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1 Introduction

Each Hilbert modular surface has a beautiful minimal smooth compactification
due to Hirzebruch. Higher-dimensional Hilbert modular varieties instead admit
many toroidal compactifications none of which is clearly the best. In this paper,
we consider canonical compactifications of closely related varieties, namely the
real multiplication locus RMO in the moduli space Mg of genus g Riemann
surfaces, as well as the locus of eigenforms ΩEO in the bundle ΩMg →Mg of
holomorphic one-forms.

If g is 2 or 3, we give a complete description of the stable curves in the
Deligne-Mumford compactificationMg which are in the boundary ofRMO, and
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which stable curves equipped with holomorphic one-forms are in the boundary
of the eigenform locus ΩEO. If g > 3, we give strong restrictions on the stable
curves in the boundary of RMO. This allows one to reduce many difficult
questions about Riemann surfaces with real multiplication to concrete problems
in algebraic geometry and number theory by passing to the boundary of Mg.
In this paper, we apply our boundary classification to obtain finiteness results
for Teichmüller curves in M3 and noninvariance of the eigenform locus under
the action of GL+

2 (R) on ΩM3.

Boundary of the eigenform locus. We now state a rough version of our
calculation of the boundary of the eigenform locus. See Theorems 5.2, 8.1,
and 8.5 for precise statements. Consider a totally real cubic field F , and let
O ⊂ F be the ring of integers (we handle arbitrary orders O ⊂ F , but stick
to the ring of integers here for simplicity). The Jacobian of a Riemann surface
X has real multiplication by O roughly if the endomorphism ring of Jac(X)
contains a copy of O (see §2 for details). We denote by RMO ⊂ M3 the
locus of Riemann surfaces whose Jacobians have real multiplication by O. Real
multiplication on Jac(X) determines an eigenspace decomposition of Ω(X), the
space of holomorphic one-forms on X. The eigenform locus ΩEO ⊂ ΩM3 is the
locus of pairs (X,ω), where Jac(X) has real multiplication by O, and ω ∈ Ω(X)
is an eigenform.

The bundle ΩMg → Mg extends to a bundle ΩMg → Mg whose fiber
over a stable curve X is the space of stable forms on X. A stable form over a
stable curve is a form which is holomorphic, except for possibly simple poles at
the nodes, such that the two residues at a single node are opposite (see §3 for
details). We describe here the closure of ΩEO in ΩM3, which also determines
the closure of RMO in M3.

Consider the quadratic map Q : F → F , defined by

Q(x) = NF
Q (x)/x. (1.1)

We say that a finite subset S ⊂ F satisfies the no-half-space condition if the
interior of the convex hull of Q(S) in the R-span of Q(S) in F ⊗Q R contains 0.

It is well known that every stable curve which is in the closure of the real
multiplication locus RMO ⊂ Mg has geometric genus 0 or g (we give a proof
via complex analysis in §5). Our description of the closure of the eigenform
locus is as follows.

Theorem 1.1. A geometric genus 0 stable form (X,ω) ∈ ΩM3 lies in the
boundary of the eigenform locus ΩEO if and only if:

• The set of residues of ω is a multiple of ι(S), for some subset S ⊂ F ,
satisfying the no-half-plane condition and spanning an ideal I ⊂ O, and
for some embedding ι : F → R.

• If Q(S) lies in a Q-subspace of F , then an explicit additional equation,
involving cross-ratios of the nodes of X, is satisfied.
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Remark. The more precise version of this theorem, which we state in §5, gives
a necessary condition which holds more generally in any genus. In §8, we show
that this condition is sufficient in genus three. In fact, it is sufficient also in
genus two, but we ignore this case as the boundary of the eigenform locus was
previously calculated in the genus two case in [Bai07]. The higher genus cases
are more difficult, as the Torelli map Mg → Ag is no longer dominant.

The boundary of EO := PΩEO has a stratification into topological types,
where two stable forms are of the same topological type if there is a homeo-
morphism between them which preserves residues up to constant multiple. We
may encode a topological type by a directed graph with the edges weighted by
elements of an ideal I ⊂ O. Vertices represent irreducible components, edges
represent nodes, and weights represent residues. The corresponding boundary
stratum of EO is a product of moduli spaces M0,n, or a subvariety thereof.
The possible topological types arising in the boundary of RMO are shown in
Figure 1. In Appendix A, we give an algorithm for enumerating all boundary
strata of EO associated to a given ideal I. In Figure 4, we tabulate the number
of two-dimensional boundary strata for many different fields.

An important special case is boundary strata parameterizing irreducible sta-
ble curves, otherwise known as trinodal curves. Consider a basis r = (r1, r2, r3)
of an ideal I ⊂ O. We say that r is an admissible basis of I if the ri satisfy the
no-half-space condition. Let Sιr ⊂ PΩM3 be the locus of trinodal forms having
residues (±ι(r1),±ι(r2),±ι(r3)). Since a trinodal curve may be represented by
6 points in P1 identified in pairs, we may identify Sιr with the moduli space
M0,6 of such points. Suppose r is admissible. As three points in R3 whose
convex hull contains 0 must be contained in a subspace, we are in the second
case of Theorem 1.1, so EO ∩ Sιr is cut out by a single polynomial equation on
Sιr ∼=M0,6. We see in Theorem 8.5 that this equation is

Ra1
1 Ra2

2 Ra3
3 = 1, (1.2)

where Ri : M0,6 → C∗ are certain cross-ratios of four points and the ai are
integers determined explicitly by the ri.

Intersecting flats in SL3(Z)\SL3(R)/SO3(R). In §7, we show that the no-
tion of an admissible basis of a lattice in a totally real cubic number field is
equivalent to a second condition on bases of totally real number fields, which
we call rationality and positivity. Namely, a basis r1, . . . , rg of F is rational and
positive if

ri
si
/
rj
sj
∈ Q+ for all i 6= j,

where s1, . . . , sg is the dual basis of F with respect to the trace pairing.
There is a classical correspondence between ideal classes in totally real de-

gree g number fields and compact flats in the locally symmetric space Xg =
SLg(Z)\SLg(R)/SOg(R), the moduli space of lattices in Rg. Given an lattice I
in a totally real number field F , let U(I) ⊂ F ∗ be the group of totally positive
units preserving I, embedded in the group D ⊂ SLg(R) of positive diagonal
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matrices via the g real embeddings of F . There is an isometric immersion pI
of the flat torus T (I) = U(I)\D into Xg arising from the right action of D on
SLg(Z)\SLg(R). Let Rec ⊂ Xg be the locus of lattices in Rg which have an or-
thogonal basis. Rec is a closed, but not compact, (g−1)-dimensional flat. In §7,
we show that rational and positive bases of lattices in number fields correspond
to intersections of the corresponding compact flat with Rec.

Theorem 1.2. Given an lattice I in a totally real number field, there is a
natural bijection between the set p−1

I (Rec) and the set of rational and positive
bases of I up to multiplication by units, changing signs, and reordering.

Theorems 1.1 and 1.2 together imply that there is a natural bijection bound-
ary strata of eigenform loci EO ⊂ PΩM3 and intersection points of compact flats
in X3 with the distinguished flat Rec. Note that X3 is 5-dimensional, while each
flat in X3 is at most 2-dimensional, so one would not expect many intersections
between these flats. Nevertheless, we show in §9 that the ring of integers in each
totally real cubic field has some ideal which has an admissible basis. In fact,
the computations described in Appendix A suggest that most lattices in cubic
fields have many admissible bases, although there are also examples of lattices
which have none. It would be an interesting problem to study the asymptotics
of counting these bases.

Algebraically primitive Teichmüller curves. There is an important ac-
tion of GL+

2 (R) on ΩMg, the study of which has many applications to the
dynamics of billiards in polygons and translation flows. A major open problem
is the classification of GL+

2 (R)-orbit-closures. In genus two, this was solved by
McMullen in [McM07], while next to nothing is known for higher genera.

Very rarely, a form (X,ω) has a GL+
2 (R)-stabilizer which is a lattice in

SL2(R). In that case, the GL+
2 (R)-orbit of (X,ω) projects to an algebraic curve

in Mg which is isometrically immersed with respect to the Teichmüller metric.
Such a curve in Mg is called a Teichmüller curve. A Teichmüller curve C is
uniformized by a Fuchsian group Γ, called the Veech group of C. The field F
generated by the traces of elements in Γ is called the trace field of C. The trace
field is a totally real field of degree at most g. See §10 for basic definitions
around Teichmüller curves and the GL+

2 (R)-action.
Our main motivation for this work was the problem of classifying alge-

braically primitive Teichmüller curves in Mg, that is Teichmüller curves whose
trace field has degree g. Every algebraically primitive Teichmüller curve lies in
RMO for some order O in its trace field by [Möl06b], and every Teichmüller
curve has a cusp, so Theorem 1.1 allows one to approach the classification of
Teichmüller curves by studying the possible stable curves which are limits of
their cusps.

In ΩM2, each eigenform locus ΩEO is GL+
2 (R)-invariant and contains one

or two Teichmüller curves (see [McM03, McM05]). These Teichmüller curves
lie in the stratum ΩM2(2) (where we write ΩMg(n1, . . . , nk) ⊂ ΩMg for the
stratum of forms having zeros of order n1, . . . , nk). These Teichmüller curves
were discovered independently by Calta in [Cal04].
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A major obstacle to the existence of algebraically primitive Teichmüller
curves in higher genus is that the eigenform loci are no longer GL+

2 (R)-invariant.
McMullen showed in [McM03] that ΩEO is not GL+

2 (R)-invariant for O the
ring of integers in Q(cos(2π/7)). We prove in §11 the following stronger non-
invariance statement

Theorem 1.3. The eigenform locus ΩEO is not invariant for O the ring of
integers in any totally real cubic field.

In contrast to the situation inM2, we give in this paper strong evidence for
the following conjecture.

Conjecture 1.4. There are only finitely many algebraically primitive Teich-
müller curves in M3.

In §13, we prove the following instance of this conjecture.

Theorem 1.5. There are only finitely many algebraically primitive Teichmüller
curves generated by a form in the stratum ΩM3(3, 1).

The proof uses the cross-ratio equation (1.2) together with a torsion condi-
tion from [Möl06a] which gives strong restrictions on Teichmüller curves gen-
erated by forms with more than one zero. This torsion condition was used
previously in [McM06b] to show that there is a unique primitive Teichmüller
curve in ΩM2(1, 1) and in [Möl08] to show finiteness of algebraically primitive
Teichmüller curves in the hyperelliptic components ΩMg(g − 1, g − 1)hyp of
ΩMg(g − 1, g − 1). Similar ideas should establish finiteness in the strata of
ΩM3 with more than two zeros. More ideas are needed in the strata ΩM3(4)
and the component ΩM3(2, 2)odd of ΩM3(2, 2), as the torsion condition gives
no information (in ΩM3(2, 2)odd due to the presence of hyperelliptic curves).

While we cannot rule out infinitely many algebraically primitive Teichmüller
curves in the stratum ΩM3(4), Theorem 1.1 gives an efficient algorithm for
searching any given eigenform locus ΩEO for Teichmüller curves in this stratum.
Given an order O, first one lists all admissible bases of ideals in O as described in
Appendix A. For each admissible basis, there are a finite number of irreducible
stable forms having these residues and a fourfold zero. One then lists these
possible stable forms and then checks each to see if the cross-ratio equation (1.2)
holds. If it never holds, then there are no possible cusps of Teichmüller curves
in ΩM3(4) ∩ ΩEO, so there are no Teichmüller curves.

Due to numerical difficulties with the odd component, we have only applied
this algorithm to the hyperelliptic component ΩM3(4)hyp. The algorithm re-
covers the one known example in this stratum, Veech’s 7-gon curve, contained
in ΩEO for O the ring of integers in the unique cubic field of discriminant 49; it
has ruled out algebraically primitive Teichmüller curves in ΩM3(4)hyp for every
other eigenform locus it has considered.

Theorem 1.6. Except for Veech’s 7-gon curve there are no algebraically prim-
itive Teichmüller curves generated by a form in ΩEO ∩ ΩM3(4)hyp for O the
ring of integers in any of the 1778 totally real cubic fields of discriminant less
than 40000.
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We discuss the algorithm on which this theorem is based in §14. We also give
in this section some further evidence for Conjecture 1.4 in ΩM3(4)hyp, that an
infinite sequence of algebraically primitive Teichmüller curves in this stratum
would have to satisfy some unlikely arithmetic restrictions on the widths of
cylinders in periodic directions.

For completeness we mention that there is no hope of proving a finiteness
theorem for algebraically primitive Teichmüller curves in Mg without bound-
ing g. Already Veech’s fundamental paper [Vee89] and also [War98] and [BM]
contain infinitely many algebraically primitive Teichmüller curves for growing
genus g.

The eigenform locus is generic. A rough dimension count leads one to ex-
pect Conjecture 1.4 to hold for the stratum ΩM3(4), as the expected dimension
of EO∩PΩM3(4) is 0, which is too small to contain a Teichmüller curve. On the
other hand, if the eigenform locus ΩEO ⊂ ΩM3 is contained in some stratum
besides the generic one ΩM3(1, 1, 1, 1), one would expect this intersection to be
positive dimensional. This would be a source of possible Teichmüller curves. In
§12, we prove that the eigenform locus is indeed generic.

Theorem 1.7. For any order O in a totally real cubic field, each component of
the eigenform locus ΩEO lies generically in ΩM3(1, 1, 1, 1).

The proof uses Theorem 1.1 to construct a stable curve in the boundary of
ΩEO where each irreducible component is a thrice-punctured sphere. A limiting
eigenform on this curve must have a simple zero in each component.

Primitive but not algebraically primitive Teichmüller curves. From a
Teichmüller curve inMg, one can construct many Teichmüller curves in higher
genus moduli spaces by a branched covering construction. A Teichmüller curve is
primitive if it does not arise from one in lower genus via this construction. Every
algebraically primitive Teichmüller curve is primitive, but the converse does not
hold. InM3, McMullen exhibited in [McM06a] infinitely many primitive Teich-
müller curves with quadratic trace field. These curves lie in the intersection
of ΩM3(4) with the locus of Prym eigenforms, that is, forms (X,ω) with an
involution i : X → X such that the −1 part of Jac(X) is an Abelian surface
with real multiplication having ω as an eigenform. It is not known whether all
primitive Teichmüller curves in M3 with quadratic trace fields arise from this
Prym construction.

Our approach to classifying algebraically primitive Teichmüller curves could
also be applied to the classification of (say) primitive Teichmüller curves in
M3 with quadratic trace field. Given a positive integer d and an order O in a
real quadratic field F , there is the locus EO(d) ⊂ PΩM3 of forms (X,ω) such
that there exists a degree d map of X onto an elliptic curve E with the kernel
of the induced map Jac(X) → E having real multiplication by O with ω as
an eigenform. The locus EO(d) is three-dimensional, and EO(2) coincides with
McMullen’s Prym eigenform locus. Teichmüller curves inM3 having quadratic
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trace field must be generated by a form in some EO(d). There is a classification
of the geometric genus zero forms in the boundary of EO(d), similar to that of
Theorem 1.1, with the map Q replaced by a quadratic map

Q : F ⊕Q→ F ⊕Q.

Each boundary stratum of EO(d) parameterizing trinodal curves is again a sub-
variety of M0,6 cut out by an equation in cross-ratios similar to (1.2).

Since the cross-ratio equation (1.2) was responsible for ruling out alge-
braically primitive Teichmüller curves in ΩM3(4), one might wonder why its
analogue does not also rule out McMullen’s Teichmüller curves in EO(2). The
difference is that the cross-ratio equation cutting out the trinodal boundary
strata of EO(2) no longer depends on the associated residues ri ∈ F as in (1.2).
Moreover, each such boundary stratum contains canonical forms having a four-
fold zero, as opposed to the algebraically primitive case where these forms almost
never exist. We hope to provide the details of this discussion in a future paper.

Towards the proof of Theorem 1.1. We conclude by summarizing the
proof of Theorem 1.1. For simplicity, we continue to assume that O is a maximal
order. The reader may also wish to ignore the case of nonmaximal orders on a
first reading.

The real multiplication locus RMO ⊂Mg (or more precisely, its lift to the
Teichmüller space) is cut out by certain linear combinations of period matrices.
To better understand the equations which cut out the real multiplication locus,
in §4 we give a coordinate-free description of period matrices. Given an Abelian
group L, we define a cover Mg(L) → Mg, the space of Riemann surfaces
X equipped with a Lagrangian marking, that is, an isomorphism of L onto a
Lagrangian subspace of H1(X; Z). We define a homomorphism

Ψ: SZ(HomZ(L,Z))→ Hol∗Mg(L),

where SZ(·) denotes the symmetric square, and Hol∗Mg(L) is the group of
nowhere vanishing holomorphic functions on Mg(L). Each function Ψ(a) is
a product of exponentials of entries of period matrices. There is a Deligne-
Mumford compactification Mg(L) of Mg(L) with a boundary divisor Dγ for
each γ ∈ L, consisting of stable curves where a curve homologous to γ has been
pinched. In Theorem 4.1 we show that each Ψ(a) is meromorphic on Mg(L)
with order of vanishing

ordDγ Ψ(a) = 〈a, γ ⊗ γ〉

along Dγ .
Cusps of the real multiplication locus correspond to ideal classes in O (or

extensions of ideal classes if O is nonmaximal). Given an ideal I ⊂ O, we define
in §5 a real multiplication locus RMO(I) ⊂M3(I), covering RMO ⊂M3, of
surfaces which have real multiplication in a way which is compatible with the
Lagrangian marking by I. The closure of RMO(I) inM3(I) covers the closure

7



of the cusp of RMO corresponding to I, so it suffices to compute the closure in
M3(I). In §5, we construct a rank 3 subgroup Γ of SZ(Hom(I,Z)) ∼= SZ(I∨)
(where I∨ ⊂ F is the inverse different of I) such that RMO(I) is cut out by
the equations

Ψ(a) = 1 (1.3)

for all a ∈ Γ. The proof of Theorem 6.1 yields an identification of Γ with a
lattice in F with the property that for each a ∈ Γ and t ∈ I, the order of
vanishing of Ψ(a) along the divisor Dt ⊂Mg(I) is

ordDt Ψ(a) = 〈a,Q(t)〉 (1.4)

with the pairing the trace pairing on F and Q(t) as in (1.1).
Now suppose that S ⊂Mg(I) is a boundary stratum which is the intersec-

tion of the divisors Dti for t1, . . . , tn ∈ I, and suppose that the ti do not satisfy
the no-half-space condition. This means that we can find a vector a ∈ F such
that 〈a,Q(ti)〉 ≥ 0 for each ti with strict inequality for at least one. Multiplying
a by a sufficiently large integer, we may assume a ∈ Γ. From (1.3) we see that
Ψ(a) ≡ 1 on RMO(I), and from (1.4) we see that Ψ(a) ≡ 0 on S. It follows
that RMO(I) ∩ S = ∅, from which we conclude the first part of Theorem 1.1.

If the Q(ti) lie in a subspace of F , then we may choose a ∈ Γ to be orthogonal
to each Q(ti). By (1.4), the function Ψ(a) is nonzero and holomorphic on S. The
equation Ψ(a) = 1 restricted to S cuts out a codimension-one subvariety of S,
which yields the second part of Theorem 1.1. In the case where S parameterizes
trinodal curves, the equation Ψ(a) = 1 is exactly the cross-ratio equation (1.2).
This concludes the necessity of the conditions of Theorem 1.1.

To obtain sufficiency of these conditions, in §8 we show that one can of-
ten define, using the functions Ψ(a), local coordinates from a neighborhood of
a boundary stratum S in Mg(L) into (C∗)m × Cn. In these coordinates, S
is (C∗)m × {0}, and the real multiplication locus RMO(I) is a subtorus of
(C∗)m+n. The computation of the boundary of the real multiplication locus is
thus reduced to the computation of the closure of an algebraic torus in (C∗)m+n,
which is done in Theorem 8.14.

Hilbert modular varities and the locus of real multiplication. We
conclude with a discussion of the relation between Hilbert modular varieties and
the real multiplication locus. In several textbooks (e.g. [Fre90]) Hilbert modular
varieties are defined as the quotients Hg/Γ, where Γ = SL(O ⊕O∨) ∼= SL2(O)
for some order O ⊂ F , or even more restrictively for O the ring of integers
[Gor02]. There is a natural map from Hg/Γ to the moduli space of Abelian
varieties whose image is a component of the locus of Abelian varieties with real
multiplication by O. In Appendix B, we provide an example showing that the
real multiplication locus need not be connected, so it is in general not the image
of Hg/Γ. This phenomenon is surely known to experts but is often swept under
the rug. If one restricts to quadratic fields (as in [vdG88]) or to maximal orders
(as in [Gor02]) this phenomenon disappears.
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In this paper, we regard a Hilbert modular variety more generally as a quo-
tient Hg/Γ′ for any Γ′ commensurable with SL2(O). With this more general
definition, the locus RAO ⊂ Ag of Abelian varieties with real multiplication by
O is parametrized by a union XO of Hilbert modular varieties.

The eigenform loci EO ⊂ PΩMg which we compactify are closely related
to the Hilbert modular varieties XO. In genus two, EO is isomorphic to XO,
while in genus three, EO is a (degree-one) branched cover of XO. The real
multiplication locus RMO ⊂Mg is a quotient of EO by an action of the Galois
group. See §2 for details on Hilbert modular varieties and the various real
multiplication loci.

Acknowledgments. The authors thank Gerd Faltings, Pascal Hubert, Curt
McMullen and Don Zagier for providing useful ideas and arguments. The au-
thors thank the MPIM Bonn for supporting the research of the second named
author and providing both authors an excellent working atmosphere.

Notation. Throughout the paper, F will denote a totally real number field,
O and order in F , and I ⊂ F a lattice whose coefficient ring contains O.

Given an R-module M , we write SymR(M) for the submodule of M ⊗RM
fixed by the involution θ(x ⊗ y) = y ⊗ x. We write SR(M) for the quotient of
M ⊗RM by the submodule generated by the relations θ(x)− x.

Given a bilinear pairing 〈 , 〉 : M × N → R, we write Hom+
R(M,N) and

Hom−R(M,N) for the self-adjoint and anti-self-adjoint maps from M to N .
We write ∆r for the disk of radius r about the origin in C; we write ∆ for

the unit disk, and ∆∗ for the unit disk with the origin removed.

2 Orders, real multiplication, and Hilbert mod-
ular varieties

In this section, we discuss necessary background material on orders in number
fields, Abelian varieties with real multiplication, and their various moduli spaces.

Orders. Consider a number field F of degree d. A lattice in F (also called full
module) is a subgroup of the additive group of F isomorphic to a rank d free
Abelian group. An order in F is a lattice which is also a subring of F containing
the identity element. The ring of integers in F is the unique maximal order.

Given a lattice I in F , the coefficient ring of I is the order

OI = {a ∈ F : ax ∈M for all x ∈M}.

We will sometimes write OI for the coefficient ring of I.
Lattices in finite dimensional vector spaces over F and their coefficient rings

are defined similarly.

9



Ideal classes. Two lattices I and I ′ in F are similar if I = αI ′ for some
α ∈ F . An ideal class is an equivalence class of this relation. Given an order
O the set Cl(O) of ideal classes of lattices with coefficient ring O is a finite set
(see [BS66]). If O is a maximal order, Cl(O) is the ideal class group of O.

Modules over orders. Let O be an order in a number field F and M a
module over O. The rank of M is the dimension of M ⊗ Q as a vector space
over F . We say M is proper if the O-module structure on M does not extend
to a larger order in F .

Every torsion-free, rank-one O-module M is isomorphic to a fractional ideal
of O, that is, a lattice in F whose coefficient ring contains O.

A symplectic O-module is a torsion-free O-module M together with a uni-
modular symplectic form 〈 , 〉 : M × M → Z which is compatible with the
O-module structure in the sense that

〈λx, y〉 = 〈x, λy〉

for all λ ∈ O and x, y ∈M .
We equip F 2 with the symplectic pairing

〈(α1, β1), (α2, β2)〉 = Tr(α1β2 − α2β1). (2.1)

Every rank-two symplectic O-module is isomorphic to a lattice L in F 2 with
coefficient ring contains O such that the symplectic form on F induces a uni-
modular symplectic paring L× L→ Z.

Inverse different. Given a lattice I ⊂ F with coefficient ring O, the inverse
different of I is the lattice

I∨ = {x ∈ F : Tr(xy) ∈ Z for all y ∈M}.

I∨ and I have the same coefficient rings. The trace pairing induces anO-module
isomorphism I∨ → Hom(I,Z).

The sum I ⊕ I∨ is a symplectic O-module with the canonical symplectic
form (2.1).

Symplectic Extensions. We now discuss the classification of certain exten-
sions of lattices in number fields. This will be important in the discussion of
cusps of Hilbert modular varieties below.

Let I be a lattice in a number field F with coefficient ring OI . An extension
of I∨ by I over an order O ⊂ OI is an exact sequence of O-modules,

0→ I →M → I∨ → 0,

with M a proper O-module. Given such an extension, a Z-module splitting
s : I∨ →M determines a Z-module isomorphism I ⊕ I∨ →M . The module M
inherits the symplectic form (2.1), which does not depend on the choice of the
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splitting s. We say that this is a symplectic extension if the symplectic form is
compatible with the O-module structure of M .

Let E(I) be the set of all symplectic extensions of I∨ by I over any order
O ⊂ OI up to isomorphisms of exact sequences which are the identity on I
and I∨. We give E(I) the usual Abelian group structure: given two symplectic
extensions,

0→ I ιi−→Mi
πi−→ I∨ → 0,

define π : M1 ⊕M2 → I∨ by π(α, β) = π1(α)− π2(β) and ι : I → M1 ⊕M2 by
ι = ι1 ⊕ (−ι2). The sum of the two extensions is

0→ I → Ker(π)/ Im(ι)→ I∨ → 0.

and the identity element is the trivial extension I ⊕ I∨.
Let Hom+

Q (F, F ) be the space of endomorphisms of F that are self-adjoint
with respect to the trace pairing. Note that HomF (F, F ) ⊂ Hom+

Q (F, F ). For
x ∈ F , let Mx ∈ HomF (F, F ) denote the multiplication-by-x endomorphism.

Given T ∈ Hom+
Q (F, F ), let O(T ) be the order

{x ∈ F : [Mx, T ](I∨) ⊂ I},

where [X,Y ] = XY − Y X is the commutator. That O(T ) is a subring of F
follows from the formula

Mλ[Mµ, T ] + [Mλ, T ]Mµ = [Mλµ, T ].

Define a symplectic extension (I ⊕I∨)T of I∨ by I over O(T ) by giving I ⊕I∨
the O(T )-module structure

λ · (α, β) = (λα+ [Mλ, T ](β), λβ).

Theorem 2.1. The map T 7→ (I ⊕ I∨)T induces an isomorphism

Hom+
Q (F, F )/(HomF (F, F ) + Hom+

Z (I∨, I))→ E(I).

Proof. To see that our map is a well-defined homomorphism is just a matter of
working through the definitions, which we leave to the reader.

To show our map is a monomorphism, suppose (I ⊕ I∨)T is isomorphic to
the trivial extension via φ : (I ⊕ I∨)T → I ⊕ I∨. This isomorphism must be
of the form φ(α, β) = (α + R(β), β) for some self-adjoint R : I∨ → I. The
condition that this is an O(T )-module isomorphism implies [Mx, T −R] = 0 for
all x ∈ O(T ). Since HomF (F, F ) is its own centralizer in HomQ(F, F ), we must
have T −R ∈ HomF (F, F ), so T ∈ HomF (F, F ) + Hom+

Z (I∨, I).
Now consider the space D = HomQ(F,Hom−Q (F, F )). We write elements of

D as Qx with Qx ∈ Hom−Q (F, F ) for each x ∈ F . Let C ⊂ D be those elements
Q satisfying

MxQy +QxMy = Qxy (2.2)
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for all x, y ∈ F . We claim that every element of C is of the form QTx = [Mx, T ].
To see this, let θ be a generator of F over Q. The map C → Hom−Q (F, F )
sending Q to Qθ is injective by (2.2), so dim C ≤ d(d− 1)/2, where d = [F : Q].
The map Hom+

Q (F, F )/HomF (F, F ) → C sending T to QT is injective so is an
isomorphism because the domain also has dimension d(d − 1)/2. Thus every
element of C has the desired form.

Now, every symplectic extension of I∨ by I over an order O is isomorphic
as a symplectic Z-module to I ⊕ I∨ with the O-module structure,

λ · (α, β) = (λα+Qλ(β), λβ),

with Q ∈ C. Since Q = QT for some T , our map is surjective. �

Given an order O ⊂ OI , let EO(I) ⊂ E(I) be the subgroup of extensions
over some order O′ such that O ⊂ O′ ⊂ OI , and let EO(I) ⊂ EO(I) be the set
of extensions over O. From the above description of E(I), we obtain:

Corollary 2.2. E(I) is a torsion group with EO(I) a finite subgroup.

If two lattices I and I ′ are in the same ideal class, then the groups E(I) are
canonically isomorphic.

Real multiplication. We now suppose F is a totally real number field of
degree g.

Consider a principally polarized g-dimensional Abelian variety A. We let
End(A) be the ring of endomorphisms of A and End0(A) the subring of en-
domorphisms such that the induced endomorphism of H1(A; Q) is self-adjoint
with respect to the symplectic structure defined by the polarization.

Real multiplication by F on A is a monomorphism ρ : F → End0(A) ⊗Z Q.
The subring O = ρ−1(End(A)) is an order in F , and we say that A has real
multiplication by O.

There can be many ways for a given Abelian variety to have real multiplica-
tion by O. We write Gal(O/Z) for the subgroup of the Galois group Gal(F/Q)
which preserves O. If ρ : O → End0(A) is real multiplication of O on A, then
so is ρ ◦ σ for any σ ∈ Gal(O/Z).

Let Ag = Hg/Sp2g(Z) be the moduli space of g-dimensional principally
polarized Abelian varieties (where Hg is the g(g+1)/2-dimensional Siegel upper
half space). We denote by RAO ⊂ Ag the locus of Abelian varieties with real
multiplication by O.

Eigenforms. Real multiplication ρ : O → End0(A) induces a monomorphism
ρ : O → End Ω(A), where Ω(A) is the vector space of holomorphic one-forms on
A. If ι : F → R is an embedding of F , we say that ω ∈ Ω(X) is an ι-eigenform
if

λ · ω = ι(λ)ω
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for all λ ∈ O. Equivalently, ω is an ι-eigenform if∫
λ·γ

ω = ι(λ)
∫
γ

ω

for all λ ∈ O and γ ∈ H1(A; Z). If we do not wish to specify an embedding ι,
we just call ω an eigenform.

Given an embedding ι and ι-eigenform (A,ω), there is a unique choice of real
multiplication ρ : O → End0(A) which realizes (A,ω) as an ι-eigenform. Thus
considering ι-eigenforms allows one to eliminate the ambiguity of the choice of
real multiplication.

We denote by Ωι(X) the one-dimensional space of ι-eigenforms. We obtain
the eigenform decomposition,

Ω(X) =
⊕

ι : F→R
Ωι(X), (2.3)

where the sum is over all field embeddings ι.
We denote by ΩAg → Ag the moduli space of pairs (A,ω) where A is a prin-

cipally polarized Abelian variety and ω is a nonzero holomorphic one-form on A.
We write EAO ⊂ PΩAg for the locus of eigenforms for real multiplication by O
and EAιO for the locus of ι-eigenforms. Note that for Gal(O/Z)-conjugate em-
beddings ι and ι′, the eigenform loci EAιO and EAι

′

O coincide (as an ι-eigenform is
simultaneously an ι′-eigenform for a Galois conjugate real multiplication); how-
ever, each (A,ω) ∈ EAιO comes with a canonical choice or real multiplication
which depends on ι.

Hilbert modular varieties. Choose an ordering ι1, . . . , ιg of the g real em-
beddings of F . We use the notation x(i) = ιi(x). The group SL2(F ) then acts
on Hg by A · (zi)gi=1 = (A(i) · zi)gi=1, where SL2(R) acts on the upper-half plane
H by Möbius transformations in the usual way.

Given a lattice M ⊂ F 2, we define SL(M) to be the subgroup of SL2(F )
which preserves M . The Hilbert modular variety associated to M is

X(M) = Hg/SL(M).

Given an order O ⊂ F , we define

XO =
∐
M

X(M),

where the union is over a set of representatives of all isomorphism classes of
proper rank two symplectic O-modules. If O is a maximal order, then every
rank two symplectic O-module is isomorphic to O⊕O∨ (this also holds if g = 2;
see [McM07]), so in this case XO is connected. In general, XO is not connected,
as there are nonisomorphic proper symplectic O-modules; see Appendix B.
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There are canonical maps jι : XO → EAιO and j : XO → RAO defined as
follows. Given a lattice M ⊂ F 2 and τ = (τi)

g
i=1 ∈ Hg, we define φτ : M → Cg

by
φτ (x, y) = (x(i) + y(i)τi)

g
i=1.

The Abelian variety Aτ = Cg/φτ (M) has real multiplication by O defined by
λ · (zi)gi=1 = (λ(i)zi)

g
i=1. The form dzi is an ιi-eigenform.

The map jι : XO → EAιO is an isomorphism, so we may regard XO as the
moduli space of principally polarized Abelian varieties A with a choice of real
multiplication ρ : O → End0(A).

The Galois group Gal(O/Z) acts on XO, and the map j factors through to
a generically one-to-one map j′ : XO/Gal(O/Z)→ RAO.

Cusps of Hilbert modular varieties. The Baily-Borel-Satake compactifi-
cation X̂(M) of X(M) is a projective variety obtained by adding finitely many
points to X(M) which we call the cusps of X(M). More precisely, we embed
P1(F ) in (H ∪ {i∞})g by (x : y) 7→ (x(i)/y(i))gi=1. We define Hg

F = Hg ∪ P1(F )
with a certain topology whose precise definition is not needed for this discussion;
see [BJ06]. The compactification of X(M) is X̂(M) = Hg

F /SL(M). We define
X̂O to be the union of the compactifications of its components.

Proposition 2.3. There is a natural bijection between the set of cusps of XO
and the set of isomorphism classes of symplectic extensions

0→ I → N → I∨ → 0 (2.4)

with N a primitive rank-two symplectic O-module and I a torsion-free rank one
O-module. The cusps of X(M) correspond to the isomorphism classes of such
extensions where M ∼= N as symplectic O-modules.

Sketch of proof. Fix a lattice M ⊂ F 2. We must provide a SL(M)-equivariant
bijection between lines L ⊂ F 2 and extensions 0 → I → M → I∨ → 0 (up to
isomorphism which is the identity on M). We assign to a line L, the extension
0→ L∩M →M →M/(L∩M)→ 0. The line L is recovered from an extension
0→ I →M → I∨ → 0 by defining L = I ⊗Q.

The bijection for cusps of XO follows immediately. �

Consider the set of all pairs (I, T ), where I is a lattice in F whose coefficient
ring contains O, and T ∈ EO(I). The multiplicative group of F acts on such
pairs by a · (I, T ) = (aI, T a), where T a(x) = aT (ax) (using the identification
of Theorem 2.1). We define a cusp packet for real multiplication by O to be an
equivalence class of a pair (I, T ) under this relation.

We denote by C(O) the finite set of cusp packets for real multiplication by
O. We have seen that there are canonical bijections between C(O), the set of
isomorphism classes of symplectic extensions of the form (2.4), the set of cusps
of XO, and the set of cusps of EAιO. Moreover, there is a canonical bijection
between the set of cusps of RAO and C(O)/Gal(O/Z).
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3 Stable Riemann surfaces and their moduli

In this section, we discuss some background material on Riemann surfaces with
nodal singularities, holomorphic one-forms, and their various moduli spaces.

Stable Riemann surfaces. A stable Riemann surface (or stable curve) is
a connected, compact, one-dimensional, complex analytic variety with possibly
finitely many nodal singularities – that is, singularities of the form zw = 0 –
such that each component of the complement of the singularities has negative
Euler characteristic. In other terms, a stable Riemann surface can be regarded a
disjoint union of finite volume hyperbolic Riemann surfaces with cusps, together
with an identification of the cusps into pairs, each pair forming a node. We will
refer to a pair of cusps facing a node as opposite cusps.

The arithmetic genus of a stable Riemann surface is the genus of the non-
singular surface obtained by thickening each node to an annulus; the geometric
genus is the sum of the genera of its irreducible components.

Homology. Given a stable Riemann surface X, let X0 be the complement of
the nodes. For each cusp c of X0, let αc ∈ H1(X0; Z) be the class of a positively
oriented simple closed curve winding once around c, and let I ⊂ H1(X0; Z) be
the subgroup generated by the expressions αc + αd, where c and d are cusps
joined to a node on X.

We define Ĥ1(X; Z) = H1(X0; Z)/I. Defining C(X) ⊂ Ĥ1(X; Z) to be the
free Abelian subgroup (of rank equal to the number of nodes) generated by the
αc, we have the canonical exact sequence

0→ C(X)→ Ĥ1(X; Z)→ H1(X̃; Z)→ 0,

where X̃ → X is the normalization of X.

Markings. Fix a genus g surface Σg, and let X be a genus g stable Riemann
surface. A collapse is a map f : Σg → X such that the inverse image of each
node is a simple closed curve and f is a homeomorphism on the complement of
these curves.

A marked stable Riemann surface is a stable Riemann surface X together
with a collapse f : Σg → X. Two marked stable Riemann surfaces f : Σg → X
and g : Σg → Y are equivalent if there is homeomorphism φ : Σg → Σg which is
homotopic to the identity and a conformal isomorphism ψ : X → Y such that
g ◦ φ = ψ ◦ f .

Augmented Teichmüller space. The Teichmüller space T (Σg) is the space
of nonsingular marked Riemann surfaces of genus g. It is contained in the aug-
mented Teichmüller space T (Σg), the space of marked stable Riemann surfaces
of genus g. We give T (Σg) the smallest topology such that the hyperbolic length
of any simple closed curve is continuous as a function T (Σg) → R≥0 ∪ {∞}.
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Abikoff [Abi77] showed that this topology agrees with other natural topologies
on T defined via quasiconformal mappings or quasi-isometries.

Deligne-Mumford compactification. The mapping class group Mod(Σg)
of orientation preserving homeomorphisms of Σg defined up to isotopy acts on
T (Σg) and T (Σg) by precomposition of markings. The moduli space of genus
g Riemann surfaces is the quotient Mg = T (Σg)/Mod(Σg). The Deligne-
Mumford compactification of Mg is Mg = T (Σg)/Mod(Σg), the moduli space
of genus g stable curves.

Over Mg is the universal curve p : C → Mg, a compact algebraic variety
whose fiber over a point representing a stable curve X is a curve isomorphic to
X (provided X has no automorphisms).

Stable Abelian differentials. Over Mg is the vector bundle ΩMg → Mg

whose fiber over X is the space Ω(X) of holomorphic one-forms on X. We
extend this to the vector bundle ΩMg →Mg whose fiber Ω(X) over X is the
space of stable Abelian differentials on X, defined as follows.

Given a genus g stable Riemann surface X, a stable Abelian differential is a
holomorphic one-form on X0, the complement in X of its nodes, such that:

• ω has at worst simple poles at the cusps of X0.

• If p and q are opposite cusps of X0, then

Resp ω = −Resq ω.

The dualizing sheaf ωX is the sheaf on X of one-forms locally satisfying the two
above conditions (see [HM98, p. 82]), so a stable Abelian differential is simply a
global section of the dualizing sheaf ωX . We write Ω(X) for the space of stable
Abelian differentials on X, a g-dimensional vector space by Serre duality.

In the universal curve p : C → Mg, let C0 be the complement of the nodes
of the fibers. The relative cotangent sheaf of C0 →Mg (the sheaf of cotangent
vectors to the fibers) is an invertible sheaf which extends in a unique way to an
invertible sheaf ωC/Mg

on C, the relative dualizing sheaf of this family of curves.
The restriction of ωC/Mg

to a fiber X of this family is simply ωX . The push-
forward p∗ωC/Mg

is the sheaf of sections of the rank g vector bundle ΩMg →
Mg.

Plumbing coordinates. Following Wolpert [Wol89] we give explicit holo-
morphic coordinates at the boundary ofMg and a model of the universal curve
in these coordinates. See also [Ber74, Ber81] and [Mas76].

Let X be a stable curve with nodes n1, . . . , nk, and let X0 be X with the
nodes removed, a disjoint union of punctured Riemann surfaces. At each node
ni, let Ui and Vi be small neighborhoods of ni in each of the two branches of
X through ni, and choose conformal maps Fi : Ui → C and Gi : Vi → C whose

16



images contain the unit disk around the origin ∆1. We write zi and wi for the
coordinates on Ui and Vi induced by these maps. We define

X∗ = X \
⋃
i

({|zi| < 1} ∪ {|wi| < 1}) and

M = X∗ ×∆k
1 .

We take a model of a degeneration of a family of curves.

Vi = {(xi, yi, t) ∈ ∆1 ×∆1 ×∆k
1 : xiyi = ti},

where t = (ti, . . . , tk). The fiber Vt of the projection (xi, yi, t) 7→ t is a non-
singular annulus except when ti = 0, in which case it is two disks meeting at a
node.

Let X → ∆k
1 be the family of stable curves obtained by gluing each Vi to

M by the maps

F̂i(p, t) = (Fi(p), ti/Fi(p), t) and Ĝi(p, t) = (ti/Gi(p), Gi(p), t),

defined on subsets of M . The fiber Xt over t is simply the stable Riemann
surface obtained by removing the disks {|zi| < |ti|1/2} and {|wi| < |ti|1/2} and
gluing the boundary circles by the relation wi = ti/zi. If ti = 0, the node ni is
unchanged.

Let Q be the space of holomorphic quadratic differentials on X0 with at
worst simple poles at the nodes. Choose 3g − 3− k Beltrami differentials µi on
X0 \

⋃
(Ui ∪Vi) so that no nontrivial linear combination of the µi pairs trivially

with a quadratic differential in Q. Given s ∈ ∆3g−3−k
ε for sufficiently small ε,

the Beltrami differential µs =
∑
siµi satisfies ‖µs‖∞ < 1.

We define a family of stable curves Y → ∆3g−3−k
ε × ∆k

1 by endowing Y =
X ×∆3g−3−k

ε with the complex structure on Y defined by placing on each fiber
Xs

t over (s, t) the Beltrami differential µs.
We obtain a holomorphic (orbifold) coordinate chart ∆3g−3−k

s ×∆k
1 →Mg

sending (s, t) to the point representing the stable curve Xs
t . The family Y is

the pullback of the universal curve by this coordinate chart.

Lagrangian markings. Given a genus g stable curve X, a Lagrangian sub-
group of Ĥ1(X; Z) is a free Abelian subgroup L of rank g such that Ĥ1(X; Z)/L
is torsion-free and the restriction of the intersection form on H1(X̃; Z) to the
image of L under the canonical projection Ĥ1(X; Z)→ H1(X̃; Z) is trivial.

Fix a free Abelian group L of rank g. A Lagrangian marking of a genus g
stable Riemann surface X by L is a monomorphism ρ : L → Ĥ1(X; Z) whose
image is a Lagrangian subgroup. The image ρ(L) necessarily contains the sub-
group C(X) of Ĥ1(X; Z) generated by the nodes. Thus we may assign to each
node of X its “homology class” in L, an element of L well-defined up to sign.

Let Mg(L) be the space of genus g stable Riemann surfaces with a La-
grangian marking by L and Mg(L) ⊂Mg(L) the subspace of nonsingular sur-
faces. If we identify L with a Lagrangian subgroup of H1(Σg; Z), we have

Mg(L) = T (Σg)/Mod(Σg, L),
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where Mod(Σg, L) is the subgroup of Mod(Σg) fixing L pointwise. Moreover

Mg(L) = T (Σg, L)/Mod(Σg, L),

where T (Σg, L) ⊂ T (Σg) is the locus of stable Riemann surfaces which can be
obtained by collapsing only curves on Σg whose homology class belongs to L
(including homologically trivial curves).

Given a nonzero γ ∈ L, there is the divisor Dγ ⊂Mg(L) consisting of stable
curves where a curve homologous to γ has been pinched. Dγ and D−γ are the
same divisor.

The above plumbing coordinates provide in the same way coordinates at the
boundary of Mg(L).

Weighted stable curves. Given a free Abelian group L, we define an L-
weighted stable curve to be a geometric genus 0 stable curve with an element of
L associated to each cusp of X, called the weight of that cusp, subject to the
following restrictions:

• Opposite cusps of X0 have opposite weights.

• The sum of the weights of the cusps of an irreducible component of X is
zero.

• The weights of X span L.

In other words, the first two conditions mean that the weights are subject to
the same restrictions as the residues of a stable form.

We say that two L-weighted stable curves X and Y are isomorphic (resp.
topologically equivalent) if there is a weight-preserving conformal isomorphism
(resp. homeomorphism) X → Y .

The notion of an L-weighting of a geometric genus 0 stable curve X is in
fact equivalent to a Lagrangian marking ρ : L → Ĥ1(X; Z) (necessarily an iso-
morphism because X is genus 0). If αc ∈ Ĥ1(X; Z) is the class of a positively
oriented curve around a cusp c with weight w, the marking ρ maps w to αc.

Weighted boundary strata. An L-weighted boundary stratum is a topo-
logical equivalence class in the set of all L-weighted stable curves. If X is an
L-weighted stable curve having m components Ci, each homeomorphic to P1

with ni points removed and with each component having distinct weights, then
the corresponding L-weighted boundary stratum is an algebraic variety isomor-
phic to

m∏
i=1

M0,ni ,

whereM0,n is the moduli space of n labeled points on P1, with each point being
labeled by its weight.

The notion of a L-weighted boundary stratum is in fact equivalent to that of
a boundary stratum inMg(L). We consider two marked stable curves (X, ρ) and
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(Y, σ) inMg(L) to be equivalent if there is a homeomorphism f : X → Y which
commutes with the markings, and we define a Lagrangian boundary stratum
in ∂Mg(L) to be an equivalence class of this relation. A Lagrangian bound-
ary stratum is simply a maximal connected subset of ∂Mg(L) parameterizing
homeomorphic stable curves.

In view of the above correspondence between L-weightings and Lagrangian
markings by L, every L-weighted boundary stratum S can be regarded canoni-
cally as a geometric genus zero Lagrangian boundary stratum S ⊂Mg(L), and
vice-versa.

Given an L-weighted boundary stratum S, we define Weight(S) ⊂ L to be
the set of weights of any surface in S.

Embeddings of strata. Suppose now that I is a lattice in a degree g number
field F . Given an I-weighted boundary stratum S and a real embedding ι of
F , we define pι : S → PΩMg by associating to a weighted stable curve X the
unique stable form on X which has residue ι(w) at a cusp with weight w. The
ith embedding Sι of S is its image under pι.

Similar strata. Suppose I and J are lattices in a number field F . We say
that I and J -weighted stable curves X and Y are similar if there is a conformal
isomorphism X → Y which sends each weight x to λx for some fixed λ ∈ F .

We say that two weighted boundary strata are similar if they parameterize
similar weighted stable curves. Note that if the unit group of F is infinite, then
I-weighted boundary stratum is similar to infinitely many distinct I-weighted
boundary strata.

Extremal length and the Hodge norm. Given any Riemann surface X,
the Hodge norm on H1(X; R) is defined by

‖γ‖X = sup
ω∈Ω1(X)

∣∣∣∣∫
γ

ω

∣∣∣∣ ,
where Ω1(X) denotes the space of forms with unit norm, for the norm

‖ω‖ =
(∫

X

|ω|2
)1/2

.

Given a curve γ on a Riemann surface X, we write Ext(γ) for the extremal
length of the family of curves which are homotopic to γ, that is

Ext(γ) = sup
ρ

L(ρ)2

A(ρ)
,

where the supremum is over all conformal metrics ρ(z)dz with ρ nonnegative
and measurable,

L(ρ) = inf
δ'γ

∫
δ

ρ(z)|dz|,
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and
A(ρ) =

∫
X

ρ(z)2|dz|2.

The relation between curves with small extremal length and homology classes
with small Hodge norm is summarized by the following two Propositions.

Proposition 3.1. For any curve γ on a Riemann surface X, we have

‖γ‖2X ≤ Ext(γ).

Proof. Choose a form ω such that ‖ω‖ = 1 and |
∫
γ
ω| = ‖γ‖X . Regarding |ω|

as a conformal metric on X, we obtain

‖γ‖X =
∣∣∣∣∫
γ

ω

∣∣∣∣ ≤ ∫
γ

|ω|,

thus
‖γ‖2X ≤ L(|ω|)2 ≤ Ext(γ). �

Proposition 3.2. Given any Riemann surface X, there is a constant C –
depending only on the genus of X – such that any cycle γ ∈ H1(X; Z) is homol-
ogous to a sum of simple closed curves γ1, . . . , γn such that for each i,

Ext(γi) ≤ C‖γ‖2X (3.1)

Proof. Let ω be a holomorphic one-form on X such that Imω is Poincaré dual
to γ. Since Imω has integral periods, the map f : X → R/Z defined by f(q) =∫ q
p

Imω (with p a chosen basepoint) is well-defined. The horizontal foliation of
ω (that is, the kernel foliation of Imω) is periodic, and each fiber γr = f−1(r) is
a union of closed, horizontal leaves of ω. Giving the leaves of γr the orientation
defined by Reω, we can regard γr as a cycle in H1(X; Z) which is homologous
to γ. By Poincaré duality,

length(γr) =
∫
γr

Reω =
∫
X

Reω ∧ Imω =
1
2
‖ω‖2,

so each component of γr has length at most ‖ω‖2/2.
Since ω has at most 2g− 2 distinct zeros, there is an open interval I ⊂ R/Z

of length at least 1/(2g − 2) which is disjoint from the images of the zeros of
ω. Choose some r ∈ I. The inverse image f−1(I) consists of flat cylinders
C1, . . . , Cn, each of height at least 1/(2g − 2), and with each Ci containing a
component γir of γr. We obtain the bound,

Mod(Ci) ≥
2

(2g − 2)‖ω‖2
, (3.2)

for the modulus of Ci. From monotonicity of extremal length, (see [Ahl66,
Theorem I.2]) we have Ext(γir) ≤ 1/Mod(Ci), which with (3.2) implies (3.1)
(setting γi = γir). �

Remark. A similar argument is used by Accola in [Acc60], where he shows that
‖γ‖X is equal to the extremal length of the homology class γ.
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4 Period Matrices

In this section, we study period matrices as functions on Mg. We develop a
coordinate-free version of the classical period matrices. We see that exponentials
of entries of period matrices are canonical meromorphic functions on Mg(L),
and we calculate the orders of vanishing of these functions along boundary
divisors of Mg(L).

Fix a genus g surface Σg and a splitting of H1(Σg; Z) into a sum of La-
grangian subgroups,

H1(Σg; Z) = L⊕M.

Given a surface X ∈ T (Σg), integration of forms yields isomorphisms

PXL : Ω(L)→ HomZ(L,C) and PXM : Ω(X)→ HomZ(M,C).

We obtain a holomorphic map

T (Σg)→ HomC(HomZ(L,C),HomZ(M,C))
∼=−→ L⊗Z L⊗Z C, (4.1)

where the second map uses the isomorphism L → M∗ provided by the inter-
section form. The Riemann bilinear relations imply that the image of the map
(4.1) lies in SymZ(L), so we obtain a holomorphic map,

Φ: T (Σg)→ SymZ(L)⊗ C,

and the dual homomorphism,

Φ∗ : SZ(Hom(L,Z))→ Hol T (Σg),

where Hol T (Σg) denotes the additive group of holomorphic functions on T (Σg).
The map Φ∗ is just a coordinate-free version of the classical period matrix.

If we choose a basis (αi) of L and dual bases (βi) of M and (ωi) of Ω(X), the
period matrix is (τij) where τij = ωi(βj). The map Φ∗ is simply

Φ∗(α∗i ⊗ α∗j ) = τij ,

where (α∗i ) is the dual basis of Hom(L,Z).
The map Φ∗ depends on the choice of the complementary Lagrangian sub-

group M . Every complementary Lagrangian is of the form

MT = {m+ T (m) : m ∈M},

for some self-adjoint T : M → L. Suppose we choose a different complemen-
tary Lagrangian MT , and Φ∗T is the corresponding homomorphism. The new
homomorphism Φ∗T is related to the old one by

Φ∗T (x) = Φ∗(x) + 〈x, T 〉,

where we are regarding T as an element of SymZ(L). It follows that the functions
Ψ(x) = e2πiΦ∗(x) do not depend on the choice of M and so descend to nonzero
holomorphic functions on Mg(L). We obtain a canonical homomorphism

Ψ: SZ(Hom(L,Z))→ Hol∗Mg(L).
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Theorem 4.1. For each a ∈ SZ(Hom(L,Z)), the function Ψ(a) is meromorphic
on Mg(L). For each nonzero γ ∈ L, the order of vanishing of Ψ(a) along Dγ is

ordDγ Ψ(a) = 〈γ ⊗ γ, a〉.

Ψ(a) is holomorphic and nowhere vanishing along any Lagrangian boundary
stratum obtained by pinching a curve homologous to zero.

If S ⊂ ∂Mg(L) is a Lagrangian boundary stratum with

〈γ ⊗ γ, a〉 ≥ 0 (4.2)

for all γ ∈ Weight(S), then Ψ(a) is holomorphic on S. If the pairing (4.2) is
zero for all γ ∈ Weight(S), then Ψ(a) is nowhere vanishing on S. Otherwise
Ψ(a) vanishes identically on S.

Proof. We use in this proof the plumbing coordinates and related notation in-
troduced in §3. Let X be a stable curve with nodes n1, . . . .nk obtained by
pinching curves γ1, . . . , γk with homology classes [γ1], . . . , [γk] ∈ L. Let

Y → B := ∆3g−3−k
ε ×∆k

1

be the family of stable curves constructed above with X the fiber over (0,0).
The nodes of this family are contained in the open sets

Wi := Vi ×∆3g−3−k
ε = {(xi, yi, s, t) ∈ ∆1 ×∆1 ×∆3g−3−k

ε ×∆k
1 : xiyi = ti},

for i = 1, . . . , k. Define sections pi, qi : B → Y with image in ∂Wi by

pi(s, t) = (1, ti, s, t) and qi(s, t) = (ti, 1, s, t).

Choose α1 ⊗ α2 ∈ SZ(Hom(L,Z)) and let η be the holomorphic section of
the relative dualizing sheaf ωY/B such that each period homomorphism L→ C
defined by each restriction ηs

t to the fiber Xs
t agrees with α1 : L→ Z.

On Wi we may express η as

η =
α1([γi])

2πi
dxi
xi

+ fi dxi + gi dyi (4.3)

with fi and gi holomorphic functions of xi, yi, s, and t.
Let δs

t,i : [−1, 1]→Wi be a path in the fiber of Wi over (s, t) joining pi(s, t)
to qi(s, t). We may explicitly parameterize this path as

δs
t,i(r) =

{
(
√
ti − r(1−

√
ti), ti/(

√
ti − r(1−

√
ti)), s, t) if r ≤ 0

(ti/(r(1−
√
ti) +

√
ti), r(1−

√
ti) +

√
ti, s, t) if r ≥ 0.

We may choose a continuous family of 1-chains δs
t,0 in Xs

t with endpoints in
{pi(s, t), qi(s, t)}ki=1 such that

δs
t = δs

t,0 +
k∑
i=1

α2([γi])δs
t,i
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is a 1-cycle whose intersection with classes in L agrees with the homomorphism
α2 : L→ Z.

We have

Ψ(α1 ⊗ α2)(s, t) = E

(∫
δs

t

ηs
t

)
, (4.4)

where we use the notation E(z) = e2πiz. The integral
∫
δs

t,0
ηs

t is an integral
of a holomorphically varying form over a 1-cycle with holomorphically varying
endpoints, and so its contribution to (4.4) is holomorphic and nonzero. Thus it
does not contribute to the order of vanishing of Ψ(α1 ⊗ α2).

The integral ∫
δs

t,i

fi dxi + gi dxi

is a finite holomorphic function of s and t and so does not contribute to the
order of vanishing of Ψ(α1 ⊗ α2). The factor of Ψ(α1 ⊗ α2) coming from the
first term of (4.3) is

E

(
α1([γi])α2([γi])

∫
δs

t,i

dxi
xi

)
= t

α1([γi])α2([γi])
i .

In our (s, t)-coordinates for Mg(L), the divisor Dγi is the locus {ti = 0}.
We have seen that in these coordinates,

Ψ(α1 ⊗ α2)(s, t) = k(s, t)
∏
i

t
α1([γi])α2([γi])
i , (4.5)

with k a nonzero holomorphic function. Thus Ψ(α1 ⊗ α2) is meromorphic with
the desired orders of vanishing.

Now suppose S is a Lagrangian boundary stratum and a ∈ Hom(L,Z) with
〈γ⊗ γ, a〉 ≥ 0 for each weight γ , we see from (4.5) that Ψ(a) is holomorphic on
S, since each ti has nonnegative exponent. If 〈γ ⊗ γ, a〉 > 0 for some weight γ,
then some ti has positive exponent, so Ψ(a) vanishes on S. �

We will also need the following strengthening of this theorem.

Corollary 4.2. Let S ⊂ ∂Mg(L) be a Lagrangian boundary stratum obtained
by pinching m curves on Σg whose homology classes are γ1, . . . , γn ∈ L. Take
local coordinates t1, . . . , tn around some x ∈ S in which the divisor Dγi of
curves obtained by pinching γi is cut out by the equation ti = 0. Then for any
a ∈ SZ(Hom(L,Z)), the function

m∏
i=1

t
−〈γ⊗γ,a〉
i Ψ(a)

is holomorphic and nonzero on a neighborhood of x.

Proof. This follows immediately from (4.5). �
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5 Boundary of the eigenform locus: Necessity

In this section we begin the study of the boundary of the locus of Riemann
surfaces whose Jacobians have real multiplication. We give an explicit necessary
condition for a stable curve to lie in the boundary of the real multiplication locus.
In §8, we will see that this condition is also sufficient in genus three.

In all that follows, F will denote totally real number field of degree g, O will
denote an order in F , and I will denote a lattice in F whose coefficient ring
contains O.

The real multiplication locus. The Jacobian of a stable curve X is

Jac(X) = Ω(X)∗/Ĥ1(X; Z) = Ω(X)∗/H1(X0; Z),

where X0 ⊂ X is the complement of the nodes. The Jacobian is a compact
Abelian variety if each node of X is separating, or equivalently if the geometric
genus of X is g. Otherwise it is a noncompact semi-Abelian variety. We denote
by M̃g ⊂ Mg the locus of stable curves with compact Jacobians. The Torelli
map t : M̃g → Ag maps each Riemann surface to its Jacobian.

Let RMO ⊂ M̃g be the locus of Riemann surfaces whose Jacobians have
real multiplication by O. In other words, RMO = t−1(RAO). If g is 2 or 3,
then t is a bijection, so RMO is a g-dimensional subvariety of M̃g. In general,
it is not known what is the dimension of RMO, or even whether RMO is
nonempty.

We define EO ⊂ PΩM̃g to be the locus of eigenforms for real multiplication
by O and E ιO to be the locus of ι-eigenforms. The Torelli map exhibits E ιO as a
one-to-one branched cover of EAιO ∼= XO.

Admissible strata. The tensor product F ⊗Q F has the structure of an F -
bimodule. We define

Λ1 = {x ∈ F ⊗Q F : λ · x = x · λ for all λ ∈ F}.

Proposition 5.1. Λ1 ⊂ SymQ(F ).

Proof. Identify F with HomQ(F,Q) via the trace pairing. This induces a canon-
ical isomorphism F ⊗Q F → HomQ(F, F ). Under this isomorphism, SymQ(F )
corresponds to the self-adjoint endomorphisms Hom+

Q (F, F ), and Λ1 corresponds
to HomF (F, F ). Since left multiplication by x ∈ F is self-adjoint, HomF (F, F ) ⊂
Hom+

Q (F, F ). �

Identifying F with its dual as above, the dual of SymQ(F ) is SQ(F ). We let
Ann(Λ1) ⊂ SQ(F ) denote the annihilator of Λ1.

Given an I-weighted boundary stratum S, we define the following cone and
subspace of SQ(F ):

C(S) = {x ∈ SQ(F ) : 〈x, α⊗ α〉 ≥ 0 for all α ∈Weight(S)}
N(S) = {x ∈ SQ(F ) : 〈x, α⊗ α〉 = 0 for all α ∈Weight(S)}.
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We say that an I-weighted boundary stratum S is admissible if

C(S) ∩Ann(Λ1) ⊂ N(S). (5.1)

We will see in Corollary 8.2 that if I is a lattice in a cubic field, then there are
only finitely many admissible I-weighted boundary strata up to similarity.

Algebraic tori. Fix an I-weighted boundary stratum S. There is a surjective
map of algebraic tori:

p : Hom(N(S) ∩ SZ(I∨),Gm)→ Hom(N(S) ∩Ann(Λ1) ∩ SZ(I∨),Gm). (5.2)

The reader unfamiliar with algebraic groups should think of Gm as the multi-
plicative group C∗ of nonzero complex numbers.

By the discussion at the end of §3, we may regard S as a boundary stratum
ofMg(I). By Corollary 4.2, for each nonzero a ∈ N(S)∩SZ(I∨) the restriction
of Ψ(a) to S is a nonzero holomorphic function on S. We obtain a canonical
morphism,

CR: S → Hom(N(S) ∩ SZ(I∨),Gm). (5.3)

Recall that E(I) is the torsion Abelian group of symplectic extensions of
I∨ by I. Identifying Hom+

Q (F, F ) with SymQ(F ) via the trace pairing, the
isomorphism of Theorem 2.1 becomes an isomorphism,

SymQ(F )/(Λ1 + SymZ(I))→ E(I).

Given T ∈ SymQ(F ) and a ∈ N(S) ∩Ann(Λ1) ∩ SZ(I∨), we define

q(T )(a) = e−2πi〈T,a〉. (5.4)

Since q(T )(a) = 1 if T lies in Λ1 or SymZ(I), (5.4) defines a homomorphism,

q : E(I)→ Hom(N(S) ∩Ann(Λ1) ∩ SZ(I∨),Gm).

Given a symplectic extension T ∈ E(I), we define

G(T ) = p−1(q(T )),

a translate of a subtorus of Hom(N(S) ∩ SZ(I∨)). We then obtain for each
extension T a subvariety of S:

S(T ) = CR−1(G(T )).

We define Sι(T ) ⊂ PΩMg to be the image of S(T ) under pι.
If S is an I-weighted stratum and S ′ is a similar aI-weighted stratum, then

the subvarieties S(T ) and S ′(T a) are identified under the canonical isomorphism
S → S ′. Thus the variety S(T ) can be regarded as depending only on the
similarity class of S and the cusp packet (I, T ).
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Boundary of RMO. We can now state our necessary condition for a stable
curve to be in the boundary of RMO.

Theorem 5.2. Consider an order O in a degree g totally real number field
F , a real embedding ι of F , and a cusp packet (I, T ) ∈ C(O). The closure in
PΩMg of the cusp of E ιO associated to (I, T ) is contained in the union over all
admissible I-weighted boundary strata S of the varieties Sι(T ).

The closure of the corresponding cusp of RMO in Mg is contained in the
union over all I-weighted boundary strata S of the images of the S(T ) under
the forgetful map to Mg.

The proof of Theorem 5.2 comes at the end of this section.

Auxiliary real multiplication loci. Given a cusp packet (I, T ) ∈ C(O), let

RMO(I, T ) ⊂Mg(I)

be the locus of Riemann surfaces with Lagrangian marking (X, ρ) such that
Jac(X) has real multiplication by O, the marking ρ : I → H1(X; Z) is an O-
module homomorphism, and the extension of O-modules

0→ ρ(I)→ H1(X; Z)→ H1(X; Z)/ρ(I)→ 0

is isomorphic to the extension determined by (I, T ).
We also have bundles of eigenforms over RMO(I, T ). On Mg(I), there is

the trivial bundle ΩιMg(I) of forms ω such that for some constant c and for
each λ ∈ I, we have

∫
ρ(λ)

ω = cι(λ), where ρ is the Lagrangian marking. The
restriction ΩιRMO(I, T ) of ΩιMg(I) to RMO(I, T ) is the trivial line bundle
of ι-eigenforms. We denote its projectivization by E ιO(I, T ) ⊂ PΩMg(I).

Given a cusp packet (I, T ) and a symplectic isomorphism ρ : I ⊕ I∨ →
H1(Σg; Z), we define

RT O(I, T, ρ) ⊂ T (Σg)

to be the locus of marked Riemann surfaces (X, f) such that Jac(X) has real
multiplication by O and the symplectic Z-module isomorphism

f∗ ◦ ρ : (I ⊕ I∨)T → H1(X; Z)

is also an isomorphism of symplectic O-modules.
The homomorphism ρ determines a Lagrangian splitting of H1(Σg; Z), and

we obtain as in §4 a holomorphic map Φ: T (Σg)→ SymZ(I)⊗ C.

Proposition 5.3. We have

RT O(I, T, ρ) = Φ−1(Λ1 ⊗Q C− T )

Proof. In this proof, we will identify SymZ(I) with Hom+(I∨, I). Under this
identification, we have

SymZ(I)⊗ C = Hom+
C (I∨ ⊗ C, I ⊗ C),
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Λ1 ⊗ C = Hom+
F (I∨ ⊗ C, I ⊗ C)

φ := Φ(X, f) ∈ Hom+
C (I∨ ⊗ C, I ⊗ C), and

T ∈ Hom+
Q (I∨ ⊗Q, I ⊗Q).

We have two splittings of H1(X; C): the one induced by ρ,

H1(X; C) = (I ⊗ C)⊕ (I∨ ⊗ C),

and the Hodge decomposition,

H1(X; C) = Hom(Ω(X),C)⊕Hom(Ω(X),C).

The Hodge decomposition is determined by the map φ : I∨ ⊗ C→ I ⊗ C:

Hom(Ω(X),C) = Graph(φ). (5.5)

TheO-module structure ofH1(X; C) inherited from that of (I⊕I∨)T induces
real multiplication on Jac(X) if and only if it preserves the Hodge decomposi-
tion. By (5.5), the Hodge decomposition is preserved if and only if

φ(λ · α) = λ · φ(α) + [Mλ, T ](α)

for all α ∈ I∨ and λ ∈ O, which holds if and only if

(φ+ T )(λ · α) = λ · (φ+ T )(α),

that is, if and only if φ+ T ∈ Λ1. �

Corollary 5.4. Given any a ∈ Ann(Λ1) ⊂ SZ(I∨), we have

Ψ(a) ≡ q(T )(a)

on RMO(I, T ).

Proof. This follows directly from Proposition 5.3 and the definition of q. �

Invariant vanishing cycles. Consider a family X → ∆ of stable curves which
is smooth over ∆∗ in the sense that the fiber Xp over nonzero p is smooth. Any
such family defines a holomorphic map ∆→Mg sending p toXp, and conversely
any holomorphic disk ∆→Mg sending ∆∗ toMg, after possibly taking a base
extension (a cover of ∆ ramified only over 0), arises from such a family.

In any smooth fiber Xp, there is a collection of isotopy class of simple closed
curves, which we call the vanishing curves which are pinched as p → 0. The
vanishing curves are consistent in the sense that given any path in ∆∗ joining p
to q, the lifted homeomorphism f : Xp → Xq (defined up to isotopy) preserves
the vanishing curves. The vanishing cycles in H1(Xp; Z) are those cycles gen-
erated by the vanishing curves. Trivializing the family over a path starting and
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ending at p yields a homeomorphism of Xp which is simply a product of Dehn
twists around the vanishing curves. Thus the monodromy action of π1(∆∗, p)
on H1(Xp; Z) is unipotent and fixes pointwise the subgroup Vp ⊂ H1(Xp; Z) of
vanishing cycles.

Real multiplication by O on the family X → ∆ is a monomorphism ρ : O ↪→
End0 JacX/∆, where JacX/∆ → ∆ is the relative Jacobian of the family X → ∆.
This is equivalent to a choice of real multiplication ρ : O → Jac(Xp) for each
smooth fiber Xp with the requirement that each isomorphism H1(Xp; Z) →
H1(Xq; Z) arising from the Gauss-Manin connection commutes with the action
of O.

Proposition 5.5. Consider a family of genus g stable curves X → ∆, smooth
over ∆∗, with real multiplication by O. For each nonzero p, the subgroup Vp ⊂
H1(Xp; Z) of vanishing cycles is preserved by the action of O on H1(Xp; Z).

Proof. Since the action of O on first homology commutes with the Gauss-Manin
connection, it is enough to show that Vp is invariant for a single p.

Let λ ∈ O be a primitive element for F . For any γ ∈ H1(Xp; Z), we have
the bound,

‖λ · γ‖Xp ≤ ‖λ‖∞‖γ‖Xp ,

where ‖λ‖∞ = supι |ι(λ)|, with the supremum over all field embeddings ι : F →
R, and ‖ · ‖Xp is the Hodge norm introduced in §3.

There is a constant D such that Ext(γ) ≥ D for any curve γ on Xp which
is not a vanishing curve. For any ε > 0, we may choose p sufficiently small that
Ext(γi) < ε for any vanishing curve γi. By Proposition 3.1, we have

‖λ · γi‖Xp ≤ ‖λ‖∞‖γi‖ < ‖λ‖∞ε1/2.

By Proposition 3.2, λ ·γi is homologous to a sum of simple closed curves δj with

Ext(δj) < C‖λ‖2∞ε.

Thus Ext(δj) < D if ε is chosen sufficiently small. The δj must then be vanishing
curves. Thus the action of λ preserves Vp, and since λ is a primitive element,
Vp is preserved by O. �

Corollary 5.6. Each stable curve in RMO ⊂Mg has geometric genus either
0 or g.

Proof. Suppose X is a stable curve in RMO. Choose a family of stable curves
X → ∆, smooth over ∆∗, with real multiplication by O, with X the fiber over 0.
The geometric genus of X is g− rankVp for any nonzero p. By Proposition 5.5,
Vp⊗Q is a vector space over F , so dimQ Vp⊗Q must be a multiple of [F : Q] =
g. �
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Proof of Theorem 5.2. Consider (X0, ω0) in the closure of the cusp of E ιO
determined by the cusp packet (I, T ). We first claim that (X0, ω0) must lie in
the image of E ιO(I, T ) ⊂ PΩMg(I, T ). Since E ιO is a variety, we may choose
a holomorphic disk f : ∆ → E ιO sending 0 to (X0, ω0) and ∆∗ to the cusp of
E ιO determined by (I, T ). Possibly taking a base extension, we may assume f
arises from a family of stable curves X → ∆ with real multiplication by O. For
each p ∈ ∆∗, the vanishing cycles Vp for the fiber Xp over p are O-invariant by
Proposition 5.5, so we obtain an extension of O-modules

0→ Vp → H1(X; Z)→ H1(X; Z)/Vp → 0,

which must be isomorphic to the extension determined by (I, T ). Since the
monodromy action of π1(∆∗, p) on Vp is trivial, we may identify each Vq with
I and obtain a consistent Lagrangian marking of Ĥ1(Xq; Z) by I for each q,
which defines a lift g : ∆→ E ιO(I, T ) ⊂ PΩMg(I). It follows that (X0, ω0) lies
in the image of some (Y, η) ∈ E ιO(I, T ) as claimed.

The form (Y, η) must lie in some boundary stratum Sι ⊂ PΩMg(I) lying
over a boundary stratum S ⊂ Mg(I). We must then show that if the inter-
section S ∩ RMO(I, T ) is nontrivial, then S is admissible, and moreover that
S ∩RMO(I, T ) ⊂ S(T ).

Suppose that the stratum S is not admissible, so the cone condition (5.1)
does not hold. Then there is some a in C(S) ∩ Ann(Λ1) ∩ SZ(I∨) but not in
N(S). By Theorem 4.1, the function Ψ(a) is holomorphic and identically zero
on S. By Corollary 5.4, Ψ(a)(x) ≡ q(T )(a), a nonzero constant on RMO(I, T ).
In particular, Ψ(a) is nonzero along S ∩RMO(I, T ) 6= ∅, a contradiction. Thus
S is admissible.

Since Ψ(a)(x) ≡ q(T )(a) onRMO(I, T ) for all a ∈ N(S)∩Ann(Λ1)∩SZ(I∨),
it follows immediately that RMO(I, T ) ∩ S ⊂ S(T ). �

6 A geometric reformulation of admissibility

The aim of this section is to give a more explicit reformulations of when an
I-weighted boundary stratum is admissible.

The no-half-space condition. Consider a finite dimensional vector space
V over Q. We say that a set S = {v1, . . . , vn} ⊂ V satisfies the no-half-space
condition if it is not contained in a closed half-space of its Q-span. Equivalently,
S satisfies the no-half space condition if and only if zero is in the interior of the
convex hull of S.

The reformulation. Consider a totally real number field F with Galois clo-
sure K. Let G = Gal(K/Q) and H = Gal(K/F ). We define I = H×HoZ/2Z,
with Z/2Z acting on H ×H by exchanging the factors. The group I acts on G
by

(h1, h2, ε) · γ = h2γ
εh−1

1 ,
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where ε = ±1 ∈ Z/2Z. We let Stab(σ) ⊂ I denote the stabilizer of σ ∈ G, and
we define a homomorphism φσ : Stab(σ)→ G by

φσ(h1, h2, ε) =

{
h1 if ε = 1;
h1σ if ε = −1.

Let Gσ = φσ(Stab(σ)) and Kσ = KGσ . We define for each σ ∈ G a quadratic
map Qσ : F → Kσ by

Qσ(t) = tσ−1(t).

Theorem 6.1. A weighted boundary stratum with weights {t1, . . . , tn} ⊂ F is
admissible if and only if for each σ ∈ G \H, the set {Qσ(t1), . . . , Qσ(tn)} ⊂ Kσ

satisfies the no-half-space condition. In fact, it is enough to check this for each
σ in a set of orbit representatives of G/I.

The tensor product K⊗K has the structure of a K-bimodule. Given σ ∈ G,
we define

ΛσK = {λ ∈ K ⊗K : x · λ = λ · σ(x) for all x ∈ K}, .

generalizing the definition of Λ1 ∈ SymQ(F ) in §5.
The trace pairing 〈x, y〉K = TrKQ (xy) on K induces a pairing on K ⊗K:

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉K〈x2, y2〉K .

Lemma 6.2. Let r1, . . . , rg be a basis of K over Q and s1, . . . , sg the dual basis
with respect to the trace pairing. The element

εσ =
g∑
i=1

ri ⊗ σ(si) ∈ K ⊗K.

lies in Λσ and does not depend on the choice of basis (ri). Moreover, for any
x ∈ Kσ and t ∈ F , we have

〈xεσ, t⊗ t〉 = [K : Kσ]〈x,Qσ(t)〉Kσ .

Proof. Identifying K ⊗ K with HomQ(K,K) via the trace pairing, Λσ corre-
sponds to

{φ : K → K : φ(xλ) = σ(x)φ(λ) for all x, λ ∈ K}.

Under this correspondence, εσ is the canonical map φσ(x) = σ(x). Thus, εσ ∈
Λσ and does not depend on the choice of the ri.
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Now, write t ∈ F as t =
∑
tiσ(ri) for ti ∈ Q. We calculate

〈xεσ, t⊗ t〉 =

〈∑
k

xrk ⊗ σ(sk),
∑
`,m

t`tmσ(r`)⊗ σ(rm)

〉
=
∑
k,`,m

t`tm〈xrk, σ(r`)〉K〈σ(sk), σ(rm)〉K

=
∑
k,`

tkt`〈xrk, σ(r`)〉K

= TrKQ (xtσ−1(t))

= [K : Kσ] TrKσQ (xQσ(t)). �

Proof of Theorem 6.1. We first wish to identify SymQ(F ) and the orthog-
onal complement (Λ1

F )⊥ as subspaces of K ⊗ K. We have the orthogonal de-
composition,

K ⊗K =
⊕
σ∈G

ΛσK .

SymQ(F ) is the subspace of K ⊗K fixed by the action of I, so

SymQ(F ) =
⊕
τ∈G/I

Γτ ,

where for each orbit τ ∈ G/I, we define Γτ to be the subspace of
⊕

σ∈τ ΛσK
fixed pointwise by the action of I. Given any σ in an orbit τ ∈ G/I, we define
the isomorphism vσ : Kσ → Γτ by

vσ(x) =
∑

γ∈I/ Stab(σ)

γ(xεσ) =
∑

γ∈I/ Stab(σ)

xεγ·σ.

Choose a set σ1 = 1, σ2, . . . , σn ∈ G of representatives of the orbits G/I. We
obtain an isomorphism,

v :
n⊕
i=2

Kσi → (Λ1
F )⊥ ⊂ SymQ(F ),

defined by v(xi)ni=2 = (vσi(xi))
n
i=2. By Lemma 6.2, we have for any xi ∈ Kσi

and t ∈ F ,

〈v(xi)ni=2, t⊗ t〉 =
n∑
i=2

qi〈xi, Qσ(t)〉Kσi , (6.1)

for some positive rationals qi.
Now, identifying Ann(Λ1

F ) ⊂ SQ(F ) with (Λ1
F )⊥ ⊂ SymQ(F ) via the trace

pairing, the admissibility condition is that for any x ∈ (Λ1
F )⊥, if 〈x, ti ⊗ ti〉 ≥ 0

for all i, then 〈x, ti ⊗ ti〉 = 0 for all i. By (6.1), this is equivalent to the Qσ(ti)
satisfying the no-half-space condition for each i. �
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Cubic fields. We now suppose F is a cubic field. Define a quadratic map
Q : F → F by

Q(x) = NF
Q (x)/x.

In this case, Theorem 6.1 becomes

Corollary 6.3. Given a totally real cubic field F , a weighted boundary stratum
with weights {t1, . . . , tn} ⊂ F is admissible if and only if {Q(t1), . . . , Q(tn)} ⊂ F
satisfies the no-half-space condition.

Proof. If F is Galois, this follows directly from Theorem 6.1, so suppose F is
non-Galois with Galois closure K. We may identify G = Gal(K/Q) with the
symmetric group S3 with F = K(12). The action of I on G has two orbits, so
we need only to check the condition of Theorem 6.1 for a single σ ∈ G \ H.
Take σ = (13). We have (132) · Q(12)(x) = Q(x) for all x ∈ F , thus the two
conditions coincide. �

7 Rationality and positivity

In this section, we study in more detail the irreducible strata – that is, those
that parameterize irreducible stable curves – in the boundary of the real mul-
tiplication locus. Given a basis r = (r1, . . . , rg) of a lattice I ⊂ F , we write
Sr for the associated I-weighted boundary stratum, parameterizing irreducible
stable curves having 2g nodes with weights ±r1, . . . ,±rg. We say that r is an
admissible basis of I if Sr is an admissible stratum in the sense of §5.

We introduce in this section two additional properties of bases of number
fields which we call rationality and positivity. We show that for totally real
cubic fields, rationality and positivity together are equivalent to admissibility.
For higher degree fields, the relation between these conditions is not clear. We
then show that the rationality and positivity conditions are necessary for an
irreducible stratum to intersect the boundary of the real multiplication locus.
Finally, we give a geometric interpretation of the rationality and positivity con-
ditions in terms of the geometry of locally symmetric spaces, from which we
conclude that there any lattice has only finitely many rational and positive
bases, up to similarity.

Rationality and positivity. Consider a basis r = (r1, . . . , rg) of a lattice in
a totally real number field F . We denote by (si)

g
i=1 the dual basis. We say that

r is rational if
ri
si
/
rj
sj
∈ Q for all i 6= j.

We say that r is positive if

ri
si
� 0 for all i,

where x� 0 means that x is positive under each embedding F → R.
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As an intermediate technical notion we say that r is weakly positive if

ri
si
/
rj
sj
� 0 for all i 6= j.

Lemma 7.1. Every weakly positive and rational basis of F is positive.

Proof. Suppose (ri) is a basis of F which is weakly positive and rational but
not positive. We define for each j

a(j) =

∣∣∣∣∣s(j)
1

r
(j)
1

∣∣∣∣∣
1/2

and for each i, the vectors

r̃i = (a(j)r
(j)
i )gj=1 and s̃i = (s(j)

i /a(j))gj=1.

Note that the bases (r̃i) and (s̃i) are dual with respect to the standard inner
product on Rn. For each i, define

qi =
ri
si
/
r1

s1
.

By weak positivity and rationality, each qi is a positive rational. We then have
for each i and j

r̃
(j)
i = ε(j)qis̃

(j)
i (7.1)

with each ε(j) = ±1. Since the basis (ri) is not positive, we must have ε(j) = −1
for some j. Consider the matrices R = (Rij) = (r(j)

i ) and S = (Sij) = (s(j)
i ).

Let Dε be the diagonal matrix with ε(j) the jth diagonal entry, and define Dq

similarly. We then have by (7.1),

S = DqRDε,

so since RtS = I,
RtDqR = D−1

ε . (7.2)

Thus R can be interpreted as an isomorphism between the indefinite quadratic
form given by the matrix D−1

ε and the definite quadratic form given by Dq,
which is impossible. �

Proposition 7.2. A basis (r1, r2, r3) of a cubic field F is admissible if and only
if it is both rational and positive.

Proof. Suppose that the no-half-space condition holds. If the three elements
Q(r1), Q(r2), Q(r3) are Q-linearly independent, their convex hull cannot contain
zero. Since r1, r2, r3 are a basis of F , the Q(ri) cannot all be Q-multiples. Hence
their Q-span is plane. Let vi = Q(ri)×Q(ri+1). One calculates that

vi = riri+1si+2∆(r1, r2, r3),
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where ∆(w1, w2, w3) = det(w(j)
i ).

The no-half-space-condition implies that the vi are all proportional as el-
ements of R3, i.e., vi/vj ∈ Q when considered as elements of F . This is the
rationality condition.

Moreover, the no-half-space condition implies that the angle between Q(ri)
and Q(ri+1) (in Span(Q(ri), i = 1, 2, 3)) is strictly contained in (0, π). Thus the
vi are all pointing in the same direction. Consequently, the rational number
risj
rjsi

is positive. This is weak positivity and the preceding lemma concludes one
implication.

Conversely, suppose that rationality and positivity hold for {ri, r2, r3}. The
first part read backwards implies that the Q(ri) lie in a plane. If the no-half-
space condition fails, we have that vi/vj ∈ Q+ but vi/vk ∈ Q− for a suitable
numbering with {i, j, k} = {1, 2, 3}. This contradicts weak positivity, and hence
positivity. �

Necessity of rationality and positivity. Given an irreducible I-weighted
boundary stratum Sr and a real embedding ι of F , recall that Sιr ⊂ PΩMg is the
stratum of irreducible stable forms having 2g poles of residues±ι(r1), . . . ,±ι(rg).

Theorem 7.3. Any irreducible stable form in the boundary of E ιO is contained
in Sιr for some rational and positive basis r of a lattice I ⊂ F whose coefficient
ring contains O.

Proof. Consider a family of stable curves X → ∆, smooth over ∆∗, the fiber X0

over 0 irreducible, of geometric genus 0, and with real multiplication by O. We
label the vanishing cycles of the fiber Xp over p as α1, . . . , αg, and we choose a
family of cycles β1, . . . , βg (with βi defined only up to Dehn twist around αi)
such that (αi, βi)

g
i=1 is a symplectic basis ofH1(Xp; Z). As in §5, we may identify

as an O-module the subspace Vp ⊂ H1(Xp; Z) spanned by the vanishing cycles
with some lattice I whose coefficient ring contains O. Under this identification,
the αi correspond to some ri ∈ I. Choose an ordering ι1 = ι, . . . , ιg of the real
embeddings of F . We let ω(j) ∈ Ω(Xp) be the ιj-eigenform determined by

ω(j)(αi) = r
(j)
i .

We must show that the ri are a rational and positive basis of I.
The plumbing coordinates from §3 provide holomorphic functions ti : ∆→ C

which parameterize the opening-up of the ith node of X0. Since Xp is nonsin-
gular for p 6= 0, each function ti vanishing only at 0. We claim that for some
positive integers ni,

Im
ω(j)(βi)
ω(j)(αi)

∼ ni
2π

log
1
|ti|

, (7.3)

meaning that the ratio of both sides tends to 1 as p→ 0.
Denote by ηi ∈ Ω(Xp) the form with ηi(αj) = δij . We then have

ω(j) =
∑
i

r
(j)
i ηi,
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so after exponentiation, we obtain

E

(
ω(j)(βi)
ω(j)(αi)

)
= E(ηi(βi))

∏
k 6=i

E

(
r

(j)
k

r
(j)
i

ηk(βi)

)
. (7.4)

By Corollary 4.2, we have

E(ηi(βi)) = tnii φ and E(ηi(βj)) = ψj (7.5)

for φ and ψj nonzero holomorphic functions on ∆ and ni a positive integer
(equal to the intersection number of ∆ with the boundary stratum where αi
has been pinched). Substituting (7.5) into (7.4) and taking logarithms yields

Im
ω(j)(βi)
ω(j)(αi)

=
ni
2π

log
1
|ti|

+O(1),

from which (7.3) follows.
Since we have identified Vp with I as O-modules, we also have the O-module

isomorphism,

H1(Xp; Z)/Vp ∼= Hom(Vp,Z) ∼= Hom(I,Z) ∼= I∨,

where the first isomorphism arises from the intersection pairing and the last from
the trace pairing. Under this isomorphism, the basis (βi, . . . , βg) of H1(X; Z)/Vp
corresponds to the basis (s1, . . . , sg) of I∨ which is dual to (r1, . . . , rg). Thus
under the action of real multiplication, we have

ri
rk
· αk = αi and

si
sk
· βk = βi (mod Vp).

From this and (7.3), we then obtain

s
(j)
i

r
(j)
i

/
s

(j)
k

r
(j)
k

= Im
ω(j)(βi)
ω(j)(αi)

/ Im
ω(j)(βk)
ω(j)(αk)

∼ log
ni
|ti|

/ log
nk
|tk|

. (7.6)

Since the right side of (7.6) is independent of j, so is the left side. Thus
(si/ri)/(sk/rk) is rational. The right side of (7.6) is also positive for p ∼ 0
because t`(0) = 0 for all `, so (si/ri)/(sk/rk) is positive as well. Therefore this
basis is both rational and weakly positive. By Lemma 7.1 the basis is then
positive. �

Finiteness of rational and positive bases. We now give a geometric inter-
pretation of bases of lattices satisfying the rationality and positivity conditions
as points of intersection of flats in the locally symmetric space SLg(Z)\SLg(R)/
SOg(R). This yields a quick proof that there are only finitely many such bases
up to the action of the unit group.

We recall the classical correspondence between similarity classes of lattices in
degree g totally real number fields and compact flats in SLg(Z)\SLg(R)/SOg(R).
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Consider a degree g totally real number field F with an ordering ι1, . . . , ιg of
the embeddings of F into R. Let I be a lattice in F , which we regard as point
in the space of lattices SLg(Z)\SLg(R). Let U(I) ⊂ OI be the group of totally
positive units ε such that εI = I. We embed U(I) in the group D ⊂ SLg(R) of
positive diagonal matrices by the embeddings ιi. By Dirichlet’s units theorem,
U(I) is a lattice in D. Let T (I) = U(I)\D, a compact torus. The stabilizer
of I under the right action of D on SLg(Z)\SLg(R) is U(I), so we obtain an
immersion pI : T (I) → SLg(Z)\SLg(R)/SOg(R) of T (I) as a compact flat in
SLg(Z)\SLg(R)/SOg(R). Since similar lattices lie on the same D-orbit, this
associates a compact flat to each similarity class of lattices.

Let Rec ⊂ SLg(Z)\SLg(R)/SOg(R) be the locus of lattices in Rg which have
a basis of orthogonal vectors, a closed (but not compact) flat isometric to Rg/Cg,
where Cg ⊂ SOg(R) is the group of symmetries of the cube.

Theorem 7.4. For each lattice I in a totally real number degree g number field
F , the flat pI(T (I)) intersects Rec transversely. There is a natural bijection
between the set p−1

I (Rec) and the set of rational and positive bases of I, up to
the action of U(I), changing signs, and reordering.

Proof. Let R̃ec ⊂ SLg(R)/SOg(R) be the image of the diagonal orbit of the
standard basis of Rg, a lift of Rec to SLg(R)/SOg(R).

Lifts of T (I) to SLg(R)/SOg(R) correspond to oriented bases of I up to
the action of the unit group by associating the flat (r(j)

i ) · D · SOg(R) to the
basis r1, . . . , rg. Points of p−1

I (Rec) correspond bijectively (up to the action of
the group Cg ⊂ SLg(Z) of symmetries of the cube) to intersection points of
pI(T (I)) with Rec. Note that if a lift F intersects R̃ec, then so does the lift
γ · F for any γ ∈ Cg. These intersection points correspond to the same point
in p−1

I (Rec), and on the level of bases, replacing F with g · F corresponds to
reordering and changing signs in the basis (ri).

We must show that (r(j)
i ) · D · SOg(R) intersects R̃ec if and only if (ri)

is rational and positive. Note that the rationality and positivity conditions
make sense for bases of Rn, with the jth embedding r

(j)
i interpreted as the

jth coordinate of the vector ri. A vector is regarded as rational if all of its
coordinates are equal, totally positive if all of its coordinates are positive, and
so on. With this interpretation, a orthogonal basis (r1, . . . , rn) of Rn is rational
and positive, since the basis is orthogonal if and only if each dual vector si
is a positive multiple of the corresponding ri. The rationality and positivity
conditions are invariant under the action of D, thus any basis (ri) whose D-
orbit meets R̃ec is rational and positive.

Now suppose the basis (ri) of I is rational and positive. Let (si) be the

dual basis. For each j, let a(j) =
√
s

(j)
1 /r

(j)
1 . Let A be the diagonal matrix

(a(1), . . . , a(g)), and let

(r̃(j)
i ) = (a(j)r

(j)
i ) and (s̃(j)

i ) = (s(j)
i /a(j)).
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Note that (s̃(j)
i ) is the dual basis to (r̃(j)

i ), and A is the unique diagonal matrix for
which the vectors (r̃(j)

1 ) and (s̃(j)
1 ) are positively proportional. If the positivity

and rationality conditions are satisfied, we have

s̃
(j)
i

r̃
(j)
i

=
1

(a(j))2
· s

(j)
i

r
(j)
i

=
qi

(a(j))2
· s

(j)
1

r
(j)
1

= qi

for some positive qi ∈ Q. Since each s̃i is proportional to r̃i, the basis (r̃i) of Rg

is rectangular, so it is the unique intersection point of (r(j)
i ) · D · SOg(R) and

R̃ec. Otherwise for some i the vectors (r̃(j)
i ) and (s̃(j)

i ) are not proportional, so
the flats are disjoint. Since we saw that there was at most one intersection point
between each lift of the two flats, these intersection points are transverse. �

Corollary 7.5. The set of bases of I satisfying the rationality and positivity
conditions is finite, up to the action of U(I)

Proof. Since T (I) is compact, there are at most finitely many intersection points
with Rec by transversality. �

8 Boundary of the eigenform locus: Sufficiency
for genus three

In this section we specialize to genus three. We prove that the boundaries of
RMO and E ιO are indeed the unions of the varieties described in Theorem 5.2.
Moreover, we show how to derive these subvarieties explicitly from the weights
of a boundary stratum.

Boundary strata in genus three. The topological type of a geometric genus
zero stable curve (or a weighted boundary stratum) can be encoded by a graph
where each vertex represents an irreducible component and an edge joining
two vertices (or possibly joining a vertex to itself) represents a node at the
intersection of those two components. There are fifteen topological types of
arithmetic genus three, geometric genus zero stable curves, shown in Figure 1.
We will refer to a stable curve represented by the jth graph in the ith row of
Figure 1 as a type (i, j) stable curve.

An I-weighted stable curve can be represented by a graph together with
a direction and a weight r ∈ I attached to each edge e. The cusp on the
component represented by the vertex at the front of e has weight r, and the
other cusp has weight −r.

It will be convenient have a compact notation for boundary strata without
separating curves, the only ones which will be important in the sequel. For
all but one of these strata the components of the corresponding stable curves
can be arranged in chain or one loop. We code those boundary strata in the
following way: we write [mi] for a genus zero component of the stable curve with
mi marked points. We write ×ai for the number of intersection points with the
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Figure 1: Genus three, geometric genus zero stable curves
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subsequent curve. The possible patterns for curve systems without separating
curves include [6], [m1] ×a [m2], [m1] ×a1 [m2] ×a2 [m3] or [m1] ×a1 [m2] ×a2

[m3]×a3 . In the last pattern, a3 is the number of nodes joining the last and the
first component. For example, a [5] ×3 [3] boundary stratum is represented by
graph (2, 2) in Figure 1 and a [4]×2 [3]×1 [3]×2 boundary stratum is represented
by graph (3, 1).

Boundary strata of type [6] parameterize irreducible stable curves with three
nonseparating nodes, often called “trinodal curves.”

Theorem 8.1. Consider an order O in a totally real cubic number field F , a
real embedding ι of F , and a cusp packet (I, T ) ∈ C(O). The closure in PΩMg

of the cusp of E ιO associated to (I, T ) is equal to the union over all admissible
I-weighted boundary strata S of the varieties Sι(T ).

The closure of the corresponding cusp of RMO in Mg is equal to the union
over all I-weighted boundary strata S of the images of the S(T ) under the for-
getful map to Mg.

After some preliminary discussions, we prove Theorem 8.1 at the end of this
section.

Since the intersection of two algebraic subvarieties of M3 has a finite num-
ber of components, we obtain the following generalization for genus three of
Theorem 7.4.

Corollary 8.2. Given a lattice I in a cubic number field F , the number of
I-weighted admissible boundary strata up to similarity is finite.

We will discuss in Appendix A various aspects concerning enumerating and
counting this set of admissible weighted boundary strata.

In order to make Theorem 8.1 completely explicit, we will now give coordi-
nates on some weighted boundary strata in terms of cross-ratios and give explicit
equations cutting out the subvarieties S(T ).

We say that a weighted boundary stratum S1 is a degeneration of S2, if S1

is obtained by pinching a collection of curves on a surface represented by S2.
We also say that S2 is an undegeneration of S1 in this situation.

Irreducible strata. Consider an irreducible stratum (that is, type [6] if we are
in genus three) Sr. A weighted stable curve parameterized by Sr is determined
2g distinct points p1, . . . , pg and p−1, . . . , p−g on P1 with weights ri at pi and
−ri at p−i, so Sr

∼= M0,2g. For j 6= k we define the cross-ratio morphisms
R[jk] : Sr → C \ {0, 1} by

R[jk] = [pj , p−j , p−k, pk]. (8.1)

where for z1, . . . z4 ∈ C,

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

.
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Take (s1, . . . , sg) to be the dual basis of I∨ (with respect to the trace pairing)
to (r1, . . . , rg). We can now make the cross-ratio map CR defined in (5.3) more
explicit.

Proposition 8.3. The elements sj ⊗ sk for j 6= k form a basis of N(Sr).
Moreover we have Ψ(sj ⊗ sk) = R[jk] as functions on Sr.

Proof. That sj ⊗ sk belongs to N(Sr) follows from the definition of the dual
basis with respect to the trace pairing. They are obviously linearly independent
and thus a basis by a dimension count

We normalize a point P = (p−g, . . . , pg) of Sr by a Möbius transformation
so that pj = 0, p−j =∞ and pk = 1. By definition of Ψ(sj⊗sk) we must choose
the stable one-form ω on P1 with residue ±Tr(sjrm)/2πi at the point p±m, i.e.
we have to choose ω = dz/2πiz. We then integrate this function over the path
whose intersection with the loop around the node at p±m is Tr(skrm). On P1,
this is a path γ joining pk = 1 to p−k. We then have

Ψ(sj ⊗ sk)(P ) = e2πi
R
γ
ω = p−k = R[jk](P ). �

Corollary 8.4. For g = 3, after identifying Hom(N(S) ∩ SZ(I∨),C∗) with
(C∗)3 via the basis (s1 ⊗ s2, s2 ⊗ s3, s3 ⊗ s1) of N(S) ∩ SZ(I∨), the map CR
becomes

CR = (R[12], R[23], R[31]) : Sr → (C \ {0, 1})3.

The map CR is a two-to-one branched cover which identifies orbits of the invo-
lution i : Sr → Sr which exchanges each pair pi and p−i.

Proof. That CR is of this form follows immediately from the definition of CR
and Proposition 8.3.

That the map CR = (R[12], R[13], R[23]) is two-to-one onto its image can
be checked three of the pi and solving for the rest. Interchanging each pi and
p−i leaves each cross-ratio R[jk] invariant, so CR is the quotient map by this
involution. �

Type [4]×4 [4] strata. Consider an I-weighted stable curve X of type [4]×4 [4]
having weights r1, . . . , r4 ∈ I with

∑
ri = 0, and let S be the corresponding

I-weighted boundary stratum. We name u1, . . . , u4 the four points on one ir-
reducible component with weight r1, . . . , r4 and name v1, . . . , v4 the opposite
points on the other irreducible component. We define the cross-ratios,

Ru = [u1, u2, u3, u4] and Rv = [v1, v2, v3, v4].

S is isomorphic to M0,4 ×M0,4 with Ru and Rv coordinates on the first and
second factors.

Type [4] ×2 [4] strata. Now consider the I-weighted stable curve shown in
Figure 2 with distinct weights r1, r2, r3 ∈ I, and let S be the corresponding
I-weighted boundary stratum. We label by p1, p−1, p2, p−2 the points on one

40



irreducible component with weights r1,−r1, r2,−r2 and label by q1, q−1, q2, q−2

the points on the other irreducible component with weights r3,−r3,−r2, r2. The
stratum S is isomorphic to M0,4 ×M0,4 with coordinates

R1 = [q1, q−1, q−2, q2] and R3 = [p1, p−1, p−2, p2]. (8.2)

The stratum S arises as a degeneration of the irreducible weighted boundary
stratum with weights r1, r2, r3 by pinching a curve around the points of weights
r1,−r1, r2. As this curve is pinched, the cross-ratio R[1,3] tends to 1.

r2

r2

r1 r3

Figure 2: Type [4]×2 [4] I-weighted stable curve

Calculation of S(T ). We will write Ri for R[jk] where {i, j, k} = {1, 2, 3}
and we let (s1, s2, s3) be the dual basis to (r1, r2, r3).

Whether S(T ) = S or not will depend on the following notion. Given an
I-weighted boundary stratum S, we let Span(S) ⊂ Q3 denote the Q-span of
{Q(r) : r ∈ Weight(S)}, and let codim(Span(S)) denote the codimension of
Span(S) in Q3.

Theorem 8.5. The locus S(T ) is defined by the following equation.
• Case [6]: For a boundary stratum of type [6], we use the cross-ratio coor-

dinates R1, R2, R3 defined in Proposition 8.3. Then the subvariety S(T )
of the admissible boundary stratum S(r1,r2,r3) is given by the cross-ratio
equation

3∏
i=1

Raii = ζ, (8.3)

where the ai are the unique (up to sign) relatively prime integers such that
ai = tbi for some t ∈ F , and

bi = NF
Q (ri)

(
si
ri

)2

, (8.4)

and where ζ is the root of unity ζ = e2πiu with

u = 〈T, σ〉, (8.5)

where

σ =
3∑
i=1

aisi+1 ⊗ si+2. (8.6)

Here we interpret the extension class T as an element of SymQ(F ).
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• Case [4] ×2 [4]: The subvariety S(T ) of the admissible boundary stratum
with weights {r1, r2, r3, r4 = −r2} is given, using the cross-ratio coordi-
nates defined above, by

Ra1
1 Ra3

3 = ζ, (8.7)

where the ai and ζ are calculated from {r1, r2, r3} as in the preceding case
[6].

• Case [4] ×4 [4]: There are two possibilities. If codim(Span(S)) = 0, then
S(T ) is the whole stratum. If codim(Span(S)) = 1, then S is a degen-
eration of an admissible irreducible weighted boundary stratum S(r1,r2,r3)

with the property that exponents ai defined above satisfy
∑3
i=1 ai = 0.

Moreover, S(T ) is cut out by the equation

(RuRv)a1 ·
(

Ru
1−Ru

Rv
1−Rv

)a3

= ζ, (8.8)

where ζ is as in the case [6].
This is a complete list of the cases of boundary strata without separating curves,
where for some admissible boundary stratum S, we can have S(T ) ( S.

We will refer to the equations stated in the above theorem as the cross-ratio
equations.

The following lemmas determine the possibilities for codim(Span(S)).

Lemma 8.6. Suppose that the Q-span of r1, r2, r3 ∈ F \Q is two-dimensional.
Then Q(r1), Q(r2), and Q(r3) are Q-linearly independent.

Proof. Embedding F in R3 by its three real embeddings, the map Q becomes

Q(x, y, z) = (yz, xz, xy),

which we regard as a degree two map Q : P2(R)→ P2(R). Suppose the Q(ri) are
Q-linearly dependent. They then lie on a line L ⊂ P2(R) cut out by an equation
a1x+ a2y+ a3z = 0 with each ai ∈ Q. Each coefficient ai of this equation must
be nonzero, for if (say) a3 were zero, then no irrational s ∈ F could lie on L,
since the equation a1s

(1) + a2s
(2) = 0 implies s ∈ Q.

The inverse image f−1(L) is a nonsingular conic, so it intersects any line in
at most two points. Thus if the ri were Q-linearly dependent, they could not
map to L. �

Lemma 8.7. If the stratum S is irreducible or if it is of type [4] ×2 [4], then
codim(Span(S)) = 1. If it is of type [4]×4 [4], then either codim(Span(S)) = 0
or codim(Span(S)) = 1. In all of the remaining cases, codim(Span(S)) = 0.

Proof. Since the set of weights contains a Q-basis of F , codim(Span(S)) is at
most 1. The preceding Lemma 8.6 implies that codim(Span(S)) = 0 whenever
the curves S contains a component isomorphic to a thrice-punctured P1. The
only remaining cases are the irreducible stratum and strata of type [4] ×2 [4].
In either case there are only three distinct weights. We only need to remark
that three vectors cannot span R3 and contain 0 in its convex hull at the same
time. �
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We will show in Example 2 of Appendix A that this is a complete list of
constraints.

Lemma 8.8. Suppose that {Pi}ki=1 are k points in Rn, k ≥ n + 2, whose R+-
span is all of Rn and such that no n of the Pi are contained in a subspace of
dimension n − 1. Then there are n + 1 points among the Pi, whose R+-span
also is all of Rn.

Proof. Given k ≥ n + 2 points Pi in Rn whose convex hull contains zero, we
must show that there are k − 1 among them whose convex hull still contains
zero. The hypothesis on the span of subsets of n + 1 elements will then imply
that these vectors span Rn, and the claim follows from induction on k.

Consider the linear map f that assigns to x ∈ Rk the sum f(x) =
∑k
i=1 xiPi.

The hypothesis implies that K = Ker(f) contains w = (w1, . . . , wk) with∑k
i=1 wi = 1 and wi > 0. Since dim(K) > 2 there is also 0 6= y ∈ K with∑
yi = 0. The affine space w + λy has to intersect the coordinate hyperplanes

at some point different from zero. This point yields a convex combination of
zero with at most k − 1 summands. �

Proof of Theorem 8.5. We start with case [6]. Recall that S(T ) ⊂ S is the
subvariety cut out by the equations

Ψ(a) = e−2πi〈T,a〉, (8.9)

as a ranges in N(S) ∩ Ann(Λ1) ∩ SZ(I∨). By Lemma 8.7, this is a rank-one
Z-module, so by Proposition 8.3, it is generated by

∑3
i=1 aisi+1⊗ si+2 for some

relatively prime integers ai, and the equation (8.9) is simply (8.3) with ζ as
in (8.5). To find the ai, we will find some rationals bi with

∑
bisi+1 ⊗ si+2 ∈

Ann(Λ1), and the ai will be a primitive integral multiple.
If bi ∈ Q, then

∑
bisi+1 ⊗ si+2 ∈ Ann(Λ1) if and only if

Tr

(
3∑
i=1

bisi+1si+2x

)
=

〈
3∑
i=1

bisi+1 ⊗ si+2,

3∑
j=1

rj ⊗ sjx

〉
= 0

for all x ∈ F , thus if and only if
∑
bisi+1si+2 = 0.

If we let b̃i = N(ri) siri and take ci satisfying
∑
ci/ri = 0 then we have

3∑
i=1

b̃i
ci

N(ri)
si+1si+2 = 0.

From Lemma 8.9 below, we deduce that (̃bi ci
N(ri)

)3
i=1 is proportional to the

bi as in the statement. Thus the exponents in the cross-ratio equation are
proportional to the bi as claimed.

We next treat the case of a stratum S of type [4]×4 [4]. As explained above
along with the cross-ratio coordinates, this case is a degeneration of a boundary
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stratum of type [6]. Since Span(S) here is the same as for S(r1,r2,r3) we obtain
the same equation, only the cross-ratio R2 is equal to one identically.

It remains to treat the case of a boundary stratum S of type [4]×4 [4] in the
case dim(Span(S)) = 2. Lemma 8.8 implies that S is a degeneration of some
admissible stratum of type [6], say S(r1,r2,r3) given a suitable numbering of the
weights.

Next we show that
∑
ai = 0. Admissibility implies that (8.10) below holds

for some ci ∈ Q. The hypothesis on the dimension of the span implies the
equation (8.10) and

1
r1 + r2 + r3

=
e1

r1
+
e2

r2

for some e1, e2 ∈ Q. We may moreover rescale such that r1 = 1 and solve the
system for cubic equations killing r2 and r3 respectively. These equations must
be the minimal polynomials of r2 and r3. We obtain

NF
Q (r2) = −c2e2

c1e1
and NF

Q (r3) =
c23e2

c2c1e1 − c21e2
.

Using the Corollary 8.10 to the calculations in case [6] below, we only need to
check that

∑
c2i /N

F
Q (ri) = 0, which is obvious.

We may normalize the degeneration from the boundary stratum S(r1,r2,r3)

to S as follows. Let p1 = 0, p2 = 1, p3 =∞ and let the p−i all converge to the
same point µ, that is, p−i = µ+ λit with t→ 0. Then

Ru =
µ− 1
µ

, Rv =
λ1 − λ3

λ2 − λ3

and in the limit as t→ 0

R1/R2 =
µ− 1
µ

λ1 − λ3

λ2 − λ3
, R3/R2 = (1− µ)

λ1 − λ3

λ1 − λ2
.

Thus the cross-ratio equation

(R1/R2)a1 · (R3/R2)a3 = ζ

for S(r1,r2,r3) becomes

(RuRv)a1 ·
(

Ru
1−Ru

Rv
1−Rv

)a3

= ζ,

as we claimed.
The last statement in an immediate consequence of Lemma 8.7. �
We give here the lemma needed above and as corollary a second version of

calculating the exponents of the cross-ratio equation. Using the no-half-space
condition, there are rational coefficients ci such that

c1
r1

+
c2
r2

+
c3
r3

= 0. (8.10)
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Lemma 8.9. If the ri and ci are as in (8.10), then the triple (c1, c2, c3) is
proportional to (N(ri)si/ri)3

i=1.

Proof. Note that the triple (N(ri)si/ri)3
i=1 is (up to a factor r1/s1) integral by

rationality. It thus suffices to check that

3∑
i=1

(
N(ri)

si
ri

)
· 1
ri

= 0.

We have

3∑
i=1

(
N(ri)

si
r2
i

)
· r1

s1
=

3∑
i=1

r
(2)
i r

(3)
i

s
(1)
i

r
(1)
i

r
(1)
1

s
(1)
1

=
3∑
i=1

r
(2)
i r

(3)
i

s
(2)
i

r
(2)
i

r
(2)
1

s
(2)
1

(by rationality)

=
r

(2)
1

s
(2)
1

3∑
i=1

s
(2)
i r

(3)
i (8.11)

Consider the 3 by 3 matrices R = (r(j)
i ) and S = (s(j)

i ). Since the bases (ri)
and (si) are dual, we have RSt = I. Thus StR = I as well, and (8.11) is 0. �

Corollary 8.10. The exponents ai appearing in the cross-ratio equation (8.3)
are the unique (up to sign) relatively prime integers with ai = tb′i for some t ∈ F
and

b′i = c2i /N
F
Q (ri).

Period coordinates. In preparation for the proof of Theorem 8.1, we now
define local coordinates around certain Lagrangian boundary strata S ⊂M3(L)
in terms of exponentials of entries of period matrices.

Let S ⊂ M3(L) be a Lagrangian boundary stratum obtained by pinching
curves γ1, . . . , γm on Σ3. We say that such a boundary stratum is nice if the
complement of any two of the γi is connected. There are five topological types of
nice boundary strata inM3(L), representing stable curves of type (1, 1), (2, 1),
(2, 2), (3, 1) and (4, 2).

Let αi ∈ L ⊂ H1(Σ3; Z) denote the homology class of γi after choosing an
orientation.

Lemma 8.11. If S ⊂M3(L) is nice boundary stratum, then there are elements
σ1, . . . , σn ∈ Hom(L,Z) such that

〈σi, αj ⊗ αj〉 = δij . (8.12)

Proof. We represent a curve in S by a directed graph G with the edges weighted
by elements of L. A closed circuit c in G determines a functional βc ∈ Hom(L,Z)
defined as follows. If e is an edge with weight γ, then βc(γ) = n, where n is the
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number of times c crosses e in the forward direction minus the number of times
c crosses e in the reverse direction.

Each of the graphs in Figure 1 representing nice boundary strata has the
property that for each edge e there are two circuits c and d which pass through
e once and have no other edge in common. For each edge f , write ρ(f) = w⊗w,
where w is the weight of f . Then the functional βc ⊗ βd maps ρ(e) to 1 and
ρ(f) for any other edge f to 0. �

Choose σ1, . . . , σm ∈ S(Hom(L,Z)) as in the lemma, and choose a basis
τ1, . . . , τn of the annihilator N(S) ⊂ S(Hom(L,Z)) of {αi ⊗ αi}mi=1.

Let U ⊂ M3(L) be the open subset consisting of M3(L), S, and any in-
termediate boundary stratum obtained by pinching some subset of the curves
{γi}. We consider the map Ξ: U → Cm × (C∗)n defined by

Ξ = (Ψ(σ1), . . . ,Ψ(σm),Ψ(τ1), . . . ,Ψ(τn)),

sending S to (0, . . . , 0)× (C∗)n.
Any automorphism T of L induces an automorphism φT ofMg(L) defined by

replacing the marking ρ of the marked surface (X, ρ) with ρ◦T . Let ι : L→ L be
the negation homomorphism φ(α) = −α. We define M′g(L) to be the quotient
of Mg(L) by the involution φι.

Each of the meromorphic functions Ψ(α) onMg(L) is constant on orbits of
φι and so defines a meromorphic function Ψ′(α) on M′g(L). If S is fixed by φι,
then so is U , and the map Ξ then factors through to a map Ξ′ : U ′ → Cm×(C∗)n,
where U ′ = U/φι.

Lemma 8.12. Consider a nice boundary stratum S ⊂M3(L). If S is not fixed
by πι, then for any basis (τ1, . . . , τn) of N(S), the functions Ψ(τ1), . . . ,Ψ(τn)
form a system of local coordinates on S. If S is fixed by φι, then for any basis
(τ1, . . . , τn) of N(S), the functions Ψ′(τ1), . . . ,Ψ′(τn) form a system of local
coordinates on S/φι.

Proof. It is enough to produce a single basis of N(S) which yields a system of
local coordinates, since the coordinate systems defined by any two bases are
related by an automorphism of the algebraic torus (C∗)n.

Any type [6] stratum S is fixed by φι. Corollary 8.4 implies that the functions
Ψ′(si ⊗ sj) for i 6= j identify S/φι with an open subset of (C∗)3 (the involution
φω was called i in that Corollary), and so they give a system of local coordinates
on S/φι.

Any type [4]×4 [4] stratum is also fixed by φι. We use the notation for theses
strata from p. 40. Under the identification of S with M0,4 ×M0,4 the map φι
is just the involution exchanging the two factors.

Let {s1, . . . , s3} be a basis of F dual to {r1, . . . , r3}. Let τ1 = (s2 − s1)⊗ s3

and τ2 = (s3 − s1)⊗ s2. From the definition of Ψ,

Ψ′(τ1) = RuRv and Ψ′(τ2) = (1−Ru)(1−Rv),

a system of local coordinates on M0,4 ×M0,4/φι.
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The remaining cases are strata not fixed by φι. We leave these simpler cases
to the reader. �

Proposition 8.13. Consider a nice L-weighted boundary stratum S inM3(L).
If S is not fixed by φι, then the map Ξ is locally biholomorphic on a neighborhood
of S. Otherwise Ξ′ is locally biholomorphic on a neighborhood of S/φι. In either
case, the map Ξ is open.

Proof. Suppose S is not fixed by the involution. Centered at an arbitrary point
of S, we choose plumbing coordinates t1, . . . , tm, s1, . . . , sn, as in §3, so that
each divisor Di where γi has been pinched is cut out by ti = 0. We must show
that the Jacobian of Ξ at (0,0) is nonzero. The functions Ψ(σi) vanish to order
one on Di and zero on Dj for j 6= i. We then have ∂Ψ(σi)

∂tj
(0,0) = 0 if i 6= j,

∂Ψ(σi)
∂sj

(0,0) = 0 for all i and j, and ∂Ψ(σi)
∂ti

(0,0) 6= 0 for all i. Thus, to show
that the Jacobian of Ξ at (0,0) is nonzero, it suffices to show that the matrix
(∂Ψ(τi)

∂sj
(0,0)) is invertible. In other words, we must show that the functions

Ψ(sj) locally define a system of local coordinates on S. This is the content of
Lemma 8.12.

The case where S is fixed is nearly identical. Note that since the quotient
mappingM3(L)→M′3(L) is unbranched along the boundary divisors, the order
of vanishing of any Ψ′(a) along Di is also given by the formula of Theorem 4.1.

The last statement follows, since any quotient map – in particular, the canon-
ical map M3(L)→M′3(L) – is open. �

Closures of algebraic tori. The period coordinates above reduce the prob-
lem of computing the boundary of the eigenform locus to computing the closures
of algebraic tori T ⊂ (C∗)n ⊂ Cn, which we now consider.

Consider the algebraic torus T = (C∗)k×(C∗)` ⊂ Ck×(C∗)`. We identify the
character group χ(T ) with Zk⊕Z` by assigning to (a, b) = (a1, . . . , ak, b1, . . . , b`)
the character λ(a,b) : T → C∗ defined by

λ(a,b)(z,w) = za1
1 · · · z

ak
k wb11 · · ·w

b`
`

Given a subgroup L of χ(T ) with χ(T )/L torsion-free and a homomorphism
φ : L → C∗, we define TA,φ to be the subvariety of T cut out by the monomial
equations

λ(a,b)(z,w) = φ(a, b) (8.13)

for each (a, b) ∈ L, a translate of a subtorus of T .
Let ∆ = {0} × (C∗)`. We define

C = {(a, b) ∈ χ(T ) : ai ≥ 0 for 1 ≤ i ≤ k}, and

N = {0} ⊕ Z` ⊂ χ(T ).

Let ∆L,φ be the subvariety of ∆ cut out by the monomial equations (8.13) for
(a, b) ∈ L ∩N .
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Theorem 8.14. The closure TL,φ ∩∆ is nonempty if and only if L ∩ C ⊂ N ,
in which case we have TL,φ ∩∆ = ∆L,φ.

Proof. Suppose (a, b) is a nonzero element of (L∩C) \N . The equation (8.13)
is then satisfied on TL,φ, but λ(a,b)(z,w) ≡ 0 on ∆, so ∆ and TL,φ must be
disjoint.

Conversely, suppose L ∩ C ⊂ N . Then the orthogonal projection p(L) of L
onto the Zk factor of χ(T ) satisfies p(L) ∩ C = 0. Theorem 15.7 of [Rom92]
states that given a subspace V of Rn with V ∩ {x ∈ Rn : xi ≥ 0 for all i} = 0,
there is a vector y ∈ V ⊥ with each coordinate positive. Thus we may find an
integral c ∈ p(L)⊥ ⊂ Zk with positive coordinates.

Note that the curve parameterized by

f(w) = (d1w
c1 , . . . , dkw

ck , e1, . . . , e`)

lies in TL,φ if and only if for each (a, b) ∈ L, the equation

da1
1 . . . dakk e

b1
1 . . . eb`` = φ(a, b) (8.14)

is satisfied, in which case (0, . . . , 0, e1, . . . , e`) ∈ TL,φ ∩∆.
Choose some (0, e) ∈ ∆L,φ, and let (ai, bi) = (ai1, . . . .aik, bi1, . . . , bi`) for

1 ≤ i ≤ dim(L) be a basis of L with aij = 0 for i ≤ dim(L ∩N). We must find
g1, . . . , gk satisfying the equations

ai1g1 + · · ·+ aikgk + bi1 log e1 + · · ·+ bi` log e` = log φ(ai, bi). (8.15)

The first dim(L ∩N) equations don’t involve the gi and are satisfied automat-
ically because (0, e) ∈ ∆A,φ as long as the values of log were chosen correctly.
The vectors adim(L∩N)+1, . . . ,adim(L) are linearly independent, so the matrix
(aij) (with dim(L ∩N) < i ≤ dim(L) and 1 ≤ j ≤ k) has maximal rank. Thus
we can solve (8.15) for the gi. Setting di = egi , (8.14) is satisfied. �

Proof of Theorem 8.1. It suffices to show that for any cusp packet (I, T )
and admissible I-weighted boundary stratum S ⊂M3(I) the variety S(T ) lies
in the closure of RMO(I, T ).

For nice boundary strata, the map Ξ of Proposition 8.13 reduces the compu-
tation of the closure of RMO to the computation of the closure of an algebraic
torus in Cn (since under an open mapping, the inverse image of the closure
of a set is equal to the closure of the inverse image), which is done in Theo-
rem 8.14. It is easily checked that the condition of this theorem is equivalent
to the admissibility condition. This handles admissible boundary strata of type
(1, 1), (2, 1), (2, 2), (3, 1), and (4, 2) in Figure 1.

Admissible boundary strata which are in the boundary of a nice admissible
boundary stratum S with codim(S) = 0 are then automatically in the closure of
RMO(I, T ). It follows from Lemma 8.8 that any admissible boundary stratum
S with codim(S) = 0 is in the boundary of such a nice admissible stratum, since
some collection of nodes can be unpinched to obtain a stratum of type [4]×4[4] or
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[5]×3 [3] where the cone condition still holds. This handles admissible boundary
strata of type (3, 2), (3, 3), (4, 1), and (4, 3).

It remains to consider admissible boundary strata of type (2, 3), (2, 4), (3, 4),
(3, 5), (4, 4), and (4, 5). Any such boundary stratum in the closure of a unique
irreducible Lagrangian boundary stratum S. The weights of S define the equa-
tion

Ψ(σ) = u, (8.16)

with u and σ as in (8.5) and (8.6). Let V ⊂M3(I) be the subvariety cut out by
this equation. For any stratum S ′ ⊂ S, we have S ′(T ) = S ′∩V by the definition
of S ′(T ), so we must show for any such S ′ that S ′ ∩ V ⊂ RMO(I, T ). Since
we have already handled irreducible boundary strata, we know that V ∩ S =
RMO(I, T )∩S. It follows that V ∩ S ⊂ RMO(I, T ). If S∩V were irreducible,
it would follow that S ∩ V = S ∩ V , and we would be done.

We see the irreducibility of S∩V as follows. Since V is codimension-one and
S ∩ V is irreducible, as is easily seen from the form of the cross-ratio equation
(8.3), S ∩V could only fail to be irreducible if a two-dimensional stratum in the
boundary of S were contained in V . Such a stratum must be of type (2, 3) (that
is, [4] ×2 [4]) or (2, 4) in Figure 1. The restriction of the equation (8.16) to a
type [4]×2 [4] stratum is the cross-ratio equation (8.7) which is not satisfied on
an entire stratum. Similarly, a type (2, 4) stratum is isomorphic to M0,5, and
the equation (8.16) reduces to the equation R = u, where R is a cross-ratio of
four marked points and u is a root of unity. This equation is not satisfied on
the entire stratum. �

9 Existence of an admissible basis

In this section we construct, for any totally real cubic number field F with ring
of integers OF , an OF -ideal with an admissible basis. This will be used in the
next section to show GL+

2 (R)-noninvariance of eigenform loci.

Lemma 9.1. For any cubic number field F , there is some fractional OF -ideal
I with basis {1, α, α2}.

Proof. Given α ∈ F \ Q, let Iα ⊂ F be the lattice 〈1, α, α2〉. If aX3 + bX2 +
cX + d ∈ Z[X] is the minimal polynomial of α, one checks that

R = 〈1, aα, aα2 + bα〉 satisfies R · Iα ⊂ Iα.

We must arrange that R = OF . Let {1, µ, ν} be a basis of OF . Associated
to this basis is the index form, an integral binary cubic form which is defined
by

F (x, y)2 = disc(xν − yµ)/ disc(F )

for x, y ∈ Q (see [Coh00, Proposition 8.2.1]), where disc(α) is the discriminant
of the lattice Iα. If we choose α to be a root of F (x, 1), then R = OF by [Coh00,
Proposition 8.2.3]. �
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Proposition 9.2. Given a totally real cubic field F , there is an OF -ideal I
with an admissible basis.

Proof. Let I be a fractional ideal with basis {1, α, α2} which is provided by
Lemma 9.1. The basis given by r1 = α, r2 = (1−α), and r3 = α(α−1) satisfies
the equation

1
NF

Q (r1)
NF

Q (r1)
r1

+
1

NF
Q (r2)

NF
Q (r2)
r2

+
1

NF
Q (r3)

NF
Q (r3)
r3

= 0 (9.1)

so
dim Span{NF

Q (r1)/r1, N
F
Q (r2)/r2, N

F
Q (r3)/r3} = 2.

The no-half-space condition is then equivalent to the coefficients of (9.1)
having the same sign, that is NF

Q (α) < 0, and NF
Q (1 − α) < 0. We are free to

replace α with α′ = α − k for any k ∈ Z, since the basis {1, α′, α′2} spans the
same lattice. Thus the problem is reduced to finding k ∈ Z such that NF

Q (α+k)
and NF

Q (α+ k + 1) have opposite signs.
Define P (k) = NF

Q (α + k). Then P (k) = −F (k), where F is the monic
minimal polynomial of α. We claim that there are consecutive integers at which
P has opposite signs. In fact, this holds for any polynomial P of odd degree with
no integral roots, for if P had the same sign at any two consecutive integers,
then it must have the same sign at all integers. This is impossible, as the sign
of P (x) as x→∞ is the opposite of P (x) as x→ −∞. �

Example 9.3. Consider the field F = Q[x]/〈x3−x2− 10x+ 8〉 of discriminant
D = 961. Its ring of integers OF = 〈1, x, (x2 + x)/2〉 is not monogenetic, i.e.
does not have a basis of the form {1, θ, θ2} for any θ in F . The class number of
OF is one, so the above algorithm provides a basis of this form spanning some
fractional ideal similar to OF .

One calculates the index form to be F (X, 1) = 2X3−X2− 5X + 2, thus if θ
is a root of this polynomial, then OF = 〈1, 2θ, 2θ2 − θ〉 and I = 〈1, θ, θ2〉. Here
N(α) = −1 and NF

Q (1− α) = −1, so the last step of the proof is unnecessary.

Corollary 9.4. For any field F the closure of the eigenform locus EOF intersects
a boundary stratum of type [6], that is, a stratum of trinodal curves.

We do not know if the class of the ideal class of I given by Lemma 9.1 always
is the class of OF . Nor do we know if there is always an admissible basis of OF .
Computer experiments using the algorithm described in Appendix A suggest an
affirmative answer. This algorithm also produces examples of ideal classes with
no such bases.

10 Teichmüller curves and the GL+
2 (R) action

In preparation for the next sections, we recall the well-known action of GL+
2 (R)

on ΩMg and the basic properties of Teichmüller curves in Mg.
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Translation surfaces. A Riemann surface X equipped with a nonzero holo-
morphic one-form ω is otherwise known as a translation surface. The form ω
defines a metric |ω| on X \ Z(ω), where Z(ω) is the set of zeros of ω, assigning
to a vector v the length |ω(v)|. The metric |ω| has cone singularities at the zeros
of ω.

The form ω defines an atlas of charts {φα : Uα → C} covering X\Z(ω), where
φα(z) =

∫ z
p
ω for some choice of basepoint p ∈ Uα. The transition functions of

this atlas are translations of C, and the form ω is recovered by ω|Uα = φ−1
α (dz).

Any translation-invariant geometric structure on C can then be pulled back
to X via this atlas. In particular, for any slope θ ∈ R∪ {∞} there is a foliation
Fθ of X by geodesics of slope θ.

GL+
2 (R) action. We can now regard ΩMg as the moduli space of genus g

translation surfaces. GL+
2 (R) acts on ΩMg as follows. We identify C with R2

in the usual way so that a matrix A ∈ GL+
2 (R) determines a R-linear automor-

phism of C. Replacing the atlas of charts {φα : Uα → C} defined above with
{A ◦φα : Uα → C} yields a new atlas with transition functions also translations
of C. Pulling back the complex structure of C and the one-form dz via this atlas
defines a new translation surface A · (X,ω).

Strata. Given a partition n1, . . . , nr of 2g − 2, there is the stratum

ΩMg(n1, . . . , nr) ⊂ ΩMg

of forms with exactly r zeros of orders given by the ni. This stratification is
preserved by the GL2(R)-action.

Veech surfaces and Teichmüller curves. We define the affine automor-
phism group of a translation surface (X,ω) to be the group Aff+(X,ω) of
orientation preserving, locally affine homeomorphisms of (X,ω). There is a
homeomorphism

D : Aff+(X,ω)→ SL2(R),

sending a map A to its derivative DA in a local translation chart. We define
SL(X,ω) = D(Aff+(X,ω)) ⊂ SL2(R). The group SL(X,ω) is known as the
Veech group of (X,ω).

The surface (X,ω) is said to be Veech if SL(X,ω) is a lattice in SL2(R).
The group SL(X,ω) coincides with the stabilizer of (X,ω) under the GL+

2 (R)-
action. Thus (X,ω) is Veech if and only if GL+

2 (R) · (X,ω) ⊂ ΩMg descends
to an immersed finite volume Riemann surface (orbifold) in Mg. An immersed
finite volume Riemann surface arising in this way is called a Teichmüller curve
and is necessarily isometrically immersed with respect to the Teichmüller metric.

A Teichmüller curve can also be regarded as an embedded smooth curve in
PΩMg.
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Periodicity. A saddle connection on a translation surface (X,ω) is an em-
bedded geodesic segment connecting two zeros of ω.

The foliation Fθ of slope θ is said to be periodic if every leaf of Fθ is either
closed (i.e. a circle) or a saddle connection. In this case, we call θ a periodic
direction. A periodic direction θ yields a decomposition of (X,ω) into finitely
many maximal cylinders foliated by closed geodesics of slope θ. The complement
of these cylinders is a finite collection of saddle connections.

Veech proved the following strong periodicity property of Veech surfaces.

Theorem 10.1 ([Vee89]). Suppose (X,ω) is a Veech surface with either a closed
geodesic or a saddle connection of slope θ. Then the foliation Fθ is periodic.

Given a Veech surface (X,ω) generating a Teichmüller curve C ⊂ PΩMg,
there is a natural bijection between the cusps of C and the periodic directions
on (X,ω), up to the action of SL(X,ω). The cusp associated to a periodic
direction θ is the limit of the geodesic AtR · (X,ω), where R ⊂ SO2(R) is a
rotation which makes θ horizontal, and

At =
(
e−t 0
0 et

)
.

The stable form in PΩMg which is the limit of this cusp is obtained by cutting
each cylinder of slope θ along a closed geodesic and gluing a half-infinite cylinder
to each resulting boundary component (see [Mas75]). These infinite cylinders
are the poles of the resulting stable form, and the two poles resulting from a
single infinite cylinder are glued to form a node.

A periodic direction θ of a Veech surface (X,ω) generating a Teichmüller
curve C is irreducible if the complement of the cylinders of Fθ is a connected
union of saddle connections. Equivalently, a periodic direction is irreducible if
the stable curve at the limit of the corresponding cusp of C is irreducible. An
irreducible periodic direction always has g cylinders, where g is the genus of X.

Lemma 10.2. Every Veech surface (X,ω) having at most two zeros has an
irreducible periodic direction.

Proof. If (X,ω) has only a single zero, then every periodic direction is irre-
ducible.

If (X,ω) has two zeros, take a saddle connection I joining them. Such a
saddle connection can be obtained by straightening any path joining the two
zeros to a geodesic path. The direction determined by I is periodic by Theo-
rem 10.1, and this direction is irreducible as the graph of saddle connections is
connected. �

Algebraic primitivity. The trace field of a Veech surface (X,ω) is the field
Q(TrA : A ∈ SL(X,ω)). The trace field of (X,ω) is a number field which is
totally real (see [Möl06b] or [HL06]) whose degree is at most the genus of X
(see [McM03]). A Veech surface (X,ω) is said to be algebraically primitive if
the degree of its trace field is equal to the genus of X.
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Our finiteness theorem for algebraically primitive Teichmüller curves will
require the following facts.

Theorem 10.3 ([Möl06b, Möl06a]). Suppose (X,ω) is an algebraically primi-
tive Veech surface. We then have

• GL+
2 (R) · (X,ω) lies in the locus of eigenforms for real multiplication by

the trace field of (X,ω).

• For any two distinct zeros p and q of ω the divisor p − q, regarded as a
point in Jac(X), is torsion.

The following lemma shows that the heights of cylinders in an irreducible
periodic direction of an algebraically primitive Veech surface can be recovered
from knowledge of their widths.

Lemma 10.4. Suppose (X,ω) ∈ ΩMg is an eigenform for real multiplication
by a totally real field F of degree g, and suppose the horizontal direction of (X,ω)
is periodic and irreducible. Then the vector (ri)

g
i=1 of widths of the g horizontal

cylinders is a real multiple of a basis of F over Q, and the corresponding vector
(si)

g
i=1 of heights of these cylinders is a real multiple of the dual basis of F over

Q with respect to the trace pairing.

Proof. Let M ⊂ H1(X; Q) be the g-dimensional subspace generated by the core
curves of cylinders, and let N = H1(X; Q)/M . Real multiplication gives both
M and N the structure of one-dimensional F -vector spaces, so we may choose
isomorphisms of F -vector spaces φ : M → F and ψ : N → F . Since ω is an
eigenform, there are constants c, d ∈ R and an embedding ι : F → R such that∫

α

ω = cι(φ(α)) and Im
∫
β

ω = dι(ψ(β)) (10.1)

for all α ∈M and β ∈ N .
The intersection pairing between M and N yields a perfect pairing 〈 , 〉 : F ×

F → Q which is compatible with the action of F in the sense that 〈λx, y〉 =
〈x, λy〉 for all λ ∈ F . A second such pairing is given by (x, y) = Tr(xy). Since
the space of all such perfect pairings is a one-dimensional F -vector space, there
is a λ ∈ F such that

〈x, λy〉 = Tr(xy) (10.2)

for all x, y ∈ F .
Let αi ∈M be the class of a core curve of the ith horizontal cylinder Ci, let

ri = φ(αi), and let si be the dual basis of F to the ri. Choose βi ∈ H1(X; Q)
such that βi ≡ ψ−1(λsi) (mod M). By (10.2), the βi are dual to the αi with
respect to the intersection pairing. It follows that βi crosses Ci once and no
other cylinder, so the height of Ci is Im

∫
βi
ω. By (10.1), we have∫

αi

ω = cι(ri) and Im
∫
βi

ω = dι(λ)ι(si). �

53



11 GL+
2 (R) non-invariance

In this section we show that the GL+
2 (R) action on ΩMg admits a continuous

extension to the Deligne-Mumford compactification. We deduce from this and
the previous sections that the eigenform locus for real multiplication by the
ring of integers in any totally real cubic field is not invariant under the action of
GL+

2 (R). McMullen proved non-invariance in [McM03] for the maximal order in
Q(cos(2π/7)) using the existence of a curve with a special automorphism group.

GL+
2 (R)-action on ΩMg. The definition of the GL+

2 (R) action on Abelian
differentials works just as well for stable Abelian differentials (X,ω), regarding ω
as a holomorphic one-form on the punctured Riemann surface X. The opposite-
residue condition is preserved by linearity of the GL+

2 (R)-action on R2: A ·
(−v) = −A · v. Thus we obtain an action of GL+

2 (R) on ΩMg and ΩT (Σg).

Proposition 11.1. The action of GL+
2 (R) on ΩMg is continuous.

Proof. We show that the action of GL+
2 (R) on ΩT (Σg) is continuous. As the

GL+
2 (R)-action on ΩT commutes with the action by the mapping class group,

this action then descends to a continuous action on ΩMg.
We claim that under the action of GL+

2 (R) on ΩT (Σg) the hyperbolic lengths
of simple closed curves vary continuously. Since the topology of T (Σg) is the
smallest topology such that hyperbolic lengths of simple closed curves are con-
tinuous functions `γ : T (Σg)→ R+ ∪{∞}, it follows that under this action, the
underlying Riemann surfaces are varying continuously.

That the length of a simple closed curve γ varies continuously follows easily
from considering the annular covering of X corresponding to 〈γ〉 ⊂ π1(X). The
modulus of this annulus varies continuously under quasiconformal deformation,
and the length of γ is determined by this modulus (see for example [DH93,
Proposition 7.2]).

Consider a form ([f : Σg → X], ω) ∈ ΩT (Σg). Say the collapse f pinches a
set of curves S on Σg. We may choose a set of curves α1, . . . , αg on Σg that
generate a Lagrangian subspace of H1(Σg,Z) and such that each of the αi is
either one of the curves in S or intersects each curve in S trivially. We obtain
a trivialization of the bundle ΩT (Σg) over a neighborhood of X sending a form
η to (η(α1), . . . , η(αg)) ∈ Cg.

SayA · (Y, η) = (Z, ζ). From the definition of the GL+
2 (R) action, we have

ζ(αi) = A · η(αi),

with A ∈ GL+
2 (R) acting on C ∼= R2 in the usual way. Thus η(αi) varies continu-

ously under the GL+
2 (R)-action, and so the action on ΩT (Σg) is continuous. �

Four-punctured spheres. Given r1, r2 ∈ C, we let R(r1,r2)
∼= M0,4 be

the moduli space of pairs (X,ω), where X is the four-punctured sphere P1 \
{p1, p−1, p2, p−2}. and ω is the unique meromorphic one-form with simple poles
at the pi with residue r±i at p±i. We identify R(r1,r2) with C \ {0, 1} via the

54



cross-ratio R = [p1, p−1, p−2, p2] and write (XR, ωR) for the form associated to
the cross-ratio R.

If r1, r2 ∈ R, then the subgroup P ⊂ GL+
2 (R) of matrices fixing the vector

(1, 0) acts on R(r1,r2), as this is the subgroup of GL+
2 (R) preserving the residues

ri.

Proposition 11.2. Suppose r1, r2 ∈ R, and r1 6= ±r2. We then have

• The horizontal foliation of each (XR, ωR) ∈ R(r1,r2) is periodic. Each
(XR, ωR) has either two or three cylinders (counting the two half-infinite
cylinders of width ri as a single cylinder).

• The form ωR has a double zero for the single value of R,

R =
(
r1 − r2

r1 + r2

)2

. (11.1)

• We define Spine(r1,r2) ⊂ R(r1,r2) to be the locus of two-cylinder forms.
Spine(r1,r2) is the locus of singular leaves of a quadratic differential on
R(r1,r2). Spine(r1,r2) is homeomorphic to a figure-9, with the three pronged
singularity at the unique form (XR, ωR) with a double zero. The one-
pronged singularity is at R = 1, the point in the boundary of R(r1,r2)

obtained by pinching the curve separating p±1 from p±2.

• Spiner1,r2 is the locus of points fixed by the action of P on R(r1,r2).

Proof. See [Bai, Proposition 7.3] for the first statement, [Bai07, Proposition 6.10]
for the second statement, and [Bai, Proposition 7.4] for the third statement.

For the final statement, suppose (X,ω) ∈ R(r1,r2) is a three-cylinder surface.
Then there is a single finite horizontal cylinder C ⊂ X with a simple zero of ω
on the top and bottom boundaries of C. The period

∫
γ
ω along a curve joining

these two zeros has nonzero imaginary part, so it is not fixed by any matrix in
P . Thus P does not fix ω.

If (X,ω) ∈ Spine(r1,r2), then (X,ω) is obtained by gluing four half-infinite
cylinders to graph (the spine of (X,ω). There is an affine automorphism of
(X,ω) with derivative P which is the identity on the spine. Thus (X,ω) is
stabilized by the action of P . �

GL+
2 (R) non-invariance. We write ΩE ιO ⊂ ΩMg for the locus of ι-eigenforms

(as opposed to its projectivization E ιO).

Theorem 11.3. Let O be a totally real cubic order and X ⊂ ΩM3 an irreducible
component of ΩE ιO. If X ⊂ ΩM3 has nontrivial intersection with a boundary
stratum of type [6], then X is not invariant under the action of GL+

2 (R).

Proof. Suppose X meets the locus R(r1,r2,r3) of irreducible stable forms with
poles of residues (±r1,±r2,±r3), with (r1, r2, r3) an admissible basis of ι(F ).
In the boundary of R(r1,r2,r3) is a stratum R′ of type [4]×2 [4] parameterizing
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forms with two nodes of residue ±r2, one of residue ±r1, and one of residue
±r3. We identify R′ with R(r1,r2) × R(r3,r2)

∼= M0,4 ×M0,4, with cross-ratio
coordinates R1 on R(r1,r2) and R3 on R(r3,r2) as in the previous paragraph.

By Theorems 8.5 and 8.1, X ∩ (R(r1,r2) × R(r3,r2)) contains an irreducible
component V cut out by the equation

Ra1
1 Ra3

3 = ζ (11.2)

for some root of unity ζ. We suppose X is GL+
2 (R)-invariant, in which case V

is invariant under P ⊂ GL+
2 (R) by Proposition 11.1.

We define i, ψj : C → C by ψj(z) = zai , and i(z) = ζ/z. Since the spine in
R(ri,r2) is the locus fixed by the action of P ⊂ GL+

2 (R) by Proposition 11.2, if
V is preserved by this action, we must have

υ−1
3 iψ1(Spine(r1,r2)) ⊂ Spine(r3,r2) .

Moreover, since the ψj and i are local homeomorphisms, for p a one or three-
pronged singularity of Spine(r1,r2), we must have that ψ−1

3 iψ1(p) consists entirely
of one or three-pronged (respectively) singularities of Spine(r3,r2). Since each
spine has only one singularity of each type, we must have a3 = ±1. By switching
the roles of r1 and r3, we must also have a1 = ±1. As the one-pronged singularity
of each spine is located at Rj = 1, we must have ζ = 1, or else ψ−1

3 iψ1(1) 6= 1.
It remains to consider the case where aj = ±1 and ζ = 1. Given the location

of the three-pronged singularities (11.1) and the cross-ratio equation (11.2), we
obtain (

r1 − r2

r1 + r2

)(
r3 − r2

r3 + r2

)±1

= 1,

which implies
r1

r2
= ±r3

r2
.

This contradicts the requirement that (r1, r2, r3) is a basis of F . �

Corollary 11.4. If OF is the maximal order in a totally real cubic number field
F , then the eigenform locus ΩE ιOF is not invariant under the action of GL+

2 (R).

Proof. If OF is a maximal totally real cubic order, Proposition 9.2 provides an
admissible basis of some ideal in O. By Theorem 8.1, the eigenform locus EOF
then intersects the corresponding irreducible boundary stratum, so EOF is not
invariant by Theorem 11.3. �

It should be true also for nonmaximal orders O that no irreducible compo-
nent of ΩE ιO is GL+

2 (R)-invariant. To achieve this using our approach one needs
to have information about which symplectic extensions of O-modules arise from
cusps of a given irreducible component X of EO. This seems like a quite delicate
number theoretic question.
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12 Intersecting the eigenform locus with strata

Given the results of the previous section, one might now ask whether the inter-
section of the eigenform locus with lower-dimensional strata or the hyperelliptic
locus is GL+

2 (R)-invariant. Refined versions of the proof of Theorem 11.3 are
likely to give negative answers to this question as well, provided that the inter-
section has large enough dimension so that the degeneration techniques can still
be applied.

The most basic dimension question is, whether the eigenform locus lies in the
principal stratum ΩM3(1, 1, 1, 1). Motivation for this question is the following
coarse heuristics. Almost all primitive Teichmüller curves in genus two are
obtained by intersecting the eigenform locus with the minimal stratum ΩM2(2).
In genus three, the minimal stratum ΩM3(4) has codimension three in the
principal stratum. Hence if the the eigenform locus EO lies generically in the
principal stratum, then the expected dimension for its intersection (in PΩM3)
with PΩM3(4) is zero - too small for a Teichmüller curve. On the other hand,
components of EO that lie generically not in the principal stratum are a potential
source of Teichmüller curves. We show that such components do not exist.

Theorem 12.1. For any given order O in a totally real cubic number field each
component of the eigenform locus ΩEO lies generically in the principal stratum.

The theorem will follow from an intersection property of the real multipli-
cation locus with small strata.

Lemma 12.2. Given a weighted admissible boundary stratum S of type [4]×2 [4]
there is a weighted admissible boundary stratum S ′ of type [3]×2 [3]×1 [3]×2 [3]×1

which is a degeneration of S.

Proof. Let ±r1,±r2 be the weights in one component of curves parameterized
by S and let ±r2,±r3 be the weights in the other component. Admissibility
implies that the Q+-span of Q(r1), Q(r2), Q(r3) is a half-plane H in R3. In each
of the two component we can pinch further curves. They necessarily carry the
weights ±(r1 ± r2) resp. ±(r2 ± r3), the signs depending on the choice of the
curve. By Lemma 8.6 we know that Q(r1± r2) does not lie in H. In the Galois
closure of F we calculate

Q(r1 ± r2) = Q(r1) +Q(r2)± (rσ1 r
σ2

2 + rσ2 r
σ2

1 ).

Consequently the two choices of the sign lead to Q-images on different sides of
H. To produce S ′ is thus suffices to pinch some curve that acquires the weight
r2 + r3 and also to pinch a curve on the other component acquiring the weight
r1± r2 with the sign chosen such that Q(r2 + r3) and Q(r1± r2) lie on opposite
sides of H. �

Lemma 12.3. For any given order O in a totally real cubic number field each
cusp of the eigenform locus EO has non-empty intersection with a boundary stra-
tum parameterizing stable curves without separating curves and all whose com-
ponents are thrice punctured projective lines (i.e. a pants decomposition without
separating curves).
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Proof. Since the boundary of the locus of RMO is obtained by intersecting with
a divisor of M3, every boundary stratum is contained in the closure of a two-
dimensional boundary stratum ofRMO. Suppose this two-dimensional stratum
is an admissible weighted boundary stratum S with dim(Span(S)) = 3. Case
distinction and dimension count shows that S does not contain any separating
curves. Any degeneration of S is again admissible. Thus in this case it suffices
to pinch enough non-separating curves to obtain a pants decomposition.

The only case of an admissible weighted boundary stratum S that gives a
two-dimensional component of ∂RMO and with the property dim(Span(S)) = 2
is the stratum of type [6]. We can degenerate this to a stratum of type [4]×2 [4]
without changing admissibility. Now Lemma 12.2 concludes the proof. �

Proof of Theorem 12.1. By Lemma 12.3, there exists a stable form on the
boundary of each component of EO with each of the four irreducible components
a thrice punctured sphere. This form must then have four simple zeros, one in
each irreducible component. Since the eigenform over a degenerate curve has
simple zeros, so does the eigenform over a general curve. �

13 Finiteness for the stratum ΩM3(3, 1)

The aim of this section is to prove the following finiteness result for Teichmüller
curves using the cross-ratio equation and the torsion condition of Theorem 10.3.
This stratum contains one of the two known algebraically primitive Teichmüller
curves in genus three, the billiard table T (2, 3, 4) whose unique irreducible cusp
in ΩM3 is described in Example 13.8 below.

Theorem 13.1. There are only finitely many algebraically primitive Teich-
müller curves in the stratum ΩM3(3, 1).

This theorem will follow from the following finiteness theorem for cusps.

Theorem 13.2. There are only finitely many points in PΩM3(3, 1) which are
irreducible cusps of algebraically primitive Teichmüller curves in PΩM3(3, 1).

Heights. The proof of Theorem 13.2 will require some facts about heights of
subvarieties of Pn(Q) which we summarize here. Unless stated otherwise, proofs
can be found in [HS00].

Consider a number field K and a point P = (x0 : . . . : xn) ∈ Pn(K). The
absolute logarithmic Weil height of P is

h(P ) =
1

[K : Q]
log

∏
v∈MK

max{‖x0‖v, . . . , ‖xn‖v},

where MK is the set of places of K, and ‖ · ‖v is the normalized absolute value
at v. The height h(P ) is unchanged under passing to an extension of K, so h is
a well-defined function h : Pn(Q)→ [0,∞).
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There is a more general notion of the height of a subvariety V of Pn(Q).
The precise definition is not important for us; see [HS00, p. 446]. We write
h(V ) ∈ [0,∞) for the height of V .

We will require the following properties of heights:

• (Northcott’s Theorem) A collection of points in Pn(Q) with uniformly
bounded height and degree is finite.

• The height of a hypersurface V ⊂ Pn(Q) cut out by a polynomial f is
equal to the height of the vector of coefficients of f .

• (Arithmetic Bézout Theorem [Phi95]) If X and Y are irreducible projec-
tive subvarieties of Pn(Q) with Z1, . . . , Zn the irreducible components of
X ∩ Y , then for some constant C,

n∑
i=1

h(Zi) ≤ deg(X)h(Y ) + deg(Y )h(X) + C deg(X) deg(Y ).

• The height of a zero-dimensional subvariety of Pn(Q) is the sum of the
heights of its individual points.

• [HS00, Theorem B.2.5] Given a degree d rational map φ : Pn → Pm defined
over Q with indeterminacy locus Z, we have for any P ∈ Pn(Q) \ Z

h(φ(P )) ≤ dh(P ) +O(1). (13.1)

Finally, there is the important theorem of Bombieri-Masser-Zannier [BMZ99]
on intersections of curves with algebraic subgroups of the torus Gn

m. We define
Hk ⊂ Gn

m to be the union of all algebraic subgroups of dimension at most k.

Theorem 13.3. Let C ⊂ Gn
m be a curve defined over Q which is not contained

in a translate of a subtorus. Then C ∩ Hn−1 is a set of bounded height, and
C ∩Hn−2 is finite.

The H0 case was proved in [Lau84]. An effective version of this theorem was
proved in [Hab08].

Finiteness of cusps. We now begin working towards a weaker version of
Theorem 13.2, namely that there are up to scale finitely possible triples of
widths of cylinders of irreducible periodic directions of algebraically primitive
Veech surfaces in ΩM3(3, 1).

We first introduce some notation which will be used throughout the next two
paragraphs. Consider the moduli space M0,8 of eight distinct labeled points in
P1. We label these points p, q, x1, x2, x3, y1, y2, y3. Given a point P ∈ M0,8,
there is a unique (up to scale) meromorphic one-form ωP with a threefold zero
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at p, a simple zero at q, and a simple pole at each xi or yi. We will usually
make the normalization that p = 0 and q =∞, and write

ωP =
z3dz∏3

i=1(z − xi)(z − yi)
. (13.2)

Under this normalization, M0,8 is naturally identified with an open subset of
P5 via P 7→ (x1 : . . . : y3). We use this identification to define the Weil height h
on M0,8. We define S(3, 1) ⊂M0,8 to be the locus of P such that ωP satisfies
the opposite-residue condition Resxi ωP = −Resyi ωP for each i. The variety
S(3, 1) is locally parameterized by the projective 4-tuple consisting of the three
residues and one relative period, so S(3, 1) is three-dimensional.

We define the cross-ratio morphisms Qi : S(3, 1) → Gm and Ri : S(3, 1) →
Gm by

Qi = [p, q, yi, xi] and Ri = [xi+1, yi+1, yi+2, xi+2],

with indices taken mod 3. In the standard normalization of (13.2), Qi = yi/xi.
We define Q,CR: S(3, 1) → G3

m by Q = (Q1, Q2, Q3) and CR = (R1, R2, R3).
We define Res : S(3, 1) → P2 by Res(P ) = (Resxi ωP )3

i=1. Finally, given ζ =
(ζ1, ζ2, ζ3) ∈ G3

m, we define Sζ(3, 1) ⊂ S(3, 1) to be the locus where Qi = ζi for
each i.

Lemma 13.4. Any irreducible stable form (X,ω) ∈ PΩM3(3, 1) which is a
limit of a cusp of an algebraically primitive Teichmüller curve C ⊂ PΩM3(3, 1)
is equal to ωP for some P ∈ S(ζ1,ζ2,ζ3)(3, 1) ∩ CR−1(T ) with the ζi nonidentity
roots of unity and T ⊂ G3

m a proper algebraic subgroup. Moreover, Res(P ) is a
basis of some totally real cubic number field.

Proof. By [Mas75], a limit of an irreducible cusp of C is an irreducible stable
form with two zeros of order 3 and 1, and 6 poles whose residues (up to sign and
constant multiple) are the widths of the 3 horizontal cylinders of (X,ω). Since
a form generating C is an eigenform for real multiplication by Theorem 10.3
and the residues ri are widths of cylinders, they are a basis of the trace field by
Lemma 10.4.

That the ζi are roots of unity follows from the torsion condition of Theo-
rem 10.3. By Abel’s theorem, there is an n such that for each (Y, η) ∈ C we may
find a degree n meromorphic function Y → P1 with a single pole of order n at
one zero of η and a zero of order n at the other zero of η. Taking a limit of such
functions (this is justified in [Möl08, p. 9]), we obtain a meromorphic function
f : X → P1 with a single zero at p and a single pole at q. In the normalization
of (13.2), such a function must be of the form f(z) = zp. Since xi and yi are
identified, we must have xpi = ypi , as desired.

That CR(P ) lies on an algebraic subgroup follows directly from Theorems 5.2
and 8.5. �

Lemma 13.5. If the ζi are not all cube roots of unity, then S(ζ1,ζ2,ζ3)(3, 1)
is zero-dimensional. Otherwise S(ζ1,ζ2,ζ3)(3, 1) has a single one dimensional
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component, a line in M0,8. Specifically, if ζi = e2πi/3 for all i, this component
is the line L cut out by the equation,

x1 + x2 + x3 = 0,

under the normalization p = 0 and q =∞.

Proof. S(ζ1,ζ2,ζ3)(3, 1) is cut out by the equations yi = ζixi and

Di = ζ3
i

∏
j 6=i

(xi − xj)(xi − ζjxj)−
∏
j 6=i

(ζixi − xj)(ζixi − ζjxj). (13.3)

Suppose that S(ζ1,ζ2,ζ3)(3, 1) has a positive dimensional component, and sup-
pose first that (say) ζ1 is not a cube root of unity. Then there is a homogeneous
polynomial P of some degree d < 4 which divides Dk for all k. Expanding Dk,
we obtain

Dk = x4
k(ζ3

k − ζ4
k) + · · ·+ ζk+1x

2
k+1ζk+2x

2
k+2(ζ3

k − 1),

with indices taken mod 3. Because eachDk contains x4
k with non-zero coefficient,

each monomial xdk appears in P with non-zero coefficient. We have

P (0, x2, x3) = α2x
d
2 + α3x

d
3 + . . . | D1(0, x2, x3) = ζ2x

2
2ζ3x

2
3(ζ3

1 − 1).

This is not possible since the αi are nonzero and ζ3
1 6= 1.

Now suppose that ζi = e2πi/3 for all i. A simple computation shows that
P = x1 + x2 + x3 divides each Dk, so L is a component of S(ζ1,ζ2,ζ3)(3, 1). An
argument as above shows that the quotients Dk/P have no common factor, so
L is the only one-dimensional component.

Finally, suppose the ζi are arbitrary cube roots of unity. Replacing some
of the cube roots of unity e2πi/3 with their complex conjugates amounts to
swapping the corresponding xi and yi. Thus the new S(ζ1,ζ2,ζ3)(3, 1) is simply
a rotation of the old one. �

Lemma 13.6. No one-dimensional component of any S(ζ1,ζ2,ζ3)(3, 1) lies in
CR−1(T ) for T any algebraic subgroup of G3

m.

Proof. By Lemma 13.5, we need only to show that the equation

Ra1
1 Ra2

2 Ra3
3 = ζ (13.4)

is not satisfied identically on the line L cut out by x1 + x2 + x3 = 0. We may
assume without loss of generality that a1 6= 0. Normalizing so that x1 = 1. and
setting x3 = −1 − x2, the left hand side of (13.4) becomes a rational function
R in the single variable x2 which must be identically equal to ζ. The factor
(2x2 + 1) lies in the denominator of R1 and appears nowhere else in R. Since
C[x] is a unique factorization domain, it follows that R is not constant. �
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Proposition 13.7. There is a finite number of projectivized triples of real cubic
numbers (r1 : r2 : r3) such that for any irreducible periodic direction on any
(X,ω) ∈ ΩM3(3, 1) generating an algebraically primitive Teichmüller curve, the
projectivized widths of the horizontal cylinders is one of the triples (r1 : r2 : r3).

In particular, there are only a finite number of trace fields F of algebraically
primitive Teichmüller curves in ΩM3(3, 1).

Proof. By Northcott’s Theorem, we need only to give a uniform bound for
the heights of the triples (r1 : r2 : r3) of widths of cylinders, or equiva-
lently of residues of limiting irreducible stable forms satisfying the conditions of
Lemma 13.4.

Let Ti(ζ1, ζ2, ζ3) ⊂ P5 be the subvariety cut out by the polynomial Di of
(13.3). Since ‖ζ‖v = 1 for any root of unity ζ and place v, it follows directly from
the definition of the Weil height that there is a uniform bound on the heights
of the Ti(ζ1, ζ2, ζ3), independent of the root of unity. Since S(ζ1,ζ2,ζ3)(3, 1) is
the intersection of the Ti(ζ1, ζ2, ζ3) and the hypersurfaces defined by xi − ζiyi
(which have height 0), it follows from the Arithmetic Bézout theorem that the
varieties S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded height. Thus the zero dimen-
sional components of the S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded height as well.
By (13.1), the heights of these points increases by a bounded factor under the
rational map Res. Thus the residue triples arising from the zero dimensional
components of the S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded heights.

By Lemma 13.5, it only remains to bound the heights of the residue triples
arising from the line L ⊂ M0,8 cut out by the equations x1 + x2 + x3 = 0
and xi − θyi for each i, where θ = e2πi/3. Suppose a point P ∈ L is a cusp
of an algebraically primitive Teichmüller curve. By Lemma 13.4, Res(P ) must
be defined over a cubic number field, and CR(P ) must lie in H2. Let L′ ⊂ L
be the set of points satisfying these two conditions. If Res(P ) lies in P2(F ) for
some cubic number field F , then P is defined over F (θ). Thus L′ and CR(L′)
consist of points of degree at most 9. By Lemma 13.6, CR(L) is not contained
in a translate of a subtorus of G3

m. Thus Theorem 13.3 applies, and we conclude
that CR(L)∩H2 is a set of points of bounded height. Therefore CR(L′) is finite
by Northcott’s theorem. The map CR is finite on L by Lemma 13.6, so L′ and
thus Res(L′) are finite as well. Thus there are at most finitely many residue
triples arising from L as desired. �

Remark. All of the estimates in the preceding propositions, in particular The-
orem 13.3 and the height estimates are effective. It is thus possible in principle
to give a complete list of triples (r1, r2, r3) that may appear in Proposition 13.7.
Unfortunately the available bounds are so bad that this is currently not feasible.

Example 13.8. There is one known example of an algebraically primitive Teich-
müller curve in ΩM3(3, 1), discovered in [KS00]. It is the surface (X,ω) ob-
tained by unfolding the (2, 3, 4) triangle, shown in Figure 7 of [KS00]. The
trace field of (X,ω) is the field K = Q[v]/P (v) of discriminant 81, where
P (v) = v3 − 3v + 1 has a solution v = 2 cos(2π/9). The vertical direction
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is of type [5]×3 [3], and the circumferences of the vertical cylinders are

w1 = 2 cos(3π/9) = 1
w2 = −2(cos(3π/9) + cos(8π/9)) = v2 + v − 1
w3 = 2(cos(2π/9) + cos(3π/9) + cos(8π/9) = −v2 − 3
w4 = 2 cos(4π/9) = v2 − 2.

One can check that the wi form an admissible subset of K.
The horizontal direction is irreducible periodic, with cylinder widths,

r1 = −(2w1 + w2 + w3 + w4) = −v2 − v
r2 = w1 + w2 + w3 = v + 1
r3 = −(3w1 + 3w2 + 2w3 + w4) = −2v2 − 3v + 2.

In fact, this is the unique irreducible cusp of the Teichmüller curve spanned by
(X,ω). This cusp lies on the line L of Lemma 13.5, as we will now show. The
irreducible cusp (X0, ω0) is of the form

ω0 = C
z3dz∏

(z − xi)(z − ζixi)
=
∑(

ri
z − xi

− ri
z − ζixi

)
(13.5)

for some constant C and roots of unity ζi = e2πipi/qi . To calculate the ζi, we
consider a relative period. There is a path joining the two zeros of (X,ω) of
period

∑
ri/3, so the integral of ω0 along a path γ joining 0 to ∞ must be∑

(ai + 1/3)ri, for some integers ai. From (13.5), we calculate

1
3

∑
ri =

∫
γ

ω0 =
∑

ri log ζi =
∑

ri
pi
qi
,

so we must have ζi = e2πi/3 for each i by the linear independence of the ri. One
then calculates that up to scale there is a unique triple (x1, x2, x3) so that ω0

has the residues ri,

x1 = 1, x2 = 2− v2, and x3 = v2 − 3.

Since the sum of the xi is 0, this cusp lies on the line L.

Theorem 13.2 now follows directly from Proposition 13.7 and the following
proposition.

Proposition 13.9. Given a basis (r1, r2, r3) over Q of a totally real cubic
number field, there are only finitely cusps of algebraically primitive Teichmüller
curves in ΩM3(3, 1) having residues (r1, r2, r3).

Proof. Consider the variety C = Res−1(r1 : r2 : r3) ⊂ S(3, 1) of forms having
residues ±ri and two zeros of order 3 and 1. A dimension count shows that
C is at least one-dimensional. In fact, C is exactly one-dimensional, as C is
locally parameterized by the single relative period of the forms ωP . Let C0

be a component of C. We suppose that C0 contains infinitely many cusps of
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algebraically primitive Teichmüller curves and derive a contradiction. Consider
the image Q(C0) ⊂ (C∗)3. We claim that Q(C0) is a curve. If not, and Q(C0) =
(ζ1, ζ2, ζ3), then C0 is a component of S(ζ1,ζ2,ζ3). Then C0 must be the line L
of Lemma 13.5. It is easily checked that Res is not constant along L, so this is
impossible. Now since C0 contains infinitely many cusps of Teichmüller curves,
Q(C0) must contain infinitely many torsion points of (C∗)3 by Lemma 13.4.
From this it follows that Q(C0) is a translate of a subtorus of (C∗)3 by a torsion
point. This is a consequence of the main result of [Lau84]. It can also be seen by
first applying Theorem 13.3 to show that Q(C0) lies on a subtorus T ⊂ (C∗)3,
then applying Theorem 13.3 again to T . We now claim that Q(C0) is in fact a
subtorus of (C∗)3, rather than a translate. To see this, it suffices to show that
the identity (1, 1, 1) is contained in the closure of Q(C0). Given a form (X,ω)
representing a point P ∈ C0, we may choose a saddle connection joining the two
zeros p and q. Following [EMZ03], we may collapse this saddle connection (and
possibly simultaneously a homologous saddle connection) to obtain a path in
C0 such that the zeros p and q collide. Under this deformation, each cross-ratio
Qi tends to 1, so (1, 1, 1) is in the closure, as desired. It remains to show that
Q(C) is not a subtorus of (C∗)3. If this were true, we could find roots of unity
ζi and a projective triple (x1(a) : x2(a) : x3(a)) depending on a parameter a,
such that for all a ∈ C the differential

ω∞ =

(
3∑
i=1

ri
z − xi(a)

− ri
z − ζai xi(a)

)
dz =

p(z)dz∏
i(z − xi(a))(z − ζai xi(a))

has a triple zero at z = 0 and a simple zero at z = ∞. The vanishing of the
z4-term of p(z) implies. ∑

rixi(1− ζai ) =, 0

and the linear term (divided by x1x2x3) also yields a linear equation. Using the
normalization x1 = 1 we may solve the two linear equations for x2 and x3. We
then take the limit of x2 and x3 as a→ 0, applying l’Hôpital’s rule twice. If we
let ζi = e2πiqi for some qi ∈ Q, we obtain

x2(0) =
q3r3 − q1r1

q2r2 − q3r3
and x3(0) =

q2r2 − q1r1

q3r3 − q2r2
. (13.6)

Taking the derivative of the z2-term of p(z) with respect to a at a = 0 and
making the substitution (13.6), we obtain

(q3r3 − r1q1)(q2r2 − q1r1)(q1r1 + q2r2 + q3r3) = 0.

The Q-linear independence of the ri yields the desired contradiction. �

Finiteness of Teichmüller curves. Theorem 13.1 follows from Theorem 13.2
and the following proposition.

Proposition 13.10. Suppose that there are at most finitely many irreducible
cusps in PΩMg of algebraically primitive Teichmüller curves in the stratum
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PΩMg(m,n) (resp. in a component of the stratum PΩMg(2g − 2)). Then
there are at most finitely many algebraically primitive Teichmüller curves in
PΩMg(m,n) (resp. in this component of the stratum PΩMg(2g − 2)).

Proof. Suppose (X,ω) ∈ ΩMg(m,n) generates an algebraically primitive Teich-
müller curve. Let θ be an irreducible periodic direction on (X,ω), and let I and
J each be either a saddle connection or periodic direction of slope θ. Since
lengths of saddle connections or circumferences of cylinders of a given slope
are unchanged under passing to the corresponding limiting stable form, from
finiteness of irreducible cusps we obtain a constant C, depending only on the
stratum, so that

1
C
<

length(I)
length(J)

< C (13.7)

for I and J any saddle connections or closed geodesics of the same slope. There
is an irreducible periodic direction on (X,ω) by Lemma 10.2. Choose one, and
apply a rotation of ω so that it is horizontal. Let C1, . . . , Cg be the horizontal
cylinders of (X,ω). There must be some cylinder Ci having one of the two
zeros in its bottom boundary component and the other zero in the top. Take
a saddle connection γ contained in Ci and connecting these zeros. Applying
the action of a matrix ( 1 t

0 1 ) ∈ SL2(R), we may take γ to be vertical, whence
the vertical direction is irreducible periodic with g cylinders Di, . . . , Dg. By
Lemma 10.4, after normalizing by the action of a diagonal element of GL+

2 (R),
we have w(Ci) = ri and h(Ci) = si (where we write w(C) and h(C) for the
height and width of the cylinder C) for some basis (ri) of F (with a chosen real
embedding) and dual basis (si). By finiteness of cusps, there are only finitely
many possibilities for the ri, and thus the si, so we may take them to be fixed.
Since the saddle connection γ crosses only one cylinder, its length is bounded
by a constant depending only on the stratum. This implies that the w(Di) are
bounded as well by (13.7). Therefore the intersection matrix (Bij) = (Ci ·Dj)
has bounded entries, and we may take it to be fixed. The widths and heights
of the Dj are determined by B, as well as the widths and heights of the Ci, so
we may take them to be fixed as well. Now each intersection of Ci and Dj is
isometric to a rectangle Rij of width h(Dj) and height h(Ci). Thus the surface
(X,ω) may be built by gluing the finite collection of rectangles consisting of Bij
copies of Rij for each index (i, j). As there are only finitely many gluing patterns
for a finite collection of rectangles, there are only finitely many possibilities for
(X,ω).

In the case PΩMg(2g − 2) the same argument works. It is even simplified
by the fact that every direction is irreducible. �

14 Finiteness conjecture for ΩM3(4)hyp

In this section, we give numerical and theoretical evidence for the following
conjecture, which together with Proposition 13.10 implies Conjecture 1.4 for
the case of the stratum ΩM3(4)hyp.
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Conjecture 14.1. There are only a finite number of possibilities for the pro-
jectivized triples (r1 : r2 : r3) of widths of cylinders of algebraically primitive
Teichmüller curves in ΩM3(4)hyp.

Everything in this section should hold as well for the other component
ΩM3(4)odd of ΩM3(4), but we stick to the hyperelliptic component for simplic-
ity. The hyperelliptic component contains the other of the two known examples
of algebraically primitive Teichmüller curves in genus three, Veech’s 7-gon. We
describe the stable form which is the limit of the unique cusp of this curve in Ex-
ample 14.4 below. Finally we will give the algorithm for searching any eigenform
locus for Teichmüller curves in ΩM3(4) which is used to prove Theorem 1.6.

Finiteness for fixed admissibility coefficients. Recall from (8.10) that if
S is a weighted admissible boundary stratum of type [6], then the weights ri
satisfy

∑3
i=1 ci/ri = 0 for some ci ∈ Z. We call the triple (c1, c2, c3) of coprime

integers the admissibility coefficients of the ri.

Proposition 14.2. For any fixed triple (c1, c2, c3) there is only a finite num-
ber of algebraically primitive Teichmüller curves in ΩM3(4)hyp that possess a
direction whose cylinders have lengths with admissibility coefficients (c1, c2, c3).

This has as obvious consequence:

Corollary 14.3. In ΩM3(4)hyp there is only a finite number of algebraically
primitive Teichmüller curves meeting the infinite collection of weighted boundary
strata provided by the algorithm in Proposition 9.2.

The limiting differential in the hyperelliptic case. We want to make
the cross-ratio coordinates more explicit and therefore normalize the hyperellip-
tic involution on the stable curve X∞ corresponding to a Teichmüller curve in
ΩM3(4)hyp. Necessarily, X∞ is irreducible, and consequently the desingulariza-
tion of X∞ is a P1 with coordinate z, where we may normalize the hyperelliptic
involution to be z 7→ −z and z = 0 is the 4-fold zero. The preimages of the
nodes are ±xi for i = 1, 2, 3, and we will at some points in the sequel use the full
threefold transitivity of Möbius transformations to normalize moreover x1 = 1.
The differential ω∞ pulls back on the normalization to

ω∞ =
3∑
i=1

(
ri

z − xi
− ri
z + xi

)
dz =

Cz4∏3
i=1(z2 − x2

i )
dz (14.1)

for some constant C that can obviously be expressed in the ri and xi. Coefficient
comparison yields the two equations

3∑
i=1

rixi+1xi+2 = 0 (14.2)

3∑
i=1

rixi(x2
i+1 + x2

i+2) = 0, (14.3)
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where indices are to be read mod 3. The cross-ratio map CR as defined by
Equation 8.1 is given by

CR = (R1, R2, R3), where Ri =
(
xi+1 + xi+2

xi+1 − xi+2

)2

.

It will be convenient to use that CR factors as a composition of the squaring
map and the rational map CR0 : P2 → (C∗)3 defined by CR0 = (R′1, R

′
2, R

′
3),

where
R′i(x1 : x2 : x3) =

xi+1 + xi+2

xi+1 − xi+2
.

Example 14.4. Veech’s 7-gon curve lies in this stratum, and we conjecture it
is the only one. Let F = Q[v]/〈v3 + v2 − 2v − 1〉 be the cubic field of discrim-
inant D = 49. There is a unique cusp whose cylinder widths are projectively
equivalent to

r1 = 1, r2 = v2 + v − 2, r3 = v2 − 2,

with v = 2 cos(2π/7). Since∑
i

1
ri

= 0 and NF
Q (ri) = 1

for all i, the cross-ratio exponents are all 1. Only one of the three solutions to
equations (14.2) and (14.3) satisfies the cross-ratio equation

∏
Ri = 1, namely

x1 = 1, x2 = −v2 − v + 1, x3 = v2 + v − 2.

Note in comparison with Proposition 14.7 below that here the ci, the NF
Q (ri)

and also the moduli of the cylinders are all one. That is, all the auxiliary
parameters are arithmetically as simple as possible.

Inside the domain of CR0 the rationality condition
∑3
i=1 ci/ri = 0 together

with the opposite-residue condition defines a curve Y = Y(c1,c2,c3). We want to
apply Theorem 13.3 to this curve and now check the necessary hypothesis.

Lemma 14.5. Let X ⊂ (C∗)n be an irreducible curve whose closure in Cn
contains points P1, . . . , Pn where Pi = (pi1, . . . , pin) and where for all i we have
pii = 0 while pij 6= 0 for i 6= j. Then X is not contained in the translate of an
n− 1-dimensional algebraic subtorus in C∗.

Proof. Let zi be coordinates of Cn and suppose on the contrary that X is
contained in such a torus given by the equation

∏
zbii = t for some bi ∈ Z not

all zero and t ∈ C∗. This equation holds on X, thus on its closure. Plugging in
Pi implies bi = 0. Using all the Pi we obtain the contradiction that all of the bi
are zero. �

Corollary 14.6. The curve CR0(Y ) does not lie in a translate of an algebraic
subtorus in (C∗)3.
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Proof. Normalizing x1 = 1 and applying the degeneration x2 → 0 to CR0(Y )
we obtain the limit point (1, 0, 1) ∈ C3. Permuting coordinates, we obtain a
limit point where any single coordinate vanishes, so we may apply Lemma 14.5
after verifying irreducibility.

A computer algebra system with an algorithm for computing Weierstrass
normal form (e.g. MAPLE) exhibits a birational map from Y(c1,c2,c3) to the
curve

Ỹ : y2 = c21x
6 − 3c21x

5 + 3c21x
4 + (c22 − c23 − c21)x3 + 3c23x

2 − 3c23x+ c23.

A straightforward calculation shows that the right hand side is not a perfect
square for any (c1, c2, c3). Consequently, Ỹ is irreducible and thus also Y(c1,c2,c3).

�

Proof of Proposition 14.2. The preceding lemma allows us to apply The-
orem 13.3. As a consequence, the height of any point (R1, R2, R3) ∈ CR0(Y )
that lies on an algebraic subtorus is bounded. This applies in particular to the
torus given by the cross-ratio equation. More precisely, since the degree of Y
is independent of the ci we deduce from [Hab08, Theorem 1] that there is a
constant C1 such that

h((R1, R2, R3)) ≤ C1(1 + h(c1 : c2 : c3)). (14.4)

Moreover, the Ri lie in a field of degree at most three over F as can be checked
solving (14.2) and (14.3). Consequently, by Northcott’s theorem, there is only
a finite number of possible Ri lying on CR(Y ) and satisfying the cross-ratio
equation. �

Unlikely cancellations. We now show that if the finiteness conjecture fails,
then there has to be a sequence of Teichmüller curves with the admissibility
coefficients ci becoming more and more complicated simultaneously for all the
directions on the generating flat surface, but meanwhile there are miraculously
enormous cancellations making the cross-ratio exponents much smaller that the
ci.

Proposition 14.7. Suppose Conjecture 14.1 fails for ΩM3(4)hyp. Then there
exists a sequence of Teichmüller curves {Cn}n∈N generated by flat surfaces
(Xn, ωn) such that for every periodic direction θ on the Xn

i) the residues ri,n,θ have admissibility coefficients (c1,n,θ, c2,n,θ, c3,n,θ) with
the height lower bound

h(c1,n,θ, c2,n,θ, c3,n,θ) ≥ n,

ii) and on the other hand the cross-ratio exponents have upper bound

|ai| ≤ C2(1 + h(c1,n,θ, c2,n,θ, c3,n,θ))2

68



for some constant C2 independent of n and θ.

Note that in ii) the height on the right is logarithmic in the the ci, whereas
on the left of the inequality we have the usual absolute value.

As preparation we examine the image Z ⊂ (C∗)3 of ΩM3(4)hyp under CR.

Lemma 14.8. There is no translate of an algebraic subtorus of (C∗)3 contained
in Z.

Proof. It suffices to prove the claim for the image Z0 of Z under CR0. The
variety Z0 is cut out by the equation

R′1R
′
2 +R′1R

′
3 +R′2R

′
3 + 1 = 0. (14.5)

This variety does not contain the image of y 7→ (α1y
n1 , α2y

n2 , α3y
n3) for any

nonzero αi and integers ni, as substituting the αiyni into the left hand side of
(14.5) always yields a nonzero Laurent series in y. �

Proof of Proposition 14.7. The existence of a sequence satisfying i) follows
from Proposition 14.2. That this sequence moreover satisfies ii) follows from a
close examination of the proof of [Hab08, Theorem 1]. We fix θ and n and drop
these indices. We write c = (c1 : c2 : c3). We follow the notation in loc. cit.
The idea of Habegger is to use the geometry of numbers to construct a subtorus
Hu of (C∗)3 determined by a triple u = (u1, u2, u3) of integers depending on
a parameter T such that for a point p = (R1, R2, R3) in the intersection of
W = CR0(Yc) and a torus of codimension, one the following holds:

h(pHu) ≤ C3(T−1/2(h(p) + 1) + T ) and deg(pHu) ≤ C4T

for some constants Ci (Lemma 5 of loc. cit.). An application of the arithmetic
Bézout theorem yields

h(p) ≤ C5h(pHu) + C6 deg(Hu)h(W ) + C7 deg(Hu)

where moreover we have a bound deg(Hu) ≤ C8T . Choosing T large enough,
controlled by deg(W ) and the constants Ci (i.e. independently of h(W )) makes
the contribution of T−1/2h(p) to the right hand side become inessential and
proves the height bound

h(p) ≤ C9(1 + h(w) ≤ C10(1 + h(c))

We need more precisely Lemma 1 and Lemma 3 of loc. cit. which construct
the u. Together they show that there exists u with |u| ≤ T and h(pu) ≤
C11T

−1/2h(p). Together with the previous estimate this yields

h(pu) ≤ C12T
−1/2(1 + h(c)),

where C11 and C12 depend only on the dimensions of the varieties in question,
not on h(c). Since p lies in a field of bounded degree over F , choosing T >
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C13(1 + h(c)))2, with C13 independent of h(c), suffices by Northcott’s theorem
to conclude that h(pu) = 0.

We now have two cases. Either u and the cross-ratio exponents (a1, a2, a3)
are proportional. In this case, ii) holds by |u| ≤ T and the primitivity of the
triple (a1, a2, a3). Or they are not proportional, i.e. p lies on a torus of codimen-
sion two. Then we can apply [Hab08, Theorem 1] to Z since the hypotheses are
met by Lemma 14.8. The conclusion of this theorem together with Northcott’s
Theorem is that the second case can happen only a finite number of times. �

A computer search for Teichmüller curves. We now describe the algo-
rithm underlying Theorem 1.6 given in the introduction.

We first claim that for given discriminant D it is possible to list all the
admissible triples (r1, r2, r3) for all lattices I with coefficient ring OI of dis-
criminant D. To do so, one has to first list all orders of discriminant D. Cubic
number fields of discriminant up to D have been tabulated by Belabas [Bel97].
Given a number field F of discriminant at most D, enumerating all orders in F
of discriminant D is a finite search through all sub-Z-modules O of the maximal
order OF of bounded index. To list all O-ideals is a finite search through all
Z-modules containing O up to an index bound depending on D. Such a bound
appears in the usual proofs of the finiteness of class numbers, e.g. [BS66, Theo-
rem 2.6.3]. (We do not claim that this is an efficient algorithm). Given a lattice
I in a cubic field, an algorithm to find all admissible bases of I is described in
Appendix A. In practice we have restricted the search to maximal orders, since
maximal orders have been tabulated and representative elements of the ideal
classes are easily computed by Pari.

Fixing a cubic order O, if there is a Teichmüller curve in EO ∩PΩM3(4)hyp,
then it has a cusp whose limiting stable form ω∞ is of the form (14.1), with the
triple (ri) in the finite list constructed above. Normalizing x1 = 1, equations
(14.2) and (14.3) reduce to a single cubic polynomial in x2. Solving this cubic
polynomial for x2 (for each triple of ri) and verifying that none of the solutions
satisfies the cross-ratio equation allows us to verify that there are no Teich-
müller curves in EO ∩ PΩM3(4)hyp. Applying this algorithm to the 1778 fields
of discriminant less than 40000 yields Theorem 1.6.

A Boundary strata in genus three: Algorithms,
examples, counting

In this appendix, we describe an algorithm for enumerating all boundary strata
of a given eigenform locus E ιO, and we some examples and counts of admissible
boundary strata obtained from this algorithm.

Enumerating admissible I-weighted strata from one example. Given a
lattice I in a totally real cubic field, define a graph G(I) as follows. The vertices
of G(I) are the two-dimensional admissible I-weighted boundary strata, up to
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similarity. Two vertices are connected by an edge if the corresponding strata
have a common one-dimensional degeneration.

Proposition A.1. G(I) is connected.

Proof. By Theorem 8.1, the vertices of G(I) correspond to the two-dimensional
boundary components of some cusp of some eigenform locus E ιO. Thus it suffices
to show that the boundary in PΩM3 of each cusp of E ιO is connected.

Consider the normalization Y ιO of E ιO. By normality, the canonical morphism
E ιO → XO extends to a morphism p : Y ιO → X̂O (see [Bai07, Theorem 8.10]).
Since X̂O is normal, p−1(c) is connected by Zariski’s Main Theorem. The image
of p−1(c) in E ιO is then connected, as desired. �

It is a simple matter to enumerate all admissible I-weighted boundary strata
adjacent to a given one: It suffices to perform all the (finitely many) possible
degenerations (as defined in Section 8) of the presently found boundary strata
and check which of them are admissible I-weighted. Then one tries all the
possible undegenerations and so on, until this process adds no more admissible
I-weighted boundary strata to the known list. So Proposition A.1 allows us
to enumerate all two dimensional I-weighted boundary strata starting from a
single one. Lower dimensional boundary strata can be easily enumerated from
the two-dimensional ones.

Producing one admissible I-weighted boundary stratum. We now
describe an algorithm which locates a single admissible I-weighted boundary
stratum. In practice this algorithm is fast and always succeeds, though we do
not prove this. The algorithm of Proposition 9.2 also works for lattices of the
form 〈1, x, x2〉, but not every lattice is similar to one of this form.

For an I-weighted boundary stratum S let Cone(S) ⊂ R3 be the R+-cone
spanned by {Q(w) : w ∈Weight(S)}, considered as a subset of R3 via the three
field embeddings of F . There are various possible shapes of this cone, which we
call its type. It could be all of R3, for short type (A), it could be a half-space
(H), a proper cone of dimension three strictly contained in a half-space (C),
a two-dimensional subspace (S), or a 2-dimensional cone (“fan”) in a subspace
(F ).

The idea of the algorithm is to simply start with any irreducible stratum S
and then to apply a sequence of degenerations and undegeneration to S, at each
stage trying to increase, or at least not decrease, the size of Cone(S).

Algorithm A.2. Given a lattice I, compute an admissible I-weighted boundary
stratum S.
(i) Initialize S to be the irreducible boundary stratum with weights given by any

Z-basis of I.
(ii) While Cone(S) is neither of type (A), (H), nor (S):
• (Superfluous curves) If S has a node n which lies on the boundary of two

distinct irreducible components with Q(wt(n)) in the interior of Cone(S),
then let S1 be obtained from S by undegenerating n.
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• (Try to degenerate) Else
•• Loop through all degenerations S1 of S and check if S1 contains a node

n with Q(wt(n)) 6∈ Cone(S).
•• (Got stuck) If no such degeneration was found, the algorithm is stuck.

Start again at (i) with a random new choice of initial basis.
• Let S = S1.

(iii) If the type of Cone(S) is (H), first undegenerate S until S contains only
4 elements still spanning a half-space and then undegenerate the new S by
removing the node n with the property that Q(wt(n)) does not lie in the
bounding hyperplane of C. (The new S thus obtained is of type (S)).

iv) Return S.

As far as we know, it is possible for the algorithm to either get stuck with
every choice of initial basis, or to loop infinitely, producing larger and larger
cones without ever giving a half-space or the full space. We have never seen
this happen, though very rarely it gets stuck and must be restarted with a new
initial basis.

Some counts of boundary strata obtained from this algorithm are shown in
Figure 4.

It would be interesting to give an algorithm in the spirit of Algorithm A.2
which is guaranteed to always find an admissible boundary stratum.

Example 1: Discriminant 49. Figure 3 presents the outcome of the pre-
ceding algorithm for the unique ideal class of the maximal order in the field
F = Q[x]/〈x3 +x2− 2x− 1〉 of discriminant 49. There are two two-dimensional
boundary strata. Dotted lines join each two-dimensional stratum to its one-
dimensional degenerations.

Example 2: All possible types of admissible strata do occur. We give
a list of examples showing that all possible types of boundary strata without
separating nodes do occur.
• If the stratum is of type [6], then dim(Span) = 2 and D = 49 contains an

example.
• If the stratum is of type [5] ×3 [3] then dim(Span) = 3. Most cusps

contain such an example, for example the unique cusp of the cubic field
of discriminant 81.

• If the stratum is of type [4]×4 [4] then dim(Span) = 2 or dim(Span) = 3.
The second case frequently appears, e.g. for D = 49. The first case rarely
occurs, here is an example: For the field F = Q[x]/〈x3 − x2 − 10x + 8〉
with discriminant 961, take the ideal I = OF and the weights r1 = 4 −
x/2− x2/2, r2 = 5 + x/2− x2/2, r3 = 1 and r4 = −(r1 + r2 + r3).

• If the stratum is of type [4] ×2 [4] then dim(Span) = 2. These lie in the
boundary of every irreducible stratum, for example in discriminant 49.

• All the remaining possible types of boundary strata without separating
nodes have necessarily dim(Span) = 3 and examples are easily obtained
as degenerations of the preceding examples.

72



1

2−x2 2−x−x2

−x

2−x2

−1+x+x2

−1

2−x2

−x

−1

−1+x+x2
−2+x+x2

−3+x2

1

−2+x+x2

4−x−2x2

2−x2

3−x−x2

−2+x+x2

−2+x2

1−x2

−1

−3+x2

2−x2

−1+x+x2

2−x−x2

1

2−x2 2−x−x2

2−x−x2

1

2−x2 1 2−x−x2

1 2−x−x2

−x

−2+x+x2

1

1−x2

2−x2

−1

2−x−x2

1+x

−2+x2

−1+x+x2

Figure 3: The boundary of the Hilbert modular threefold of discriminant 49.

Example 3: Ideal classes with no admissible bases. Consider one of the
two fields of discriminant 3969, namely Q[x]/〈x3 − 21x − 35〉. Its ideal class
group is of order three. According to a computer search, both of the ideal
classes I1 = 〈7, 7x, x2 − 14〉 and I2 = I2

1 = 〈7, x, x2 − 3x − 14〉 do not admit
any irreducible boundary strata. But I3 = OF = 〈1, x, x2 − 3x − 14〉 has a
single irreducible boundary stratum given by the weights r1 = 1, r2 = x + 3,
r3 = x2 − 2x− 16.

B Components of the eigenform locus

In this section we show that, in contrast to the quadratic case, that the E ιO ∼= XO
is not necessarily connected for cubic orders O.

Recall from §2 that the irreducible components of XO correspond bijectively
to isomorphism classes of proper, rank-two, symplectic O-modules. One exam-
ple of such a module is O ⊕O∨. We will show that there is such a module M
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D h(D) regulator [6]-components total 2-dim components
49 1 0.525454 1 2
81 1 0.849287 1 6
148 1 1.662336 3 10
169 1 1.365049 1 14
229 1 2.355454 4 16
257 1 1.974593 2 19
316 1 3.913458 7 26
321 1 2.569259 3 24
......
961 1 12.195781 19 104
993 1 5.554643 5 69
......
2597 3 4.795990 5+5+6 51+47+85
......
3969 3 4.201690 0+0+1 53+57+114
3969 3 12.594188 18+13+18 132 + 144+152
8281 3 15.622299 12 +7+ 12 259 + 224+ 266
8281 3 7.949577 6+6+1 148 + 92+ 179
......

11884 1 72.746005 79 1008
.....

20733 5 12.114993 12+21+8+8+12 250+222+138+143+281
.....

22356 1 49.555997 31 967
22356 1 32.935933 16 751
22356 1 37.348523 23 787
.....

28165 5 7.935079 4+2+2+4+6 174+125+121+152+337
46548 3 17.990764 6+6+10 289 + 306 + 719
46548 3 21.437334 9+9+16 324 + 337 + 741
.....

84837 1 129.205864 73 2795
84872 3 60.681694 42+42+54 1121+1064+1373
84889 1 77.482276 32 1913
84893 1 124.912555 85 2610
84905 1 73.229843 27 1723
84925 1 90.776953 37 2112
84945 1 82.760047 50 1879
......

161249 1 65.942246 16 1882
161753 2 26.530548 10+10 641+ 1084

......
438492 1 504.944683 228 12265

Figure 4: The number of boundary components for given discriminant D
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such that for no submodule I of M the sequence

0→ I →M → I∨ → 0,

is split, thus M is not isomorphic to O ⊕O∨.
We remark that such examples cannot exist for the ring of integer OF since

Dedekind domains are projective and that they can neither exist for [F : Q] =
2 e.g. by structure theorems for rings all whose ideals are generated by two
elements [Bas62].

The calculations will be easier to do in the local situation, and if the above
sequence was split, it would be also split locally. Choose a totally real cubic
number field F and a prime p different from 2 and from 3 such that the residue
field k is isomorphic to Fp3 . Let K be the completion of F at the prime p.
Let RK be the ring of integers in K and let R be the preimage of the prime
field under the surjection RK → k. We will exhibit an R-module M with the
claimed properties. From there it is obvious how to construct a module over
O, the preimage of the prime field under OF → k, that also has the claimed
properties.

For simplicity we suppose moreover that RK is monogenetic, i.e. that RK =
Zp[θ]/f for some cubic polynomial f .

Lemma B.1. We have

RK = R∨K ⊂p2 R∨ ⊂p p−1RK ,

where the subscripts denote the index. In fact,

R∨ = {r ∈ p−1RK |Tr(pr) ≡ 0 mod (p)}.

More precisely, there exists a Zp-basis {1, x, y} of RK which is orthogonal with
respect to the trace pairing. Then

R = 〈1, px, py〉Z , R∨K =
〈

1,
x

p
,
y

p

〉
Z
.

Proof. The ring R∨K is generated by θi/f ′(θ) for i = 0, 1, 2. Since f ′(θ) is a unit
in RK be the hypothesis on the residue field, we obtain RK = R∨K .

Suppose s ∈ p−1RK . We use that by definition any y ∈ R is congruent mod
(p) to z ∈ Z. Thus since

Tr(rs) ≡ zTr(r) mod (p)

we conclude that r ∈ R∨ if and only if Tr(pr) = 0 (using p 6= 3). �

Lemma B.2. All of the quotients RK/pRK , R∨/pR∨ and R/pR are three-
dimensional as Fp vector spaces but different as R-modules:

• RK/pRK splits into a direct sum of 〈1〉 and 〈x, y〉, orthogonal with respect
to the trace pairing.
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• R/pR has the irreducible R-submodule 〈px, py〉 and the corresponding se-
quence is not split.

• R∨/pR∨, as the dual of the preceding module, has the quotient R-module
〈x/p, y/p〉, and the corresponding sequence is not split.

Proof. The structure of RK/pRK is obvious. Suppose 1 + p(ax+ by) generates
an R-submodule of R/pR of dimension one over Fp. Multiplying by px we see
that this submodule contains also px, We thus obtain a contradiction. �

Lemma B.3. We can calculate Ext-groups as follows:

Ext1
R(R∨, R) = HomR(R∨, R/pR)/HomR(R∨, R) ∼= Fp

Ext1
R(R∨, RK) = HomR(R∨, RK/pRK)/HomR(R∨, RK) ∼= Fp

Ext1
R(R∨, R∨) = 0

(B.1)

Proof. The short exact sequence of multiplication by p gives a long exact se-
quence

HomR(R∨,M)→ HomR(R∨,M/pM)→ Ext1(R∨,M)→ Ext1(R∨,M),

where the last map is induced by multiplication by p. Under the second map
the image of HomR(R∨,M/pM) is p-torsion and thus Ext1(R∨,M) is p-torsion
as well.

We first deal with the case M = R. Obviously p2RK is contained in
Hom(R∨, R) and we claim they are equal. If such a homomorphism was given
by multiplication with an element s 6∈ p2RK , take t = x/p ∈ R where x is as
above. Then ts 6∈ pRK and its reduction is not in the prime field, since the re-
ductions of {1, x, y} are linearly independent over Fp. This contradiction proves
the claim.

First we claim that

HomR(R∨, R/pR) ∼= HomFp(k/Fp,Ker(Tr)),

where we consider Ker(Tr) ⊂ k. A homomorphism from R∨ to R/pR fac-
tors through R∨/pR∨. By Lemma B.2 there are no isomorphisms between
them, in fact the classification of quotient resp. submodules in this lemma
shows more precisely that such a homomorphism factors through an element
in HomFp(k/Fp,Ker(Tr)). Both on the quotient module 〈x/p, y/p〉 ∼= k/Fp and
on the submodule 〈px, py〉 ∼= Ker(Tr), the ring R acts through its quotient Fp so
that indeed every Fp-homomorphism is and R-homomorphism. Multiplication
by p2R defines a subspace isomorphic to k inside HomFp(k/Fp,Ker(Tr)). This
concludes the second isomorphism of the second claim.

Second we look at the case M = RK . Now Hom(R∨, RK)() ∼= pR and
elements in HomR(R∨, RK/pRK) factor through HomFp(k/Fp,Ker(Tr)) using
the submodule structure of the finite R-modules determined in Lemma B.2.

The last statement follows by the same reasoning. �
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Proposition B.4. Let 0 → R → M → R∨ → 0 be a symplectic extension
corresponding to a non-trivial element in Ext1

R(R∨, R). Then M is a proper R-
module. Moreover, M has a unimodular symplectic structure and the R-action
is by self-adjoint endomorphisms. M is not a direct sum of two R-modules of
rank one.

Proof. The trace pairing R and R∨ induces a symplectic and unimodular pairing
on M . The R-submodule R of M is isotropic for this alternating pairing. Thus
if M is an R̃-module for some ring R̃ containing M and acting by self-adjoint
endomorphisms, then R is also an R̃-module. This implies R̃ = R, i.e. that M
is a proper R-module.

It remains to show that M is not a direct sum. If it is, then M ∼= a⊕ a∨. If
we apply Hom(R∨, ·) to the extension defining M , we obtain an exact sequence

HomR(R∨, R∨)→ Ext1
R(R∨, R)→ Ext1

R(R∨,M)→ Ext1
R(R∨, R∨).

The first map is a non-zero map R → Fp by the fact that M was constructed
as a non-trivial extension. The hypothesis on M implies that

Ext1
R(R∨,M) = Ext1

R(R∨, a)⊕ Ext1
R(R∨, a∨) ∼= Fp.

Since Ext1
R(R∨, R∨) = 0 it remains to show that at least one of the two groups

Ext1
R(R∨, a) and Ext1

R(R∨, a∨) is non-zero. The Ext-groups don’t change if
we replace a by pa. Under this equivalence the pair (a, a∨) is either (R,R∨),
(R∨, R) or (RK , RK). Thus the claim follows from Lemma B.3. �
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[Möl06b] M. Möller. Variations of Hodge structures of a Teichmüller curve.
J. Amer. Math. Soc., 19(2):327–344 (electronic), 2006.
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