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Introduction. Minimal surfaces with constant Gaussian

curvature in real space forms have been classified completely
(cf. [Ca-2], [Ke-1], [Br]). Next natural interest is to inves-
tigate minimal surfaces with constant Gaussian curvature in
complex space forms, more generally in symmetric spaces. Prof.
Kenmotéu posed the following problem: Classify minimal surfaces

with constant Gaussian curvature in complex space forms.

He classified such surfaces in (complek) 2-dimensional
complex space forms by showing that they are (anti-)holomorphic
or totally real. Recently, minimal 2-spheres with constant Gaussian
curvature in complex projective spaces were classified inde-
pendently by [B-Oh] and [B-J~R-W]. [C~Z] studied pseudo-~holomorphic
curves of constant curvature in complex Grassmann manifolds. For |
an immersion ¢ of a Riemann surface M 1into a Kdhler manifold

N , the K&hler angle 0 of ¢ 1is défined to be the>angle between

Jdo (3/3x) and de(3/3y) , where 1z = x4-/:Ty is a local complex
coordinate on M and J denotes the complex structure of N .,
Chern and Wolfson [Ch-W] pointed out the importance of the Kidhler
angle in the theory of minimal surfaces in Kdhler manifolds. In
[B-J-R-W] and [E-G-T] they investigated minimal 2-spheres in
complex projective spaces and minimal surfaces in 2-dimensional
complex space forms respectively in terms of the notion of Kdhler

angle.

In this paper we classify minimal surfaces with constant
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Gaussian curvature and constant Kdhler angle in complex space

forms.

Theorem A. Let M be a minimal surface with constant
Gaussian curvature K immersed fully in a complex projective
space cp” ‘of constant holomorphic sectional curvature ¢ > 0 .
Assume that the Kdhler angle 8 of M is constant. Then the

following holds:

(1) If K > 0 , then there exists some k with 0 $ k s n
such that K = ¢/{2k(n-k) +n} , cos 8 = K(n-2k)/c and M is

an open submanifold of wn k(Sz) .
f
(2) If K =0, then ¢cos 6 =0 , i.e., M 1is totally real.
(3) K < 0 1is impossible.

Theorem B. Let M be a minimal surface with constant Gaussian
cu}vature K immersed in a complex hyperbolic space cH" of con-
stant holomorphic sectional curvature c¢ < 0 . If the Kdhler angle
8 of M 1is constant, then M 1is totally geodesic, i.e., M |is
an open submanifold of ¢H1 in EHn(K = ¢) or IRH2 in

cH™ (K = c/4)

Refer to [B-0Oh], [B-J-R-W] about the minimal immersions wn K
r

in (1) of Theorem A. On (2) of Theorem A totally real flat minimal

surfaces in complex projective spaces were classified essentially



by Kenmotsu [Ke-2]. It seems not to be known if there is a
minimal surface with constant Gaussian curvature and nonconstant
Kdhler angle in complex space forms of nonzero constant holomorphic

sectional curvature.

Eells and Wood [Ee-W] introduced the notion of universal
lift for a smooth map to a complex projective space in order to
investigate harmonic maps from surfaces to complex projective spaces.
On the other hand Bryant [Br] defined certain fundamental operators
on the space of vector-valued forms on a Riemann surfaée, and
classified minimal surfaces with constant Gaussian curvature in real
space forms by utilizing those operators. In this paper we extend
Bryant's operators to the operators acting on the space of vector
bundle valued forms on Riemann surface, and apply the extended
fundamental operators to the universal lift for minimal immersions
of surfaces. By the argument analogous to that of Bryant, we show

Theorem A. By the same method we also show Theorem B.



1. Fundamental operators on the space of

vector bundle valued smooth functions.

Let M be a connected Riemann surface and In be a
Riemannian metric compatible with the holomorphic structure of
M . We do not assume that M 1is compact or that Iy is complete.
Let T?1’0)M (resp. T70'1)M) belthe complex line bundle of

(1,0)-forms (resp. (0,1)-forms). Let {u,u} be a unitary basis

C (0,1) (0,1),,

of TpM with u € Tp M and u € Tp , and {w,w} be its

dual basis. Denote by v the Riemannian connection of (M,g) .
The curvature form RM and the Gaussian curvature K of M are
. M oM oMy oM _ M, = =
defined by R FV , W) = [Vv ,Vw] V[V,W] and X = gM(R (u,u)u,u) .

. -1
= * = *
Put T T(1'0)M and T T(0’1)M . For m=z2 0 we let

:Tm(resp. ™™ be the m-th power tensor product of Tt (resp. T 1) .

Using the identification W = (5)_m for all m , we have a ca-

nonical pairing rn'xrk —_— Tm+k for all m and k . Set

T= & c” (1™ as a Z-graded vector space.

n=—-wm

Let E be a complex vector bundle over M with an inde-

finite Hermitian fibre metric < , >E and a connection VE com-

patible with < , >E | Let Cw(E) denote the vector space of all

smooth sections of E defined on M . Consider the tensor product

bundle E ® Tm(m € Z) . For each m we equip the bundle E & "

with the tensor product connection D = vE ® VM . Set

E= & Cm(E @ rm) as a 2Z-graded vector space. We have a pairing

m=s—w



< ., > : ExE —> T gotten by extending the indefinite Hermitian

fibre metrix < >E of E in the obvious fashion. We define

m+1

operators DA :Cm(E ® Tm) —~C(E® T } and

vy . AP m © m-1 N
Dm +t: C(E®@T) —C (E® 1 ) by Dmc (Duc) @ w .
D!'c = (D,o) @ » for o0 €ECI(E® ™) . We define the fundamental
u
operators X , Y on & by X = ] Dé , Y = ) D&' . Set
m=s=—w ms=-—o

A = XY+ YX , the Laplace-Beltrami operator on each graded piece.

Proposition 1.1. Assume that the curvature form RE of the

bundle E satisfies the condition
E

(1.1) tr RE = RE(u,3) = AT

for some real valued function A on M . Then for any

cseEcC(E® T ,

(1.2) [X,Y]o = (A-mK)o .

Moreover i1if A and K are constant, then we get

(1 .3) . {H,X] = K . X ? [HpY] . -K - Y ’
IXIY] =-H ,
where the operator H on £ is definedby H =- & (A-—mK)Im

m==w

and Im : Cm(E ® Tm) —_ CW(E ® Tm) is the identity.



Proof. Let o € Cw(E‘® ™) and write o = s @ (w)™ locally,

where s 1s a local smooth section of E . Since

R"u,lw =-K-0, RMu,m5=%x-0, by (1.1) we have
[X,¥)o = (RE(u,0)s) ® (0)™+ (-mK)s & (w)™
= (A-mK)o .

If X and K are constant, we have the first formula of (1.3),

[H,X]o = H(Xo) - X(Ho)
= (-A+(m+ 1)K)Xo~- (- A +mK)Xo
= K-+ Xo .
The second formula of (1.3) is similar, g.e.d.

Remark. (1) In case A = 0 these are just the formulas

used by [Br].

(2) Generally a holomorphic connection satisfying the con-
dition (1.1) for some constant A over. a Kdhler manifold is called

an Einstein-holomorphic connection.



2. Harmonic map equation to a

complex projective space

Let ¢n+1 denote the complex (n+ 1)-space equipped
with the standard Hermitian inner product <v , w> = viwt
' i=0
for v = (vo, . ,vn) ;7 W = (wo, ces ,wn) € ¢n+1 Let @p"

be an n-dimensional complex projective space and
T o2 m“+1\{0} —> CP" 'be its canonical projection. En+1‘\{0}
is a principal bundle over ™ with. the structure group C* ,

where C* denotes the group of non-zero complex numbers. For

n+1 n+1

a positive constant c¢ , set 82 (c) ={vec s <v ,v> = 1/c}

S2n+1

The Hopf fibration w : (c/4) — cP? is obtained by

restricting the canonical projection w : En+1\,{0} — ¢p"
The Fubini-Study metric on cP” with constant holomorphic

sectional curvature c(> 0) 1is characterized by the fact that

S2n+1

the Hopf fibration w : (c/4) ~— tp" is a Riemannian

submersion. We -endow CP" with the Fubini-Study metric g of
constant holomorphic sectional curvature ¢ . Let L Dbe the
universal bundle over €P" : the fibre Lk over any X € cp”

can be identified with the complex 1-dimensiocnal subspace of

n+1

T determined by x . Thus L is identified as a holomorphic

subbundle of the trivial bundle gn+1 = ¢p” x €™ over " .

L n+1

Let L be the subbundle of whose fibre at x 1is the

orthogonal complement of L_  in AL S ¢n+1/

L

can be given a holomorphic structure. We endow the



L

the bundles L and L with the Hermitian connected structure

induced from the Hermitian inner product < , > of En+1 . We

give L* @ L'L the tensor product Hermitian connected structure,

where L* denotes the dual.bundle of L . Then there exists a

(1,0)mPn

natural bundle iscmorphism h :T — 1* @ LT preserving

connections and satisfying <h(Z),h(W)> = (c¢/2)g(z,W) for

(1,0)

M tp? (cf. [Ee-W, p. 224]1).

Z,WET

Let ¢ :M —> TP be a smooth map from a Riemann surface to
a complex projective space. We say ¢ 1is full if its image lies
in no proper complex projective subspace of TP” . Denote by

(dw)1'0(£) the (1,0)-component of de(f) for £ € TXME .

Consider the exact sequence of vector bundles over ce”

where i 1is the natural inclusion and j 1is given by the ortho-
gonal projection along L . Tensoring with L* and pulling back

via amap ©o: M — zp" gives the exact sequence over M

-1

0 — o 'L* e L) = o (L* & ¢y > o™ (Lt 8 1Y) — 0

Note that the bundle ¢ '(L* ® L) has the "identity" section,

which we denote simply by 1. We call the section ¢ = i(1)

n+1

e c"(o T z* @ t®")) the universal lift of ¢ (cf. [Ee-W]). We

give the bundles ¢ 'L , o

L* , m_1Ll , wﬁT(L* ® §?+1) and



w*1(L* ® LY) the pull-back Hermitian connected structures.

(1,0)

Pulling back h:T ep” —> L* @ LL bv ¢ , we get a con-

nection-preserving bundle isomorphism

2 (1,0)

(2.1) h:o ce®) — o (* @ 1Y)

satisfying

<ni(de) 1'%(g)) ,h((do) 0> = (e/2)gtde) 110 E) , @) 1% (n))

for any £,n € TxM¢

Set E = ¢ ' (L* @ ¢y (0 '1*) ¢ ¢!

and denote by
D the covariant differentiation in the bundle E . We apply
results of Section 1 to the bundle E and use the formulation

and notation in Section 1.

Now we give a description of the curvature form for the
bundle E . Let w be the fundamental 2-form of (EPn.g) de-

fined by w(2,W)

g{Z,JW) for 2Z,W € Tx¢Pn + where J denotes
the canonical complex structure of ce” . For any V € Cm(E)

0 € Cc”(0 L) ,

En+1 1

(R (a0, D) (0) = RY (w0, 3) (V(p)) ~Vv(R® T(u,d)p)

[

-v(o” TRY(u,T) ()



Since it is known that the curvature form of the universal

bundle L 1is given by RY =- (¢/2)/<T w , we get
RE(u,3) = (¢/2)/7T (w*w) (u,d) .

Hence we can write

(2.2) RE = (c/2) -1,

where u 1is a smooth function on M defined by

b= /=1 (o*w) (u,u) .

p is called the Kdhler function of a map ¢ (cf. [E-G-T,-n. 5731]).

PGS

When - ¢ is an isometric immersion, the function u 1is related to
the Kdhler angle 6 of ¢ by u = cos 8 . Then u = 1 (resp.
p ==1) if and only if ¢ is holomorphic (resp. anti-holomorphic),

and u= 0 if and only if ¢ 1is totally real.

It is easily shown that if a smooth map ¢ : M —> cp”

satisfies uy ®» 0 , there are a covering space v :M — M and a

2n+1

horizontal smooth map @ : ¥ —> § (c/4) relative to the Hopf

fibration 1w : 82n+1(c/4) —> €P" such that 1 o ® =@ oV . More-

over ¢ is harmonic if and only if @ is harmonic. Therefore

every minimal surface in cp”  with U = 0 can be locally and

S2n+1

isometrically lifted to a minimal surface in (c/4)



Proposition 2.1 (i) ¢ always satisfies

(2.3) <d,0> = 1

(11) For any & € Cm(TMm) ' D€¢ € Cw(E) has image in
w_1LL . In particular ¢ always satisfies
(2.4) <X0,0> = 0 , <Y&,0> = 0 .

Thus we may regard D.¢ as a section of o TLr e LY .

(iii) Under the assumption (2.1) ,

(2.5) hi(ae) (179 (5)) = Dy¢

for any ¢ € TXME

(iv) A smooth map ¢ :M —> CP® is harmonic if and only

if
2
(2.6) Ad + |DO|“2 = 0

This proposition is essentially due to Lemma 4.3 and Pro-
positions 4.5, 4.6 in [Ee-W]. In [Ee-W] they introduced the notion
of complex isotropy of a map. A smooth map 9w: M — " is

called complex isotropic if




(2.7) <xPs ,y¥e> = 0
for all p,g 2 0 with p+g 2 1 .

Suppose that @ : M —> P is a minimal surface with
constant Gaussian curvature K . If ¢ 1s complex isotropic, then
we have K > 0 . Because, according to [Ee-W], ¢ has a horizontal
holomorphic lift of ©® relative to a twistor fibration
Hr,s —> TP". Here .Hr,s is endowed with the structure of a homo-
geneous Kdhler submanifold in a complex projective space. Hence
® 1is a holomorphic isometric immersion of M into a complex pro-

jective space. Thus by virtue of a result of Calabi {Ca-1], K

must be poéitive.

Proposition 2.2. (i) ¢ 1is conformal if and only if ¢

satisfies

(2.8) <X ,Y0> = 0 .

(ii) ¢ 1is an isometric immersion if and only if ¢ satisfies

(2.8) and

(2.9) <X ¢, X0> + <¥Y%,¥9> = c/2 .

(iii) The K&hler function u of a map ¢ is given by

(2.10) <X®,X0> - <¥0,Yd> = (c/2)u .



(iv) ¢ is a minimal isometric immersion if and only if

d satisfies (2.8) and
{(2.11) Ad + (c/2)d = 0 .

Proof. By (2.1) we have

(2.12) eng¢,nn¢> = (c/4) ((o*g) (E,n) + V=1 (o*w) (§,n))

for £,n € T M . Let {e1,e2} be an orthonormal basis of T M

(1//7)(e1-/:T e,) u = (1//5_)(e14-/:T e,)

so that u =

Using (2.12), we compute
(2.13) <x'¢,Y¢> = (c/2){(1/4) ((o*q) (e4,8,) - (0*g) (e,,e,))
- (/=1/2) (o*g) (g ,e,) }
(2.14)  <X0,X0> = (c/2){(1/4) ((9*g) (e, ) + (9*g) (e, ,e,))
- (1/2) (0*w) (ey,e,) }
(2.15)  <¥e,¥9> = (c/2) {(1/4) ({9*q) (e, ,e,) + (0*g) (e,,e,))
+(1/2)(m*w)(e1,e2)} .

(2.13) implies (i). From (2.14) and (2.15) we get (ii) and (iii).

If ¢ 1is a minimal isometric immersion,by (iv) of Proposition



2.1 and (ii) we get (2.8) and (2.11). Conversely suppose (2.8)

and (2.11). By (2.3), (2.4) we compute
<X¢,Xo> +_€Y®,Y¢> = - <YX0,¢> ~ <XY?¢,9¢> =~ <Ad,d> = (c/2) . Hence

¢ 1is a minimal isometric immersion. So we get (iv). g.e.d.



3. Minimal surfaces with constant curvature and

Kidhler angle in a complex projective space

Let M be a Riemann surface with a Hermitian metric Iy
and K denote its Gaussian curvature. Let @ : M —> " be a
smooth map and u = v=1 (¢*w){u,u) be the Kihler function of
@ , where u and u denote a unit (1,0)-vector on M and its

conjugate. In this section we assume that K and u are con-

stant on M . Consider the bundle E = ¢ | (L* ® gn+1) and the

universal 1lift ¢ € Cm(E) of ¢ .

Proposition 3.1. Suppose that a section V¥ of Cm(E)

satisfies AY + (c/2}¥ = 0 . Then, for each m 2 0 ,

(1/2) Im(m+ 1)K~ (c/2) {1+ (2m+ 1)u}] x"¥ ,

(3.1) v ly

(3.2) x¥™ Ty = (1/2) [m{m+ )R- (c/2){1- (2m+ 1)u}] ™y

Proocf. We show (3.1} and (3.2) by the induction on k .

Since ¥ € £ has degree 0, HY =- (c/2)u7W
AY = (XY +¥X)Y =- (c/2) Y ,
(-H)Y = (XY-YX)Y = (c/2)u-¥



3 -2

It follows that

YXY ==~ (c/2) (1 +n)/2 ¥ , XYY =-(c/2)(1-wu)/2 - V¥ .

This verifies our claim when m = 0 ., Now suppose that

YX™ = (1/2) [(m{m=- 1) -K-(c/2) {1+ (2m= D u}] X 'y ,

and XY™ = (1/2)[m(m- 1) -K-(c/2) {1 - (2m= 1 u}] Y 1y .

We compute

vy - XY(.Xm‘P) - [x,¥] XMy
= X(YX™¥) + H(X"¥)
= (1/2) [m(m=1) K= (c/2)-{1+ (2m = 1) u}] ¥ ,
- {(c/2)u-m-K} X"y
= (1/2) [m(m+ 1) -K~ (c/2) {1+ (2m+ 1) u}] X"¥ ,
XY™y o v (xY™y) - B (™)

(1/2) [m(m- 1)K = (c/2) {1 - (2m =~ 1)u}] Y™

+{(c/2)u+mK} Yy



= (1/2) [m(m+ 1K= (c/2) {1 = (2m+ 1}l ¥"¥
So the induction is complete. g.e.d.

Proposition 3.2. Suppose that ¢ satisfies

AP + (¢/2)Yd = 0 , Then, for each mz2 0 ,
<™ %P> = <y™0, Y™ o> = 0

and <xm¢,xm¢> = Am , <Ym¢,Ym¢> = Bm ; where Am and Bm are

constants depending only on m , K and u satisfying

Ay =By =1,
A 17 (1/2) [ (c/2) {1 +(2m-+1)u}-m(m-+1)-K]-Am
and = Boeq = (1/2)[(c/2){1 - (2m+ 1)y} - m{m + 1f-K]-Bm .

Proof. We show this proposition by the induction on m .
(2.3) and (2.4) verify our claim when m = 0. Suppose that our claim

is true for m = p . Applying Y to <xp+1®,xp¢> = 0 , we get

<vxP* 15 ,xPo> + «xP* 1o, xP* 10 5 = o

So by (3.1) and the assumption of the induction we have

<XP+1¢,XP+1®> == (1/2)[m(m+ 1) K- (c/2) {1 +{2m4—1)u}]<xp¢,xp®>

Applying X to this equation, we get

P

: +
«xP 25, xP o5 + <xP*To,vxP*'s = xa

]
o
N

p+1



By (3.1) we have

<xp+2¢,xp+1¢>

- (1/2)km(m+ 1) K= (c/2) {1+ (2m+ 1) u}1<xP* 1o, xPo>

=0

Similarly by (3.2) and the assumption of the induction we have

<Yp+1¢,Yp+1¢> = is constant and <Yp+2¢,Yp+1¢> =0 . So

the induction is complete. g.e.d.

Put a

(1/2) [ (c/2) {1+ (2m+ 1) u} - m(m + 1) -K] ,

and b (1/2) [ (e/2){1 - (2m+ 1) p} -m(m + 1) -K] .

Then from Propositions 3.1 and 3.2 we get

3.3 A =aA , B = b B
(3.3) p+1 PP p+1 pp’

a.P, _ _ 1\9d p-a
(3.4) Y=X¥¢ = (-1) a,_q oo ap_qx )
3.5 Py = (-1 9 ) ¥P 9
(3.5) Y (- 1% _, byq

for p2g 2 0.

Lemma 3.3. Suppose that ¢ satisfies Ad + (c/2)0 = 0

I1f Am+1 = 0 for some m =2 0 , then ¢ is complex isotropic

and satisfies
(3.6) <xPs,x%> = 0

for anyp and g9 with p,g2m+1 or m2p>qg20 . Similarly if

Bm¥1 = 0 for some m20 , then ¢ 1is complex isotropic and satisfies



(3.7) <¥Po,v%0> = 0
for any p and q with p,g 2 m+1 or mz2p>qgz20

Proof. Assume that Am+1 = 0 for some m 2 0 and let m

be the smallest integer satisfying Am+1 = 0 . From (3.3) we have

Ap = 0 for all p 2 m+ 1 . Applying X to <™, x™ o> = 0,

we get
<™ T, x™ o> 4 <x®o,vx™ o> = 0 .
Since xm+1¢ = 0 , by (3.4) we have
am_2-<xm¢,xm'2¢> =0 .

Since Am #+ 0 , from (3.3) we see a ¢+ 0 . Hence <xm¢,xm_2¢>==0 .

m-2
C . . . m Xm-3 _
Similarly, applying X to this equation, we have <X ¢, $> =0
Inductively we get <xm¢,xq¢> = 0 for each g with 0£gsm-1

Applying Y to <Xm¢,xq¢> = 0 for each g with 0sgsm=-2 ,
<vx™s,x%0> + <x™¢,x¥ o> = 0

By (3.4) we get am_1-c<xm-1¢,xq¢> =0 . Since a__, # 0, we

have <x™ 1¢,x%> = 0 for each g with 0 $ g § m-2 . Inductively,
we obtain <xPo,x%¢> = 0 for any prgq with mz2p>g 2 0 . So

we get (3.6). In particular <xPo,9> = 0 for all p 221 . We show

the complex isotropy of ¢ by the induction on p+qg . (2.4)



shows our claim when p+qg = 1 . We suppose that <Xp¢,Yq¢> = 0
for any p and g with k > p+g 2 1 . Using this assumption

repeatedly, we compute, for each p,g with p+g =k ,

<xPs,y90> = X<Xp®,Yq_1¢> - <Xp+1¢,Yq*1¢>

- <:Xp+1 ¢,Yq*1 o>

- x<xP* 1o, v93 205 & <«xP*%5,y9 20>

<xP*2p,y9 2y,

1]

(- 1)%9<xP*9% 05> = 0 .

Therefore we get the complex isotropy of ¢ . When Bm+1 = 0 for
some m 2 0 , similarly we can show (3.7) and the complex isotropy

of o . g.e.d.

We shall study a map ¢ : M —> cp” satisfying A%+ (c/2)0 =0

ineach case : K>0, X=0, K< 0

Proposition 3.4. Suppose that ¢ satisfies A%+ (c/2)0 = 0

and ¢ 1is full. If K > 0 , then ¢ : M — mPn is a minimal
isometric immersion and there exists some £ with 0SS 2££n such

that k = ¢/{2%(n-14) +n} , = K-(n-2¢)/c and ¢(M) 1is an

U
82 — EPn .

open submanifold of V¥
n,%



Proocf. Since K > 0 , am ,bm —>» - gg m —>» o , Since

Am 20, B 20 for all m , by (3.3) there are k, 2 2 2 such

1

o
I

o

£ 0 and b ¥ 0 ., From a

k-1 -1 k L

(c/2){1+ 2k + 1)u}t-k(k+1)-K =10,

(c/2){1=- (22 +1)ul=-2{28+ 1)K =0

By a simple computation we get u = K(k=-2%)/c and

K

c/(2kL +k + %) . We have AP = Bq =0 for any p 2 k+1,

qz2 2+1 , and Ap = <Xp¢,xp¢> > 0 , Bp = <Yq¢,Yq®> > 0 for any

0spsk, 0sqst.Set gg=29, 2 = (1/¢X;)-xp¢ for each

0
1 2 p sk, and Z_q = (- 1)q(1/v’Bq)-Yq for each 1 s g s 2 . Then
by Lemma 3.3 we have <Zp ,Zq> = Gp,q for -2 s p,g s k.. If we

regard each Zp as a. vector bundle E-valued functionon the bundle

SO(M) of orthonormal frames compatible with the orientation of

M , then {Zp(p) ,Zotp) ,Z_q(p) ;1 S psk,1 sqgs 2} is unitary

in mn+1 for any unit element p € w_1L at every point of SO(M)

Hence {Zp Iy ,Z_q ;1 spsSsk,1 s g s 2l is projective unitary
in ¢n+1 at every point of SO(M) . By (3.3), (3.4), (3.5) we

compute



= \/% pe1” Bpo1 P for 1 sp sk,
(3.8) {
D2y = Yay <2, -Vby ‘24 and
- /_ . -— - f .
an_q Bge1 "Zo(q-1) /B; 2 (q+1) or 1s5qg-s %

From these equation and the fullness of ¢ we see k+2% =n ., So

we get U = K(n-2%)/¢c , K = ¢/{22(n=-2) +n} . Moreover we have

(3.9)

v
1}

(c/2)(n-2-p)(L+p+1)/{28(n~-2) +n}
for 0 s p s k-1 and

(3.10) bp

(c/2)«(R-qg)(n-2+qg+1)/{2%(n- 1) +n}

for OSqSR,.-1. (ZP,ZO,Z_q;1Sp$k,1SqS£) can be
regarded as a map from SO(M) to a projective unitary group _
PU(n+ 1) . Using (3.8), (3.9), (3.10) and results of [B-oOh, § 21,
by virtue of the congruence theorem for smooth maps to a homo-

geneous space (cf. [Gr] or [Je]) we conclude that ¢ 4is locally

congruent with wn g - . g.e.d.
r

Remark. PFrom the complex isotropy of ¢ , we also can get

the conclusion of this proposition by results of [Ee-W], [Ca-1],



[B-Oh] and [B-J-R-W].

Proposition 3.5. Suppose that ¢ satisfies

A + (c/2)d =0 ., If K =0, then u = 0 .

Proof. In this case a_ = (c/4){1+ (2m+ 1)y} and
bm = (¢/4){1 - (2m+ 1)u} . If u # 0 , then a —>-> or
bm —>-® as m —> ® . By (3.3) we get Am =0 or Bm =0
for some m 2 1 . By virtue of Lemma 3.3 ¢ is complex isotropic.
From‘(iv) of Proposition 2.2 ¢ is a complex isotropic, minimal
isometric immersion. But since K = 0 , it's impossible. There-

fore we have u = 0 ., g.e.d.

By the argument similar to that of [Br, Theorem 2.3] we show

the following.

Proposition 3.6. Suppose that ¢ satisfies Ad+ (c/2)0¢=0 .

Then K < 0 is impossible.

Proof. Suppose K < 0 , If Am = 0 or Bm = 0 for some

m 2 1 , then by Lemma 3.3 and (iv) of Proposition 2.2 ¢ becomes
a complex isotropic minimal isometric immersion. But since K < 0 ,

it's impossible. Therefore A >0 and B, > 0 for allm =z 0

From (3.3) a > 0, bm >0 for all m=z2 0 . We fix an integer m
with m 2 2 . For any integer p with p z m , applying X™ ' to

the equation <xp+1¢,xp¢> = 0., by (3.3), (3.4) we compute
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_ m-1 _ PR
K1 exP*1s xPos> = (m 1) <xTrPH1y = 1-FyPys

r=0 r
- m§1 m-1\ (_ 4y@-1-1, a xEPH1y oPm{m=T1-r)
L r p """ “p=-(m-1-r) !

r=0
_ m§1 m-1 (__1)m—1—1;.(A /A )<Xp+1+r¢ gPmH1r,
-t r e Tpemr 1+ d

r=0
= 0

Hence we have

+r)<xp+r+m¢,xp+r¢> = 0

mi1 (m-1) (= 1™ 1T q/a
r=0 r P

for each p 2 1 . This equation says that the sequence

{(1/8_)<xP™™s,xPe> ; p € 2,p 2 1} 1is a difference equation of
’ St (-t m-1- =0 .8 11-k
order m-1: ) (mr ) (-1) Ty = . By a we nown

p+r

r=0
result about difference equations, there exists a polynomial in

s ., Rm(s) , of degree at most m-2 in s with coefficients in

Cm(Tm) so that
p+m, P -
(3.6) (1/Ap)<x ?,X79> = R_(p)

for all p2 1 ., For p 2 0 , define Zp = (1/#X;)Xp¢ . Then we
have ézp,z >=1, < >=90 . When m 2 2

p , for all p 2 1

Zp+1%p

‘ N p+my P
B2 = (/AL /K;)<x o, X" 9>

1]

vA 7A .
p  pt+tm Rm(P)
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Since K < 0 , we have

va_/A < c /p"™

P p+m m

for some positive constant Cm which depends on K ‘and u .

Because from (3.3) we compute

_ -2 -2 -2
/Ap7Ap+m = (ap+m_1) -(ap+m_2) ces olal)
= [(c/4){1+ (2p+2m=-Tul - (p+m=-1) (p+mEK/2]2
e lle/8) {1+ (2p+ Dud - plp+ NK/2]72 < c_/p™ .

Since Rm(p) is of degree at most m=-2 , when m 2 1

m

lim <2 , 2. >(w) =0
p+m

pro P

(1,00, ¢ p(1,0)

for each unit vector u € T Let u M be a fixed

unit (1,0)-vector at x € M and o € Lx be a fixed unit element.

: n+1 P
We define th tors W in € b Z ) _(u Py = W_ .
e ine e vecto o n vy (( p x( )) (P) D

W o>

m -— T
> (u ) - <‘!p+m’ p

Then <2 v 4
p+tm P

Let r > n be any integer and let e > 0 be small. By

the above argument, there exist an integer p so large that

I<Wp+k' p+£>l <e forall k+ 2 , 0 s k,? s r , while
<WE:§}WEIE$~=~<ZP;k,zp+k> = 1 for all k . Taking e sufficiently
small, this implies that the r+ 1 vectors {wp, cen ’wp+r}

n+1

are linearly independent in C . Since r > n , this is

impossible. - g.e.d.



4., The case when the ambient space is a

complex hyperbolic space.

In ™ we consider an indefinite Hermitian inner product

<>y defined by

Fixing any negative constant ¢ , we let H2n+1(c) =
{z € ¢n+1 ;;:z,z>1 n = 1/¢} . The group S1 = {e - e} acts freely
on H2n+1(c/4) by z.— e =1 8, . An n-dimensional complex hyper-

bolic space CH" is the base manifold of the principal S1—bundle

H2n+1 2n+1

(c/4) with the projection m : H (c/4) —> " . For each

H2n+1

z € (c/4) , we define a subspace Hz of TZH2n+1(c/4) by

n+1

H, = {weT Pz, Wy o= 0} . The restriction of <> L tO

each Hz is positive definite. Then we can define a Riemannian

n : n
metric g on CH so that ar : (Hz,( r)) — (T"(Z)EH ,g“(z))
is a linear isometry for each =z € H2§+1(c/4) , Where

( ,) = Re< , >, o - 9 gives the standard Kihler structure on

EHn of constant holomorhic sectional curvature ¢ . We define a

holomorphic line subbundle L, of the trivial bundle gn+1

over EHn by (L1)x = T-2 for x = w(z) € cu” and

z € H2n+1(c/4) . The restriction of < , >4 to L1 defines an
. r

indefinite (negative definite) Hermitian fibre metric < > of

I

L1 . Then L1 has the Hermitian connection with respect to the
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Combining Propositions 3.4, 3.5 and 3.6, by (iv) of Pro-
position 2.2 we obtain Theorem A. We remark about the case
K=20 .-Let P : M — tP” be a totally real flat minimal
surface. By the total realness of ©w , @ can be locally lifted

2n+1

to a flat minimal surface @ : M —> S (c/4) . By Theorem 3.1

of [Brl, © extends to a minimal immersion of T . So ¢ also

extends to a totally real minimal immersion of € into cp” .

Such minimal immersions are completely classified by [Ke=2].



holomorphic structure and the indefinite Hermitian fibre metric.

Let L# be the complex vector subbundle of gn+’ defined by
(L#)x = {we g™ ;<w,z>, =0 for all z¢ (L)x} . We have an
orthogonal direct sum gn+1 =L, 8 L# with respect to < , >1,n .
We endow the bundle L# with the Hermitian fibre metric

< , > by restricting < , >y,n EO L# . L# has the holomorphic
structure through the bundle isomorphism Ll = En+1/L With

17 = 1

> has the Hermitian connection. Now we consider

respect to them L1

*
the tensor product bundle L, @ L# "with the Hermitian connected
structure induced from those of L, and L# . Then there exists
a connection-preserving biholomorphic isomorphism h : T“'O)EHn —
* L
L1®L1

Z,W € Ti1'0)EHn ]

such that <h(2Z) ,h(W)> =- (c/2)g(Z,W) for

Let v : M ~—> mHnA be a smooth map from a Riemann surface.
We consider the exact sequence of the complex bundles equipped

with pull-back indefinite Hermitian connected structure:

- * i - * - *
0 — o 1(L1 L) —>o 1(L1 o c™) L o 1(L1 ® L#) — 0,

where 1 1is the inclusion map and Jj 1is the orthogonal projection

_ =1 . * n+1
along L1 relative to <« Set E = ¢ (L1 ®C y . We

> -
’ 1/n

call the section i(1) € Cm(E) the universal 1lift ¢ of ¢ ,

where 1 denotes the identity section. Let < , > and
D denote the indefinite Hermitian fibre metric and the covariant

differentiation in the bundle E . Then we have the following:



1) <¢,0> =-1

(2) For any £ € Cm(TMm) ' DE¢ has image in w-1L# .

Do .

Moreover h(dw)1’0
(3) ¢ 1is harmonic if and only if in any chart
D''D'¢~-<D'¢,D'¢>0 = 0
or D'D''¢-<D''0,D''d>d = 0 .

. More generally the similar formulation for indefinite

complex space forms was given by [E-G] in detail.

Let M be a Riemann surface with a compatible Riemannian
metric and ¢ : M —> cta” be a smooth map.The following is
showed easily:

(1) <$,%> ==1, <X¢,0> = <¥%,9> = 0 .

(ii) ¢ is conformal if and only if <Xo,¥d> = 0 .

(iii) ¢ 1is an isometric immersion if and only if

<X$,Y¥%¢> = 0 and <X9$,X9> + <¥Y¢ ¥Y¢> =-c/2



(v) Let 6 Dbe the Kahler angle of ¢ and put
U =cos 8 . Then <X%,Xd> - <¥¢,¥d> == (c/2)u .
(vi) Suppose that ¢ 1is an isometric immersion. Then

¢ is minimal (or harmonic) if and only if A%+ (c/2)% = 0 .

Suppose that K and u are constant and ¢ satisfies
A + (c/2)% = 0 . Following the calculations in Section 3, we
easily establish the same formulas as in Propositions 3.1 and

3.2 for a negative constant ¢ . So we get, for m 2 0 ,
(4.1) A =aA , B = b B

where Am = <Xm¢,xm®> ’ Bm = <Ym®,Ym¢> ’

(4.2) a_ (1 /2y (c/2) {1+ 2m+ 1)y} -m(m+ 1) -K] ,

(4.3) b (1/2)[(c/2){1~ 2m+ 1)pu}l -m(m+ 1) -K] .

Now assume that ¢ : M —> CH" is a minimal surface with
constant Gaussian curvature K and constant Kdhler angle §
By the equation of Gauss we have

(4.4) K = (c/4) (1+3u2) - (1/2) [|all 2 < 0,

where ||a|l denotes the length of the second fundamental form



a

The
m 2

(re

of ¢ . By (4.4) we compute

ay, = (c/4)(1+w) €0,

b = (c/4)(1-u) s 0,

a; = (/2{(c/2)3u01 = + [lall ?},

b, = (1/2){(c/2)3(-w) (1+w) + [lal 2},
a, = (1/2){(c/2) (= 2+ 5u-9") + 3 [lall B3 > 0,
b, = (1/2){(c/2) (= 2-5u=-9u%) +3 |[a] %} > 0

refore from (4.2), (4.3) we have a, > o, bm > 0 for any

2 . We see that if uw £ 0 (resp. u ¢ 0 ) , then a, 2 0

sp. b1 2 0) .

Lemma 4.1. The case a, < 0 and a, > 0 1is impossible.

Similarly the case b0 < 0 and b1 > 0 1is also impossible.

Proof. Suppose that ag < ¢ and a, > 0 . Since a > 0

for any m 2 2 , by (4.1) we have Am >0 for all m =2 1 . By
the argument similar to the proof of Proposition 3.6, we derive
the same identies as (3.6). We define Zp = (1//Ap)Xp¢ for

p 2 1 . Then we have <Zp,Zp> 8 1 and the same estimate

lim <zp+m,zp> = 0 pointwise on M for any m > 0 . Hence we

P

A



again derive a contradiction from the finite dimensionality'
of En+1_. When bo < 0 and b1 > 0 , by the similar argument

we can derive a contradiction. g.e.d.

Proof of Theorem B. First suppose that -1 s u s 0 . Then

a, 20 .1If p=-1,wehave by <0, b, = (1/2) Ha||2 . By

Lemma 4.1 we get b1‘= 0 , 1i.e. M 1is totally geodesic and

anti-holomorphic. If -1 < u s 0 , we have a; < 0 . By Lemma 4.1

we get a, = 0 . Hence we get u = 0 and 1o ]l 2

is totally real and totally geodesic.

0 . Thus M

Next suppose that 0 s u § 1 . Then b1 20, If u=1,

we have a, <0 , a, = (1/2) ||l 2, By Lemma 4.7 M is holo-
morphic and totally geodesic., If 0 s u < 1 , we have b0 < 0

and b1 = 0 Dby Lemma 4.1. Therefore M is totally real and
totally geodesic. g.e.d.
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