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§ 0. Introduction

Let S be a smooth surface in P® and m be an integer with n > m > 2. For any m
different points on S, if they are linearly dependent we say this set is special. Let M be
the collection of all these special sets, then M is a scheme with a natural algebro—geo-
metric structure. We can show that, when n = 3m-2 and S in general position, M isa
finite scheme. Denote the degree of M by 1{s) which is intuitively the number of points
in M possibly with multiplicities.

S.K. Donaldson posed a conjecture about this case in [2]:

"Conjecture 5. There is a universal formula for expressing 1{s) in terms of m , the Chern

numbers of S, the degree of S in , and the intersection number of the canonical

class of S with the restriction of the hyperplane class."
He pointed out this enumerative problem has something to do with Yang—Mills invariants.
In this paper we give an affirmative answer for the conjecture. But the formula for ex-

pressing 1(s) is complicated for writing down explicitely though there is an algorithm for

computing it.
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In § 1 we explain the meaning of "general position" in the present case and give the basic
construction for computing ¢{s) . In § 2, all of the objects considered in § 1 are lifted to
some projective vectors bundle where it is comparatively easy for computation. In § 3 we
construct the blowing—up which is needed for computing some Segre class and finally in § 4

we prove the main result.

Author thanks K.C. Mong for showing him this problem and thanks R. Piene for the

profitable discussion with her.

§ 1.

In sequels we assume the ground field is algebraically closed with arbitrary characteristic

> m or characteristic 0 , where m is given as follows.
Let m 2 2 be an integer and n = 3m-2.

Let Y = (P™)™, the cross product of m times P" and X = (S)™ where S is a smooth

surface in P™ which is in general position in a sense as follows.

Proposition 1.1. Let i:S = P" be a non—degenerate embedding then there exists an
embedding j: S — P! such that

n+1 to P! with a

(i) i(S) is the image of j(S) via a certain projection from [P
point as center; but all the hyperplanes passing the center miy have a common component
on j(S)

(ii) on the image of j(S) via a generic projection, every set of m points is linearly

independent except for a finite number of these sets which span (m—2)—spaces.
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(iii) the k—osculating space of j(S) at any point with 2<k {m and any other

m—k points on j(s) span a (m—1)—space.

such that for

*
Proof. Let i ¢ (1) = 0(1). We shall show, there exists an integer Ny
P

every N2 Ng and the embedding ¢ determined by ¢(N), every m points on (S) are
linearly independent.

In fact, let Z be a subscheme of m points on S with reduced structure and JZ be the

sheaf of ideal defining Z . From the exact sequence
0 — BY(S,3,,(N)) — HY(S,0(N)) — E'(S,0,(N))
— H'(5,3,(N)) — H(5,0(N)) — 0

We see that if Hl(S,JZ;(N)) =0 for every (reduced) subscheme Z’ C Z, then these m
points are linearly independent. By Cartan—Serre Theorem B the condition is satisfied for
every N2 N0 with a certain N0 . Now we have to show that N0 can be chosen only

depending on m and not on their positionon S.

As a standard method we take Z as a subscheme of P" and show that we may replace
the ideal defining Z in P" for J g in the above argument. But in P® we can prove the
above assertion directly. Then the vanishing of Hl(S,J 7(N)) is independent of the posi-
tion of the points.

Continue to prove the proposition.
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Let r+1 = HO(S,a(NO)) and $:S— P’ be the embedding determined by O(Ng) . We
show that for r 2 n+2 = 3m a generic projection from P' to P! gives an embedding
of S into P*L and preserves the independence of arbitrary m points on S . Indeed, the
subscheme consisting of all the (m—1)—planes in P" spanned by some m pointson S has
dimension 3m—1 and the subscheme consisting of all the (m—1)—planes in P" spanned
by a k-osculating and any other (m—k) points has dimension at most 3(m-—1), thus a
projection with a generic point as center meets our need. We proceed like this till we arrive

at . Since for m =2 this proposition is true automatically we may assume

m 2 3. Then taking a generic point in pdm-1

as center will give a projection which
l;reserves the independence of m points on S except for a finite number of these sets.
And anyone of these exceptional sets spans 8 (m—2)—plane. The reasons for that are (i) a
generic point in P31 i in a finite number of all (m—1)-plane spanned by m points on
|P3m—1

S ; (ii) a generic point in gives an embedding and preserves the independence of

arbitrary m-1 pointson S.
Hereafter the words "a surface in general position" means the sense of Proposition 1.1.

Let p=(py;-Py,) €Y and p, = (%;g»-12;,) be the homogeneous coordinates of p; in

P". We say p is a special point if rk(zij) {m-1 namely, p,..p, are in the same

hyperplane of P . The ideal generated by the m—minors of (2 j) defines a subscheme
G CP® which represents all of the special points in P" .

Lemma 1.2. G is a variety with codimension 2m .

*
Proof. Let H,=gq,0 (1) where gq; is the ith projection from Y to P", and
P

@ ﬂu)n(—l) — 0™+ be the canonical embedding of the universal line bundle into the
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trivial bundle. Therefore on Y we have a homomorphism

m
_ * ool -1 n+l
tp—E qitpi.Hl 0...$Hm — 0y .

i=1

We recall that in [1] or [5], a generic determinantal variety Mk(m,n) is the locus of
matrices of rank at most k and the ideal for defining M, in M(m,n)~ A™" is genera-
ted by the (k+1)x(k+1) minors. The present situation is essentially the case of a generic

determinal variety.

Indeed, over a point p€Y, ¢ is represented by the matrix (zij) , and the m—minors

1 with codimension 2m . On

. -1 —
defines a variety M_ _, on vector bundle H,""® . @ H_
the other hand, every m—minor is homogeneous with respect to each row of it and thus

there is a scheme, which is exactly G, with q‘_l(G) =M where

m—1
q: Hl_lﬂi...GBHm_l——»Y is the structure morphism. By the faithful flatness of

M we have shown G is a variety with codimension 2m .
m—1

Remark 1.3. G can be described by the desingularization of M that means, if letting

m—1"’
Mm—l = {(A,W) € (Elﬂ'i_l) x P(® H’i) |A-w =0}, then Mm—l is mapped by the
projection onto Mm—l properly, and by the another projection, Mm—l is mapped onto a
subvariety G of P =P(® Hi) , which i8 defined by the degeneracy D_ _,(¢¥) of ¢ and
where ¢ is the composition of the canonical homomorphism 0p(—1) — @ Hi_l and o.

It is clear that, the projection from P to Y maps G onto G.

We shall use this description in § 2.
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Usually the next step should be the computation for the intersection of G and X, but in
the present case this intersection V=G *y X has an excess part i.e. they meet in a
higher dimensional subscheme than that in the general case. Therefore we have to exclude

the "bad" points from X+G which is caused by the excess part.

Lemma 1.4.
(i) V=V, 11V, where V is the finite subscheme representing the special points

on Y and V1 is a connected subscheme.

a a
(i) As a scheme—theoretic union, V,= U s;U U Si:?k u..u SIHl

' o<i<j<m Y i<j<k ' L

with multiplicities ap 21 (Since the symmetry of B, with respect to its subscripts

m

.
A
in V, every multiplicity for s, ip is same.), where 8, ip is the image of the mapping
1 1
A, . x (id)m-e’ cgmt+l____ gm
iy..d
) R
and which is isomorphic to Sm"‘)"*'1 under this mapping where Ai i is the diagonal

1L
morphism for the gy g—th factors.

(iii) ag only depends on m for every 2€¢<m.

Proof. Let p €V, then rk(zij(p)) {m—-1.1If Py»Pp » the components of p,are m
different points in P™, then by Proposition 1.1 they span a linear space of dimension
m-2, ie rk(z j(p)) =m-1, and the number of such p’s is finite. Denote this finite
scheme by V0 . The other points of V must have at least two of {pl""’p m} being a
same point and the inverse statement is valid too. Therefore, they form a subscheme V1

supporting on USij . (i) follows.
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Before starting the proof of (ii) and (iii) we make some conventions. As done above
we still fix a same coordinate system in each factor of Y, and for the coordinates
(zko,...,zkn) of a point Py € Pt , sometimes we take it as the affine coordinates and thus
mention the Kiéhler differential of Py denoted by Dlpk . We use D!‘ to denote the
£—th Kahler differential.

We see from the proof of Lemma 1.3, V is defined in G by ideal a generated by

the m—minors of matrix

Py zlﬂ(pl)""’zln(pl)
Pm sz(pm) L "zmn(pm)

for p€X.
We are going to compute the multiplicity of any point Q of 5, j\g S,
Q
differential of a is generated by the m—minors of DR, | . By Proposition 1.1 (iii), we

ik in V. The

U
see that the matrix is non—degenerated at Q . Therefore, Q has multiplicity 1in V and
8o does S, i Moreover, since Q is an arbitrary point in Sij\USi K e deduce that there
does not exist any embedded component over Sij\USi k-

Now suppose Q € S,,,\ U S . We shall compute the multiplicity of Q in the
123 K4 123k
scheme defined by a g, - Noticing that, the ideal defining S,, is generated by the
12

Zypy-rZ
2—minors of [ 10 1n] and the restriction of them to S12 gives the generators of
TyyyeeorE

20" 2n

i ,then aj is generated by (m—1)—minors of the matrix
Sl2 Sl2



over §,, . Therefore the differentials of these generators at Q are the (m—2)—minors of

Q)
p2qQ,
Qy

L Qp

By Proposition 1.1 again we see the matrix is non—degenerated, and thus Q has

multiplicity 1 in a . This means the multiplicity of Q in V equals the multiplicity
S12 |

of any point Q' = (Qi'Qi’Qi’Qei’""Qm) € Mm_z(m,n) in M__,(m,n), and thus it
only depends on m .

With the same trick we work with Si ip inductively and then get our conclusion
e

for (ii) and (iii).
Note. We can prove that a, = g2 for £23.

Proposition 1.5. As a 0—cycle,

[Vol = X-G = (N Y) |y Ns(V;,G))g € Ag(V)

where X-G is the intersection cycle of X and G in Y, c is the Chern operator, NyY



|

-9

is the normal bundle of X in Y, 8(V,,G) is the Segre class of V, in G, Ay(V) is the
Chow ring of V and ( ), denotes the 0—part of a cycle in the bracket.

All of these symbols and their meaning can be found in [5].

Proof. Since i: X =—— Y is a regular embeddimg, then by the definition of the refined
Gysin morphism [5] we have

i'G=X-G
= (e(NyY) |y N 8(V,G)),
= (c(NxY)| v, N 8(V,G))g + (c(NxY) |Vl Ns(Vy,G))g -

By Lemma 14, V, is the scheme of special points on (S)I11 and then,
(c(NXY)|VO l'\a(VO,G))0 gives the cycle [VO] .

Definition. (S) = %r deg [VO] :

Because of symmetry of the special points on (S)m with respect to its components, the

definition gives the number of special pointson S .
§ 2.
Though it is easy to compute X-G but it seems difficult to compute §(V,,G) . So we

would like to lift all of the objects in consideration up to certain (projective) vector
bundles.
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From Remark 1.3, we see G = Dm_.l(ﬁ) , where ¢ isa composition of morphisms:
-1 -1 ®(n+1
¥: dp(—l)—-&Hl ®.0H —401,( )
¢ induces a section r: P — OP(I)e(n+1) and G is exactly the 0docus of r.

Therefore we have a diagram as follows:

(*) Q ] LS 4P
t g f lr
i
UQ( 1 )9(n+1)F - Q\ J » P = y 0 P(1)$(H+1)
4 !
a \.\! k'fﬂ'
a V—G lr

a“ w.||

.L/

X - Y

*
where Iy is the 0—section of P in OP(I)G(D'H) , Q=1 P, and every square with solid

lines in (*) is a fiber product.
Denote V, X G by J, CJ, whichis (a’g) " (V,).

lemma2l (i) X-G=(a’ghl(Q-T) ,
(ii) S(VI:G) = (a’g)*s(Jl:G)

Proof. By Remark 1.3, (),G=G. Since j 1is8 a regular embedding with

codim j = codim i , then by using Excess Intersection Theorem in [5] we have
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X-G =i'G = i'(x'1),T = (a’g)si' T
= (0'S)t.ilc .

(i) has been proved. As for (ii), we claim first that G is birationally isomorphic to G .
Since G and G both are varieties and the morphism from G to G is surjective, it is

enough to show that for a generic point p€ G, (w'f)—l(p) i8 a single point.

In fact, if p is a point in G such that the matrix corresponding to p has rank m-1 and
PyyiPp 8r€ different then the kernel of ¢(p) has dimension 1 and thus the degeneracy of
% in r_l(p) i a single point. The claim is true.

We see from [5] the Segre class is birationally invariant and thus
(a’g)*s(Jl,C) = s(Vl,G) :
We wish to transfer the objects further into the left square in (%) .

Lemma 2.2. () Q-G=[QeAy
(i) (8 c(NGP) N (3B = (& cMg( oM™ V) ns(3,,Q)), -

Proof. For (i), since codimPG =2m, then r and r; intersect properly at G and thus

* 1
NP = Np(0p(1)2 1) . Therefore,
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Q-T=iT=§"(c, ,(0p1)*™ ) n 1)

n+1
= cg 100X ni'[p]

= 420 ) 0 [q]
= Q1% .

Proof of (ii). Since j and f both are regular embeddings, then
* *
g c(NQP) ns(J;,Q) =k c(NGP) ns(J,,Q) -
Additionally,

k*c(NGP) = kT o(0p (1)) = g e, (1) ™+

=g o(0q)> ),
hence the conclusion follows.

Lemma 2.1 and 2.2 tell us [V(] = (ag)«( [Q]2 - (g*c(NQ 0(l)e(n+1))|_]1 Ns(J,Q))g) -

So hereafter we always work with the left squarein (*) .

*
Let i H!, =H, then Q= P(®H;) and J is the 0—ocus of section ¢ induced by r.
For computing s(J 1,Q) we have to know more about the structure of J 1

Let wus denote a’ _l(si j) by Q

ij? then it is easy to see
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-1 .
Qij=IP(HIQ...@HiQ...QHiO...QH m) - Denote g (Qij) by wij . From Lemma 1.4, Wij is
exactly the degeneracy of the restriction of ¢ to Q i . In other words every point of W
is an 1—dimensional subspace of Hlle OH g, GH g . GH —1 Which is the kernel of

(,olq (fiberwisely). But galQ is represented fiberwisely by matrix (z ) and thus an

1—d.1menmona.l subspace if it is conta.med in H_l o H'l must be the diagonal subspace i.e.
the image of Hi — Hil ® Hi with h —— (h,h) .

Therefore W, j is the image of

[P(HIG...GHiG...QHjG...OHm)—-’IP(HIQ...GHiO...GHiQ...GHm) induced by the diagonal

homomorphism.

As a conclusion we have

Lemma 23. J, = U W U lek u..u W12 o Where W, . will be defined in

1<i<jlm ! 17
the beginning of § 3.

Lemma 2.4. W, i is a divisor on Qij and the corresponding inverse sheaf is H;I ® 0(1).

Proof. It is a standard fact from § 8 of Ch. I in [3].

§ 3.

In this section we shall reconstruct the blowing—up of Q with respect to J 1 For that we

make an observation of S Q and WJ
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(xx) (1) Sij (resp. Qij , WIJ) is smoothforall 1{i<j<m

(2) (a) Let Si.i n Sjk = Sijk , which i8 defined as the image of
A ik X (id)m_3 : (S)m_2 —(S)™ where Aijk is the diagonal mapping with
respect to the ith, jth and kth factors.

‘s . m—3.*
(b) Let Qij n ij = Qijk , which is defined as (Aijk x (id)™ %) Q.
(¢) Let W, j nNwW., = ijk * which ‘is defined as the image of
[P(Hle...eHie...eﬁje...éﬁke...enm) — Qi induced by
Hi'l — H{l ® Hi‘l ® }ril with h+— (h,h,h) .

All of the intersections in (a), (b) and (c) are proper and every S; ik (resp. Qi_ﬂ: , wijk )
is smooth.

In a similar way we can define S, . (resp. Q i, W, i\ Yfor 4<{k<{m if ne-
13k 1

1

cessary. We call k thelengthof S. . (resp. Q. . , W. . ).
11...lk 11...lk 11...lk

3) (3 i ~ (S)m_k+1 in an obvious way.
1

(b)  Under the isomorphism of (a), Wil“'ik ® Qmn_k41 Which denotes the space

constructed in (*) with m—k+1 replacing m .

Let B8:B—Q be the blowing—uf; of Q with respect to Jl. We are going to

reconstruct 3.

In the following construction we shall use some basic facts about blowing—up. Let us list

them below.
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If VWC(CQ are two algebraic subschemes, then in BP‘VnWQ YnW = ¢, where
Bﬂ.van denotes the blowing—up of Q with respect to VNW and ¥, W denote
the strict transforms of V and W respectively under this blowing—up.

Besides the assumptions in (A) there is a subscheme U C VNW . Then in BP.UQ

Vn® = Be(Wnv).
k
If Vy,..,V, CQ meet properly, that is, codimQ(Vil n...n vik) =) codim vit for
t=1
every k < £, then Bf.v U UV Q —— Q can be realized step by step. Each step
17V

is a blowing—up with respect to a strict transform of some Vi .

In particular, if Vl""’vl are disjoint we can get BLVIU...UVQQ by blowing up

along all V. simultaneously.

Our reconstruction is divided into some steps.

(Rpy):

Blowing Q up along W12 m Ve arrive in ﬁm : Bm————»Q and denote the
exceptional divisor of ﬁm by Wi2 m* Bm is smooth. Since any two of

w, .

iyl g
{w: .} aredisjoint.
g

} intersect at W o m then by (A) their strict transforms

(R, ;): Blowing B_ up along all {W{ . } simultaneously we arrive in

1" "m—1

) , : r =

ﬁm—l ’ Bm—l Bm by using (C). Let ﬂm—l - ﬁmﬂm—l ’ gl"‘im—l

be the exceptional divisors, and W7 _ , Wi . with k < m-2 be the
...n 1.0y

and W; i respectively. The situation of
1

. 7/
strict transforms of wl...m
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{W{ .} isdifferent from thatof {W] . } in (R ).
1.-- m_2 1“. m—l
In fact, if W, . and W. . meet at W or W
ijeeip o PR WY l..m kyok 4

they are disjoint by (A), but they may intersect elsewhere properly. The later
case happens if and only if {il’""im—z} n {jl""’jm—2} = ¢ . Taking into
account the situation when we blow Bm_1 up we should go by several steps

from (C) though we write them down in a single step (R _,) .

Continuing in this way, suppose we have arrived in (Rk) , i.e. ﬂk : B — B, 41 Let

ﬁ]’( : By — Q be the composition of {ﬁﬁ} , L=m, m-1,... k. We denote the "strict

transform" of W. . . under ﬂl" still by W{ . , where the "strict transform"
]1]2-..19- 11...19'

means that we take the usual strict transform of Wi successively under each ﬂf' ,

loo-ip’
£ = m,... k if it is not a center of ﬂf. , and take its inverse image if it is a center of ﬂf. X

Now the relation between W/ . and W’ . is divided into different cases:
idy g i1
(k%)
(i) oI k1< #{il’""ik—-l’jl""’jk-—l} < 2(k—1) they are disjoint. Since in this
case W. . NwW. . =W for some £ ? k and thus W
llonlk_l J],”.Jk—l 81...B£ 81...82'

is a center in step (Rp), from (A) the assertion follows. This is true for two
variables with different length too.

(ii) If #{il,...,ik_l, jl"“’jk—l} = 2(k—1) they intersect properly.

(idi) If #{il’""ik—l'jl'“"jk—l} = k-1, they coincide.

Finally we arrive at (R.z) B’ =ﬁé:B' =B,—Q.
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Proposition 3.2. B~ B’ over Q.

Proof. By the universal property of blowing—up we have a unique morphism from B’ to
. 1 13 1, om
B over Q taking )[4~ (W;;] + Y5 (wijk)] +o W™ )1 to

3
z [8 _l(wij)] +..4+ [B _I(Wlm m)] . We need to show there is a morphism from B
to B’ over Q which is the inverse of the above morphism. Indeed, since § l(wl...m) is
a divisor then we have a unique morphism from B to BIn over Q. In the following

diagram

5

we see that each W; has a divisor as inverse image in B , then using Lemma 3.1

1" m-1
again there exists a unique morphism from B to Bm_1 over Bm and hence over Q.
Inductively we have got a unique morphism from B to B’ over Q and which meets our

requirement.

§4.

In this section we shall compute the Segre class s(J 1,Q) and prove the main theorem. In

the following computation we shall constantly use some new facts about blowing up.
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(D) Let V,WCQ be three smooth varieties and VNW be smooth too. Let
7: B —— Q be the blowing—up of Q with respect to W, then
" *
(i) I VAW CYV is a proper subvariety of V, then =« NyQ = Ny,/B, where
V' is the strict transform of V under «.
N *
(i) K WCV, Ny/B2(x NyQ)® 0(—1)|v: .

In B constructed in § 3, let Wi be the strict transform of W, . in a sense we

1...lk 1 ..lk

explained in § 3. By the definition of s(Jl,Q) it is

B Y (RN 1 W)+t (WP ] =
k=1

= Y GO TA(T Wy T Wiphay  F W by Wy, F

1..19' m
k=1 i<j i<j<k i1<...<i£

_ £(L-1
where bﬂ, =3, + —(—2—)-

Proposition 4.1. Let M be a monomial of variables W, . with 2<{k<m, then SuM
. 1-.. k

is a cycle in which each term can be written as some Chern classes of the normal bundles of

W, . in Q orof W, . in W. . with s8<t acting on some W or
1oy Jedy 3yl hl"‘hr

whl“'hr n..n Wkl---kg with disjoint subscripts.

Proof. We shall prove this inductively.

Assume m =2, then M is gsimply the form Wiz if i<2 then ﬁ*wi =0;if i23,

i+3 i 1 . . .
ﬁ*WmH' = (-1)! Ny T, N [W,,] so the assertion is true in this case.
12
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Now suppose the assertion is true for the cases < m—1 .

Given a monomial M on B, we arrange the variables in M by their length. If the first

non—trivial variables in M is ng---ia .. .wjr"jt then if {ij,ig }roers{iporrnadp }

are not disjoint this intersection will be zero by (*%x) . This fact is also true for the inter-
section of any two variables with the same length. Therefore we may assume that any two
variables appearing in M with same length have disjoint indices; for two variables with

different length, for example w. ., W. . with r>k,if {i,.,i,} and
iy Jpdp 1k
{ip--i;} are not disjoint and {i...ip } C {j;...i;} then the intersection of them must be

zero by (**%) . Therefore, without loss of generality we write down M as

th . Wim

i j i
¢ '} Cwtt
Wi oW w s+1.8+L..6+t " "12.m °

8+1...6+L 12...0..t
Since W, , has been blown up in step (Rf,) (By +1)*...(ﬂ2)*M does not change its
shape on B f,‘ and in abuse of notations, we use the same expression asin B .

Because {1,2,...,L},...,{s+1,....s+L} are disjoint, Wi g meet properly

4

s+1...84L
on By ,, where W’ denotes the strict transform of W in B ¢—1 - Therefore by (C) in
§3 ﬂf. can be realized by successive blowing—ups, each time taking a Wi g 2s center.

*
On the other hand W, , , =B, W] , . for every variable with a longer length. So

B, M=es, (Nwr B, )0 [W/ ,].8, (Nys B, .)n [W ]
f'* hl W12.“£ [ 1 1...!. hk ws+1.“s+£ f. 1 s+1...8+£
i j i
t t s I
"Wio ot Wert s+t Wi2, .m
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ig—1+...+jp—1
where € =(-1) , by =iy-8(-1),....hy = jp—3(2-1). (Note, since

codim W, , = 3(2-1), for every 1 <i, < 3(¢-1) BQ*M = 0 . We always exclude this

trivial case).

In the expression, [W] ,]... [W;+1...s+£] = [W] pn.n W;+1...s+£] since they
meet properly. Using the isomorphism of (3) (b) in (**), we have
W, pn.n Wil 40 ™ Qm—k(t—l) where k is the number of

w W 1 gp appearingin M and Wi ,N..0 w;+1...s+£ corresponds the

L..em
blowing—up of Qm—k( g-1) with respect to its own J, (Intuitively what we are doing is
simply replacing 1,...,&—th factor of (S)™ (resp. ® ;') with their diagonal. Thus we
return to the original situation but replacing m with m-k(€—1) ). At the same time

WI o isidentified with Wl...t—£+1 and so on.

On the other hand from (D) in this section we have

h
_ h—i[e+h *
s(Nw: Be-1) =) 1) [e+i]“i(ﬁi-1Nw1 £Q)(‘2 LA TORLINT
" i=0 XN j js

where the last factor on the right side is the exceptional divisor of the blowing—up of

Qm—k(ﬂ—l) with respect toits J; , and e+l isthe rank of N ie., e=3(L-1)-1.

Therefore except for M = W'l'z m Ve use the inductive hypothesis to deduce our conclu-

sion. And ﬁ*wgfégﬁ_l) =€ sf'(Nwl mQ) N{W, nl. e= (-ptHim,

Theorem 4.2. 1(S) can be expressed by a polynomial of the Chern number of S, the de-
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lP3m_2

greeof S in and the intersection number of the canonical class of S with the

restriction of the hyperplane class; the coefficients and the degree of the polynomial depend

onlyon m.
Proof. We have proved in § 2 that

mi(S) = deg(ag)s([Q1 % ((1+¢,(o(1))" ! ns(3;,Q)),) -

Now

(28), [Q1% = aye, (2()* ! 0 [Q]
[(1—h1) =5 )] N [(8)™]

where h, = c,(H,) . Hence

deg(ag), [Q]2 = deg(h%...hi) =q™

From Proposition 4.1 we see that 8(J,,Q) is a combination of some Chern classes of
certain normal bundles acting on [Wl...f,] forsome £ or W, ,Nn..N Wy kqr With
disjoint subscripts. In fact in the proof of Proposition 4.1 we have shown that the Chern

classes which act on [W1...a] are ﬂ(NWi , wil"'is) restricted to W, , , where
g

s<r and {ij,i,} C {128} . But [Wy, ] =(c;(0(1)-0)" N [Qy ] (as
a subscheme it is a complete intersectionin Qp, ), and ¢(Ng Q) =c(a nse"‘l)
12..8

* %
Hence c(Nyy Wy o) = (L+cy(0(1))h)) Pc(a 0, and



3m-1 1
= (a)s [(1+c1(a(1))] [(1+c1(a(1))-h1)c(a'6;)]i1"'

1 t-1
[(1+°1( O(I)Hl)rf’(a*;?)_r] ik(cl( 0(1))_111) n [Qlﬂ] )0

where ik , T we write them at random since this has nothing to do with our proof.

Developing the expression and taking the 0—part we find the general term of it (neglecting

coefficients for the time being) is

a [cl(0(1))(m—1)+f1,(h1,hf,x,x%hlx,cz(sn niQ, a]] )

where L is a linear combination with integer coefficients. For the constant term we have

ay [cl( 0(1))(m—1)+2(m—£+1) N [lea]] _

1 m-—£+1 2,2 2
= n(S) = (L+1)h%nZ .k
[(1-h1)'¢(1-h£ +1)-(1-h ) 2(mt41) 1L+ m

and thus the degree is (P,+l)dm—£+1 .

For the term ah1 4 bK we have

ax(c, (o) DFAT=+an 1vk) 0 [Q, 1)
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_ 1 m—£+1
- [(l—hl)f'...(l—hm)] 2(m—f.)+1(ah1+bK) ")

2 2 .2
= o(ab4vh Kb, 02
and thus the degree is a2d™ ¢+ 4 pe(h K)a™ L.

Finally for the term of linear combination ahf +bK2 + e-c,(S) . We have in the same

way
2 2 2 2
(ah] + bK” +e °2(S))h£+l"'hm
| 2 2 m—£
and the degree is (ahj + bK” + e ¢,(S))d .
As for the coefficients in the expression for m!i{s) they come from the coefficients in the

self—intersection of the exceptional divisor on B and from the coefficients in some Chern

class formula. All of them only depend on m .

The computation for other possible terms is similar, so the theorem follows.

Remark 4.3. We can write this formula with a little bit more precisely,
mli(S) = & + FLd® 7 4 Fd® 2 4 4 F

m

where F| is a polynomial in variables hK, K2, ¢,(S) of degree at most [g] :
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Example 1. The case m=2.
Then we have (S) = 0, but the computation (like we did in the proof of Theorem) gives
2 2
20(5) = d% — 10d — 5hK + ¢oS) —~K* .

Therefore 1(S) = 0 is simply the well-known condition for a smooth surface embedded in

p?.

Example 2. The case m=3 .
The computation for this simple case is a little complicated:
61(S) = d3 — 1384% — d(165(kK) + 105(K>—,) + 56392)

— 138104(hK) — 105723K2 + 116159c,, .
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