc is
contained in a countable union of compact smooth hypersur-
faces in Rp, "many" straight lines cross Yc in at most
P points, and the n-1 - volume v(Yc) is bounded by
rn-!

K « where K depends only on n and p. However, easy

examples show, that the Betti numbers of some fibers of £

can be infinite.

The inequality of theorem 2.1 1is rather precise. In
example 1, §6, VI, (2] , for any n and q > n the func~-

tion £ : B? + R is built with the following properties:

i. £ s g - smooth.
ii. For any n > 0 there is an interval

In c R of length n , such that for any c¢ € In '

by 2 R(/m™3 , 1=0, ..., n-1.

Hence the degree of 1/m(G) 1in the bounds for bi

cannot be smaller than n/q . Our value 5%3 is

"asymptotically™ sharp, for q =+ =« .,

Theorem 2.1 implies also the following fact: if there
is at least one point x € 82 » Wwhere the rank of df(x)
is maximal ( equal to m ), then the Betti numbers of some
nonempty fibers of £ can be effectively bounded. As usual
in our “quantitative” approach, we must not simply assume
the nondegeneracy of the differential of £, but to measure

the degree of this nondegeneracy.
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Let for a linear mapping L : R+ R® y w(L) be
the the minimal semiaxis of the ellipsoid L(B?) « R® . For

a smooth £ : Bg + R®  define vy (£) as r max . w(df(x)).
XxXeB
r

We also denote by R,, (£) the constant 153(1/Vm)vhm(k1q(f)kz(ﬂ

To simplify the expressions below, we assume, that
y{f}) s Rz(f) .

Theorem 2.6. Let £ : 32 + R® be a q - smooth mapping,
q > s, with 0 < y(f) s Rz(f) . Then there exists a

nonempty fiber YE of £ with

B, . y(€£) 2 R,, (f)

q-s
By (R (DY (ENT2 , v () 5 Ry (6)

12q

Proof. ©Fix some x € Bg with w = (w(df(x)) maximal.
Now let P rhe the m - dimensional plane through x, for
which w(df(x)/P) = . |

Easy estimates, repeating the proof of the inverse function
theorem, show that the ball of radius m/3M2 in P
( oxr the part of this ball, containing in Bﬁ ) is mapped
by £ diffeomorphically, and its image contains the ball

of radius m2/20M2 = y(f)2/20R2(f). Hence
m(f(Bg)) 2 Vh[y(f)zlzonz(f)]m . Substituting this value

in the inequality of corollary 2.3, we obtain the required

result.

Studying in more detail the structure - of f in the case
when rank df ¢ m everywhere, one can prove the existence

of a nonempty fiber of £ with the Betti numbers, bounded
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by the constants, depending only on Rq(f) and the
diameter of the image f(B:), for any sufficiently smooth
mapping £ : Bﬁ-»Rm , with no assumptions of nondegeneracy.
This proof requires considerations, somewhat different from

the ones used in this paper, and it will appear separately.

§3. INTEGRAL COMPLEXITY OF THE FIBERS

In this section we give the bounds for the integrals of

bi(YE),‘ when £ runs over R® .

Theorem 3.1. let £ : B: - R® be a q - smooth mapping,

q>s, and let v > 0 be given. Then for i =0, ... , n-m,

q-

[ byirdg s B) [V RY(E) + Ry (D) /e ™ atl .
m
R 1
Proof. By the Fubini theorem, [ by(Y.)dE = | mic, ('V)ae

RS 0

and by proposition 2.2, the last integral is bounded by

Bf © as
m 1/uy n - V) m
f v Ry dt  + ju RigBy/t '™ % ae = BivE} +
0 Bi
® a-s

B:R?q { (1/€") ®Y 4t' . Theorem is proved.
1
Theorem 3.1, in particular, answers the following
question, which sometimes is called the question of integ-
rability of the Banach indicatrix: for given n 2 m and
v > 0 to find gq(n,m,v) such that for any gq - smooth

nmapping £ : R + R® with compact support, q > q(n,m,v),



14

f bg(Y JAdE < = ( and, in particular, to prove the

£

existence of such a q(n,m,v) ).

Some special cases have been settled: the case m=vu = 1,
n arbitrary - in (9], the case m = 1, n and v arbitrary -
in {2], the cases v =1, n2m arbitrary and n =m,
v arbitrary - in [1] .

Theorem 3.1 implies immediately the following:

Corollary 3.2. For f : Bg +®® -a g-smooth mapping,
q=-s

q >s8, and for a given v , 0 s v« 5
v v o
[ byl¥)de < B IV WK (£) + RS (f)q_nu_sl <

rR

In particular, gqin,m,u) S vn+ 8 = (u+l)n=-m + 1 .

Examples of [2] show, that gq(n,m,v) 2 un, so

our bound for q(n,m,uv) is sharp asymptotically, for uv-—+= .

§4. VOLUME OF-THE FIBERS

In this section, using the results of §3 , we study
the distribution of the volume of regular fibers of £. Here
it is convenient first to obtain the integral bounds, and
then to deduce the existence of fibers with “small" volume.

Let for § a regular value of £ : Bg + ® R v(YE)
denote the n-m - dimensional volume of the compact

n-m - dimensional submanifold Y in AR“.
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Theorem 4.1. Let £ :B_-+R be a g - smooth mapping,

v 2 1. Aassume that q > mu + 1 . Then

v U v _(n-m)v ~
i@ vy )l"de s B C r (v, R (£) + R} (f)q_mv_1] < =,

where the constant C depend only on n and m .

Proof. By the standard integral-geometric formula,

viY,) = [ DbylY

%

£ £ n L)dL , where G: is the space

of all the m - dimensional planes in rR"® with the standard
measure dL . bO(Yi N L) here for almost all L is

simply the number of points in YE nkL.

The integration above runs, in fact, only over the set

H c Gﬁ of planes L, intersecting the ball B_ , and

n
r
the measure of H in G: is equal to et . where

C depends only on n and nm.

Hence | [v(YE)]udg = [ alf byl n L)arlv.

e " H

By the H6lder inequality,

f bo(YE nLa s (f [bo(YE n L)]“dL)1/°(I 1 an) /Y’ '
H H H
where vt ow e Hence

[f byly, n mawlV s ¢Vl mmilv-h) [by (¥, 0 1Y a,
H H
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and by the Fubini theorem

[ Ivx)1%ag s cvTt =) eoarr b (v, n 1) 1Va
3 0°°¢
rR® B R®

Now since Ln B: is the ball of radius § r in

L = R and since all the derivatives of the resgtriction

f/L do not exceed those of £, we have by corollary 3.2:

v ) m m my
Im[bo(‘zE annl’aE s BIVRY « Ry, —im] , and
R
v V_ (n-m)u_u m m my
imIV(YE)] ag s Cr By [V,Ry + Riq q_mu_1] .
Theorem 4.1 is proved.
The question of integrability of v(¥,)’ was also

1
studied for a long time: for n =2, m = 1 it was settled

in [4], and in a general case in (5] . However, our

estimate of maximal v , for which the integral | [v(YE)]udE
M
-1
converges, namely, v < g is very close to the best
possible, v s q/m , and is approximately twice better,
than the Merkov's one [5]:v < g/2m + 1 .
Using the integral bound of theorem 4.1, we can obtain

the existence of regular fibers with the “small" volume:

Theoren 4.2. Let f : Bg +R* be a q - smooth mapping,

qQ > m#1 . Then for any § < 1;71  there is a constant

K, depending only on R, (f), Ry(£)s p , n, m and p, such
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m

that in any G <R there is £ with

viY.) s K(1i/m(e) /8 .

3

Proof. It follows immediately from the inequality of
theorem 4.1, if we put
n-m m m m 1/8
K = Cr Bo[VmR1 + R1q q—m8-1] .

The results of this section include the situations,
where the smoothness q of the mapping f is smaller
than s = n-m+1 . In these cases all the values of f
may be critical and, respectively, all the fibers YE of
f may not be the regular n-m - dimensional manifolds.
Here we must understand v(Y

5) as the n-m - dimensional

Hausdorff measnure.

- §5. SOME INEQUALITIES BETWEEN THE DERIVATIVES OF f

In this section we show that all the constants in the
inequalities above can be expressed in terms of the only
two parameters of the mapping £ : B? + R® the
remainder term Rq(f) and the diameter R,(f) of the
image f(a’r‘) c R®.

Proposition 5.1. There are constants Nj e 3= 1,00,
depending only on n,m and p, such that for any

q = p+a ~ smooth mapping £ : B? - ",

Rj(f) < Nj(Ro(f) + Rq(f)) e J=1...0.p.

m

Proof. For any polynomial mapping h : Bg + R© of degree
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p the following Markov inequality is satisfied ( see
e.g. [3] ):

(*) Ry(h) s NRy() ,° 3 =1,...,p.

Now let h Dbe the Taylor polynomial of f at the

center of Bg . The Taylor formula shows that

* - L] "
(**) Rj(h) Nqu(f) S R,(f) < R,(h) + Nqu(f) '

3 3

= 1,...,p.
Combaining (*) and (**), we obtain the required
inequalities.

Corollary 5.2. There is a constant D, depending only on

n, m, p, such that for any q = p+a =~ smooth mapping

a) If Ro(f) 2 Rq(f) ., then

m-1 1/m
R1q(f) s D[Ro (f)Rq(f)] ’

2m-1 1/2m
R1zq‘f’ s D[R0 (f)Rq(f)l .

b) If Ro(f) s Rq(f) + then
R1q(f) s D Rq(f) '

Rigglf) S DRI .
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