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1. Introduction

The standard contact structure in 3-space is given by the contact 1-form A = dz—y dx;
a Legendrian knot is a knot everywhere tangent to the contact distribution Ker A. The
vertical vector field 3, is transverse to the contact distribution; it gives every Legendrian
knot a natural framing. Given a Legendrian knot K, shift it slightly along the field 9, to
obtain a new knot K’. The linking number S{K) of K and K’ is called the Bennequin
number of the Legendrian knot K. Everything, said so far, extends verbatum from knots
to links. -

In the seminal paper [Be] D. Bennequin proved that for every Legendrian knot in the
standard contact space its Bennequin number is less than twice its genus. In particular,
the Bennequin number of a topologically unknotted Legendrian knot is always negative.
This remarkable inequality is specific to the standard contact structure and distiguishes it
from other, so called, overtwisted ones (see [El 1,2]).

One may notice that Bennequin’s inequality has two shortcomings. First, the genus of
a knot, in general, is not computable from knot diagram. Secondly, the genus is insensitive
to mirroring, and Bennequin’s inequality gives the same estimate for a knot and its mirror
image. This makes Bennequin’s inequality far from being optimal. For example, the genus
of the trefoil knot is 1, so Bennequin’s inequality gives § < 1 for its every Legendrian
realization. However the maximal Bennequin number of Legendrian right- and left-handed
trefoils equals 1 and —6 (as follows from Theorem 2.1 below; see [F-T] and also [Kal).

It was observed in [F-T] that the Bennequin number of a Legendrian link in the
standard contact space has an upper bound in terms of its 2-variable Homfly and Kauffman
polynomials, namely, 3 is bounded above by the least degree in the framing variable of the
Homfly polynomial, and of the Kauffman polynomial, reduced modulo 2 (it is interesting
that the Kauffman polynomial seems to be slightly better in this game than Homfly: the
former gives the exact estimate —6 for the trefoil while the latter gives —5). The new
inequalities are free from the above mentioned shortcomings: knot polynomials are easy
to compute, and they are very sensitive to mirroring.

These Bennequin number estimates were extended in [C-G] in two directions: the
reduced mod 2 Kauffman polynomial replaced by the usual one with integer coefficients,
and the standard contact space replaced by the space of 1-jets of funetions on the circle
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(accordingly, the above coordinate z becomes the cyclic coordinate z mod 1). The standard
contact space, being the space of 1-jets of functions on the line, has a contact embedding
to J1S:. The space J'S! is topologically the solid torus; it is contactomorphic to the
space of cooriented contact elements in the plane with its canonical contact structure.

The proofs of the inequalities for the Bennequin number proceed (implicitly in [F-T]
and explicitly in [C-G]) by induction in the number of double points of a link diagram,
using the skein relations for the knot polynomials. On the other hand, Yang-Baxter state
models are available for knot polynomials ([Tu 1,2]). In this note we deduce the Bennequin
number estimates directly from the state models.

We mainly consider the standard contact 3-space, briefly indicating the necessary
changes in the solid torus case in the last section of the paper.

2. Setting the scene: Legendrian link diagrams

Consider the two projections of the contact (z,y, z)-space: on the (z,y)-plane and
on the (z, z)-plane.
The (z, y)-projection of a Legendrian knot is an immersed curve; since dz = y dz along

- a Legendrian curve, this immesed curve bounds zero area. Likewise the (z,y)-projection

of a Legendrian knot may have a kink shown in Fig. 1 on the left but not the opposite

kink shown on the right.
7/ \

Figure 1: possible and impossible kinks

The natural framing of Legendrian links is the blackboard framing in this projection,
and the Bennequin number equals the writhe, i.e., the algebraic sum of double points:

Bennequin number = # X - # X

The (z, z)-projection of a Legendrian curve is called its front. A front does not
have vertical tangents; generically, its only singularities are transverse double points and
semicubical cusps. Since y = dz/dz along a Legendrian curve, the missing y coordinate is
the slope of the front. Therefore the front of a Legendrian link is free from selftangencies,

- and, at a double point, the branch with a greater slope is higher along the y axis.

The Bennequin number of a Legendrian link is expressed in terms of the double points
and cusps of its front

Bénnequin number = # >< + # >< - # >< -# X - 172 # of cusps
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Figure 2: two projections of a Legendrian (un)knot
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Figure 3: correspondence between two projections

)

‘\/
/
Py N

For example, § = —2 for the front in Fig. 2.

Figure 3 shows the correspondence between the (z, z)- and (x,y)-projections.

Two Legendrian links are Legendrian isotopic if and only if their fronts are related by
a sequence of the Legendrian versions of Reidemeister moves shown in Fig. 4 (see [Sw]).

We consider the following versions of the Homfly and Kauffman polynomials (slightly
different from the ones in [F-T]), described in terms of the (x, y)-projection.

The framed Homfly polynomial Ff(z,y) is a Laurent polynomial in z,y * depending
on a link L which satisfies the following skein relations (here and in further skein relations
we omit the symbol for the polynomial; it is understood that F takes equal values on the
right and the left hand sides):

=
\6-;)5\./;:6:]&\)

In addition,
FLluLg = FL1 FLz

* surely these variables have nothing to do with the coordinates in 3-space.
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where Ly U Ly is the disjoint union of the links Ly and Lz. The Homfly polynomial is
F(z,y) =z F(z,y),
where w is the writhe.

Likewise, the framed Kauffman polynomial K (z, y) for nonoriented links satisfies the
skein relations: ‘

NG A ey (X
\sz ~ 6~j:1/x\_/

In addition,
KLlU[,‘Z = f(L1 KLz-

The Kauffman polynomial for oriented links is
K(z,y) =" K(z,y).

The polynomials F and K are topological isotopy invariants of links.
- - >\ /=< L
>/ \<-X

b

Figure 4: Legendrian Reidemeister moves

Following [C-G] one expresses the skein relations for the framed polynomials of Leg-
endrian links in terms of their fronts. In view of Fig. 3, the Homfly polynomial F' satisfies
the following equations which will be referred to as front skein relations:



<< - X =y X
= Sy <
=< - >\\/ -y X
NS . =y .
== =<
R
The front skein relations for the Kauffman polynomial K are as follows:

>0<X=y><y><

In addition, F' and K are invariant under the Legendrian Reidemeister moves and
FL1UL2 = FL1 FL21 KL]_ULQ = KL]_ KLz-

As an example, the next equalities for the Kauffman polynornial follow from its Leg-
endrian isotopy invariance and the skein relations:

It follows that K takes the value x + (2 — 1)/y on the simplest front, the "flying
saucer”. The value of F on this front is (1 — z%)/y (as the reader will easily check).
The inequalities for the Bennequin number from [F-T] and [C-G] are as follows.
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Figure 5: flying saucer

Theorem 2.1. The Bennequin number of a Legendrian link L in the standard contact
space does not exceed the minimum of the two numbers: the least degree in x of the
Homfly polynomial Fy,, and that of the Kauffman polynomial K 1. Equivalently, the framed
polynomials Fy, and Ky, do not contain negative powers of the variable x.

The equivalence of the two statements follows from the fact that the Bennequin num-
ber is the writhe in the (z,y)-projection. : ‘

Remarks. 1. It follows from Theorem 2.1 that there exists the 1-variable Legendrian
link polynomials obtained from F(z,y) and K (z,y) by setting z = 0. This does not seem
to have a counterpart for topological links.

2. Both polynomials F' and K take equal values on fronts, symmetric with respect to
the z axis. The corresponding contactomorphism of 3-space

T:(z,9,2) = (z, -y, —2)

is topologically but not contactly isotopic to identity (T changes the sign of the contact
1-form). No nontrivial invariants * are known, at least to the author, which can distinguish
between Legendrian links L and T'(L). |

=

3. Uniqueness of the polynomials F' and K

In this section we show that the front skein relations determine the Homfly and Kauff-
man polynomials unambiguously. This result is proved in [C-G] in quite a different way.

Theorem 3.1. The front skein relations along with the Legendrian Reidemeister moves

invariance uniquely determine the Laurent polynomials F and K on all fronts of Legendrian
links.

Proof. Consider the Homfly polynomial, the case of the Kauffman one being com-

“pletely analogous. Our argument is an adaptation of the standard proof of the fact that

skein relations uniquely determine knot polynomials (the existence is quite a different, and
harder, matter!)

Figure 6: incerting a zigzag into a front

* except the Maslov number which is mentioned below
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Figure 7: front versions of crossing changes

Let F satisfy the Homfly front skein relations. A double point free front is a disjoint
union of "flying saucers” with a number of ”zigzags” incerted. Therefore, as was above
mentioned, the value of ¥ on such a front is determined by the skein relations.

Given a front L with N double points consider it as a link diagram (whose every double
point is of the type shown in Fig. 7 on the left). One may trade some overcrossings for
undercrossings to obtain a link diagram of a topologically trivial link. The front versions
of the crossing change is shown in Fig. 7; note that the two front fragments are not
Legendrian equivalent.

The front skein relations and the Legendrian isotopy invariance imply:

e I N T

= ><y>< | |
= v FE e SEL T
.=xk><+y>-<

and the other two similar formulas with other orientations of the branches.

Thus, modulo the values of F on fronts with fewer than N double points, the com-
putation of F(L) reduces to that of F/(Ly) where L¢ is a front of a topologically trivial
Legendrian link. That is, Lg is topologically isotopic to a Legendrian link with a double
point free front. :

Next we make use of the following lemma from [F-T] (see also [El 1]):

Lemma 3.2. If two Legendrian links are topologically isotopic then they become Legen-
drian isotopic after incerting a sufficient number of zigzags in their fronts.

Incerting a zigzag into a front amounts to multiplying F by . Thus the value of
F(Ly) is uniquely determined. The proof of the theorem is completed by induction in the
number of double points N.

4. State models for polynomials F and K.

We modify the state models for the Homfly and Kauffman polynomials from [Tu1,2].
These models come from the solutions of the quantum Yang-Baxter equation, associated
with the classical Lie algebras of series A and D, respectively.
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Consider a generic front L as a graph whose vertices are the double points and cusps
of L. Given a finite set (of colors) C, a state of the graph is an assignment of an element
of C to each edge. To each vertex a weight corresponds depending on the colors of the
edges incident to this vertex. The total weight of a state is the product of the weights of
all vertices, and the state sum is the sum of total weights over all eolorings.

We specify the set of colors C and the weights below. C will depend on a positive
integer n, and the weights also on a variable g. Thus the state sum will be a function of ¢
and n. The state sums for the Homfly and Kauffman polynomials are denoted by Sr{g,n)
and Sk(g,n), respectively.

1). H omfly polynomial.

The set of colors C = {1,2,...,n}. Set: y =g —¢~1, z = ¢". There are four types of
double points: ‘

i (it) (iii)

and the corresponding weights are as follows.
(1) |

ifi=g=k=1then w=—q1;
ifj=ks#i=1then w=1;
ifi=k<j=1thenw=y.
(i)
1fz—j:k—lthenw-—'q“
fj=k#i=10thenw=1;
ifi=j<k=1Ithen w = ~yq
(iii)
ifi=3=Fk=1then w= —gq;
fj=k#i=1thenw =1,
ifi=3j>k=1[then w= —yg* k.
(iv)
ifi=j=k=1thenw= ¢}
ifj=k#i=lthenw=1;

ifi=k>j=1then w=y.

In all other cases the double points welghts are equal to zero.

k—i



There are four types of cusps
[ [ i i
and the weights vanish unless ¢ = j; if ¢ = § they equal, respectively,

n+0.5—i n+0.5—1 0.5 i—0.5
—q ’ q 3 q ? —q .

2). Kauffman polynomial.
The set of colors C' = {—(2n — 1), —(2n — 3),... -1,1,3,..,2n~1)}. Set: y =

g—q7 Y, x=¢*"1 Forie€ C denote byzthenumberz—!—l1fz<0andz—11fz>0
There is only one kind of double point and the weights are:

j !

ifi=j=k=1then w=q1

ifi=10=—j =~k then w = ¢
ifi=107=kandi+# %7 thenw=1;

ifi=4k < j=1then w=—y; o
ifi=—j,k=—land i <l then w= ygt=972,

In all other cases the double points weights are equal to zero.

J J

The cusp Weights vanish unless j = —i; if j = —1¢ then, for both types of cusps,

w = qn’"(;_,_l)/z.

With this choice of weights the state sums enjoy the following property.

Theorem 4.1. Sg(g,n) and Skg(g,n) are invariant under the Legendrian Reidemeister
moves and satisfy the front skein relations (with the above specified x and y).

We omit the proof which is essentially computational and repeats the argument in
[Tu 1,2]; the above weights are slight modifications of the ones from {Tu 1,2].
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5. Proof of Theorem 2.1

We are ready to prove that the Homfly and Kauffman polynomials F(z,y) and K(z,y)
are genuine polynomials in the variable z. In a nutshell, the state sums do not contain
too great negative powers of ¢ because each weight contributes at most ¢=*. On the other
hand, a negative power of  would contribute a great negative exponent of ¢ for n great
enough. .

Proof of Theorem 2.1. Consider F(z,y), the case of K(z,y) being completely
analogous. , v

The state sum Sp(q, n) is a Legendrian isotopy invariant and satisfies the front skein

relations with £ = ¢ and y = ¢ — ¢~ 1. Tt follows from Theorem 3.1 that for every front

SF(Q:”) = F(qnvq - Q_l)'

Fix a front L; let F(x,y) and Sr(g,n) be the corresponding Homfly polynomial and the
state sum. Notice that the only negative power of ¢ which appears in the weights of each
vertex is ¢~1. Let v be the number of vertices of L. It follows that the exponent of each
monomial ¢* in Sy satisfies the inequality i > —v.

Let m be the least degree of F in y, and let u = — min {m, 0} > 0. Set:

Fi(z,y) =y" F(z,y);

this is a genuine polynomial in 4. The exponent of each monomial ¢* in F} (q“’, qg—q 1
satisfies the inequality ¢ > —(u + v). ‘
_Arguing by contradiction, assume that F(z,y) contains negative powers of z. Then

4

Fi(z,y) =Y ai(y)z’; k<0
i=k

Let d be the top degree of Fi(z,y) in y, and e = deg ax(y). The term ay(y)z* contributes
the monomials ¢***7 to Fy(¢™, g— ¢ ') with j < e, and the coefficient of ¢¥"*¢ in az(y)z*
does not vanish.

On the other hand, the exponent of each monomial ¢/ in the terms a;(y)z* with i > &
satisfies the inequality j > n(k+1)~d. Therefore, for sufficiently great n (namely, n > e+d)
the monomial ¢*"*+* does not cancel in Fy(g", ¢ —q¢~1). If, in addition, n > e +u +v then
kn +e < —(u +v), the latter number being the least posible exponent 6f the variable ¢ in
Fi(g™,q — ¢~ '). This is a desired contradiction.

| Remark. The Maslov number p of an oriented front is half the difference between
‘ the numbers of its descending and ascending cusps; p is a Legendrian isotopy invariant.
It is proved in [F-T] and [C-G] that for every front the number 8 + |p| is also bounded
above by the least degree in % of the corresponding Homfly polynomial F(z,y). It is easy
to incorporate u into the state model (multiplying the cusp weights by =™/ 2). However
the inequality for 8+ |u| does not seem to follow the same way, as the one for 3, from the
state model.
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6. The space J'S?

We briefly indicate the modifications of the previous arguments needed in this case.
The Homfly and Kauffman polynomials for links in the solid torus were constructed by V.
Turaev in [Tu 3].

Fronts lie on the cylinder S* x R! rather than in the plane. Each irreducible component
of a front contributes an integer, the degree of its projection to S, in the oriented Homfly
case, and a nonnegative integer, the absolute value of the degree of its projection to S,
in the nonoriented Kauffman case. The degree of a front is the sum of these numbers over
all components.

Accordingly, the Homfly and Kauffman polynomials depend on extra variables z; with
i a nonzero integer in the former and a positive integer in the latter cases. The polynomials
F(z,y,z) and K(z,y,z;) satisfy the same front skein relations (involving z and y), and
they take the values z; on the simplest fronts of degrees ¢ shown in Fig. 8 {oriented in the
Homfly and not oriented in the Kauffman cases).

i=3 i=-2
Figure 8: simple fronts of degree i

The Bennequin number of a front is given by the same local formula as before, and
the polynomials :

F(x7y’ zi) - :E/BF(.’II, y7~zi)7 E(mayyzi) = $ﬂK($, Y, zi)

are isotopy invariants of links in the solid torus.
The state models are modified as follows. To incorporate the new variables one chooses
“a vertical line I on the cylinder (say, x = 0). A generic front intersects ! off its double
points and cusps. These intersections are considered new vertices.
Let ¢y, ...,t, be new commuting variables, also commuting with g.




The weights assigned to the new vertices vanish unless ¢ = j; if 1 = j they are:
(w = t5; (#)w = &7 (@i)w = £

(cases (i) and (i) are those of the Homfly and (iii) of the Kauffman polynomials).

The state sums become Laurent polynomials in #1,...,%,,¢ and do not change under
the moves in Fig. 9. The variables z and y are related to ¢ and n as before, and z; equals
the state sum, corresponding to the front of index 7 in Fig. 8. '

Figure 9 relative posztzon of a front and the vertical line [

After these preparations the previous arguments apply to show that F (z,9, zz) and
K(z,y, z;) are genuine polynomials in « for every front. This gives an upper bound for the
Bennequin number of a Legendrian link in J*S! within a topological isotopy class.
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