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§ O. Introduction

Let S be a smooth surface in IPn and m be an integer with n ~ m ~ 2 . For any m

different points on S, if they are linearly dependent we say this set is special. Let M be

the collection of all these special sets, then M is a scheme with a natural algebro-geo­

metric structure. We can show that, when n = 3m-2 and S in general position, M is a

finite scheme. Denote the degree of M by II(s) which is intuitively the number oI points

in M possibly with multiplicities.

S.K. Donaldson posed a conjecture about this case in [2]:

"Conjecture 5. There is a universal formula for expressing v(s) in terms of m, the Chern

numbers of S, the degree of S in 1P3m- 2 , and the intersection number of the canonical

dass of S with the restriction of the hyperplane dass."

He pointed out this enumerative problem has something to do with Yang-Mills invariants.

In this paper we give an affirmative answer for the conjecture. But the fonnula for ex­

pressing v(s) is complicated for writing down explicitely though there is an algorithm for

computing it.
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In § 1 we explain the meaning of "general position" in the present case and gjve the basic

construction for computing v(s). In § 2, all of the objects considered in § 1 are lifted to

some projective vectors bundle where it is comparatively easy for computation. In § 3 we

construct the blowing-up which ia needed for computing some Segre class and finally in § 4

we prove the main result.

Author thanks K.C. Mong for showing him this problem. and thanks R. Piene for the

profitable discussion with her.

§1.

In sequels we assume the ground fjeld ia algebraically closed with arbitrary characteristic

> m or characteristic 0 ,where m is given aB follows.

Let m ~ 2 be an integer and n = 3m-2 .

Let Y = (iPn)m , the cross product of m times IPn and X = (S)m where S is a smooth

surface in IPn which is in general position in asense as follows.

Proposition 1.1. Let i: S c.........+ IPn be a non-degenerate embedding then there exists an

embedding j: S ---+ ~n+l such that

(i) i(S) is the image of j(S) via a certain projection from IPn+1 to IPn with a

point as center; but all the hyperplanes passing the center may have a common component

on j(S)

(ii) on the image of j(S) via a generic projection, every set of m points is linearly

independent except for a finite number of these sets which span (m-2~paces.
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(iii) the k--osculating spate of j(S) at any point with 2 ~ k ~ m and auy other

m-k points on j(s) span a (m-l)-space.

*Proof. Let i 0 n(l) = 0(1) . We shall show, there exists an integer NO such that for
IP

every N ~ NO and the embedding cp determined by O(N) , every m points on f{J(S) are

linearly independent.

In fact, let Z be a subscheme of m points on S with reduced structure and JZ be the

sheaf of ideal defining Z. From the exact sequence

1 1
----t H (S,JZ(N)) ----t H (S, O(N)) ----t 0

We see that if H1(S,JZ I (N)) = 0 for every (reduced) subscheme Z I ( Z , then these m

points are linearly independent. Hy Carlan-8erre Theorem B the condition is satisfied for

every N ~ NO with a certain NO' Now we have to show that NO can be chosen only

depending on m and not on their position on S.

As a standard method we take Z as a subscheme of IPn and show that we may replace

the ideal defining Z in IPn for JZ in the above argument. But in IPn we can prove the

above assertion direcdy. Then the vanishing of H1(S,JZ(N)) is independent of the posi­

tion of the points.

Continue to prove the proposition.
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Let r+l = HO(S,O(NO» and ,: S --+ pr .00 the embedding determined by O(NO)' We

show that for r ~ n+2 = 3m a generic projection from pI to pr-l gives an embedding

of Sinto pr-l and preserves the independence of arbitrary m points on S. Indeed, the

subscheme consisting of a1l the (m-l)-planes in IPn spanned by some m points on S has

dimension 3m-l and the subscheme consisting oI all the (m-l)-planes in IPn spanned

by a k-osculating and any other (m-k) points has dimension at most 3(m-l), thus a

projection with a generic point as center meets our need. We proceed like this till we arrive

at 1P3m- 1 . Sinre for m = 2 this proposition is tme automatically we mayassume

m ~ 3 . Then taking a generic point in 1P3m- 1 as center will give a projection which

preserves the independence of m points on S except for a finite number of these sets.

And anyone of these exceptional sets spans a (m-2)-plane. The reasons for that are (i) a

generic point in 1P3m- 1 is in a finite number of all (m-l)-plane spanned by m points on

S ; (ii) & generic point in 1P3m- 1 gives an embedding and preserves the independence of

arbitrary rn-I points on S.

Hereafter the words "& surface in general positionll means the sense of Proposition 1.1.

Let P = (Pl""'Pm) E Y and Pi = (ziO,,,,,zin) be the homogeneous coordinates of Pi in

!pn . We 8ay p ia a special point if rk(zij) ~ rn-I namely, Pl,... ,Pm are in the same

hyperplane of IPn . The ideal generated by the m-minors of (zij) defines a subscheme

G (!pR which represents all oI the special points in IPn .

Lemma 1.2. G ia a variety with codimension 2m.

*Proof. Let n. = q. 0 (1) where q. ia the ith projection from Y to !pn , and
1 1 IPn 1

cp. : ° (-1) ----i On+l be the canonical embedding oi the univeraalline bundle into the
1 IPn
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trivial bundle. Therefore on Y we have a homomorphisID

m
~ * 11 -1 "1"1' -1 n+l

I{J = L qi 'Pi: 1 e ... • firn -i ()Y .
i=1

We recall that in [1] or [5], a generic determiIl&lltal variety Mk(m,n) is the locus of

matrices of rank at most k and the ideal for defining Mk in M(m,n) ~ Amn is genera­

ted by the (k+l)x(k+l) minors. The present situation is essentially the case of a generic

determinal variety.

Indeed, over a point p EY, I{J is represented by the matrix (Zij) , and the m-minors

defines a variety M 1 on vector bundle 111- 1 $ ... $ H -1 with codimension 2m. Onm- m
the other hand, every m-minor is homogeneous with respect to each row of it and thus

there is ascheme, which is exactly G, with q-:-I(G) =Mm-l where

w -I 1I -1q: fi l ED ... m m --+ Y is the structure morphism. By the faithful flatness of

ql M we have shown G is a variety with codimension 2m.
m-I

Remark 1.3. G can be described by the desingularization of Mm_ 1 ' that means, if letting

m 1
Etm- 1 = {(A,W) E(/\JIj- ) )( 11'($ JIj ) IA· w = O} I then Etm- 1 ja mapped by the

projection onto M I properly, and by the another projection, E:t 1 ia mapped onto am- ID-

subvariety IT of P =1P($lIi) , which ia defined by the degeneracy Dm- 1(,) of , and

where 1/J is the composition of the canonical homomorphism tJp(-l) --+ mIri-
I and I{J.

It is clear that, the projection from P to Y maps U onto G .

We shall use this description in § 2.
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Usually the next step should be the computation for the intersection of G and X, but in

the present case tbis intersection V = G x y X has an excess part Le. they meet in a

higher dimensional subscheme than that in the "general case. Therefore we have to exclude

the "bad" points from X· G which is cansed by the excess part.

Lemma 1.4.

(i) V = V0 11 VI' where V0 is the"finite subscheme representing the special points

on Y and VI is a connected subscheme.

a3 a
(ü) As a scheme-theoretic union, VI = U S.. U U S. 'k U...USIm

O<i<j<m IJ i< j <k 1 J ...m

with multiplicities a D ~ 1 (Since the symmetry of SI' l' with respect to its subscripts.{... ,... , t

in V , every multiplicity for s. . ia same.), where s· . is the image 01 the mapping
11···1l. ll···ll

and which ia isomorphic to Sm-f.+1 under this mapping where t:a. . is the diagonal
ll· ..ll

morphism for the il' ... ,if.-th factors.

(iii) at only depends on m for every 2 ~ t Sm.

Proof. Let p EV , then rk(zij(P)) S m-l . If Pl, ... ,Pm' the components of p, are m

different points in IPn , then by Proposition 1.1 they span a linear spare 01 dimension

m-2 , i.e. rk(zilp)) = m-l , and the number oe such p's is finite. Denote tbis finite

scheme by V0 . The other points 01 V must have at least two 01 {Pl'... ,Pm} being a

same point and the inverse statement is valid too. Therefore, they form a subscheme VI

supporting on USij . (i) folIows.
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Before starting the proof of (ü) and (üi) we make some conventions. As done above

we still fix a same coordinate system in each fador of Y J and for the coordinates

(~ "",zk ) of a point l'k EIPn
, 80metimes we take it as the affine coordinates and thus

o n

mention the Kähler differential of p][ J denoted by n1pk' We use nf. to denote the

f.-th Kä.h1er differential.

We see from the proof of Lemma 1.3, V is defined in G by ideal a generated by

the m-minors of matrix

for p EX.

We are going to compute the multiplicity of any point Q of 8ij\~ 8ijk in V . The

Ql

differential of a is generated by the m-minors of DQ 1 . By Proposition 1.1 (iii)J we

Qm

see that the matrix is non-degenerated at Q. Therefore, Q has multiplicity 1 in V and

80 does 8ij . Moreover, since Q is an arbitrary point in Sij\ USijk we dednce that there

does not exist any embedded component over Sij\ USijk .

Now suppose Q E S123\ U S123k' We shall compute the multiplicity of Q in the
k~4

scheme defined by al 8 . Noticing that, the ideal defining 812 ia generated by the
12

[
Z10, ... ,Z1 ]

2-minors of n and the restrietion of them to S12 gives the generators of
z20J ""z2n

Os ' then als is generated by (m-l)-minors of the matrix
12 12
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over 812 , Therefore the differentials of these generators at Q are the (m-2)-minors of

By Proposition 1.1 again we see the matrix is non-degenerated, and thus Q has

multiplicity 1 in als . This means the multiplicity of Q in V equals the multiplicity
12

of any point Q' = (Qi,Qi,Qi,Q4,... ,Qm) E Mm_ 2(m,n) in Mm_ 1(m,n), and thus it

only dependB on m.

With the same trick we work with S. . inductively and then get our conclusion
11'00.,1.[

for (ü) and (iii).

Note. We can prove that at = t-2 for t ~ 3 .

Proposition 1.5. As a O-Cycle,

where X· G is the intersection cycle of X and G in Y, c is the ehern operator, NXY
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is the normal bundle of X in Y, s(Vl'G) is the Segre class of VI in G, A*(V) is the

Chow ring of V and ( )0 denotes the o-part of a cycle in the bracket.

All of these symbols and their meaning can be found in [5].

Proof. Since i: X e..........., Y is a regular embeddimg, then by the definition of the refined

Gysin morphism [5] we have

I
r-G = X-G

= (c(NXY) IV n s(V,G))O

= (c(NXY) IV n s(VO,G))O + (c(NXY) IV n s(vl'G))O .
o 1

By Lemma 1.4, V0 is the scheme of special points on (S)m and then,

(c(NXY) IV ns(vO,G))O gives the cyde [V0] .
o

Definition. lI{S) = b deg [Va] .m.

Because of symmetry of the special points on (S)m with respect to its components, the

definition gives the number of special points on S.

§ 2.

Though it ia easy to compute X· G but it seems difficult to compute s(Vl'G) . So we

would like to litt all of the objects in conaideration up to certain (projective) vector

bundles.
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From Remark 1.3, we see U = Dm..:.1(;) ,where ; is a composition of morphisms:

. () '"' ...;.,1 . 1ft' -1 $(n+1);. 0p -1 -----. fi1 •... mfim --+ Op .

, induces a section r: P --+ Op(1)tD(n+1) and U ia exactly the Q-lOCUB of r .

Therefore we have a diagram as follows:

kQ t-l----- J -----tl U------tl P

tl gl Ir Ir
0Q( 1 )fD(n+l)t-1----,-- Q j I P l 0 p(1)fD(n+l)

t o '" , ~ I rO
Cl\J ..... ~

Cl V--+G j~

i ~X IY
1

where r
O

is the D-5ection of P in Op(1)fD(n+1), Q = i·P , and every square with solid

lines in (*) is a fiber product.

Denote V1 )(G U by J1 ( J , which ia (a' g)-1(V1) .

Lemma 2.1. (i) X·G = (O/g)*(Q·U) ,

(ii) s(Vl'G) = (0' g).s(J1,IT)

Proof. By Remark 1.3, (~*U = G. Since j is a regular embedding with

codim j = codim i , then by using Excess Intersection Theorem in [5] we have
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I I I
X-G = i'G = i'(r'f)*U = (0' g)*i·U

( , ) ·!n=ag*Ju.

(i) haB been proved. As for (ii), we claim first that G is birationally isomorphie to G.

Since U and G both are varieties and the morphism from 11 to G is surjective) it is

enough to show that far a generic point p EG) (I" f)-I(p) is a single point.

In fact, if p is a point in G such that the matrix corresponding to p has rank m-I and

Pl' ... ,Pm are different then the kerne! of cp(p) haB dimension 1 and thus the degeneracy of

1ft in ~-l(p) is a single point. The claim is true.

We see from [5] the Segre class is birationally invariant and thus

We wish to transfer the objects further into the left square in (*).

Lemma 2.2.

Proof. Für (i), since codimpU = 2m ,then r and rO intersect properly at U and thus

N P = f* Np ( Op(l)EB(n+l)) . Therefore,
U
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Q.U = j!.U = j!. (Cn+1(Op(I)EB{n+l)) n [PJ)

= Cn+I(t'Q(l)8l(n+I» n i! [P]

= Cn+I(t'Q(l)8l(n+I» n [Q]

2= [Q] .

Proof of (ii). Since j and f both are regular embeddings, then

Additionally,

hence the conclusion follows.

2· EB{n+l)Lemma 2.1 and 2.2 teil UB [Vo] = (ag).([Q] -(g c(NQO(I) )IJ
1

n s(Jl'Q))O)'

So hereafter we always work with the left square in (*) .

•Let i IIt = Hf.. then Q = IP(S Hi) and J is the D-locus of section t induced by r.

For computing s(J l'Q) we have to know more about the structure of J1 .

Let us denote I-l( )
a Sij by Q.. , then it is easy to see

IJ
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Q.. = IP(H1E9..JBHJB...E9H.EB...EBH ). Denote g-l(Q..) by W... From Lemma 1.4, W.. is
IJ 11m IJ IJ IJ

exactly the degeneracy of the restrietion of ; to Qij' In other words every point of Wij

is an l-dimensional subspace of Hi1EB...fBHi1fB...fBHi1fB...fBHm1 which is the kernel of

r,oIQ.. (fiberwisely). But ~IQ.. ia represented fiberwisely by matrix (zij) and thus an
IJ IJ,

l-dimenBional aubspace if it is contained in H}1 tB Hjl must be the diagonal subspace Le.

the image of Hi! -----+ Hi1 fB Hil with h~ (h,h) .

Therefore Wij iSAthe image of

IP(Hl fB...EBH.fB...EBH .EB...E9H ) -----+ IP(H1EB...fBHJB...fBH.EB...EBH ) induced by the diagonal1 J m 11m

homomorphiam.

AB a conclusion we have

&3 &m
Lemma 2.3. J1 = U W.. UW. 'k U...UW12 ,where W. . will be defined in

l~i<j~m IJ IJ ...m 11· ..lt
the beginning of § 3.

Lemma 2.4. Wij ia a divisor on Qij and the corresponding inverse aheaf ia Hi1 ~ 0(1) .

Proof. It is a standard fact from § 8 of eh. 11 in [3].

§ 3.

In this section we shall reconstruct the blowing-up of Q with respect to J1 . For that we

make an observation of S.. , Q.. and W...
IJ IJ IJ
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. .

(1) Sij (resp. ~j I W~j) ia sIDooth for all 1 ~ i < j ~ ID

(2) (a)

(b)

(c)

Let Sij n Sjk = S~jk I which is defined as the image 01

äijk )( (id)m-3 : (S)m-2 --+ (S)m where äijk ia the diagonal mapping with

respect to the ith I jth and kth factOIB.

Let Qij n Qjk = Qijk I which ia defined 88 (Aijk x (id)m-3)*Q .

Let W.. nWjk = W~n.. I which .ia defined aB the image 01IJ .1.,..
A _ A ~

IP(H1E9....BH.E9....BH .E9....BHkE9...E9H ) -----t Q'jk induced by
1 J m 1

-1 -1 -1 u-1 ()H. -----t H. 'I H. E9 n. with h..........-. h,h,h .
111 1

All of the intersections in (a), (b) and (c) are proper and every S'jk (resp. Q. ik' W··k )
I IJ IJ

ia smooth.

In a similar way we can define S. i (resp. ~ . ,W. i) for 4 ~ k ~ m if ne-
11", k 1···lk 11", k

cessary. We call k the length 01 S. . (resp. Q. " W. .).
11,,·lk Ir··lk l 1°o·lk

(3) (a)

(b)

s. . ~ (S)m-k+l in an obvious way.
11···lk

Under the i80morphism of (a), W. . ~ Q -k+l which denotes the space
11oo.lk m

constructed in (*) with m-k+l replacing m.

Let ß: B -----t Q be the blowing-up of Q with respect to J1 . We are going to

reconatruct ß.

In the following construction we shall UBe some basic facts about blowing-up. Let us list

them be1ow.
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(A) H V,W C Q are two algebraic subschemes, then in BtvnwQ Vn«r = ; , where

BtvnwQ denotes the blowing-up of Q with respect to vnw and V, \fI denote

the strict transforms of V and W respectively under this blowing-up.

(B) Besides the assumptions in (A) there ia a subscheme U (VnW . Then in BtUQ

Vn«r = BtU(WnV) .

k

(C) If V1, ... ,V IJ C Q meet properly, that is, codimQ(V. n...n v. ) = , codim V. for
.(, 11 Ik L Itt=1

every k ~ t , then BtV U Uv Q -----i Q can be realized step by step. Each step
1 ... t

is a blowing-up with respect to astritt transform of some Vi .

In particular, if Vl'".,Vt are disjoint we can get BLV1U".UVt Q by blowing up

along all Vi simultaneously.

Our reconstruction is divided into some steps.

Blowing Q up along W12...m we arrive in 13m : Bm ----+ Q and denote the

exceptional divisor of ß by W1'2 . B is sIDooth. Since any two ofrn ...rn m

intersect at W12...m then by (A) their strict transforms{Wo . }
11···lrn_ 1

{W ~ . } are diajoint .
11···lm_1

Blowing Bm up along all {W'I' I' } simultaneously we arrive in
I'" rn-I

ß 1: B 1 ----+ B by using (C). Let ß' 1 = ß ß l' W'.I .rn- m- m m- m m- 11... lm_1

be the exceptional divisors, and W1...m ' W I
.' • with k ~ m-2 be the
11···lk

strict transforms of W 1' ... rn and W~ . respectively. The situation of
1 1···lk
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In fact, if W
1
• and W

J
• i meet at W1 m or Wk k

1'" m-2 1"'-m-2 ... 1'" m-l

they are disjoint hy (A), hut they may intersect eIsewhere properly. The later

caae happens if and only if {i1,··.,im_ 2} n {jl,... ,.im-2} = ;. Taking into

account the situation when we hlow Bm- 1 up we should go by several steps

from (C) though we write them down in a single step (Rm- 2).

Continuing in this way, sUpJXlse we have arrived in (Rk), Le. .a.c: Bk ----i Bk+1 . Let

ßk :Bk ----i Q be the composition of {ßt }, t = m, m-l,.",k. We denote the "strict

transform" of W.. . under A! still by W~ . , where the "strict transform"
1112...1f. r-k 1 1".lt

means that we take the usual strict transform of W
1
• I' successively under each ßlJ ,
1'" t .{,

t = m""Jk if it is not a center of ßt ' and take its inverse image if it is a center of ßt .

Now the relation between W~. and W~ . is divided into different cases:
11·"lk_ 1 J1.. ·.lJt-1

(***)

(i) H k-l < #{il' ...,ik-l,jl""'~-I} < 2(k-l) they are disjoint. Since in this

case W. . n w. . = W for some t >k and thus W
11,,·lk_ 1 Jl···.lJt-l sl···St - sl···St

is a center in step (Rt ), from (A) the assertion follows. This is true for two

variables with different length too.

(ü) If #{il' ...,ik-l'jl""'~-I} = 2(k-l) they intersect properly.

(üi) H #{il'.",ik-l'jl'''''~-l} = k-l , they coincide.

Finally we a.rrive at (R.:2): ß' = ß2:B' = B2 ----i Q .
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Proposition 3.2. B ~ B' over Q.

Proof. Hy the universal property of blowing-up we have a unique morphism from B' to

\ 1 \ l~ tam
B over Q taking L [P- (Wij)] + l W (W. 'k)] + ... [,0- (W1 ...m)] to

IJ
a

\ [ß,-l(W..)] +".+ [ß1-t(Wl
m )]. We need to show there is a morphism from BL IJ ...rn

to B'over Q which ia the inverse of the above morphism. Indeed, since p-l(Wl. ..m) is

a divisor then we have a unique morphism from B to Bm over Q. In the following

diagram

Bm-I

1
B I B

m

~
we see that each W~. has a divisor &S inverse image in B, then using Lemma 3.1

11·"lm_l

again there exists a unique morphism from B to Blover B and hence over Q.m- m
Inductively we have got a unique IDorphisID from B to B'over Q and which meets our

requirement.

§4.

In this sedion we shall compute the Segre class s(Jl'Q) and prove the main theorem. In

the following computation we shall constantly UBe same new facts about blowing up.
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(D) Let Y,W ( Q be three smooth varieties and ynw be smooth too. Let

1:: B --+ Q be the blowing-up of Q with respect to W , then

*(i) If YnW CY is a proper subvariety of Y I then 'K NyQ ~ Ny,B , where

y' is the strict transform of Y under ....

*(ii) H W (y , Ny,B ~ (I' NyQ) GD 0(-1) IV' .

In B constructed in § 3, let ~I' I' be the stritt transfonn of W. . in asense we
1'" k 11···lk

explained in § 3. By the definition of s(Jl'Q) it is

~ k-1 ~ 1 1 &m
~ l (-1) (l [11 Wij)] +...+ W W1 ...m] =

k=l

= ~ (_1)k-
1
ß.( ~ "«rij+b3 ~ "«rijk+ ..+ bt . ~ . "«rir.i

t
+ ..bm "«r12..m)k I

k=l i<j i< j <k 11< ...<ll

f.(l2"l)where bt. = at + .

Proposition 4.1. Let M be a monomial of variables "11. . with 2 ~ k ~ m ,then ß*M
, 11···lk

is a cycle in which each term can be written as some ehern classes of the normal bundles of

W. . in Q or of W. . in W. . with s< t acting on Borne Wh h or
11· .. l k Jl"'.lt Jl· ..Js 1'" r

Wh h n ... n Wk k with disjoint subscripts.
1'" r 1'" t.

Proof. We shall prove this inductively.

Assume m = 2 ,then M is simply the fonn «r~2 if i ~ 2 then ß*~i = 0 j if i ~ 3 ,

i+3 i 1ß.~12 = (-1) c(N Q). n [W12] so the assertion is true in this case.
W12 1
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Now suppose the assertion is true for the cases ~ rn-i.

Given a monomial M on B, we arrange the variables in M by their length. If the first

non-trivial variables in M is ~ . • ... • fII. . then if {i1,,,.,it},... ,{j1,... ,jt},
ll···lt Jl"··Jt

are not disjoint tms intersection will be zero by (***). This fact is also true for the inter-

section of any two variables with the same length. Therefore we mayasaume that any two

variables appearing in M with same length have disjoint indicesj for two variables with

different length, for exampIe ifi. " "11. . with r > k, if {i1,." ,ik} and
ll,,·lk Jl'''lr

{j1,.",ir} are not disjoint and {i1".ik} ({jl...ir} then the intersection of them rollSt be

zero by (***). Therefore, without I08S of generality we write down M as

111 i t lII j
( . «r i t «rj

t . «rim
12 ...t·" s+1".s+( 12... t."t .. · s+1."s+t".a+t"· 12 ...m

Since W12."t has been blown up in step (Rt ) ({3t+l)* ...(ß2)*M does not change its

shape on Bt ' and in abuse of notations, we use the same expression as in B .

Because {1,2,,,.,t},,,.,{s+1,... ,s+t} are disjoint, Wi".t,·",W ~ +1".s+t meet properly

on Bt - 1 ' where W' denotes the strict transform of W in Bt - 1 . Therefore by (C) in

§ 3 ßt can be realized by successive blowing-ups, each time taking a Wi. ... t as center.

*On the other hand «r1".I.".t = ß(Wi ".t."t for every variable with a langer length. So

i J' i
, t W' t W' rn

• W12."t".t.. · s+1...s+t.. · 12 ...m '
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it -l+···+jt-1
where E = (-1) hl = it -3(t-l),...,hk = jf.-3(t-l). (Note, since

codim Wl. .. t = 3(l-1) , for every 1 < i t < 3(t-l) Pt.M = 0 . We always exclude this

trivial case).

In the expression, [Wi ...t]·" [W~+l."s+t] = [Wi ...t n."n W;+l. ..s+f) since they

meet properly. Using the isoIDorphism of (3) (b) in (**), we have

Wl. .. t n...n WS+l. ..s+ l ~ Qm-k(l-l) where k is the number of

W1... l,,,,,Ws+1. ..s+ t appearing in M and Wi ...t n."n W~+l. .. s+t corresponds the

blowing-up of Qm-k(f..-l) with respect to its own J 1 (Intuitively what we are doing ia

simply replacing l,... ,l-th factor of (S)m (resp. S Hil ) with their diagonal. Thus we

return to the original situation but replacing m with m-k(f..-l)). At the same time

Wi" .t...t is identified with \t!l." t-t+1 and 80 on.

On the other hand from (D) in this section we have

h

Sh(NWi ...
t

Bt - 1) =.lo(_1)h-i [:tf] Si(ßf:lNWl...tQ)(-~Wi ...tr~ Wi ...tjs.J
1= J JS

where the last factor on the right side is the exceptional divisor of the blowing-up of

Qm-k(f.-l) with respect to its J1 , and e+1 ia the rank of N i.e., e = 3(t-l)-1 .

Therefore except for M = \t!~2 ...m we use the inductive hypothesis to deduce our conclu­

sion. And ß..«r~:~~:-l) = E St(NWl...mQ) n [Wl...m] I E = (_1)t+3m .

Theorem 4.2. v(S) can be expressed by a polynomial of the ehern number of S, the de-
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gree of S in 1P3m- 2 and the intersediion number of the canonical cla.BS of S with the

restriction of the hyperplane ela.BS; the coefficients and the degree of the polynomial depend

onlyon m.

Proof. We have proved in § 2 that

Now

(og)*[Q]2 = o*cn+ 1(O(l))n+1 n [Q]

= [(l-hl).~.(l-hm)] 2m n [(S)m]

From Proposition 4.1 we see that s(Jl'Q) is a combination of some ehern classes of

certain normal bundles acting on [Wl. .. t] for same t or Wl... t n ... n Wk...k+r with

disjoint subscripts. In fad in the proof of Proposition 4.1 we have shown that the ehern

classes which act on [Wl. ..t] are s(Nw. . W
i1

...i ) restricted to W l. .. t ' where
11 1r s

s < r and {il' ... ,ir} C {1,2, ...,t} . But [W12 s] = (c1(O(l))-h1)S-1 n [Q12...s] (aB

a subscheme it is a complete intersection in Q12 s)' and c(NQ Q) :! C( Q *0S*ms-l) .
... 12...s

* *Hence c(NW1...rW1...s) = (l+c1(O(l))-hlf-llc(o n/-tl .and
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[ * 3m-l [ 1] [ 1] J(Qg)* q (l+c1(O(l)) n * .... n [W1 t]
c(a NW Q). c(a NW W1 8) i ... 0

1...t 11 1. ..I"· t

whele ik J I we write them at Iandom since tbis has notbing to do with our pIOOf.

Developing the explession and taking the o-part we find the general term of it (neglecting

coefficients for the time being) is

where L is a linear combination with integer coefficients. Fot the constant term we have

0* [c (O(l))(m-1)+2(m-f.+l) n [Q ]J =
1 1... f.

and thus the degree is (t+1}dm-t+l.

For the term abl + bK we have

Q*(C (O(1))(m-l)+2(m-f.)+l(ah +bK) n [Q D]}
1 1 l. ..~
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and thus the degree is atdm-t+l + bt(h
1
K)dm-l. .

Finally for the term of linear combination ah~ + bK2 + e· c2(S) . We have in the same

way

and the degree is (ah~ + bK2 + e ~(S))dm-t .

As for the coefficients in the expression for m!v(s) they come from the coefficients in the

self-intersection of the exceptional divisor on B and from the coefficients in same ehern

class formula. All of them only depend on m.

The computation for other possible terms is similart 80 the theorem follows.

Remark 4.3. We can write this formula with a little bit more precisely,

where Fk is a polynomial in variables hK, K2, ~(S) of degree at most [~] .
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Example 1. The case m=2.

Then we have v(S) = 0 , but the computation (like we did in the proof of Theorem) gives

Therefore v(S) = 0 is simply the well-known condition for & smooth surface embedded in

1P4 .

Example 2. The case m=3.

The computation for this simple case is a little complicated:

6v(S) = d3 - 138d2 - d(165(hK) + 105(K2-e2) + 56392)

-138104(hK) -105723K2 + 116159c2 .
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