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Abstract
Let D be a manHold with conical singularities, and denote by JI) the smooth bounded manifold
with cylindrical ends obtained by blowing up near the singularities.

B.-W. Schulze has developed a framework for a pseudodifferential calculus on D by defining
various classes of distribution spaces and operator algebras, working in fixed coordinates on
the manifold JI). I am showing here that the Mellin Sobolev spaces without asymptotics, the
cone algebra without asymptotics, and its ideal of smoothing operators are independent of the
choice of coordinates and therefore may be considered intrinsic objects for manifolds with conical
singularities.
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Introduction

The Mellin calculus in the form developed by B.-W. Schulze [11], [9] provides a general
framework for the analysis on manifolds with conical singularities.

A manifold with conical singularities is a topological space D with a finite set of
exceptional points, VI, .. . ,Vr such that D \ {VI, ..• , V r } is smooth manifold, while, in a
neighborhood of each Vj, the manifold is homeomorphic to a cone X j x R+/X j x {O},
where each Xj is a compact manifold without boundary.

The basic idea now is the following: Outside the singular set, one uses the standard
pseudodifferential calculus and the standard Sobolev spaces. Near a singularity Vj, how­
ever, one identifies the manifold with the cylinder X j x R+. For simplicity let us assume
we are dealing with a single singularity v with associated cross-section X of dimension
n. The analysis then relies on Mellin type operators and Mellin Sobolev spaces. More
precisely, one considers Mellin operators on R+ taking values in the algebra of all pseu­
dodifferential operators on X; the Mellin Sobolev spaces without asymptotics, 1f""'!(X"),
are easiest to describe for sEN when they consist of all functions u on X x R+ such
that tn/2-~(tat)kD~u(x, t) E L2(X X R+) whenever k + 101 ::; s.

Basic contributions to the theory of differential problems on spaces with singularities
have been made by Kondrat'ev [3], Melrose [5], Plamenevskij [6], Schulze, and others. The
novelty of Schulze's approach is that he introduces a complete pseudodifferential calculus
with a very small ideal of residual elements, the so-called Green operators, leading to
a Fredholm theory and results on the regularity and asymptotics of solutions to elliptic
equations.

The Mellin calculus without asymptotics provides the analytic frame within which the
main operations can be performed. Its components are (i) the Mellin Sobolev spaces,
(ii) the cone algebra without asymptotics, and (iii) the corresponding space of residual
operators, the smoothing Mellin operators.

In addition, the Mellin calculus on manifolds with conical singularities lays the ana­
lytical foundations for a variety of more elaborate constructions such as pseudodifferential
calculi for manifolds with edges and and corners, boundary value problems [11], [7], [8],
lnanifolds with components of different dimensions [12], etc.

One of the drawbacks of the theory so far has been that all constructions are performed
in a fixed set of coordinates. While it could, of course, be conjectured that the actual
choice of coordinates was irrelevant, this has never been shown. The present paper finally
settles this question.

The paper starts with a short review of all important objects involved. Next, I derive
some general properties of the coordinate transforms and analyze the expressions that
naturally come up in connection with the invariance proof. Then I show that, under
a change of coordinates, the ~1ellin Sobolev spaces are preserved, cf. Theorem 2.10.
This immediately implies the invariance of the classes of residual elements, see Corollary
2.11. The final part studies the pullbacks of Mellin operators of arbitrary order under
diffeomorphisms.

The point of main interest is the analysis on X x R+. In this text, the diffeomorphisms
will depend on both the variables x E X and t E R+. Of course, one might argue that
the manifold ß) cau be endowed with a system of normal coordinates in a neighborhood
of the boundary X x {O} of the cylinder X x R+. The variable t would then be given
invariantlyas the geodesic distance to the boundary with respect to an arbitrarily chosen
Riemannian metric, and all changes of coordinates were of the form (x, t) Ho (X (x), t), X
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heing some change of coordinates on X. An important special case, however, is the case
where X is a single point only. Within this framework there would be only one possible
choice of coordinates on R+ = X X R+, yet it is one of the points here to show that also
in this case the calculus is invariant under diffeomorphisms.

A topic of equal if not higher interest is the coordinate invariance of the Mellin calculus
with asymptotics. This will be the subject of a forthcoming publication.

Acknowledgment. I am grateful to B.-W. Schulze for many valuable discussions,
and I would like to thank the RIMS in Kyoto and Kyoto University for their hospitality.

1 A Short Review of the Mellin Calculus

1.1 Manifolds with Conical Singularities and Mellin Sobolev
Spaces

1.1 Definition. A manifold with conicaI singularities D 0/ dimension n + 1 is a topo­
logical (second countable) Hausdorff space with a finite subset E C D ('singularities')
such that D\E is an n + I-dimensional manifold, and for every v E E there is an open
neighborhood Uv of v, a compact manifold without boundary Xv of dimension n, and a
system :Fv f. 0 of mappings with the following properties

(1) For all 4> E :Fv, 4> : Uv ~ Xv x [O,I)/Xv x {O} is a homeomorphism with 4>(v) =
Xv x {O}/xv x {O}.

(2) Given fjJl, <1>2 E :Fv , the restrietion fjJl4>'21 : Xv x (0,1) -+ Xv x (0,1) extends to a
diffeomorphism Xv x (-1,1) -+ Xv x (-1,1).

(3) The charts 4> E :Fv are compatible with the charts for the manifold for D\E : The
restriction fjJ : Vv\ {v} -+ Xv x (0, 1) is a diffeomorphism.

The system :Fv is assumed to be maximal with respect to these properties. In this article,
I sha11 also assume that D is compact. DJ, the stretched object associated with D is the
topological space constructed by replacing, for every singularity v, the neighborhood Uv

by Xv x [0,1) via glueing with any one of the diffeomorphisms 4>. DJ is a compact manifold
with boundarYj intDJ is its interior.

Throughout this article the notation D and DJ will be kept fixed. For simplicity we
assurne that there is only one singulari,ty with cross-section X. Write X" = X X R+. Let
X be endowed with a Riemannian metric and let X" carry the canonical (cylindrical)
metric.

We shall say that a function or distribution is supported dose to the boundary 0/ DJ
if it vanishes outside the part of DJ that is identified with X x [0,1).

1.2 Definition. Let V = VI X U2 ~ Rn X Rn be open. We say that p E S,IJ(U, Rn)
provided that, for all multi-indices 0:, ß", the estimate

ID~D~D;! p(y, y', 7]) I ::; Ca.ß.~ (7]) ,IJ-lal

holds. Writing a7] = (27r )-nd7], the pseudodifferential operator op p is defined by

[ap pU)] (y) = JL, ei(Y-Y'l.p(y, y', r,)/(y')dy'a7j
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for f E Cg:>(U2 ), y E VI. This reduces to

for 'simple' symbols, Le. those that are independent of y'. Here, ](7]) = Je- i
Y'1 f(y)dy is

the Fourier transform of f.
We mayaiso consider the case where apart of the covariables serves as parameters:

For V 5; Rn open, p E SJ.J (UlI , R~ x R~) then defines a parameterwdependent operator
op p(A) by

[opp(,\)f](y) = Je;"~p(Y,'1,>.)j('1)a'1,

f E Cgo(U), similarly for 'double' symbols p(y, y', 'Tl, A). Gf course, all symbols cau take
values in vector bundles, and all results carry aver to this case. Far the sake of simplicity,
however, I shall consider scalar symbols only.

1.3 The Manifold Case. Let 0 be a smooth manifold and P : Cg:>(f!) -+ Coo(O) a
continuous operator. We say that P E LJ.J(n) if the following holds:

(i) For all Cff functions </>,1/;, supported in the same coordinate neighborhood, the
operator (4JP1/;). : Cg:>( U) -+ Coo (V) ioduced on V ~ Rn by </>P1/; and the coordinate
maps has the form (</JP1/;). = op p for some pE SJ.J(U, Rn).

(ii) For all Co functions </>, 1/;, with disjoint supports, the operator <pP1/; is given as an
integral operator with a kernel in Coo(O x 0) (more precisely a kernel section, see
[2, Section 23.4]).

The fact that the pseudodifferential symbol classes on Rn are invariant under diffeomor­
phisms implies that property (i) is independent of the particular choice of the chart.

If P depends on a parameter ,\ E R
'
, then (i) carries over, while in (ii) we ask that

the integral kernel belongs to S(R1, Coo(!l x fl)). I shall then write P E LJ.J(!lj R
'
}.

Suppose we are given a locally finite covering of the manifold by relatively compact
coordinate neighborhoods {!lj} with associated coordinate maps Xj : !lj -+ Uj • Then
we cau find Pj E SJ.J(Vj , Rn) and an integral operator with Coo-kernel, !(j, such that
P(/ 0 Xj )(X-1(x)) = op Pj (/)(x) +J(j f( x) for all f E Co(Vj). We shall call the tuple {Pj}
the symbol of P.

1.4 The Mellin Transforrn. For ß E R, rß denotes the verticalline {z E C : Re z = ß}.
The Mellin transform Mu of a complex-valued Cg:>(R+)-function 'U is given by

(Mu)(z) =[0 tZ-1u(t) dt. (1)

M is closely related to the Fourier transform and extends to an isomorphism M : L 2(R+) -+

L2(rt }. (1) also makes sense for functions with values in a Frechet space E. The fact

that M uIr ~ _.., (z) = Mt _ z (t -"f 'U ) (z + I) motivates the followi ng defini tion of the weighted

Mellin trans/arm M"f: .

4



The inverse of M'"f is given by

1.5 Sobolev Spaces and Weighted Mellin Sobolev Spaces. (a) H6(O), s E R, is
the usual Sobolev space over a smooth compact manifold n with or without boundary.
For non-compact n we will have to specify additionally a density on n.

(b) For sEN and , E R, the space 1-{6,'"f(XJ\) is the set of all u E V'(XJ\) such
that t~-'"f(tßt)k Du(x, t) E L 2(XJ\) for all k :s; sand all differential operators D of order
:s; s - k on X. Here we use the canonical cylindrical metric on XJ\ for the definition of
L 2 (XJ\). Next we define 1t$·'"f(XJ\) for s ~ 0 by interpolation, then for s :s; 0 by duality:
1-{$,'"f (XJ\) = ['H-$.-'"f (XJ\)]' wi th respect to the pairing

(u, v) = 2
1

, ( (Mu(z), MV(Z))D:I(X) dz.
7rZ Jr~

Finally, 'Hoo·'"f(XJ\) = n6>O 'HtI,'"f(XJ\). This is not quite the standard definition, which
reHes on parameter-elliptic pseudodifferential operators, but it is equivalent to it, cf. [9,
Section 2.1.1, Proposition 2], and better adapted to our purposes.

(c) We can apply the same definition for X = Rn. It is then easily seen that

IluIIH""f(RnxRt ) = II<I>n,'"fU lIH'(RnxR)

with <I>n.'"fv(r) = exp(r(n!l -J))v(e r
) = (t~-'"fv(t)) It=c

r
' cf. [9,2.1.6(4)]. Via a parti­

tion of unity on X we obtain a relation between the standard Sobolev spaces on XJ\ and
the i\1ellin Sobolev spaces on X/\.

(cl) The following relations hold: 1-{6,'"f(X/\) ~ Hioc(XJ\); 1-{$,'"f(XJ\) = t'"f1f.6,O(XJ\);
1-(Ü,O(XJ\) = t-n/2L'l(XJ\).

(e) Fix a smooth function w on ID, equal to 1 elose to the boundary ancl supported
elose to the boundary, cf. Definition 1.1. Given a distribution u E V '(intID) we can write
U = Ul + U2 with Ul = w u supported elose to the boundary and U2 = (1 - w) U supported
away from the boundary. We shall say that u E 1-{$''"f(DJ), provided that Ul E 1-{6,'"f(XJ\)
and U2 E H$(BJ). According to (d), the definition i8 independent of the choice of w. We
can topologize 1-{6·'"f(DJ) as a Hilbert space, using the Hilbert space structures on f{,6''"f(XJ\)
and H${DJ). We then have interpolation and duality as above.

1.6 Remark. An easy fact which is useful to recall: For every 0 < k E N there are
universal constants Ckj and dkj such that

k k

(tßd k =L Ckjt j&t and t kß; = L dkj (tßt)j.
j=l j=l

5



1.2 The Cone Algebra without Asymptotics

1.7 Notation. In the following let J.l,I ERbe fixed. Given f E COO(R+ xR+, LJl(Xj r !_..,))
we shall write f = f(t, t', z), where z indicates the variable in r~_..,. For t, t', z fixed,

f(t, t', z) is a pseudodifferential operator on X. As before, I am assuming that all symbols
are scalar.

1.8 Definition. Let f E COO(R+ X R+, LJl(Xj r!_..,)). We define the Mellin operator
op1f with the (Mellin) symbol f on Cg'(X") = Cö(R+, COO(X)) by

00

1 JJ dt'[op1(f)u](t) = -. (t/t' )-% f(t, t' , z)u(t')-dz
211"% t'

r~_.., 0

(1)

The right hand side of (1) is to be understood as an iterated integral. If f is independent
of t' or, equivalently, f E COO(R+, LJl(Xj r!_,,)), then (1) reduces to

(2)

We did not specify the variable x in (1) or (2), understanding that, for fixed t', u(t') =
u(" t') is in COO(X) and that f(t, t', z) acts as a pseudodifferential operator with respect
to the x-variables.

Like pseudodifferential double symbols, Mellin double symbols are not uniquely deter­
mined. It is immediate from integration by parts in (1) that

op1[lnk (t/t')!(t, t', z)] =oPM[a:!(t, t', z)].

Similarly, it follows from a consideration of the integral kerneIs that

opl[</>(t/t')!(t, t', z)] = op1[Mp-%{4>(p)M~~_pf(t, t', ()}]

(3)

(4)

for every ifJ E Cü(R+). For f E COO(R+ X R+, LIJ(X; rt-..,)) or f E COO(R+, LJl(Xj r~_..,))

we will have a continuous map

Smoothness of f up to zero yields continuity of opl! on the weighted Mellin-Sobolev
spaces, cf. Theorem 1.9j the preceding relation (3), however, shows that smoothness is
not necessary.

1.9 Theorem. Let f E COO(R+ X R+, LJl(Xj r!_..,)). Given s E Rand Wl,W2 E Cg'(R+),
there is a bounded extension

We will also need the following results. They show that, just as in the case of pseudod­
ifferential operators, one has asymptotic summation of symbols. Moreover, one obtains
smoothing operators by a special analytic procedure that Schulze calls 'kernel excision'.
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1.10 Asymptotic Sunlmation. Let J-ll,JJ.2,'" be a sequence in R tending to -00,

fj E COO(R+ X R+, LJlj (X; r t-I'))' and J-l = max JLj. Then there is an

with f f",.J L:~1 fj, i.e, for any N E N there is a J with

J

f - Lfj E COO(R+ x R+,LJl-N(X;rt _I'))'
j=1

(1)

This f is unique modulo COO(R+ x R+, L-oo(X; r~_I'))'

1.11 Theorem. Let</> E Cö(R+) and suppose that 1>(t) _ 1 near t = 1. For f E

COO(R+ X R+, LJl(X j ft-'"f)) let

fl(t, t', z) = Mp_z[</>(p)M;'~_pl(t, t', z)]

12(t,t',z) = Mp_ z [(I- </>(p))M";'~_pf(t,t',z)].

Then 11 E COO(Rr x R+,LJl(Xjr1/ 2_'"f)) and f2(t,t',z) E Coo(R+ x R+,L-OO(Xjrt_'"f))'

1.12 The Cone Algebra without Asymptotics.
(a) M L::;oo (ID) is the set of all operators G : Cö (int ID) ~ V' (intID) such that, for

all s E R, there is a continuous extension G : H~''"f(UJ) ~ 1{oo·'"f(UJ).
(b) M L~(ID) is the space of all operators A : Cö(intUJ) ~ V '(intUJ) that cau be

written A = AM + A,p + t-JlG, where

AM is a Mellin operator supported elose to the boundary, i.e., there axe functions Wl, w2 E
COO(UJ), supported elose to the boundary of UJ, cf. Definition 1.1, and there is a
Mellin symbol f E COO(R+ X Rr, LJl(Xj r 1/2-'"f)) such that AM = t-~wlop'klw2;

ATjJ is a pseudodifferential operator supported away from the boundary, Le., there are
functions </>1, </>2 vanishing in a neighborhood of the boundary of ß), and there is a
symbol PES~ (intUJ) such that AI/! = 1>1 0PP </>2, Finally,

G is an operator in M L::;oo (UJ ).

The collection of all the spaces M L~(UJ), for jl, I E R is the cone algebra without
asymptotics.

1.13 Remark. (a) It is obvious that, for fixed J-l", the operators in M L~(UJ) form a
vector space and that an operator A E M L~(ID) induces a continuous mapping

A : 1-l~.'"f+n/2(ß)) ~ H~-~·'"f-Jl+n/'l.(UJ).

In particular: If the Mellin symbol f of AM is an element of Coo (R+ x R+, L -00 (X j r1/2-'"f))'
then AM E t-Jl M L::;OO(DJ).

It is not so trivial that the cone algebra without asymptotics is an 'algebra' in the sense
that, for all J-l, ji, I E R, the composition of operators induces a continuous multiplication
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(b) It follows from the mapping properties that the operators in ML~oo (DJ ) form an

ideal in the sense that the above mult~plication restriets to continuous maps

t-~M L~~(DJ) x ML~(DJ) -? t-JJ-~M L~OO(DJ)j

ML~_/l(DJ) x t-IlML~oo(DJ) -? t-JJ-iJ.ML~OO(ß)).

(c) In particular, for J.1. = 0 and arbitrary /, ML~CUJ ) is an algebra in tbe usual sense,
and M L:;oo (ID) is an ideal.

We shall need the following relation between Mellin and pseudodifferential operators.

1.14 Theorem. (a) Let t/;, 'ljJ E Cgo(intID), and let AM be a Mellin operator aB in
Definition 1.12(b). Denote, for tbe moment, by Mq., and MT/J the operators of multiplication
by t/; and 'ljJ, respectively. Tben there is a pseudodifferential operator B E LIl(intID),
supported in the interior of ß), with Mq.,AMM", = B.

(b) JE 4J, tf; E Coo(ID) and suppt/; n suppv" = 0, tben Mt/JAMMl/J E t-/l M L:;oo(ID).

2 Coordinate Invariance

2.1 Outline. Assumptions on the Coordinate 'Iransforms and
Their Properties

2.1 Outline. In order to show the coordinate invariance of the Mellin calculus, we
will first establish tbe coordinate invariance of the spaces '}-{s·"Y(ID), cf. Theorem 2.10. It
entails the coordinate invariance of the residual classes M L;OO(DJ), cf. Corollary 2.11.
The pseudodifferential operators in the calculus are supported away from the singular
set. Their invariance is a consequence of the well-known fact that tbe pseudodifferential
calculus on smooth manifolds is well-defined. The only subtle point therefore will be the
behavior of the Mellin operators: If K, : U -? V is a diffeomorphism of bounded open sets
U, V ~ Rn X R+ 1 and

A = op1! : Cg'(V) -4 Coo(V)

is a Mellin operator, what can we say about the pullback

defined by
(A.u)(i) = [A(u 0 K-

1 )](1C(X)), U E C~(U), x E U?

I shall show that A. again is a Melli~ operator by computing a Mellin symbol simply
by substitution in the oscillatory integrals, tben deriving an asymptotic expansion of this
symbol and showing that it makes sense. In order to make this more precise, we need
some notation.

2.2 Notation and Elementary Properties of the Changes of Coordinates. We
want the change of coordinates to preserve the cylinder X x R+. So let U, V be bounded
open subsets of Rn x R+, and let

diffeomorphically.
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Write
(~, 1) = "'(X, t) = (x(x, t), u(x, t)) = (XI(X, t), ..., Xn(X, t), U(X, t)).

Since the boundary is preserved, K(X,O) = (X(x, 0), 0); hence, for all X with (x,O) E U,

j = 1, ... ,n.

Furthermore, the total derivative ß", is regular, so we necessarily have ßtu(x, 0) f. 0 for
all x, even

ßt u (x, 0) > 0,

since the R+-direction is preserved. In the total derivative ßK, wri t ten as an (n+1) x (n+1)
matrix

ßI\, ~ (ßxx ßtX),
ßxu ßtu

8x x(x,0) will be regular for all x. We may therefore find an fI > 0 such that, for all
(x, t) E U,

fI ~ ßtu(x,t) ~ l/fI; (1)

fI ~ Idetßxx(x,t)! ~ l/fI' (2)

Moreover, since we are only interested in changes of coordinates in a neighborhood of
X x {O}, we mayassurne that there is an f2 <t: f}, with

for all (x,t) E U, and that
U = U' X [0, (3)

for some convex open subset U' ~ Rn, where f3 > 0 is small.

(3)

(4)

2.3 Outline (continued). I would like to first explain the concept without specifying
a particular symbol dass. Assume that f = f(i, 1.',~, ll..,~, {) is a smooth function on

R+ x R+ x r!-'Y x u' x U' x Rn, where U' is as in 2.2(4), that f vanishes unless !:. and
l' are both small, and that f is subject to reasonable growth conditions. In order to
simplify even more, let 1 = 1/2, so that r I/2-'Y is the imaginary axis, and use the variable

T E R instead of z E iR. We want to compute the pull-back of the Mellin operator Op~2f
induced by f. So we choose u E Cü(V), (x, t) E U, and let g = u 0 1\,-1. Hy definition,

(1)

Ignoring problems about the existence of the integrals and wri ting 1L = X(y, t'), f = u(y, t'),

1
[oPMfl.u(x, t) = [jJ [00 ei(x(x,t}-x(t"t/»~ (u(x, t}) -ir..

JR Jo u(y,t)

( ( ) ( ') () ( ') ) ( ') J (y ,t') , dt' ( )f u x,t ,u Y,t ,T..,X x,t,x Y,t ,~ u Y,t ( )t -dyil~aT.., 2
- u y, t' t' -

9



where J (y, t') = Idet aK (y, t') I. We therefore will be interested in the behavior of J (y, t') u(;:t/).
Assuming that everything works weIl, we then write

where BI is a suitable n x (n + 1) matrix and B'J an 1 X (n + 1) matrix. Dur above
assumptions on the change of coordinates will imply that the (n + 1) x (n + 1) matrix

B = ( ;~ ) is invertible. Let A =B-I be of the form A = ( ~~ ) with an n X (n + 1)

and an 1 x (n + 1) matrix, and let

Then we can change variables in (2) and obtain

[optfJ.u(x, t) = l11 [" e'(r-.)e UrOT

. f( 0'(x, t), O'(y, t'), A2 [ ~] , x(x, t), x(y, t'), A, [ ~]) .

( ') J (y, t') , 1 d ( ') I dt' d·u y,t ( )t etA x,t,y,t - yd~ di.
a y, t' t'

In other words, this purely formal computation shows that [optf]. = optg with

(4)

(5)

9(t, t', 'T, x, Y, ~)

= f(a(x, t), a(y, t'), A2 [~], X(x, t), X(y, t'), Al [~])Jiy' t'~ t' IdetA(x, t,y, t')I. (6)
i 'T a y, t'

Of course, 9 will in general not be an element of the "right" symbol dass, and we

will have to replace 9 by a symbol 9 such that [opt!]. - opt9 belongs to the corre­
~onding dass of residual operators. Dur first task now will be the analysis of the term
u~~::;~t' Idet A(x, t, y, t') I.

2.4 Lemma. There is a function 1/1 E Cb(U) with

a (y, t') = t'e1jJ(JI,t') , (y, t') E U.

We have J(y, t') U(~:t/) E Cb(U), moreover, this function is bounded away from zero,

provided that the constant f2 in 2.2(3) is sufficiently small.

Proof We have a(y 1 t') = a(y, t') - a(y, 0) = Jo1 8ta(y, tJt')diJ .t'. Since 0 < fl ~ atu :s; 1/€

on U by assumption 2.2(1), the integral is a smooth function of y and t', both bounded
and bounded away from zero. Thus

'IjJ(y ,t') = Inl' 8,0'(y, {) t') d{) E Cb(U),

10



and the. first assertion is proven.
By definition, J(y, t') = Idet 8K(y, t')j. Suppose we had 8x a(y, t') =°on U. Then es­
timates 2.2(1) and 2.2(2) would imply J 2:: Er Hence the continuity of the determinant
shows that J 2:: Ei /2, if E2 is small. Moreover, all entries of the matrix for 8K are eb
functions on U, so det 81\, is Cb , and so is Idet 8KI. Since q(~:t') = e-1P(~,t') we get the
desired result. <l

Now let us let have a look at identity 2.3(3). As apreparation we shall need the
following lemma.

2.5 Lemma. For t, t' E R+ let T(t, ~') = ln:=~t" Then T is a smooth positive function
on R+ x R+, T(t, t) = t. Moreover,

(a) T( t, t') :s; max{ t, t'}.

(b) Let °< 8 < 1. Then on the set {(t, t') E (0,1) x (0,1) : lt/e -11< 8} the functions
e-1(t'8t,)k T(t, t') are bounded, k = 0,1, ... ,.

(c) t'k-1a~T(t, t')lt'=t is smooth up to t = 0,. k = 0,1, ....

Note that T cannot be continued to a function in COO(R+ x R+).

Proof T is smooth and 2:: 0, for In is smooth and monotonely increasing on R+. Moreover,
T has no zero, since T(t, t) = t > 0.

(a): Iln t -ln t'l = IJol
tl+:(~-t') Ilt - t'j 2:: min{l/t, l/t'}lt - i'l.

(b) Let x = t/t'. Then 1 - 8 < x < 1 + 8, and T(t, t') = t'1nt;~~ = e~~. So T is
of the form T(t, t') = t' <,0(x )jr=t/t' with a Cb-function <,0. But then t'ß;[t'<,o(x)lr=t/t'] =
t'<,o(x)lx=t/t' - t'(x8x )<,o(x)lr=t/t' is of the same form. Hence we get the assertion.
(c) Consider first the function M(t, t') = T(t, t,)-l and show that a~M(t, t') It'=t= Ckt-k-1
for suitable Ck E R, k = 0,1, .... By induction, a~[M(t, t')-l] is a linear combination of
terms of the form

r

M(t, t,)-r-1 TI &/,1 M(t, t'),
1=1

where r :s; k and I:~=1 jl = k. This implies that at,T(t, t') It'=t= a;'[M(t, t')-l] !tl=t is a
linear combination of terms t r+1t- r -k, °:s; r :s; k. <l

2.6 Lemma. We bave, in the notation oE 2.2 and 2.3,

(
( )

)

-ir- _ () -i(l>'lT(t,t')e+nTT(t,t')i)
ei(x(xlt)-x(~,t'))s. a x, t = ei(x-~)(Drs.+DJ'i) !- -

a(y, t') t'

with

(1)

D1 = D1(x, t, y, t')

D2 = D2 (x, t, y, t')

D3 = D3 (x, t, y, t')

D4 = D4.(x, t, y, t')

= [OxX(Y +{}(x - y), t' + 'l9(t - t'))d'l9;

= - [[ox In CT]{y + 'l9(x - y), t' +{}(t - t'))d'l9;

= - [ o.X(y + 'l9(x - y), t' + {}(t - t'))d'l9;

= [[0, In CT] (y +{}(x - y), t' + 'l9(t - t'))d'l9.

11



Note that D1 , ••• , D4 are matrices offunctions of sizes n x n, 1 x n, n x 1, 1 x 1, respec"tively,
(.)T denotes the transposed matrix. The matrices Dr, Dr form tbe matrix BI of 2.3(3),
while nIT(t, t'), nfT(t, t') form B 2 . ,

Proof. The left hand side of (1) equals exp{ i([X( x, t) - X(y, t')J~ - (1n a(x, t) -ln a(y, t')Jr.)}
= exp{ i([Jo1

8xXdfJ(x -y) + Jo
1

8tXdt9(t - t')]{ - [Jo
1

8x In adt9(x -=- y) + Jo
1

8t In adt9(t - t')]L},
where the argument y +{) (x - y), t' + {) (t - t')) has been omit ted uncler the integrals. <l

2.7 Lemma. Tbe matrices D1 , ••• , D4 of2.6 are smooth fUDctions on U x un {t, t' > O}.
Moreover, we have tbe following properties.
(a) clet th E Cb(U x U) is bounded away (rom zero on U X U provided that Ix - yl and
It - t'l both are sufficiently small.
(b) n2 E Cb(U x U).
(c) D3 E Cb(U x U).
(cl) D4 (x, t, y, t') . T(t, t') = 1 + r(x, t, y, t')T(t, t') with a (unction r E Cr(U x U).

Proof. According to 2.4, In a is a smooth function on U n {t > O}, hence all functions are
smooth on U x un {t, t' > O}. Now (a) is immediate {rom 2.2(2). In order to see (b) note
that, in the notation of 2.4,

8x1n a(x, t) = 8x 1/J(x, t) E C~(U).

(c) is trivial. For (cl), observe that 8t 1na(x,t) = t + 8t1/J(x,t); therefore

1\a,lnu)(y +1?(x - y), t' +1?(t - t'))d1?

In t -ln t' 11

= ,+ (8t'IjJ)(y+t9(x-y),t'+t9(t-t'))dt9.
t - t 0

This leads to the desired form.

2.8 Corollary. Let, as it has been outlined in 2.3 and 2.6,

(

-T ~T )B( t t')= ~ D1 (x,t,y,t') ~ D2 (x,t,y,t')
x, ,v, DI(x,t,y,t')T(t,t') D4 (x,t,y,t')T(t,t')

<J

(1)

with the matrices D1 , D2 , D3 , D4 of Lemma 2.6. As before, (.)T denotes the transposed
matrix. Then det B is smooth on U x U n {t, t' > O}; it is bounded and bounded away
from zero on U X U, provided that

(i) Ix - yj is sufficiently sma11, and

(ii) t and t' both are smalI.

Notice that (i i) will be automatically fu1filled, if the constant E3 in 2.2(4) is sufficiently
small. Furthermore,

(
~T -T)

det B(x, t, y, t') = T(t, t') det ~r ~r (x, t, y, t'),

(
~T ~T)

hence ~r ~r is regular on U x U n {t, t' > O}.
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Proof. This follows from Lemma 2.7 in connection with Lemma 2.5(a). <l

The principal result of this section now is the following proposition.

2.9 Proposition. Let A(x, t, y, t') = B(x, t, y, t')-l with the matrix B of Corollary 2.8:
in order for tbis definition to make sense we assume that (i) and (ii) of 2.8 are fulfilled.
Fix 0 < 8 < 1. Tben, [ar a11 k E N, all multi-indices et, ß, and all t, t' with It/t' - 1[ < 8,
we have

Ilt'k8~D~D~A(x,t,y,t')llc(c n +1 ) ::; CkaßS'

More0 ver, the matrix function

is smooth up to t = O.

(1)

(2)

Proof. We have A = B-t; hence 8~D:D~A by induction is a linear combination of terms
of the form

with k1+... + k1 = k, a1 +... + OJ = 0, ß1 + ... + ß, = ß, and 1 ::; 10 + ßI + k. It is
therefore sufficient to show that

(i) IIAllqcn+1) = lIB-1Ilc(cn+l) is bounded, and

(ii) Ilt'ka~D:DeBllqc n +1 ) is bounded.

By Lemma 2.7, all entries of Bare bounded functions on U x Uj moreover, the determinant
is bounded away from zero for small Ix - Yl and small It - t'l. Hence (i) follows from
Cramer's rule.
For (ii) we recall that t'ka~ = L:;=o ejk(t'8tl )J for suitable ejk. Then we use Lemma 2.7,
Lemma 2.5(b), and Leibniz' rule. In order to show that the function (2) is smooth up to
t = 0, it is sufficient to prove

(iii) A(x, t, y, t) = B(x, t, y, t)-l is smooth up to t = 0, and

(iv) t'k8~D~DeB(x,t,y,t')lt'=t is smooth up to t = O.

Since T(t, t')lt'=t = t, relation (iii) follows from Lemma 2.7. Also (iv) is immediate from
Lemma 2.7 in connection with Lemma 2.5(c). <l

2.2 Invariance of the Cone Algebra without Asymptotics

Let us start with the ~1ellin Sobolev spaces.

2.10 Theorem. The spaces 'H. 8 ("(ID), S, I E R, are invariant under changes of coordi­
nates.
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Proof In view of interpolation and duality we mayassume that 8 E N. Moreover, since
1{,S(Y(lD) ~ Htoc(intlD) and the invariance of the usual Sobolev spaces is we11-known, it
is sufficient to consider funetions with support dose to the boundary of lD. Let therefore
'" : U ---+ V be a diffeomorphism of bounded open subsets of ~+1 as in 2.2, and suppose
that u : V ---+ C is a function with compact support in V, satisfying

(1)

whenever k + lai ~ s. Dur task is to show that, for the pu11back U 0 /\',

(2)

Writing, as in 2.2 and 2.4, K,(x, t) = (X(x, t), o-(x, t)) = (X(x, t), tetP(x,t)) = (~,.t), we have

8x[u(X(x, t), tetP(x,t))] = (a~u)(X(x, t), tetP(x,t))(axX)(x, t) +

+(atU )(X(x, t), teVJ(x,t))teVJ(x,t)( ax'I/J) (x, t)

and

(t8t){u(X(X, t), teVJ(x,t))] - t(8xu)(X(x, t), tetP(x,t))(8tX)(x, t) +

+t(aiu )(X(x, t), tew(x,t))[e.p(x,t) + teVJ(x,t)8t t/; (x, t)]

= (8~u)(~'Ü(tatX)(x, t) + (ta.tu)(~,t)[l + (t8t1f;)(x, t)].

By induction, (tat)k8~(u 0 fI:)(x, t) is a linear combination of expressions of the form
[(t8dj8~u]I(f:,.o=K(Xlt)bjß(x, t) with smooth bounded functions bjß and j + lßI ~ s. In order
to see this, note that t is bounded on supp U and that all derivatives of K. are bounded.
Therefore, I It"T-q.(t8dk8~(UOK, )(x, t) 1

2dxdt can be estimated by a finite linear combination
of integrals of the form

JI{Y-~ [(toJ) ~uJ(,,(x, t))b)p(x, tWdxdt

= JI[,,-1 (;!;., t)]=~l (to!.)) o:u(;!;., ilbiP( ,,-1 (;!;., ilWJ(;!;., t)d;!;.dt (3)

Here j = al\,-1 denotes the Jacobian determinant, whieh is bounded, and [I\, -1 (~, t)]n+1 is
the (n + 1)-st component of the vector 1\,-1 (.:r,1.), Le., t in the new coordinates.

Since i = t exp 'I/J(x, t) and t/J is a bounded function, there are constants Cl, C2, with
Cl ~ t/i = [1\,-1(~, Ü]n+1/1. ~ C2, hence (1) implies that a11 integrals in (3) are bounded,
and the proof is complete. <I

2.11 Corollary. The dass M L~oo (lD) is invariant under changes of coordinates, since
a11 spaees 1{,s,"T(DJ), s E Ru {oo},'"'f ER, are.

2.12 Outline and Reduction of the Task. Let us now have a look at the operators
in the eone algebra without asymptotics. According to Definition 1.12, an element of
A E ML~(lD) is a sum of three operators: A = AM + A"" + t- IlG where AM is a Me11in
operator supported elose to the boundary of lD, A.p is a pseudodifferential operator in
the interior, and G is an operator in M L~OO(DJ). Dur task now is to show that such a
representation is independent of the choice of coordinates.

14



Step 1. We have seen in Corollary 2.11 that the operators in M L:;oo (DJ ) are invariantly
defined. In the notation of Lemma 2.4, a(x, t)-JJ = t- JJ exp( -Jl.?jJ(x, t)) with the Ob
function ?jJ. Noting that the function exp( -Jl.'ljJ(x, t)) has a smooth extension up to t = 0,
the factor t- JJ can be ignored. Moreover, it is known that the pseudodifferential calculus
is coordinate free. Hence, it remains to consider the Mellin part

of A. Here, Wt, W2 are functions that are supported elose to the boundary of DJ and equal
to 1 elose to the boundary, and f E COO(R+ X R+, LJJ(X; f t / 2--y)). As before, the factor
t- JJ can be ignored.

Step f. We know from Remark 1.13(a) that, for fE COO(R+ x R+,L-00(X;f t / 2_-y)),
the operator AM will be an element of M L~OO(DJ). So let f E COO(R+ xR+, LJJ(Xj f t /'2--Y)),
and suppose for the moment that 4>,1/J are smooth functions, supported in a single coordi­
nate neighborhood U' for X and satisfying 4>?jJ = 4>; by M tP , M"" MI -1/; denote the operators
of multipliction by </J,?jJ, and 1 - 'ljJ respectively. Then (t, t', z) 1---4 Mt/J!(t, t', z)Mt-t/J is an
element of COO(R+ x R.r, L-OO(Xj f t /2_-y)), and the corresponding Mellin operator can be
ignored in our considerations.

On the other hand, the operator-valued function Mt/Jf(t, t', z)M", is given by a local
parameter-dependent symbol, depending on the variables t, t' E R.r and the covariable
z E f 1/2-')" The operator AM therefore can be localized to a coordinate neighborhood for
D) of the form U = U' X [0, f), with suitable f > O.

Step 3. The constant f can be chosen arbitrarily small. In order to see this, choose
smooth functions W3, W4, Ws supported in an arbitrarily smaH neighborhood of the bound­
ary of D) and satisfying W3(t) =W4(t) =ws(t) == 1 elose to the boundary, while W3W4 = W4
and W4WS = Ws. Write

According to Theorem 1.14(b), the operators (1 - w3)AMW4 and wSAM (1 - W4) are ele­
ments of M L~OO(JI)). In view of Theorem 1.14(a), the operators (1 - ws)AM (l - W4) are
pseudodifferential operators supported in the interior of JI). We know that both these
elasses are preserved, so we foeus on w3AMW4.

Step 4. Hence we are reduced to the case where wtop1t(f) W2 is the operator defined
on C(f(U' x (0, f)) by

[WtoP1t(!) W2](u)(x, t)

_ -2
1

. [ [00 J] ei(x-y)e (~) -z j(t, t', z, X, y, ~)u(y, t')dya~d~'dz. (1)
1n Jr 1/ 2-"f Ja t t

with a function j E COO(R+ X R+, SJJ(U' X U', Rn X r t /'2--Y))' Obviously, the choice of
the line r 1/2--y is irrelevant, and it is no restriction to assume 1 = 1/2. In the integral
(1) we may then replace the line r 1/ 2--y by r o = iR and the variable z by ii. Writing

aT = 1/(27r )di = 1/(21ri)dz and f(t, t', T, X, y,~) = j(t, t', iT, x, y, ~), we will then precisely
have the situation of 2.3(1).

Step 5. We may assume that f(t, t', T, x, y,~) vanishes unless Ix-y] is small: Otherwise,
we might choose a function ~ E OOO(U' X U') supported in a smaH neighborhood of
the diagonal {x = y} and equal to 1 in a smaller one. Replacing f(t,t',T,X,y,~) by
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f(t,t',i,x,y,~)iP(x,y) results in an error which is an element of COO(R+ x R+,S-OO(U' x
U', Rn X R)), hence induces an operator in ML~/c;(ID).

Step 6. We finally make one further simplification. We choose a function ;j; E Cr(~)
supported in a small neighborhood of 1 with ~(p) =1 for p elose to 1. Then, according
to Theorem 1.11 and 1.8(4), we have

In other words, we mayassume that f( t, t', i, X, y,~) vanishes unless It/t' - 11 is small.
Step 7. The simplifica.tions of Steps 3, 5, and 6 show that the Mellin symbol f =

f (t, t', i, x, y, ~) satisfies the assumptions necessary for Lemma 2.7, Corollary 2.8, and
Proposition 2.9: f(t, t', i, X, y,~) vanishes, unless

(i) Ix - Yl is smalI,
(ii) t, t' are smalI, and
(iii) lt/t' - 11 ia small.

Step 8. The idea now is the following: We have seen that the pullback of optf can
be written in the form used in 2.3. Considering the integral an oscillatory integral we
may indeed change the order of integration, perform the substitutions and conclude as in
2.3(6) that the pullback is the Mellin operator with the symbol

g( t, t', T, X, y, e) = f( u(x, t), u(y, t'), A2 [ ~] , x( x, t), x(y, t'), Al [~])F( x, t, y, t')

with smooth matrix-valued functions Al, A2 , and F, analyzed in Section 2.1. Al and A2

also depend on (x, t, y, t'). Here I have written F( x, t, y, t') instead of the expression

J(y, t') , 1 ( ')1
( )

t det A x, t, Y, t
a y, t'

.'employed in 2.3(6)j recall that A is the (n +1) X (n +1) matrix formed by the n x (n +1)
matrix Al and the 1 x (n + 1) matrix A2 •

We will next use a Taylor expansion of order N E N for the function 9 at t' = t.
We will show that the terms of the expansion furnish Mellin symbols in COO(R+, SJ..I(U' X

U', Rn X R)), while, for given M > 0, the remainder term will induce a bounded linear
operator between the ~1ellin Sobolev spaces H-M ,(n+I)/2 and H M ,(n+l)/2, provided N is
sufficiently large.

Using asymptotic summation, cf. Theorem 1.10, we conclude that the pullback of
Op~2f is a sum of a Mellin operator and an operator in M L~/c;(ID). This will take some
time. The remainder of the proof is therefore split up ioto aseries of lemmata; we will,
however, keep the notation we have introduced so far.

2.13 Lemma. Wri te, wi tb arb;trary N E N,

N-l .
-(' t)" (t' - t)' ~ -(' t) 1 (')N (' t)9 t,t,i,X,y,~ =.L...J " ut,g t,t,i,X,y,~ t' :;:t+ t -t rN t,t,i,X,y,~,

i:;:O J.

rN( t, t', T, x, y, e) = ( 1 )' r (1 - 1'Jt-1Bi!g(t, t +1'J(t' - t), T, x, y, e)d1'J,
N -1 . Jo
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Then, for each j, &!,g(t, t', T, X, y,~) is a linear combination (with universal coefIicients) of
terms of the form

(Of; a!-'a;a%J)(0-( x, t), o-(y, t'), A2 [ ;] ,X(x, t), x(y, t'), Al [ ;])

jl h

II 8~p+IU(Y,t') II[a~~~laz,t2(x, t,Y, t')~t2] .
p=l q=l

n a~ n p",

II II 8~r",+1Xv(y, t') II II [a~·",+lal,vt} (x, t, y, t')~tl] .
v=l r",=l v=l .8",=1

81: F(x, t, y, t').

iI j2 n 0", n 0",

j1 + j2 + )·3 + lai + IßI +L kp +L lq +L L m ru +L L n.8u = j;
p=l q=l v=l r",=l v=1 .8u=l

(1)

(2)

(1 and (z stand for any elements 01 {I, ... ,n+ I}; a2,t, l = 1, ... ,n+1 are the entries of the
1 x (n +1) matrix A z; a1,vt, v = 1, ... , n, f. = 1, ... ,n +1 are the entries 01 the n x (n +1)
matrix Al; and, to avoid additional notational complications (6, ... ,~n+d = (~, T).

Proof The formula is proven by induction, and it is much easier than it looks. It is
obviously true for j = O. Assume it holds for some j. Then take an additional derivative
with respect to t'. According to Leibniz rule, it will result in a derivative of one of the
factors.

(i) In case we have to take a derivative of the first factor, we will get a derivative
of f wi th respect to ei ther t', T, Yv, or ~v and a corresponding factor Oe0"(y, t'),
8t ,az,t( x, t, y, t')~t, 8t,Xv(Y, t'), or aea1,vt(x, t, y, t')<tj moreover, one of j1, j'1, lai, and
IßI will increase by 1. Otherwise the form above is preserved.

(ii) In case we have to take a derivative,of one of the products in (1) or (2), we again
apply Leibniz' rule. One of kp,lq, mr~, and n.8u will increase by 1j the others remain
unchanged.

(iii) Finally, we might have to take a derivative of 8/,3 F(x, t, y, t'), which only increases
ja by 1. <l

2.14 Lemma. There is a function 4> E Cr(R+) with </J(p) =1 near P= 1 such that

</J(tJt')g(t, t', T, X, y,~) = g(t, t', T, X, y,~).

In particular, we will have

opLg = opL[4>(tJt')g]

= L opt[q,(t/t') (t' ~ t)j gj(t, T, x, y, 0] +opt[q,(t/t')rNl
j=O ).

with 9j(t, T, X, y,~) = [at,g](t, t', T, X, y, ~)It'=t.
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Proof In view of the fact that f(t, t', T, X, y,~) vanishes unless It/t' - 11 is small, we
know that g(t, t', T, x, y,~) vanishes unless la(x, t)/a(y, t') - 11 is small. Next we note
that a(x, t)/a(y, t') = t/t' . exp[1,b(x, t) - ,p(y, t')] with the function ,p E eb introduced in
Lemma 2.4. Hence, la(x, t)/a(y, t') - 11 cannot stay small as t/t' tends to 0 or +00, and
g(t,t',T,X,y,~)will vanish for t/t' outside a compact set in R+.

The remaining statement follows immediately. <J

2.15 Lemma. Let 9j denote the functions introduced in Lemma 2.14. Then tjgj E
COO(R+,SJJ(U' x U',Rn x R)).

Proof We use the form for 9j implied by Lemma 2.13. By Proposition 2.9 we have
[t,ka~A](x, t, y, t') It/=t and [t,ka~F]( x, t, y, t') It/=t bounded for all k; moreover, ß:,u(y, t')
and a:,X(y, t') are clearly bounded for arbitrary 1. The assertion will therefore be proven
if we show that

I k - ß .,ßtßrDee DxD;

(at,'~'fJ; off1)(a(x, t), <7(Y, t'), A2 [;] ,X(x, t), X(Y, t'), At [;N,=.
= O( (~, T)JJ-h-IßI-1äl-k).

Obviously, derivatives with respect to x, y, and t produce terms just like those we have
analyzed. So we mayassume that 1,81 = 11'1 = I = 0, and the only point to clarify is
the behavior of derivatives a;Dt. This, however, is easy: These derivatives are linear
combinations of terms of the form

n+l n n+l
II a2,l(x, t, y, t'YI II II al,1I1(x, t, y, t,)611,llt'=t
1=1 11=1 1=1

with rt, 811,1 E N, nl + [81 = k + jal. In view of the properties of fand the fact that the
functions a2,1 as weIl as al,1I1 are bounded, the expression is

Now we know from Corollary 2.8 and Proposition 2.9 that det A is both bounded and
bounded away from zero. Hence Cramer's rule shows that

for suitable positive constants Cl and C2, and we obtain the desired estimate. <J
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2.16 Corollary. We have

For the last identities, we have used 1.8(3) and 1.8(4). Notice that, by Lemma 2.15 in
connection with Theorem 1.11,

Mp_d<p(p)(p-l - l)i In-j(p-I)M0~,z_p(ti~9i(t,-iz, x,y, e))]

E COO(R+, SJl-i(V' X V', Rn X ~)).

2.17 Outline (continued). We shall now consider the remainder term opt[t/>(t/t')(t'­
i)NrN(i,t',r,x,y,e)] and show that, given an arbitrary M> 0,

is bounded, provided N is sufficently.large. In order to prove the boundedness we will
consider the distributional kernel of the operator, Le., the function kN = kN(x, t, y, t')
that satisfies

opi[<!>(tft')(t' - t)NrN]u(x, t) = ['"JkN(x, t, y, t')u(y, t')dydt' ft'.

An argument based on a modified Hausdorff-Young inequality, see Lemmata 2.19 and
2.21, below, will then coneIude the pfoof.

2.18 Remark. Note that u = u(x, t) E rt,,(n+l)/2(R~ x R+,t),8 E N, if and only if
(tat)'a~u E L2(Rn x R+, dxdt/t) for all! + jal :::; 8.

2.19 Lemma. (Modified Hausdorff-Young Inequality) Let .\ E LI (Rn xR+ l dxdt/t)
and u E L2(Rn X R+, dxdt/t). By exp denote for the moment the mapping Rn X R ~
Rn X R+ given by (x, t) J---+ (x, et ). Then

111
00 JA(X - y, tft')u(y, t')dydt'ft'IlL2(RnxR+.d~d'/')

= 11 JJA(X - y, e6 fe6')u(y, e6')dyds'IIL2(Rn xR,dxd6)

= 11[.\ 0 exp] * [u 0 eXPllIL1(RnxR)

< 11[.\ 0 exp]llv(RnxR) Il[u 0 expllIL1(RnxR)

= 11.\ Ilv (Rn xl4 ,dxdt/t) II U IIL1(RnxRt ,dxdt/t) ,

where the only inequality is Hausdorff- Young's.
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(1)

2.20 Renlark. Let M E N. Then 1t-M ,(n+l}/2(Rn x R+) is the space of an distributions
u E V'(Rn x R+) that can be written

u(x, t) = L (tatl'a~Ulo(X, t) with suitable Uko E '}-f,(n+l)tl(Rn X R+).
'+lol:5M

2.21 Lemma. (a) Let k = k(x, t, y, t') be a continuous function on Rn X R+ X Rn X R.r
and suppose that there is a function 90 E LI (Rn) and a function 'l/Jo E LI (R+) witb
Ik(x,t,y,t')1 ::; 'l/Jo(t/t')90(x - y). Then tbe operator !(, defined by

J(u(x,t) = ['"Jk(x,t,y,t')u(y,t')dydt'jt'

for u E Cr(Rn x R+), has a continuolls extension

(b) Let M E N, and suppose that, for some gM E L 1(Rn) and 1}JM E L 1(R+), we have
l(t'atl)it(tatlha~aek(x,t,y,t')1 ::; '!f;M(t/t')gM(X - y) whenever jl + j2 + lai + lßI ::; M.
Then the above operator !( extends to a continous operator

Proof (a) We apply Remark 2.18 as wen as the modified Hausdorff-Young inequality and
obtain

II!(u Ih..{o,(n+1)/2(Rnx~) = 111<U11 L2(Rn xR+ ,dxdt/t)

= 11 L'"Jk(x, t, y, t')u(y, t')dydt' jt'IIL'(R'x14,dxd'I')

< 111
00 J1/Jo(t jt')go(x - y) lu(y, t') Idydt' jt'IIL'(R'x14 ,dxd'I')

< 11 '!f;oll LI (R+ ,dt/t) 11 go I1 LI (Rn) 11 U 11 L2(Rn XR.t ,rb:dt/t)

= 111/10110 (ll.+ ,dt/t) 1190110 (Rn) IIUI11fO,(n+1)/2(Rn xR+)'

(b) It follows from the definition of 1tM ,(n+l}/2(Rn x R+) and Remark 2.20 that I< has
the asserted continuity property if and ooly if, for all jl' j2, a, ß with jl +)~ +lai +Ißt ::;
M, the operators with the kerneIs k3ihoß(x, t, y, t') = (t'Otl )31 (tOt)h 0:oek(x, t, y, t') are
bounded on 1-(Ü,(n+l)/2(Rn x R+). In view of (a), the estimate guarantees precisely this.
<J

1

2.22 Outline (continued). It remains to show that the kernel kN for op1-[rP(t/t')(t' -
t)NrN satisfies the estimates in Lemma 2.21. This is essentially very easy, since we already
have the function rP(t/t') implying compact support with respect to t/t', and we know that
the kernel has cornpact support wi th respect to (x, y). So we only have to establish the ex­
istence of the kernel and to check that the derivatives (t'Ot l )31 (tOt)J2 O~oekN ( x, t, y, t'),)1 +
)2 + lai + IßI ::; Mare bounded, provided N is large. So let us have a look at the kerneI:

20



=

kN(x, t, y, t')

JJe;(r-y)e U) -;T tf>(t/t')(t' - ttTN(t, t', T, X, Y, OaTae

= JJei(x-Yle U) -iT tf>(t/t')(l - t/t't In-N (t/t')( -it')Nar;'TN(t, t', T, x, y,OaTa~

(_i)N <f>(t/t')(1 _ t/t')N ln-N(t/t')
(N -1)!

.JJe;(r-y)e (f,) -;T 11 (1 - {)t-lrN~(t, t', T, X, y, e)d{)aTae,

where

rN,,(t, t', T, X, y,~) = a~t'N (a{fg)(t, t + {}(t' - t), T, X, y,~)

= (t'/u)Na~uNa:g(t,u,T,x,y,~)lu=t+1J(tl_t). (1)

Note that ti/t' = t/t'+{}(1-t/t') is both bounded and bounded away from zero on supp 4>.
As far as the derivatives are concerned, we use the following lemma.

2.23 Lemma. For arbitrary N,j E N,

8~t,ja1,g(t,t',T,X,y,~)= O(((~,T))Ji-N).

Proof. We already have computed these derivatives in the proof of Lemma 2.15. In­
stead of the smoothness of (t'atl)kF( x, t, Y, t') Itl=t and (t'atl)kA(x, t, Y, t') Itl=t, we now use
the boundedness of (t'atl)kF( x, t, y, t') and (t'atl)kA(x, t, y, t'), whieh was established in
Lemma 2.4 and Proposition 2.9. <J

2.24 Remark. Let JE C~(R+). Then, for all j,j' E N,

(t'8tl)i'(t8t)iJ(t/t') is bounded on R+ X ~.

Moreover, it again is a C~ function of t/t', since

2.25 Conclusion. Aceording to 2.22 we only have to check the boundedness of the
derivatives (t'atl )il (t8t)i2D~DekN(x, t, y, t') for all j1 +)2 + la + ßI ::; M.

By Lemma 2.23 the integral for kN in Lemma 2.22 will converge whenever J1. - N <
-n - 1 and furnish a bounded continuous function on Rn X R+ X Rn X R+. Moreover,
differentiating under the integral sign, we see that D~De kN (x, t, y, t') will be bounded if
J.L - N + la +ßI < -n - 1.

What about the totally characteristic derivatives (fatl )il (t8t)hD~DekN(x, t, y, t')?
According to Remark 2.24, we need not worry about the terms f/>(t/t')(1-t/t')N ln-N (t/t');
furthermore, we have
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so we may foeus on the quest ion how the derivatives aet on rND.

From the observations that (i) uN 8~ is a linear eombination of totally charaeteristic
derivatives (u8u )i, j ~ N, and that (ii) u/t' = t/t' + 19(1 - t/t') is a function of t/t',
we conclude that it is sufficient to show that (t'8tf )iI (tßt)h D~De8t'g(t, t', T, x, y,~) =
O( ((~, T ))Jl-N. This, however, is (essentially) what we have done already in Lemmata
2.15 and 2.23, so the proof is eomplete. <J
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