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Ihtroduction.- Minimal surfaees with eonstant Gaussian

curvature in real space forms have been elassified eompletely

(cf. [Ca-2], [Ke-1], [Br]). Next natural interest is to inves

tigate minimal surfaces with constant Gaussian eurvature in

complex spaee forms, more generally in symmetrie spaees. Prof.

Kenmotsu posed' the following problem: Classify minimal surfaees

with constant Gaussian eurvature in eomplex spaee forms.

He elassified such surfaees in (complex) 2-dimensional

complex space forms by showing that they are (anti-)holomorphie

or totally real., Recently, minimal 2-spheres with eonstant Gaussian

curvature in complex projeetive spaces were classified inde

pendently by [B-Oh] and [B-J-R-W]. [C-Z] studied pseudo-holomorphie

curves of constant eurvature in eomplex GraS5mann manifolds. For

an immersion ~ of aRiemann surfaee M into a Kähler' manifold

N , the Kähler angle e of ~ 1s defined to be the angle between

J d~ (a/ax) and dlP(a/ay) , where z = x + l=1"y i5 a loeal eomplex

eoordinate on M and J denotes the eomplex strueture of N.

Chern and Wolfson [Ch-W] pointed out the importanee of the Kähler

angle in the theory of minimal surfaees in Kähler manifolds. In

[B-J-R-W] and [E-G-T] they investigated minimal 2-spheres in

complex projective spaees and minimal surfaces in 2-dimensional

eomplex space forms respeetively in terms of the notion of Kähler

angle.

In this'paper we classify minimal surfaees with constant
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Gaussian curvature and constant Kähler angle in complex space

forms.

Theorem A. Let M be a minimal surface with constant

Gaussian curvature K immersed fully in a complex projective

space ~pn ·of constant holomorphic sectional curvature c > 0 .

Assume that the Kähler angle 8' of M is constant. Then the

following' holds:

( 1 ) If K > 0 , then there exists some k with 0 ~ k ~ n

such that K = cl {2k (n - k) + n} , cos 8 = K(n-2k)/c and M is

an open submanifold of tP n ,k(S2) .

(2) If K = 0 , then cos 8 = 0

(3) K < 0 is impossible.

i.e., M is totally real.

Theorem B. Let M be a minimal surface with constant Gaussian

curvature K ·Lmmersed in a complex hyperbolic space ~Hn of con

stant holomorphic sectional curvature c < 0 . If the Kähler angle

8 of M is constant, then M i5 totally geodesie, i.e., M is

an open submanifold of ~H1 in ~Hn(K = c) or mH 2 in

«:Hn (K = cl 4) •

Refer to [B-Oh], [B-J-R-W] about the minimal immersions ,I,'+'n,k

in (1) of Theorem A. On (2) of Theorem A totally real flat minimal

surfaces in complex projective spaces weie classified essentially
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by Kenmotsu [Ke-2]. It seems not to be known if there 15 a

minimal surfaee with eonstant Gaussian eurvature and noneonstant

Kähler angle in eomplex spaee forms of nonzero eonstant holornorphie

seetional eurvature.

Eells and Wood [Ee-W] introdueed the notion of universal

lift for a smooth rnap to a eomplex projective spaee in order to

investigate harmonie maps from surfaces to eomplex projective spaees.

On the other hand Bryant [Br] defined certain fundamental operators

on the space of veetor-valued forms on aRiemann surface, and

classified minimal· surfaces with. constant Gaussian curvature in real

spage forms by utilizing those operators. In this paper we extend

Bryant's ope~ators to the operators acting on the spaee of veetor

bundle valued forms on Riemann surface, and apply the extended

fundamental operators to the universal lift for minimal immersions

of surfaces. By the argument analogous to that of Bryant, we show·

Theorem A. By the same method we also show Theorem B.
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1. Fundamental operators on the space of

vector bundle valued smooth functions.

Let M be a connected Riemann surface and be a

Riemannian. metric' compatible with the holomorphic structure of

M . We do not assume that M is compact or that gM 1s complete.

are

T (resp. T -1)

we let

M - gM(R (u,u)u,u)

of

M M
Vw] - V[V , W] and K =

= T10,.1)M · For m ~ 0

power tensor product

{u,ü} be a unitary basis

u E T(O,1)M and {w,~} be itsp ,

the Riemannian connection of (M,g)

Let T(1 OlM (resp. T(O 1)M) be the complex line bundle of', ,
(1,,0) -forms' (resp. (0,1) -forms). Let

of T M~ with u E T(O,1)M and
p p

Mdual basis. Denote by V

The curvature form RM and the Gaussian curvature K of M

defined by RM
(V , W) = [V~,

-1
Put T = T11~O)M "and T

:T
m(resp. T -m) be the m-th

Using the identification wm = (w)-m for all

. 1 .. m k Tm+k for all mnon~ca pa~r~ng T x T --,-

m ,

and

we have a ca-

k . Set
co co m
fB'C (T)

m=-co
as a Z-graded vector space.

Let E be a complex vector bundle over M with an inde-

finite Hermitian fibre metric E
< ,. > and a connection com-

patible with
E co

< , > • Let C (E) denote the vector space of all

M • Consider the tensor product

we equip the bundle E @ Tm

o = vE ~ ~M • Set

m

defined on

. For each

E

bundle

smooth sections of

with the tensor product connection

E = ; CCO (E ~ Tm) as a Z-graded vector space. We have a pairing
m=-co
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< ., > : E x E~ T gotten by extending the indefinite Hermitian

fibre metrix E< ,.. > of E in the obvious fashion. We define
ca Tm) ca Tm+ 1)operators D 1 : C (E ~ ~C (E ~ andm

ca Tm) ca m-1 (D 0)DI' . C (E li ~ C (E li T ) by Dia = ~ w .m .
m u

(D;.;O)
ca Tm) the fundamentalD 1 '0 = ~ w for cr E C (E ~ . We definem

U
ca ca

operators X Y on E by X = fD D' I Y = ~ D' I . Setm m=-ca mm=-ca

ß = XY + YX , the Laplace-Beltrami operator on each graded piece.

Proposition 1.1. Assume that the curvature form RE of the

bundle E satisfies the condition

(1 • 1 )

for some real valued function A on M. Then for any
ca m

o E C (E ~ ,T ) I

( 1 • 2) [?C/Y]O = (A-mK)O •

Moreover if A and Kare constant , then we get

( 1 • 3 ) [H ,X] = K • X I [H./Y] = -K· Y I

[X jY] =- H I

where the operator H on E is defined by
ca

H = - E9 (A - mK) I
m=-ca m

and I
m

ca rn ca m
C (E ~ T ) ~ C (E ~ T) is the identity.
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Proof. Let cr E Coo(E 0 Tm) and write cr = s ~ (w)m loeally,

where s is a loeal smooth seetion of E. Sinee

RM (u , ü) w = - K • w, R
M

(u , ü) w = K • w , by (1. 1) we have

[X,Y]cr
E - m m= (R (u,u) 5) 0 ( w) + ( - mK) 5 li ( (Jj )

= (A - mK) a _•

If. A and Kare eonstant, we have the first formula of (1.3),

[H,X]a = H(Xa) - X(Hcr)

= (- A + (rn + 1)K)Xcr- (- A + mK)Xcr

= K • Xcr •

The seeond formula of (1.3) 15 similar. q.e.d.

Remark. (1) In case A = 0 these are just the formulas

used by [Br].

(2) Generally a holomorphic connection satisfying the con-

dition (1.1) for some constant A over. a Kähler manifold 1s called

an Einstein-holomorphic connection.
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2. Harmonie map equation to a

eomplex projeetive spaee

Let ([n+1 denote the eomplex (n + 1) -spaee equipped
n ..

with the standard Hermi tian inner produet <v, w> = L vl.wl.
i=O

for o nv = (v , ... , v ) o n n+1w = (w , ... , w ) E a: . Let

be an n-dimensional eomplex projeetive spaee and

TI" : a::n +1 \ {O} ---+- ([pn 'be i t5 eanonieal proj eetion. a:n +1 \ {O}

i5 a principal bundle over a::pn with·the strueture group «:* ,

where a:* denotes the group of·non-zero complex numbers. For

a positive constant c, set S2n+1 (c) = {v F «:n+1 ~ <v , v> = 1/c}

The Hopf fibration TI": 5 2n +1 (c/4) ---+- a:p~ 1s obtained by

restricting the canonical projection TI: ([n+1 \ {O} ~ ([pn .

The Fubini-Study rnetric on ([pn with constant holomorphic

sectional curvature c(> 0) is characterized by the fact that

the Hopf fibration TI: S2n+1 (c/4) ~ ([pn is a Riemannian

submersion. We :endow ~pn with the Fubini-Study metric 9 of

constant holomorphic sectional curvature e. Let L be the

universal bundle over ([pn; the fibre L' over anyx

can be identified with the complex 1-dimensional subspace of

([n+1 determined by x. Thus L is identified as a holomorphic

subbundle of the trivial bundle ([n+1 = ([pn x ([n+1 over

Let L~ be the subbundle of a:n +1 whose fibre at x is the

orthogonal complement of L x
in a: n + 1 .

can be given a holomorphic structure. We endow the
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the bundles L and L~ with the Hermitian connected structure

induced from the Hermitian inner product < , > of ~n+1 . We

give L* @ L~ the tensor product Hermitian connected structure,

where L* denotes the dual bundle of L. Then there exists a

natural bundle isomorphism h :'T(1,O)~pn ~ L* ~ L~ preserving

connections and satisfying <h(Z) ,h(W» = (c/2)g(Z,W) for

Z , W € T~1 , 0) ~pn (cf. [ Ee - W, p. 224 ] ) •

Let tP: M~ a;pn be a smooth map from aRiemann surface to

a complex projective space. We say ~ 1s full if its image lies

nin no proper complex projective 8ubspace of ~p . Denote by

(dtP) 1 ,O(~) the (1 ,O)-component of d~(~) for ~ € TxM~ .

Consider the exact sequence of vector bundles over a;pn

where i i8 the natural inclusion and j is given by the ortho

gonal projection along L. Tensoring with L* and pulling back

nvia a map q:>: M~ CI:P gives the exact sequence over M

-1o~ q:> (L* ~ L)

Note that the bundle q:>-1 (L* ~ L) has the "identi tylt section"

which we denote simply by 1. We call the section ~ = i(1)

co -1 n+1E C (tP (L* ~! )) the universal lift of q:> (cf. (Ee-W]). We

give the bundles ~-1L, q:>-1 L*, ~-1L~, tP- 1 (L* ~ !n+1) and
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~-1 (L* ~ L~) the pull-back Hermitian connected structures.

Pulling back h: T (1 ,0) G:pn ~ L* ~ L.L by ~,we get a con-

nection-preserving bundle isomorphism

( 2 • 1 )

satisfying

<h(( 'hp) 1 ,0 (~) ) ,h ( (dtP) 1 ,0 ( n) ) > = (c /2) g ( (dtP) 1 ,0 (~) , (d<!» 1 , 0 (n) )

o the covariant differentiation in the bundle E . We apply

results of Section 1 to the bundle E and use the formulation

and notation in Section 1.

Now we give a description of the curvature form for the

bundle E. Let w be the fundamental 2-form of n(a:p ,g) de-

fined by w(Z,W) = g(Z,JW) for Z,W E T ~pn ,where J denotes
x

n co
the canonical complex structure of ~p • For any V ~ C (E) and

co -1
p E C ((,0 L ). ,

~n+1 _ -1
(RE,(u,ü)V) (p) = R (u,u) (V(p» -,V(R(,O L(u,ü) p)

-1 L -=-V((,O R (u,u)(p» •
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Sinee it is known that the eurvature' form of the universal

bundle L is given by RL = - (e/2) !=T w , we get

RE(U,Ü) = (e/2) I=T (q>*w) (u,ü)

Henee we can write

(2 _2) RE = (e/2) · III ,

where II is a smooth funetion on M defined by

II = I=T (q>*w) (u,ü)

II is ealled the Kähler funetion of a map tP (e f. [E-G-T, 'o!?J_ 573]).

When . q> is an isometrie immersion, the function II is related to

the Kähler angle 8 of q> by II = cos 8 . Then II = 1 (resp.

II =-1) if and only if tP 1s holomorphie (resp. anti-holomorphie),

and II = 0 if and only if tP is totally real.

It is easily shown that if a smooth map ntP : M ~ [tp

satisfies 1-1 I!I 0 , there are a covering spaee v: M~ M and a

"'-J ':1 2n+1horizontal smooth map q>: M. ~ S (e/4) relative to the Hopf

fibration TI': s2n+1 (e/4) ~ tIpn sueh that 1T 0 tP = tP 0 \) • More-

isometrieally lifted to a minimal surface in

is harmonie. Thereforeover <.p i.5 harmonie if and only if

every minimal surface in ~pn with II = 0 ean be loeally and

s2n+1 (e/4) .
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Proposition 2.1 (1) ~ always satisfies

(2 .3)

(ii)

<~, ~> = 1 •

00

D~~ E C (E) has image in

-1 .1
~ L . In partieular ~ always satisfies

(2.4) <X~,$> = 0, <y~,$> = 0 .

Thus we may regard D~~ as a seetion of ~-1 (L* ~ L.l) •

(iii) Under the assumption (2.1) ,

(2.5)

for any

h ( (d~) (1 , 0) (~» = D~ ~

~ E T Ma: •
x

(iv) A smooth map ~: M~ a:pn i5 harmonie if and only

if

(2.6)

This proposition is essentially due to Lemma 4.3 and Pro

positions 4.5, 4.6 in [Ee-W]. In [Ee-W] they introdueed the notion

of eomplex isotropy of a map. A smooth map ~: M~ a:pn 1s

ealled eomplex isotropie if
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(2.7)

for all p,q ;;; 0 with P + q ;;; 1 .

S h t M ~pnuppose t a q>: --,. \&. is a minimal surfaee with

eonstant Gaussian eurvature K. If ~ is eomplex isotropie, then

we have K > 0 • Beeause, aeeording to [Ee-W], ~ has a horizontal

holomorphic. lift of ~ relative to a twistor fibration

H ~ <tpn. Here·H is endowed with the strueture of a homo-r,s r,s

geneous Kähler submanifold in a eomplex projeetive spaee. Hence

q> 1s a holomorphie isometrie immersion of M into a complex pro-

jeetive spaee. Thus by.virtue of a result of Calabi [Ca-1], K

roust be positive.

Proposition 2.2. (i) ~ is eonformal if and only if ~

satisfies

(2.8) <X~,Y~> = 0 •

(ii) ~ is an isometrie immersion. if and only if ~ satisfies

(2.8) and

(2.9) <x ~ , X~> + <y.~, Y4» = c/2 •

(lii) The Kähler function· ~ of a map ~ is given by

(2.10) <x~,x~> - <Y~,Y~> = (e/2)~ •
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(iv) ~ is a minimal isometrie immersion if and only if

~ satisfies (2.8) and

(2.11) 6~+ (e/2)~ = 0 •

Proof. By (2.1) we have

(2.12) <D~<1',Dn~> = (e/4) «~*g) (~,n) + I=T (~*w) (~,n»

for ~,n E TxM . Let {e, ,e2 } be an orthonormal basis of

so that u = (1/12) (e, - I=T e 2 ) , Ü = ('/12) (e, + I=T e 2 ) .

Using (2.12), we eompute

T M-x

(2.13)

(2.14)

(2.15)

<X<1' , y ~> = (e / 2) { (1 / 4) « <.p*g) (e 1 ,e1) - (<.p*g) (8 2 ,e2) )

<X ~ ,X~> = (e / 2) { (1 / 4) ( (~*g) (e 1 ,e 1) + (<.p * g) (e2 ,e2) )

- (1/2) (<.p*w) (e
1

,e
2
)} ,

<Y<fl ,Y<I» - (e/2) {(1/4) «<.p*g) (e
1

,8
1

) + (<.p*g) (e
2

,e
2

»

+ (1/2) (q>*w) (e
1

,e
2
)} •

(2.13) implies (i). Frorn (2.14) and (2.15) we get (ii) and (iii).

If <.p is a minimal isometrie imrnersion,by (iv) of Proposition
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2 • 1 and (1i) we- get (2. 8) and (2. 11 ). Conversely suppose (2. 8)

and (2 • 11).. By (2 • 3), ( 2 • 4) we eompute

<X<ll,X<ll> +. <Y<IJ,Y<ll> =-<YX<ll,~> - <XYcI>,<fl> =-<.64>,4» = (e/2) • Henee

~ is a minimal isometrie immersion. So we get (iv). q.e.d.
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3. Minimal surfaces with constant curvature and

Kähler angle in a complex projective space

Let M be aRiemann surface with a Hermitian metric gM

and K denote i ts Gaussian curvature. Let <.p: M~ <I:p
n be a

smooth map and lJ = 1=1" (<,p*w) (u,ü) be the Kähler function of

, where - denote a unit (1,O)-vector and its<,p u and u on M

conjugate. In this section we assume that K and lJ are con-

stant on M . Consider the bundle E = tO- 1 (L* ~ ~n+ 1) and the
co

universal lift ~ E C (E) of <.p.

Proposition 3~1.
co

Suppose that a section ~ of C (E)

satisfies Li\{' + (c/2) \{' = 0 • Then, for each m 2:: 0 ,

(3 • 1 )

(3.2)

y~+1\{' = (1/2) [m(m+ 1)K- (c/2) {1 + (2m+ 1)lJ}] ~'i' ,

xyIn+ 11f' = (1 12) [m (m + 1) K - (cl 2) {1 - (2m + 1) lJ}] yffi\y •

Proof. We show (3.1) and (3.2) by the induction on k.

Since 'i' E E has degree 0, Hqr = - (cl 2) lJ • 'i'

1:1 qr = (XY + YX) qr = - (c I 2) qt ,

( - H) qt = (xy - YX) \{' = (cl 2) lJ • qt •
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It· follows that

YX't' =- (e/2) (1 + ~)/2 .'t', XY't' =- (e/2) (1 - ~)/2 • 't' •

This verifies our elaim when rn = 0 . Now suppose that

yxID'tI = (1 I 2) [ m (m - 1) • K- (e12) {1 + (2m - 1) ~ }] rn- 1 'tI ,

and xyIll\l' = (1/2) [m(m- 1) ·K-(e/2) {1 - (2rn- 1)~}] ym-11{f

We compute

= (1 12) [rn (m - 1) •K - (c I 2) • {1 + (2m - 1) ~ }] ~'1'"

- { (c / 2) ~ - m· K} xID'f'

= ( 1 / 2) [m (m + 1) • K - (c / 2) {1 + (2m + 1) ~ }] Xm'f' ,

= ( 1 / 2) [m (m - 1) K - (c / 2) {1 - (2m - 1) ~ }] yffi't'

+ { (c12) ~ + mK} yID'f'
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= (1/2)[m(m+1)K-(c/2){1-(2m+1)11}] rn'±'.

So the induction is complete.

Proposition 3.2. Suppose that ,~, satisfies

ßrt> + (c/2) l' = 0 • Then, for each m '= 0 ,

q.e.d.

.-111+ 1 m<x tP,X ~> = <ym~,ym+1~> = 0

and m m<x !fl,X ~> = A ,m <ym~,ymtP> = B , where A and Barem m m
constants depending only on In, K and 11 satisfying

Am+ 1 = (1/2)· [ (cl 2) {1 + (2m + 1) 11} - m (m + 1) · K] •Am

and . B
m

+ 1 = ( 112) [ (c I 2) {1 - (2m + 1) lJ} - m (m + 1) • K] • Bm

Proof. We show this proposition by the induction on m.

(2.3) and (2.4) verify our claim when m = O. Suppose that our claim

is true for m = p • Applying Y to <xp
+

11',xP tP> = 0 , we get

So by (3.1) and the assumption of the induction we have

<xp
+

1 41 ,xP+ 1 4» = - (1/2) [m (m + 1) ·K - (c/2) {1 + (2m + 1) 11}] <XP41 ,xP~>

= Ap+1

Applying X to this equation, we get
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By (3.1) we have

<XP+2 <1>,Xp+1
<1» =- (1/2)km(m+ 1)·K- (e/2){1 + (2m+ 1)1l}]<XP+1<1>,XP1»

= 0

Similarly by (3.2) and the assumption of the induetion we have

P+ 1 p+ 1 p+ 2 p+ 1<Y <1>,Y <1» = Bp +1 is eonstant and <Y ~,Y <1» = 0' • So

the induetion is complete. q.e.d.

Put a = ( 1/ 2) [ (e / 2) {1 + (2m + 1) ll} - m(m + 1) · K]
m

and b = (1 / 2) [ (e / 2) {1 - (2m + 1) ll} - m(m + 1) · K] .
In

Then from Propositions 3.1 and 3.2 we get

(3 • 3) A = a A B = b Bp+1 P P p+1 P P

(3.4) yqXP<p ( - 1) qa 1 p-cr= a X -4>
p- p-q

(3.5) XqyP<p = ( - 1) qb b yP-q~
p-1 p-q

for p ~ q ~ 0 •

Lemma 3.3. Suppose that <1> satisfies ~<1>+ (e/2)~ = 0 •

If A = 0 for some m ~ 0 , then <p is eomplex isotropie
m+1

and satisfies

(3.6)

for anyp and q with p,q~rn+ 1

B· = 0 for some m ~ 0 , thenm+1

or m,~ p > q ~ 0 • Similarly if

<1> is eomplex isotropie and satisfies
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(3.7)

for any p and q wi th p, q ;;: m + 1 or m '= p > q '= 0 •

Proof. Assume that A = 0m+1 for sorne m ;;: 0 and let m

be the srnallest integer satisfying A = 0 . From (3.3) we havem+1

A 0 for all ~ m + 1 Applying X to )(Tl m-1 0= p . < <P,X lb> = ,
P

we get

Since )(Tl+1 lb = 0 , by (3.4) we have

a 2·<~<p,xm-2~> = 0 •
m-

Since A * 0 , from (3.3) we see a 2 * 0 • Hence <~~,~-2c:» = 0 •m m-
m ~.m-3Similarly, applying X to this equation, we have <X ~, x 4» = 0 .

Inductively we get <~lP ,XqlP> = 0 for each q with 0 ~ q :i m - 1 .

Applying Y to <~41,xq<ll> = 0 for each q with 0 ~ q::i m - 2 ,

By (3.4) we get a 1· ... <~-14>,xq~> = 0 • Since a 1 * 0 , wem- m-
have ~~-1 4> , Xq 1» = 0 for each q wi th 0:;;; q ~ m - 2 • Inductively ,

we obtain <xP<t>,Xg<t» = 0 for any p,q with m;;: p > q '= 0 • So

we get (3.6). In particular <xP<t>,<ll> = 0 for all p ~ 1 • We show

the complex isotropy of 4> by the induction on p + q • (2 • 4)
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shows our claim when p + q = 1 . We suppose that

forany p andqwith k>p+q~ . Using this assumption

repeatedly, we eompute, for each p , q wi th P + q = k ,

= (- 1) q<Xp+q<t> , <P> = 0 •

Therefore we get the complex isotropy of ~. When Bm+
1

= 0 for

some m ~ 0 , similarly we ean show (3.7) and the complex isotropy

of ~. q.e.d.

We shall study a map tP: M ~ a:pn satisfying ß$ + (c/2) <P = 0

in each ease: K > 0, K = 0 K < 0

Proposition 3.4. Suppose that <P satisfies ß~+ (e/2)<P = 0

and tP is full. If K > 0 , then ~

isometrie immersion and there exists some R. with O::i R. ~ n such

that k = c/{2R.(n-R.) +n} ,

open submanifold of qr
n,R.

~ = K· (n- 2R.)/c

8
2 n---+ a:p .

and tP (M) 15 an
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Proof. Since K > 0 , a , b ---...,... - co as In ~ co . Since
m m

A ~ 0 , B ~ 0 for all m , by (3 • 3) there are k , 9.. ~ 2 such
m m

that a = b9.. = 0 a k - 1 *. 0 and b9..-1 * 0 . From a k = b9.. = 0
k

we have

(c/2){1 + (2k+ 1)1l}-k(k+ 1)·K = 0,

(c/2) {1 - (29.. + 1)1l} - t{t + 1)K = 0 •

By a simple computation we get lJ' = K (k - 9..) /c and

for each

~ t . Then1 ~ P ~ k

o ~ p ~ k

regard each Z
p

SO(M) of orthonorrnal frames compatible with the orientation of

K = c / (2 k 9.. + k + t) . Wehave A = B = 0 f or any p 2; k + 1 ,
P q

q ~ 9..+ 1 , and A = <xp~,XP~> > 0 B = <yq~,yq~> > 0 for any
p p

o ~ q ~ t . Set Zo = ~ Z = (1/~) .xp~p p

and Z = (- 1) q (1/18) · yq for each 1 ~ q
-q q

by Lemma 3. 3 we have <Z , Z > = ö f or - t ~ p,q ~ k·. I f wep q p,q

as a· vector bundle E-valued function 9n the bundle

M , then

in a: n + 1

{z (p ) , Z0 ( p) , Z ( P) j 1 S, P S k , 1 :;; q S 9..} i s un i taryp -q

for any unit element p € ~-1L at every point of SO(M) .

Hence {Z , Zo ' Z ; 1 S P S k , 1 ~ q S t} is projective unitaryp -q

in a:n +1 at every point of SO(M) • By (3.3), (3.4), (3.5) we

compute



3 - 8

DZ = XZ + YZ
P P P

= ;a ·z -~. • Zp-1 for 1 ~ P ~ k ,
P p+ 1 p-1

(3.8)

. DZ = ~ ·z -/b:" • Z-'1 , and
0 1 0

DZ = ~ • z - Ib · z-q q-1 -(q-1) q -(q+1)
for 1 ~ q.;S; ~ •

From these· equation and the fullness of <.p we see k + ~ = n . So

we get II = K(n - 22) /e, K = c/{22 (n - 2) + n} . Moreove'r we have

(3.9) a = (e/2)·(n-~-p)(~+p+1)/{2~(n-~)+n}
p

for O;S; P ;S; k - 1 and

(3.10) bp "(cl 2) • (~ - q) (n - 9., + q + 1) I {22 (n - 2) + n}

for 0 ~ q $ 2 - 1. (Zp' Z0 ' Z_q ; 1 ~ P ~ k , 1 ~ q ~ 2) can be

regarded as a map from SO(M) to a projeetive unitary group

PU (n + 1) . Using (3.8), (3. 9), (3. 10) and resul ts of [B-Oh, § 2],

by virtue of the eongruence theorem for smooth maps to a home-

geneous space (cf. [Gr] er [Je]) we cenelude that <.P is locally

congruent with 1JJ n·n,.-;. q.e.d.

Remark. From the cornplex isotropy of <.P, , we also can get

the conclusion of this proposition by results of [Ee-W], [Ca-1],
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[B-Oh] and [B-J-R-W].

Proposition 3.5. Suppose that w satisfies

llw + (c/2)W = 0 • If K = 0 , then ~ = 0 •

Proof. In this case a :;: (cl 4) {1 + (2m + 1) ~} andm

b :;: (cl 4) {1 - (2m + 1) II } • I f II * 0 , then a .--+ - co 0 rm m

b ~ - co as m~ co • By (3. 3) we get A = 0 or B = 0
m m m

for some m? 1 • By virtue of Lemma 3.3 ~ is eomplex isotropie.

From (iv) of Proposition 2.2 ~ is a eomplex isotropie, minimal

isometrie immersion. But sinee K = 0 , it's impossible. There-

fore we have ~ = 0 • q.e.d.

By the argument similar to that of [Br, Theorem 2.3] we show

the following.

Proposition 3.6. Suppose that cI> satisfies ll<I>+ (e/2)4>=O •

Then K < 0 i5 impossible.

Proof. Suppose K < 0 • If A = 0
m

or B = 0m for some

m ~ 1 , then by Lemma 3.3 and (iv) of Proposition 2.2 ~ beeomes

a eomplex isotropie minimal isometrie immersion. But sinee K < 0 ,

it's impossible. Therefore Am > 0 and B > 0 for all m ~ 0 .m
From ( 3 • 3) a > 0 , b > 0 for all m '= 0 . We fix an integer mm m

with m ~ 2 For any integer with ~ applying m-1 top p m , X

the equation <xp+1$,XP ct» = o· , by (3.3) , (3.4) we compute
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m-1
L

r=O

m-1 ( )= r m~1
r=Q

r+p+1 p-{m-1-r)
a ( 1 )<X ~,X ~>p- m- -r

m-1 ( )= I m~1
r=O

= 0 •

Hence we have

( -1) m-1-r (1 /A ) <XP +r +mt1> xp +r ~> = Q
p+r '

for each p ~ 1 • This equation says that the sequence

{ (1 / A ) <XP+
rn 4l, xP~> ; P E:

P m-1
order m - 1 : L (m~ 1 )

r=Q
result about difference

Z,p·~ 1} is a difference equation of

( _ 1) m-1-rx = 0 • By a well-known
p+r

equations, there exists a polynomial in

s, R (s) , of degree at most m - 2 in s wi th coefficients inm

Coo(Tm) so that

(3 .6) (1/A ) <XP+m4l Xp~> = R (p)P , m

for all P ~ 1 For p ~ 0 I define z = (1/~)XP~ . Then we
p p

have <Z I Z > = 1 , <Z 1 ' Z > = 0 • When m 2: 2 I for all p ~ 1
P P p+ P

<Z ,Z > = (1/~ ~)<xp+m~/XP~>
p+m p p+rn p

= IA /Ap p+rn R (p)
m
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Since K < ° , we have

for same positive constant Cm which depends on K "and ~ .

Because fram (3.3) we compute

-2• (a )
p

= [(c/4){1 + (2p+ 2m-1)~} - (p+m-1) {p+m)K/2J-2

..._.[(c/4){1 + (2p+ 1)~} -p(P+ 1)K/2]-2 < C /pr'J •
m

Since R (p) 1s af degree at most m - 2 , when m ~ 1
m

lim <z ,Z >(um) = °
p-+-OO p+m p

for each unit vector u E T(1,O)M . Let u E T{1 ,O)M be a fixed

unit (1,O)-vector at

We define the vectors

x E M and p E L
x

W in ~n+1 by
p

be a fixed unit element.

W
P

Then ,., r'7 (m)<LI ", LI > U " =p+m p <l"l W >p+m' p

Let r > n be any integer and let E > ° be small. By

k * 9.. , 0 :i k,9.. :i r , while

1 for all k . Taking E sufficiently

r + 1 vectars {W , ... ,Wp +r }p
~n+1 . Since r > n , this 1sare linearly independent in

the above argument, there exist an integer p so large that

I<w k'W n>l < E for allp+ p+;f..

<W'---:--:" w·-..,.-:>--=---<z ." - z > =p+k' p+k p+k' p+k

small, this implies that the

impossible. q.e.d.
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4. The ease when the ambient spaee is a

eomplex hyperbolie spaee.

In ~n+1 we eonsider an indefinite Hermitian inner produet

< , > 1, n defined by

<z,w>1 ,n
00 ~ ziwi=-zw + L.

i=1

2n+1Fixing any negative eonstant e , we, let H (c) =

{z E a:n +1 ; <z,z>1 = 1/c} . The group S 1 = {el=T 8} aets freely,n

H
2n+ 1 (e/4) .. I=T eon by ,z~~ e z. An n-dimensional eomplex hyper-

bolie spaee ~Hn is the base manifold of the prineipal s1-bundle

H
2n+1 (e/4) with the projection 1T': H

2n+1 (e/4) ~ CI:Hn . Far eaeh

z E H
2n+1 (e/4) , we define a subspace H of T H2n +1 (e/4) byz Z

H = {w E ~n+1 ; <z,w>1 = O} • The restrietion of
Z . ,n < " > 1 ,n to

each H is positive definite. Then we can define a Riemannian
Z

i8 a linear isometry for eaeh

metrie g on so that d 1T : ( Hz', ( , )) ~ (T 7T ( z) a:H
n

,gTI' ( z) )

z E H2n+ 1 (e/4) , where

( , ) = Re< , >1 · g gives the standard Kähler strueture on,n

a:H
n

of eonstant holomorhic sectional eurvature e. We define a

holomorphie line subbundle L
1

of the trivial bundle Cn +1

nn(z) E a:Hover a:Hn by

z E H2n+ 1 (c/4)

(L
1

)X = ~·z for x =

. The restrietion of < , > 1 ,n

and

to defines an

indefinite (negative definite) Hermitian fibre metrie <, > of

L1 · Then L1 has the Hermitian eonnection with respeet to the
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Combining Proposition~ 3.4, 3.5' and 3.6, by (iv) of Pro-

position 2.2 we obtain Theorem A. We remark about the case

K = 0 . Let ~: M~ ~pn be a totally real flat minimal

surface. By the total realness of tD , tp can be locally lifted

to a'flat minimal surface t.P . M --+ s2n+1 (c/4) . By Theorem 3.1.
of [Br] , tp extends to a minimal immersion of a: . So tD also

extends to a totally real minimal immersion of ~ into ~pn

Such minimal immersions are completely classified by [Ke-2].
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nolomorphic structure and the indefinite Hermitian fibre metric.

Let L~ be the complex vector subbundle of ~n+' defined by

= 0

with respect to

J. n+1
(L) = {w E ce i <w, z> ,, x ,n

orthogonal direct surn ~n+' =

for all z E (L) } . We have an
x

< I >,
,TI

We endow the bundle L~ with the' Hermitian fibre metric

< I > by restricting < I >, to L~, . L~ has the holomorphic,n ,

structure through the bundle isomorphism Lt = !n+'/L, . With

respect to them Lt has the Hermitian connection. Now we consider

the tensor product bundle L~ ~ Lt ·with the Hermitian connected

structure induced from those of L, and Lt. Then there exists

a connection-preserving biholomorphic isomorphism h: T(' ,O)~Hn ~

* ~ -L, (i L, such that <h(Z) ,h(W» = - (c/2)g(Z ,W) for

Z W E T(1 ,O)a:Hn
, x •

Let
n

~ : M~ CCH . be a smooth map from aRiemann surface.

We consider the exact sequence of the complex bundles equipped

with pull-back indefinite Hermitian connected structure:

is the inclusion map and jwhere

along

i

relative to < I >, · Set,n

is the orthogonal projection

~ = ~-' (L~ ~ cc n +,) . We

co
call the section i(1) E C (E) the universal lift ~ of ~ ,

where denotes the identity section.' Let <, > and

Odenote the indefinite Hermitian fibre metric and the covariant

differentiation in the bundle E . Then we have the following:



·4 - 3

(-1 ) <4l ,4l> = - 1 •

( 2 ) Fer any has image in

Moreover h(d~)1,O = D~ •

(3) ~ 1s harmonie if and only if in any chart

D' 'D t ~ - <D I ~ , D I tb > 4> = 0

or o t 0 I I ~ - <0 I I <p ,0 I I <p> <p = 0 •

. More generally the similar formulation for indefinite

eomplex spaee fqrms was given by [E-G] in detail.

Let M be aRiemann surfaee with a eompatible Riemannian

metrie and ~: M~ ~Hn be a smooth map.The following is

showed easily:

(i) <<p , $> =- 1 , <X4> ,.4» = <Y$, $> = 0 •

(ii) ~ is conforrnal if and only if <X$,Y$> = 0 .

(iii) ~ is an isometrie immersion if and only if

<X<t> , Y4» = 0 and <X<f>, X<f» + <Y<f>, Y<P?' =- c/2
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(v) Let e be the Kähler angle of ~ and put

1-1 = cos e Then <X<tJ/X~> - <y~,y<tJ> =- (e/2) 1-1

(vi) Suppose that ~ is an isometrie immersion. Then

~ is minimal (or harmonie) if and only if ß~+ (c/2)<tJ = 0 •

Suppose that K and 1-1 are constant and ~ satisfies

ß$+ (c/2)$ = 0 . Following the ealeulations in Section 3, we

easily establish the same formulas as in Propositions 3.1 and

3.2 for a negative" constant c. So we get, for m ~ 0 ,

( 4 • 1 )

where

A = a Am+ 1 m m
B = b B

m+1 m m

B = <tt'<tJ, m<fl> ,
m

(4.2)

(4.3)

a = (1 12) [ (cl 2) {1 + (2m + 1) 1-1} - m (m + 1) •K] ,
rn

b = ( 112) [ (cl 2) {1 - (2m + 1) 1-1} - m (m + 1) •K] •
m

Now assurne that ~: M~ ~Hn i5 a minimal surfaee with

constant Gaussian curvature K and constant Kähler angle 8 •

By the equation of Gauss we have

(4. 4") K = (e/4) (1 + 311
2

) - (1/2) 110.11
2

< 0 ,

where llexll denotes the length of the seeond fundamental form
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a of ~. By (4.4) we compute

a o = (c/ 4) (1 + ~) ~ 0 ,

b O = (c/4) (1 -~) ~ 0 ,

a
1

= (1/2){(c/2)3lJ(1-lJ) + 11 Cl 11 2}

b
1

= (1/2) {(e/2) 3 (- lJ) (1 + lJ) + 11 CL 11 2} ,

2 2
> 0 ,a

2 = (1/2) {(e/2) (- 2 + SlJ - 9lJ ) + 3 110:11 }

2 2
b

2
= (1/2) {(e/2) (- 2 - SlJ - 9lJ ) + 3 llall } > 0 •

Therefore from (4.2), (4.3) we have a > 0 ,
m

b > 0m for any

m ~ 2 • We see that if lJ ~ 0 (resp. l.l ~ 0 ) , then a
1

': 0

(resp. b
1

~ 0 ) •

Lemma 4.1. The ease a O < 0 and a 1 > 0 is impossible.

Similarly the ease b
O

< 0 and b 1 > 0 is also impossible.

Proof. Suppose that a O < 0 and a 1 > 0 • Since a > 0
m

for any m ~ 2 , by (4.1) we have A > 0m for all m ;;: 1 • By

the argument similar to the proof of Proposition 3.6, we derive

the same identies as (3.6). We define z = ( 1 / IA) xP 4>
P p

for

P ~ 1 • Then we have <Z ,Z > & 1 and the same estimate
p p

lim <Z ,Z > = 0 pointwise on M for any rn > 0 • Henee we
p-+oo p+m p

\
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again derive a contradiction from the finite dimensionality

of ~n+1 ,. When b O < 0 and b
1

> 0 I by the similar argument

we can derive a contradiction. q.e.d.

Proof of Theorem B. First suppose that - 1 ~ ~ ~ 0 . Then

2
a 1 ~ 0 . I f ~ = - 1 I we have bO < 0 I b 1 = (1 /2) 11 a 1I . By

Lemma 4.1 we get b
1

' = 0 I i.e. M 1s totally geodesie and

anti-holomorphic. If - 1 < 11 ~ 0 , we have a O < 0 . By Lemma 4. 1

2
we get a 1 = 0 . Hence we get 11 = 0 and Ilall = 0 . Thus M

is totally real and totally geodesie.

Next suppose that 0 ~ 11 ~ 1 . Then b, ~ 0 • If ~ = 1 ,

2
we have a 0 < 0, a 1 = ( 1/2) 11 Cl 11 • By Lemma 4.' M i s holo-

morphic and totally geodesic. If 0 ~ ~ < 1 , we have b O < 0

and b
1

= 0 by Lemma 4.1. Therefore M is totally real and

totally geodesie. q.e.d.
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