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Abstract ‘
Let D be a manifold with conical singulafities, and denote by ID the smooth bounded manifold
with cylindrical ends obtained by blowing up near the singularities.

B.-W. Schulze has developed a framework for a pseudodifferential calculus on D by defining
various classes of distribution spaces and operator algebras, working in fixed coordinates on
the manifold ID. I am showing here that the Mellin Sobolev spaces without asymptotics, the
cone algebra without asymptotics, and its ideal of smoothing operators are independent of the
choice of coordinates and therefore may be considered intrinsic objects for manifolds with conical
singularities.
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Introduction

The Mellin calculus in the form developed by B.-W. Schulze [11], [9] provides a general
framework for the analysis on manifolds with conical singularities.

A manifold with conical singularities is a topological space D with a finite set of
exceptional points, vy,...,v, such that D\ {v,...,v.} is smooth manifold, while, in a
neighborhood of each v;, the manifold is homeomorphic to a cone X; x Ry/X; x {0},
where each X is a compact manifold without boundary.

The basic idea now is the following: Outside the singular set, one uses the standard
pseudodifferential calculus and the standard Sobolev spaces. Near a singularity v;, how-
ever, one identifies the manifold with the cylinder X; x Ry. For simplicity let us assume
we are dealing with a single singularity v with associated cross-section X of dimension
n. The analysis then relies on Mellin type operators and Mellin Sobolev spaces. More
precisely, one considers Mellin operators on R, taking values in the algebra of all pseu-
dodifferential operators on X; the Mellin Sobolev spaces without asymptotics, H*7(X*"),
are easiest to describe for s € IN when they consist of all functions u on X x R, such
that t*/2=7(18,)* D2u(z,t) € L*(X x R.) whenever k + |a| < s.

Basic contributions to the theory of differential problems on spaces with singularities
have been made by Kondrat’ev 3], Melrose [5], Plamenevskij [6], Schulze, and others. The
novelty of Schulze’s approach is that he introduces a complete pseudodifferential calculus
with a very small ideal of residual elements, the so-called Green operators, leading to
a Fredholm theory and results on the regularity and asymptotics of solutions to elliptic
equations.

The Mellin calculus without asymptotics provides the analytic frame within which the
main operations can be performed. Its components are (i) the Mellin Sobolev spaces,
(i) the cone algebra without asymptotics, and (iii) the corresponding space of residual
operators, the smoothing Mellin operators.

In addition, the Mellin calculus on manifolds with conical singularities lays the ana-
lytical foundations for a variety of more elaborate constructions such as pseudodifferential
calculi for manifolds with edges and and corners, boundary value problems [11], [7], {8],
manifolds with components of different dimensions [12], etc.

One of the drawbacks of the theory so far has been that all constructions are performed
in a fixed set of coordinates. While it could, of course, be conjectured that the actual
choice of coordinates was irrelevant, this has never been shown. The present paper finally
settles this question.

The paper starts with a short review of all important objects involved. Next, I derive
some general properties of the coordinate transforms and analyze the expressions that
naturally come up in connection with the invariance proof. Then I show that, under
a change of coordinates, the Mellin Sobolev spaces are preserved, c¢f. Theorem 2.10.
This immediately implies the invariance of the classes of residual elements, see Corollary
2.11. The final part studies the pullbacks of Mellin operators of arbitrary order under
diffeomorphisms.

The point of main interest is the analysis on X x R. In this text, the diffeomorphisms
will depend on both the variables £ € X and t € R,. Of course, one might argue that
the manifold /D can be endowed with a system of normal coordinates in a neighborhood
of the boundary X X {0} of the cylinder X x R,. The variable ¢ would then be given
invariantly as the geodesic distance to the boundary with respect to an arbitrarily chosen
Riemannian metric, and all changes of coordinates were of the form (z,t) — (x(z),t), x



being some change of coordinates on X. An important special case, however, is the case
where X is a single point only. Within this framework there would be only one possible
choice of coordinates on Ry = X x R, yet it is one of the points here to show that also
in this case the calculus is invariant under diffeomorphisms.

A topic of equal if not higher interest is the coordinate invariance of the Mellin calculus
with asymptotics. This will be the subject of a forthcoming publication.

Acknowledgment. | am grateful to B.-W. Schulze for many valuable discussions,
and I would like to thank the RIMS in Kyoto and Kyoto University for their hospitality.

1 A Short Review of the Mellin Calculus

1.1 Manifolds with Conical Singularities and Mellin Sobolev
Spaces

1.1 Definition. A manifold with conical singularities D of dimension n +1 is a topo-
logical (second countable) Hausdorff space with a finite subset & C D (‘singularities’)
such that D\Y is an n + 1-dimensional manifold, and for every v € ¥ there is an open
neighborhood U, of v, a compact manifold without boundary X, of dimension n, and a
system F, # @ of mappings with the following properties

(1) For all ¢ € Fy, ¢ : U, — X, x [0,1)/X, x {0} is a homeomorphism with ¢(v) =
X, x {0}/X, x {0}.

(2) Given ¢1,¢2 € F,, the restriction ¢1¢;" : X, x (0,1) — X, x (0,1) extends to a
diffeomorphism X, x (—1,1) = X, x (=1,1).

(3) The charts ¢ € F, are compatible with the charts for the manifold for D\X : The
restriction ¢ : U,\{v} — X, x (0,1) is a diffeomorphism.

The system F, is assumed to be maximal with respect to these properties. In this article,
I shall also assume that D is compact. D, the stretched object associated with D is the
topological space constructed by replacing, for every singularity v, the neighborhood U,
by X, x[0,1) via glueing with any one of the diffeomorphisms ¢. ID is a compact manifold
with boundary; int D is its interior.

Throughout this article the notation D and D will be kept fixed. For simplicity we
assume that there is only one singularity with cross-section X. Write X* = X x R,.. Let
X be endowed with a Riemannian metric and let X* carry the canonical (cylindrical)
metric.

We shall say that a function or distribution is supported close to the boundary of ID
if it vanishes outside the part of ID that is identified with X x [0,1).

1.2 Definition. Let U = U; x U; € R™ x R" be open. We say that p € S#(U,R")
provided that, for all multi-indices a, 3,~, the estimate

D3 DY DY p(y, y'sm)| < Caypiy ()"

holds. Writing dn = (27)~"dn, the pseudodifferential operator op p is defined by
oo pNw) = [ [ 5oty v )
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for f € C§°(Us),y € Uy. This reduces to

lop2(N(¥) = / oy, m) f(n)dtn,

for ‘simple’ symbols, i.e. those that are independent of y'. Here, f =fe ~ f(y)dy is
the Fourier transform of f.

We may also consider the case where a part of the covariables serves as parameters:
For U € R" open, p € $*(U,,R? x R}) then defines a parameter-dependent operator

op p(A) by
fop p(X)1(y) = / oy, 1, A) f(n)dn,

f € C&(U), similarly for ‘double’ symbols p(y,y’,n,A). Of course, all symbols can take
values in vector bundles, and all results carry over to this case. For the sake of simplicity,
however, | shall consider scalar symbols only.

1.3 The Manifold Case. Let Q be a smooth manifold and P : CP(2) —» C*() a
continuous operator. We say that P € L#(Q) if the following holds:

(1) For all C§° functions ¢,%, supported in the same coordinate neighborhood, the
operator (¢Py). : C(U) — C*(U) induced on U C R" by ¢ Py and the coordinate
maps has the form (¢Py). = op p for some p € S*(U,R").

(i1) For all C§° functions ¢, 1, with disjoint supports, the operator ¢P1) is given as an
integral operator with a kernel in C®°(§} x Q) (more precisely a kernel section, see
[2, Section 23.4]).

The fact that the pseudodifferential symbol classes on R™ are invariant under diffeomor-
phisms implies that property (i) is independent of the particular choice of the chart.

If P depends on a parameter A € R/, then (i) carries over, while in (ii) we ask that
the integral kernel belongs to S(R/, C°°(Q x 0)). Ishall then write P € L*(Q; R}).

Suppose we are given a locally finite covering of the manifold by relatively compact
coordinate neighborhoods {Q;} with associated coordinate maps x; : @; — U;. Then
we can find p; € $#(U;,R") and an integral operator with C'*-kernel, Kj, such that
P(fox;)(x*z)) = opp;(f)(z)+ K; f(z) for all f € C§°(U;). We shall call the tuple {p;}
the symbol of P.

1.4 The Mellin Transform. For 8 € R, I's denotes the vertical line {z € C : Rez = §}.
The Mellin transform Mu of a complex-valued C§°(R )-function u is given by

(Mu)(z) = L () d. ()

M is closely related to the Fourier transform and extends to an isomorphism M : L*(R;) —
L2(I‘%). (1) also makes sense for functions with values in a Fréchet space E. The fact

that Mu|p _ (&) = My (t7u) (2 + 7) motivates the following definition of the weighted
Mellin transfom M,:

Mou(z) = M, (tTu)(z +7), ué€ CF (R4, E).



The inverse of M, is given by

(M R)(E) = zi 1h(2)dz.

Tt F;;g.,-f

1.5 Sobolev Spaces and Weighted Mellin Sobolev Spaces. (a) H*(),s € R, is
the usual Sobolev space over a smooth compact manifold  with or without boundary.
For non-compact {2 we will have to specify additionally a density on .

(b) For s € N and v € R, the space H*"(X") is the set of all u € D'(X*) such
that ¢3-7(t8,)* Du(z,t) € L*(X") for all k < s and all differential operators D of order
< 8 — k on X. Here we use the canonical cylindrical metric on X* for the definition of
L*(X"). Next we define H*'(X*) for s > 0 by interpolation, then for s < 0 by duality:
HAY( X)) = [H™*~7(X")]’ with respect to the pairing

(u,v) = —2-}-— (Mu(z), Mv(z))1a(x) dz.
T [‘2;_1
Finally, H®"(X") = [),5o H*"(X"). This is not quite the standard definition, which
relies on parameter-elliptic pseudodifferential operators, but it is equivalent to it, cf. [9,
Section 2.1.1, Proposition 2], and better adapted to our purposes.
(c) We can apply the same definition for X = R". It is then easily seen that

l[wllres(RexRy) = [ @rytll s (roxr)

with @, .v(r) = exp(r(% —y)v(e") = (t”%"’v(t))' . cf. {9, 216(4)] Via a parti-

tion of unity on X we obtain a relation between the standard Sobolev spaces on X”* and
the Mellin Sobolev spaces on X*.

(d) The following relations hold: H*7(X") C Hf (X*); H™(X") = t7H™°(XM);
7_(0,0(XA) — t—nIQLQ(XA)_

(e) Fix a smooth function w on D, equal to 1 close to the boundary and supported
close to the boundary, cf. Definition 1.1. Given a distribution u € D'(intID ) we can write
u = u; +uz with u; = wu supported close to the boundary and u; = (1 — w) u supported
away from the boundary. We shall say that u € H*7(ID), provided that u, € H*7(X")
and uy € H*(ID). According to (d), the definition is independent of the choice of w. We
can topologize H*7(D ) as a Hilbert space, using the Hilbert space structures on H*7(X")
and H*(ID). We then have interpolation and duality as above.

1.6 Remark. An easy fact which is useful to recall: For every 0 < k € N there are
universal constants cx; and di; such that

k k
(t8)* = > " cit’®] and t*0f = di; ().
=1

=1



1.2 The Cone Algebra without Asymptotics

1.7 Notation. In the followinglet u,v € R be fixed. Given f € C*(R4 xRy, L#(X; Iy )
we shall write f = f(¢,,z), where z indicates the variable in Fl—-y For t,t', z fixed,
f(t,t, z) is a pseudodifferential operator on X. As before, | am assuming that all symbols

are scalar.

1.8 Definition. Let f € C®(R, x R+,L“(X;I‘%,7)). We define the Mellin operator
opysf with the (Mellin) symbol f on C(X") = CF (R4, C®(X)) by

b0 = 5 [ [y sttt s 1)
Tyoy O

The right hand side of (1) is to be understood as an iterated integral. If f is independent
of ¢’ or, equivalently, f € C°°(R+,L“(X;F%_7)), then (1) reduces to

PR () = 7 [ ¢ 2 Ml a)e @
L

We did not specify the variable z in (1) or (2), understanding that, for fixed ¢/, u(¢') =
u(-,t') is in C*°(X) and that f(t,¢,2) acts as a pseudodifferential operator with respect
to the z-variables.

Like pseudodifferential double symbols, Mellin double symbols are not uniquely deter-
mined. It is immediate from integration by parts in (1) that

opj (/) (1,1, 2)) = opy [0 £ (1, ', 2)]. 3)
Similarly, it follows from a consideration of the integral kernels that
opx[¢(t/t) (1, ¥, 2)] = op}y (Moo {$(p) M1, £ (2,1, ()}] (4)

for every ¢ € CP(Ry). For f € C®°(Ry xRy, LA(X; Ty L)or f € CP(Ry, LA(X; 1";__.,))
we will have a continuous map

oparf : G5 (X)) = C=(X7).

Smoothness of f up to zero yields continuity of opy,f on the weighted Mellin-Sobolev
spaces, cf. Theorem 1.9; the preceding relation (3), however, shows that smoothness is
not necessary.

1.9 Theorem. Let f € C*(R, xRy, L*(X; L1 +4))- Given s € R and wy,w; € Ce(Ry),
there is a bounded extension

wrlopfe Sz  HATFE(XN) — HOHTHE(XA),

We will also need the following results. They show that, just as in the case of pseudod-
ifferential operators, one has asymptotic summation of symbols. Moreover, one obtains
smoothing operators by a special analytic procedure that Schulze calls ‘kernel excision’.



1.10 Asymptotic Summation. Let u,ps,... be a sequence in R tending to —oo,
fi € C®°(R4 % R+,L”J(X;F1§_.7)), and g = max g;. Then there is an

feCeRy x Ry, LH(X;Ty_,))

with f ~ 372 f, i.e, for any N € N there is a J with

J
[=)_ fi € Co(Ry xRy, L N(X;Ty ). (1)

=1
This f is unique modulo C®(Ry4 x Ry, L™°(X; Ti,))-

1.11 Theorem. Let ¢ € C5°(Ry) and suppose that ¢(t) = 1 near t = 1. For f €
C(Ry x Ry, LH(X;Ty ) let

At 2) = My [¢(p)M;_ f(t,1,2)]
fa(t,t,2) = M,_[(1 = $(p)) Moo, f(t,1,2)].
Then fl € Cm(m X ﬁ-l—»Lu(X; FI/Q—"!)) and fg(t,t',Z) € Coo('ﬁ-l_ X ﬁ-}-:L_oo(X; Pl—‘y))'

2

1.12 The Cone Algebra without Asymptotics.

(a) ML;*=(ID) is the set of all operators G : Cg°(intD ) — D’(int/D ) such that, for
all s € R, there is a continuous extension G : H*" (D) — H®7(D).

(b) MLA(ID) is the space of all operators A : C§°(int/D ) — D’(intiD) that can be
written A = Apr + Ay + 174G, where

Apr 1s a Mellin operator supported close to the boundary, i.e., there are functions wy,w, €
C>(ID), supported close to the boundary of ID, cf. Definition 1.1, and there is a
Mellin symbol f € C*(R4 x Ry, L*(X;T1/3-4)) such that Ay = t™Pwiopy, fuwn;

Ay is a pseudodifferential operator supported away from the boundary, i.e., there are
functions ¢y, ¢, vanishing in a neighborhood of the boundary of ID, and there is a
symbol p € S#(intID ) such that Ay = ¢; opp ¢;. Finally,

G is an operator in MLZ®(ID).

The collection of all the spaces MLE(ID ), for u,v € R is the cone algebra without
asymptotics.

1.13 Remark. (a) It is obvious that, for fixed u,~, the operators in ML4(ID) form a
vector space and that an operator A € M LA(ID ) induces a continuous mapping

A: (D) - HmRm (D),

In particular: If the Mellin symbol f of Aps is an element of C*°(Ry xRy, L~=°(X;T1/2-4)),
then Ap € t™#MLI*(ID).

It is not so trivial that the cone algebra without asymptotics is an ‘algebra’ in the sense
that, for all g, 7,4 € R, the composition of operators induces a continuous multiplication

MLE_ (D) xMLE(D) — MLEYH(D).
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(b) Tt follows from the mapping properties that the operators in ML2**(ID ) form an
ideal in the sense that the above multiplication restricts to continuous maps

tTEMLIZ (D) x MLA(ID) — t™**ML;*(D);
MLs_ (D) x t™*ML;®(D) — t™*ML;*(D).

(¢) In particular, for y = 0 and arbitrary y, ML} (ID ) is an algebra in the usual sense,
and ML;*(D) is an ideal.

We shall need the following relation between Mellin and pseudodifferential operators.

1.14 Theorem. (a) Let ¢,% € C(intD), and let Ay be a Mellin operator as in
Definition 1.12(b). Denote, for the moment, by My and My the operators of multiplication
by ¢ and i, respectively. Then there is a pseudodifferential operator B € L*(intID),
supported in the interior of ID, with MyAp My = B.

(b) If ¢,% € C(ID) and supp¢ Nsuppy = B, then MyAp My € t™*ML;°(D).

2 Coordinate Invariance

2.1 Outline. Assumptions on the Coordinate Transforms and
Their Properties

2.1 Outline. In order to show the coordinate invariance of the Mellin calculus, we
will first establish the coordinate invariance of the spaces H*Y(ID ), cf. Theorem 2.10. It
entails the coordinate invariance of the residual classes MLZ(ID ), cf. Corollary 2.11.
The pseudodifferential operators in the calculus are supported away from the singular
set. Their invariance is a consequence of the well-known fact that the pseudodifferential
calculus on smooth manifolds is well-defined. The only subtle point therefore will be the
behavior of the Mellin operators: If « : U — V is a diffeomorphism of bounded open sets
U,V CR" x R, and
A=op}f : CR(V) = C2(V)

is a Mellin operator, what can we say about the pullback
A, : CP(U) = C=(U)

defined by
(Awu)(2) = [A(uo k™ D)(k(E)), ueCPW),z2eU?

I shall show that A. again is a Mellin operator by computing a Mellin symbol simply
by substitution in the oscillatory integrals, then deriving an asymptotic expansion of this
symbol and showing that it makes sense. In order to make this more precise, we need
some notation.

2.2 Notation and Elementary Properties of the Changes of Coordinates. We
want the change of coordinates to preserve the cylinder X x Ry. So let U,V be bounded
open subsets of R* x R,., and let

k:U-V diffeomorphically.



Write
(z,8) = K(z,t) = (x(z,1),0(2,1)) = (xa(@, 1), -, Xul2, 1), 0(2, 1))

Since the boundary is preserved, &(z,0) = (x(z,0),0); hence, for all z with (z,0) € U,
0z,0(z,0) =0, j=1,..,n.

Furthermore, the total derivative 8« is regular, so we necessarily have d,0(z,0) # 0 for

all z, even
0:o(z,0) > 0,

since the R -direction is preserved. In the total derivative dx, written as an (n+1) x(n+1)

matrix 9 9
z X tX
3"‘(6,0 c%:r)’

J:x(z,0) will be regular for all z. We may therefore find an ¢ > 0 such that, for all
(z,t) e U,
6 < Oio(z,t) < 1/eq; (1)

e < |det dxx(z,t)] £ /€. (2)

Moreover, since we are only interested in changes of coordinates in a neighborhood of
X x {0}, we may assume that there is an €; < ¢, with

0 < |0z0(z,t)| < €2 (3)
for all (z,t) € U, and that
U=U'x[0,e) (4)

for some convex open subset U’ C R", where €; > 0 is small.

2.3 Outline (continued). I would like to first explain the concept without specifying
‘a particular symbol class. Assume that f = f(t,1,2,2,y,{) is a smooth function on

R, xR, x Iy, xU' x U' x R", where U’ is as in 2.2(4), that f vanishes unless ¢ and
t' are both small, and that f is subject to reasonable growth conditions. In order to
simplify even more, let ¥ = 1/2, so that I'y/;_, is the imaginary axis, and use the variable

7 € R instead of z € :R. We want to compute the pull-back of the Mellin operator op}é2 f
induced by f. So we choose u € C(V), (z,t) € U, and let u = u o 1. By definition,

[OPMf] z,t) = [OPMf]“(

// /f e (t:’) ‘zf(i'f’b-"i’&af) u(y, )dydﬁdt’d‘r (1)

Ignoring problems about the existence of the integrals and writingy = x(y,t'),t' = o(y, ),

ot - L[] [ ()"

flo(z,t),0(y, t’),z,x(:c,t),x(y,t'),g)u(y,t)Jg,t,;t d—dydfdﬂ (2)




where J(y,t') = | det dx(y,1’)|. We therefore will be interested in the behavior of J(y,t')ﬂj—t,).
Assuming that everything works well, we then write

ei(x(z,t)—x(y,t’))i ( J(IB, t) ) e —_ ei(:‘:"y)Bl (z,t,y.t')(é)(f_)-iBg(r,t.y.t’)(é), (3)

o(y,t") t

where By is a suitable n x (n + 1) matrix and Bz an 1 X (n + 1) matrix. Our above
assumptions on the change of coordinates will imply that the (n + 1) x (n 4+ 1) matrix

B = ( 1331 ) is invertible. Let A = B~! be of the form A = ( il ) with an n x (n +1)
2 2

and an 1 x (n + 1) matrix, and let

H=slE e = ()] o

Then we can change variables in (2) and obtain

s = [ [n()
o) o)A ] xte 0,x,0), 4]

.u(y,t)J(y, ).

dt’
t'|det Az, t,y,t")| —dy d€ dr. 5
T det Ao, 0,0 )

1
In other words, this purely formal computation shows that [opZ,f]. = opig with

§(t,t', 7, z,y,6)

~ J(o(a, ),a(y,t'),Az[f],X(I,t),x(y,tr),Al[f})M

a(y,t)

Of course, § will in general not be an element of the “right” symbol class, and we

t' |det A(z,t,y,¢)].  (6)

T

!
will have to replace § by a symbol g such that [opM fl« — opi,g belongs to the corre-

Jpondmg class of residual operators. Our first task now will be the analysis of the term
Hut) g | det A(z,t,y,1')|.

a{y,t’)
2.4 Lemma. There is a function ¢ € C*(U) with
aly,t) = te?W)  (y ) eU.

We have J(y,i')a—(;ﬁ,—) € C(U), moreover, this function is bounded away from zero,

provided that the constant ¢; in 2.2(3) is sufficiently small.

Proof. We have o(y,t") = o(y,t') —o(y,0) = f, 8io(y,9t')dd-t'. Since 0 < & < d0 < 1/e
on U by assumption 2.2(1), the mtegral is a smooth function of y and t, both bounded
and bounded away from zero. Thus

1
bwt) =l [ 2o(y,90)9 € CR(O),
0

10



and the first assertion is proven.

By definition, J(y,t) = |det dx(y,t')|. Suppose we had 0,0(y,t’) = 0 on U. Then es-
timates 2.2(1) and 2.2(2) would imply J > €?. Hence the continuity of the determinant
shows that J > €2/2, if ¢, is small. Moreover all entries of the matrix for 9k are C{°
functions on U, so det 9« is C5°, and so is |det dk|. Since W = e~¥Wt) we get the
desired result. <

Now let us let have a look at identity 2.3(3). As a preparation we shall need the
following lemma.

2.5 Lemma. Fort,t’' € Ry let T(t,t") = lm']m, Then T is a smooth positive function
on R, x Ry, T(t,t) =t. Moreover,

(a) T(t,t') < max{t,t'}.
(b) Let 0 < 8 < 1. Then on the set {(t,t') € (0,1) x (0,1) : {¢t/t' — 1| < } the functions
t'=1(t'8y)* T(t,t') are bounded, k = 0,1,...;
(c) t*195T(t,4')|=¢ is smooth up tot =0; k=0,1,....
Note that T cannot be continued to a function in C®(Ry x Ry).

Proof. T is smooth and > 0, for In is smooth and monotonely increasing on R. Moreover,
T has no zero, since T'(¢, t) =t>0.

(a): [lnt —lnt'| = ‘fo - t,)llt—t| > min{1/t, 1/t'}t — .

(b) Let z = t/t". Then1 -6 < z <1+, and T(¢,t') = t’ilan—} &=l So T is
of the form T'(¢,1') = t' p(x)|s=¢y» with a C°-function ¢. But then t'd}[t'p(z)|p=tjp] =
t'o(z)|ezeje — t'(20:)(x)|2=4/0 is of the same form. Hence we get the assertion.

(c) Consider first the function M(¢,t') = T'(¢,')~" and show that 85M(t,1') |¢r=i= cxt~*?
for suitable ¢y € R, k = 0,1,... . By induction, 85[M(t,#")™"] is a linear combination of

terms of the form .
M(t, )™ H FM(t,t),

where r < k and §.,_, i = k. This 1mphes that OET(t,t) |u=e= OE[M(t,8) Y] |o=t is a
linear combination of terms t™+14~""% 0 <r < k. <

2.6 Lemma. We have, in the notation of 2.2 and 2.3,

Sz -x{mNE (_M) T iem)(BT e+ DI ) (i

—i(DIT(t.Ve+ DT T(t,t')1)
o(y,t) t’)

(1)
with
1
Dy = Di(z,t,y,t) = f O:x(y +9(z —y),t' + I(t — 1)) dd;
v}
1
D, = ﬁ2(zat1y7t') = _/ [aﬂ:lna](y + 19(:1'2 - y)stl + 19(t - t’))dﬂ;
0

-~ ~

1
Da(z,t,y,t) = _f Bx(y + 9(z — y), ¥ + 9(t — t'))d9;

S
I

Dy= Dy(z,t,y,1) / [Bilno)(y+9(z —y),t' +9(t — t'))dY.

11



Note that Dy, ..., D4 are matrices of functions of sizesn X n,1xn,nx1,1x1, respectively,
(-)T denotes the transposed matrix. The matrices D], D] form the matrix By of 2.3(3),
while DIT(t,t), DIT(t,t') form B,.

Proof. The left hand side of (1) equals exp{i([x(z,t)—x(y,t')){ —[Ino(z,t)—lno(y,t')]z)}

= exp{i([f; Qexdd(z—y)+ Jy Oxdd(t—t))e~ [y Oz Inodd(z—y)+ [} O Inodd(t—1))r},
where the argument y + 9(z — y),t' + J(¢t — t')) has been omitted under the integrals. <

2.7 Lemma. The matrices Dy, ..., D4 of 2.6 are smooth functions on U x UN {t,t > 0}.
Moreover, we have the following properties.

(a) det Dy € C°(U x U) is bounded away from zero on U x U provided that |z — y| and
|t —t'| both are sufficiently small.

(b) D, € C°(U x U).

(C) 123 € CEO(U X U)

(d) Dy(z, t,y,t") - T(t, ') =1 + r(=, t,y,t")T(t,t') with a function r € CP(U x U).

Proof. According to 2.4, Ino is a smooth function on U N {# > 0}, hence all functions are
smooth on U x UN {t,t' > 0}. Now (a) is immediate from 2.2(2). In order to see (b) note
that, in the notation of 2.4,

d:Ino(z,t) = 8,9(x,t) € C(UV).
(c) is trivial. For (d), observe that & Ino(z,t) = 1 + dp(z,1); therefore

/l(at Ino)(y + 9z — y), ¢’ +9(t — t'))dd

Int — Int’

= BT + /0 (Oup)(y + Iz - y),t' +9(t - tl))‘w'

This leads to the desired form. <

2.8 Corollary. Let, as it has been outlined in 2.3 and 2.6,
DT (z,t,y,t") DT (z,t,y,1)
t t’ — - 1 1Py - 2 RS N-0 1
Bz ty,t) (Dg(z,t,y,t')T(t,t') Dy(z,t,y,t"YT(2,1) (1)

with the matrices D],bg,ba,f)4 of Lemma 2.6. As before, ()T denotes the transposed
matrix. Then det B is smooth on U x U N {¢,#’ > 0}; it is bounded and bounded away
from zero on U x U, provided that

(i) |z — y| is sufficiently small, and
(ii) t and t' both are small.

Notice that (ii) will be automatically fulfilled, if the constant e3 in 2.2(4) is sufficiently
small. Furthermore,

, ; DT DI ,
det B(z,t,y,t') =T(t,t"Ydet | =7 =% |(z,ty,t), (2)
D3 Dy

DT DT
hence ( D;, D;‘l’. ) is regular on U x U N {t,¢' > 0}.
3 U

12



Proof. This follows from Lemma 2.7 in connection with Lemma 2.5(a). <

The principal result of this section now is the following proposition.

2.9 Proposition. Let A(z,t,y,t') = B(z,t,y,t')" with the matrix B of Corollary 2.8:
in order for this definition to make sense we assume that (i) and (ii) of 2.8 are fulfilled.
Fix 0 < 6 < 1. Then, for all k € N, all multi-indices a, 8, and all t,t' with [t/t' — 1| < §,
we have

¢85 Dg DS Az, t,y, )| |c(cr1y < Chrags: (1)

Moreover, the matrix function
t’katk"D:DgA(xats yat,)lt‘=t (2)
is smooth up tot = 0.

Proof. We have A = B™!; hence 6,’3D§,’Df A by induction is a linear combination of terms
of the form

B8 D3 DS B1B~Y (02 D2 DBt .. [0} D3 DA B B!

withki+...+kh=kao+..ta=c 8+...+6=pFand < |a+ 8| +k Itis
therefore sufficient to show that

(i) “A“E(Cn+1) = ||B"1”£(cn+1) is bounded, and
(ii) ||¢**6% D2 DP B|| c(cne1y is bounded.

By Lemma 2.7, all entries of B are bounded functions on U/ x U; moreover, the determinant
is bounded away from zero for small |z — y| and small |t — t’|. Hence (i) follows from
Cramer’s rule.

For (ii) we recall that 9% = Ef:o e;x(t'0y ) for suitable e;r. Then we use Lemma 2.7,
Lemma 2.5(b), and Leibniz’ rule. In order to show that the function (2) is smooth up to
t =0, it is sufficient to prove

(iii) A(z,t,y,t) = B(z,t,y,t)”" is smooth up to ¢t = 0, and
(iv) t*85D2 DEB(x,t,y,t’)|y=: is smooth up to ¢t = 0.

Since T'(t,t')|¢=¢ = t, relation (iii) follows from Lemma 2.7. Also (iv) is immediate from
Lemma 2.7 in connection with Lemma 2.5(c). <

2.2 Invariance of the Cone Algebra without Asymptotics
Let us start with the Mellin Sobolev spaces.

2.10 Theorem. The spaces H*"(ID), s,v € R, are invariant under changes of coordi-
nates.
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Proof. In view of interpolation and duality we may assume that s € N. Moreover, since
H* (D) — H}_ (intdD) and the invariance of the usual Sobolev spaces is well-known, it
is sufficient to consider functions with support close to the boundary of ID. Let therefore

& : U = V be a diffeomorphism of bounded open subsets of —R—Tl as in 2.2, and suppose
that u: V — C is a function with compact support in V| satisfying

7% (88,)* 0 u(z, t) € LA (V) (1)

whenever k + |a| < s. Our task is to show that, for the pullback u o «,
7% (t9,)%0%(u o &)(z,t) € L}(U). (2)
Writing, as in 2.2 and 2.4, x(z,1) = (x(z,t), o(z, 1)) = (x(z, 1), £ = (g, 1), we have

Oslu(x(z,1),1e*M)] = (1) (x(z, 1), te*™V)(Dex) (2, ) +
+(0u)(x(z,t), te=)te?E0(9,9) (2, 1)

and

(t8)[u(x(z, ), te*N)] = Hdu)(x(z, 1), te**)(Bix)(z, 1) +
+(Bu)(x(2, 1), 1) ¥ 4 te¥ =D p(z, 1)]
= (Ozu)(z,1)(t0x)(,t) + (t0u)(z, )1 + (t0)(z,1)].

By induction, (t8;)¥02(u o k)(z,t) is a linear combination of expressions of the form
[(;6£)ia_gu]|(x Deriz) b;p(z,t) with smooth bounded functions ;s and j +|8| < s. In order
to see this, note that ¢ is bounded on supp u and that all derivatives of & are bounded.
Therefore, [ |73 (¢8,)*92 (uok)(z,t)|*dzdt can be estimated by a finite linear combination
of integrals of the form

[ 1 a0y 0w, )0, ) dact
= / |57 (2, 1)) £ (10 2u(, 1)bis(x~ (2, 1) P (2, t)dadt (3)

Here J = Ox~' denotes the Jacobian determinant, which is bounded, and [£~(z,£)]n41 is
the (n + 1)-st component of the vector k~!(z,1), i.e., ¢ in the new coordinates.

Since t = texp¥(z,t) and ¢ is a2 bounded function, there are constants ¢, cz, with
a L t/t = [z, t)]a+1/t < c2, hence (1) implies that all integrals in (3) are bounded,
and the proof is complete. |

2.11 Corollary. The class ML;*°([D) is invariant under changes of coordinates, since
all spaces H*7(ID), s € RU {o0},y € R, are.

2.12 Outline and Reduction of the Task. Let us now have a look at the operators
in the cone algebra without asymptotics. According to Definition 1.12, an element of
A€ ML4(D) is a sum of three operators: A = Ay + Ay +17#G where Ay is a Mellin
operator supported close to the boundary of ID, Ay is a pseudodifferential operator in
the interior, and G is an operator in M L>*°(ID ). Our task now is to show that such a
representation is independent of the choice of coordinates.

14



Step 1. We have seen in Corollary 2.11 that the operators in ML (D) are invariantly
defined. In the notation of Lemma 2.4, o(z,t)™* = t~#exp(—pp(z,t)) with the C°
function . Noting that the function exp(—p(z,t)) has a smooth extension up to ¢ = 0,
the factor =# can be ignored. Moreover, it is known that the pseudodifferential calculus
13 coordinate free. Hence, it remains to consider the Mellin part

Ay =t wiopyy fwr

of A. Here, wy,w, are functions that are supported close to the boundary of ID and equal
to 1 close to the boundary, and f € C*°(Ry x Ry, L*(X; ['y/2-4)). As before, the factor
t™# can be ignored.

Step 2. We know from Remark 1.13(a) that, for f € C°(Ry4 x ﬁ+,L ®(X;T1j2—4))s
the operator Aps will be an element of ML;°°(1D) Solet f € C°(R+ xRy, L*(X; Ty ja-r)),
and suppose for the moment that ¢, are smooth functions, supported in a single coordi-
nate neighborhood U’ for X and satisfying ¢ = ¢; by My, M.;,, M, _, denote the operators
of multipliction by ¢,%, and 1 — + respectively. Then (¢,t',2) — My f(t,t', z)Mi_y is an
element of C*(Ry x Ry, L~°(X; T'y/2-)), and the corresponding Mellin operator can be
ignored in our considerations.

On the other hand, the operator-valued function My f(t,t', z)My is given by a local
parameter-dependent symbol, depending on the variables t,¢' € R, and the covariable
z € I'y/2-. The operator Aps therefore can be localized to a coordinate neighborhood for
ID of the form U = U’ x [0, €), with suitable € > 0.

Step 8. The constant € can be chosen arbitrarily small. In order to see this, choose
smooth functions wj,ws,ws supported in an arbitrarily small neighborhood of the bound-
ary of ID and satisfying w3(t) = wy(t) = ws(t) =1 close to the boundary, while waws = wy
and wyws = ws. Write

Aym = wzApws + (1 — ws) Apws + ws Apr(1 —wy) + (1 — ws) Ap{l — wy).

According to Theorem 1.14(b), the operators (1 — ws)Apws and ws Ap(1 — wy) are ele-
ments of ML;°(ID). In view of Theorem 1.14(a), the operators (1 —ws)Ap(1 — wy) are
pseudodifferential operators supported in the interior of ID. We know that both these
classes are preserved, so we focus on w3 Apws.

Step 4. Hence we are reduced to the case where wjop},(f)w, is the operator defined

on CP(U’ x (0,¢€)) by

[wlopM(f Yws](u)(z,t)

T om /rm-/ // et (f) bt 73y, Oulps ¢ )dya‘gdt'dz (1)

with a function f € C*(R,; x Ry, 5*(U' x U',R* x I'y/2-4)). Obviously, the choice of
the line I'y/,_, is irrelevant, and it is no restriction to assume v = 1/2. In the integral
(1) we may then replace the line I'yj5_, by I'o = iR and the variable z by ¢7. Writing
dr =1/(27)dr = 1/(2ni)dz and f(t,t',7,2,y,£) = f(t, v, i1, z,y,€), we will then precisely
have the situation of 2.3(1).

Step 5. We may assume that f(t,t', 7, z,y, £) vanishes unless [z —y| is small: Otherwise,
we might choose a function ® € C®(U’ x U') supported in a small neighborhood of
the diagonal {z = y} and equal to 1 in a smaller one. Replacing f(t,t,7,2z,y,£) by

15



f(t,t',7,2,y,6)®(z,y) results in an error which is an element of C®(R., x Ry, S~ (U’ x
U',R™ x R)), hence induces an operator in ML 7 (D).

Step 6. We finally make one further simplification. We choose a function e CP(Ry)
supported in a small neighborhood of 1 with 1(p) = 1 for p close to 1. Then, according
to Theorem 1.11 and 1.8(4), we have

Opi;f - Opif['l,[;(t/t’) fle ML1/2 (D)

In other words, we may assume that f(¢,t',7,z,y,£) vanishes unless |¢/t' — 1| is small.
Step 7. The simplifications of Steps 3, 5, and 6 show that the Mellin symbol f =
f(t,t,7,z,y,€) satisfies the assumptions necessary for Lemma 2.7, Corollary 2.8, and
Proposition 2.9: f(t,t',7,x,y,£) vanishes, unless
(i) |z —y|is small,
(i1} t,t' are small, and
(i) |¢/t' = 1] is small.

Step 8. The idea now is the following: We have seen that the pullback of op}u f can
be written in the form used in 2.3. Considering the integral an oscillatory integral we
may indeed change the order of integration, perform the substitutions and conclude as in
2.3(6) that the pullback is the Mellin operator with the symbol

3t £,72,3,8) = 1(0(2, 8,00, A || x40 £ Pt

with smooth matrix-valued functions A;, Az, and F, analyzed in Section 2.1. A; and A,
also depend on (z,t,y,t'). Here I have written F(z,t,y,t') instead of the expression

J(y& )
oy, 1)

-employed in 2.3(6); recall that A is the (n+ 1) x (n + 1) matrix formed by the n x (n+41)
matrix A; and the 1 x (n + 1) matrix A,.

We will next use a Taylor expansion of order N € N for the function § at ¢’ = {.
We will show that the terms of the expansion furnish Mellin symbols in C®(R.., $*(U’ x
U',R™ x R)), while, for given M > 0, the remainder term will induce a bounded linear
operator between the Mellin Sobolev spaces H~M("+1)/2 and HM:(+1)/2 provided N is
sufficiently large.

Usmg asymptotic summation, ¢f. Theorem 1.10, we conclude that the pullback of
opM ?f is a sum of a Mellin operator and an operator in ML{72(ID). This will take some
time. The remainder of the proof is therefore split up into a series of lemmata; we will,
however, keep the notation we have introduced so far.

t'|det A(z,t,y,t)]|

2.13 Lemma. Write, with arbitrary N € N,

N- 1

§'(t,t',7',a:,y, t,t’,’f' Iy, £)|t’"t+(t —t) TN(t,t’,T,:t,y,{), Wlth

3=0

TN(t,t',T,I,y,f) = (“-Nl—_l)'/o ( )N 16 (t t+l9(t —-t),T,IL‘ y,f)dﬁ
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Then, for each j, Bf,g}(t,t’, 7,2,Y,£) is a linear combination (with universal coefficients) of
terms of the form

(00205301 )o(e. 1,00, ), Aa | oxte x40

A J2
[Tolr* otv,t) []106™ a2 a1,y 1060 - 1)
p=1

g=1

11 ]‘[ A xu(y, t 1‘[ H[a"-"““ 100 (2,4, 9,8)n] - (2)

v=1lr,=1 v=1 a,=1

P F(z,1,y,t).

Here, jl’jZaj& kpa lq?mry:nau €N,

31+Jz+33+|a|+|ﬁ|+zk +ZI +szn+zzn,y—1,

v=1 r,=1 =1 s,=1

¢, and {; stand for any elements of {1,...,n4+1}; @3¢, =1,...,n+1 are the entries of the
1 x (n+1) matrix Ag; a1e,v=1,...,n,f=1,...,n+1 are the entries of then x (n+1)
matrix A,; and, to avoid additional notational complications (¢1,...,6np1) = (€, 7).

Proof. The formula is proven by induction, and it is much easier than it looks. It is
obviously true for j = 0. Assume it holds for some 7. Then take an additional derivative
with respect to t'. According to Leibniz rule, it will result in a derivative of one of the

factors.

(i) In case we have to take a derivative of the first factor, we will get a derivative
of f with respect to either ¢/,7,y,, or £ and a corresponding factor dvo(y,t’),
Ovage(z,t,y,t)e, Ovxu(y,t'), or Ovay e(z,t,y,t")€e; moreover, one of j1, 72, |al, and
|B] will increase by 1. Otherwise the form above is preserved.

(i) In case we have to take a derivative of one of the products in (1) or (2), we again
apply Leibniz’ rule. One of k;,{;, m,,, and n,, will increase by 1; the others remain

unchanged.

(iii) Finally, we might have to take a derivative of Bf,a (z,t,y,t'), which only increases
ja by 1. q

2.14 Lemma. There is a function ¢ € C(R..) with ¢(p) =1 near p = 1 such that
(t/t) (tt TIy,{)zé(t,t’,T’x,y,f)-

In particular, we will have

opli = oplle(t/t)d]

- Z;opi,[qﬁ(t/t')@—;,i)—’

g3(t, 7,2, 1, €)] + oply (/)]

with gj(t,‘r,m,y,f) = [af'g](tst’: Ta"‘::ya{)lf'=f‘
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Proof. In view of the fact that f(¢,t',7,z,y,£) vanishes unless [{/t' — 1| is small, we
know that §(¢,t,7,z,y,£) vanishes unless |o(z,t)/o(y,t') — 1] is small. Next we note
that o(z,t)/o(y,t") = t/t' - exp[¥(z,t) — ¥(y,t’)] with the function ¥ € C introduced in
Lemma 2.4. Hence, |o(z,t)/o(y,t') — 1| cannot stay small as ¢/t tends to 0 or +co, and
g(t,t', 7, z,y,€) will vanish for ¢/t outside a compact set in R,.

The remaining statement follows immediately. <

2.15 Lemma. Let g; denote the functions introduced in Lemma 2.14. Then tig; €
C®(R,,S* (U x U',R" x R)).

Proof. We use the form for g; implied by Lemma 2.13. By Proposition 2.9 we have
(%08 A)(z,t,y,t")|v=¢ and [t*D5F)(z,t,y,1")|s=¢ bounded for all k; moreover, &,a(y,t')
and &,x(y,t') are clearly bounded for arbltrary l. The assertion will therefore be proven
if we show that

B0 DEDEDT
(002031 (a,1), 0, 42| | 2,0 x(000), [ ]
— O((E,T)#_h_lﬁl_l&l-k)-

t'=t

Obviously, derivatives with respect to z,y, and ¢ produce terms just like those we have
analyzed. So we may assume that |3| = |J| = { = 0, and the only point to clarify is
the behavior of derivatives BﬁDf’. This, however, is easy: These derivatives are linear
combinations of terms of the form

(ag}ai'ﬁm a;@f“f)(g(g;, t),o(y,t'), A2 [f_] ,x(2,1), x (v, ), Ay [f]) '

n+1 n n4l

Ha21 :B;tvya "IHHG] vI T t:y) “If'

v=1 =1

with r,6,1 € N, n; + |6] = k + |&|. In view of the properties of f and the fact that the
functions a;,; as well as a, ,; are bounded, the expression is

o(( Al[‘f}’fh[fbu—h—lﬁl—m-lﬁl) —o( A[f_])u-.ﬁz—lﬁl—k—lﬁi)_

T T

Now we know from Corollary 2.8 and Proposition 2.9 that det A is both bounded and
bounded away from zero. Hence Cramer’s rule shows that

alte, ) <14] 8] < alte.n)

for suitable positive constants ¢; and ¢z, and we obtain the desired estimate. <
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2.16 Corollary. We have

).i

opi,[qs(t/t')“;—fg,-(t,r,z,y,s)]

- 31_' op[$(t/t) (' [t — 1Y8g;(t, 7, 2,9,6)]

= Jl_l opIB(t/t) ([t — 1Y =i (¢ 1) (=i Bl gyt 7, 7, y, &)

= = op}, MIp(p)(p™ = 1Y In™ (P )My ., (€ gt —iz, 2,5, €))]-
7!

For the last identities, we have used 1.8(3) and 1.8(4). Notice that, by Lemma 2.15 in
connection with Theorem 1.11,

Mo c[$(p)(p7! = 1 I~ (p )M, (HFBlg;(t, =iz, 2,y,£))]
€ C¥(R,, S (U' x U',R™ x RY)).

2.17 Outline (continued). We shall now consider the remainder term opi,[qS(t/t')(t' -
tYWrn(t,t',7,2,y,€)] and show that, given an arbitrary M > 0,

opR[#(t/t)(¢ — t)"ry] : HMEHI/AR® x Ry) = HMCHIARY X R,)

is bounded, provided N is sufficently large. In order to prove the boundedness we will
consider the distributional kernel of the operator, i.e., the function ky = ky(z,t,y,t)
that satisfies

opd[B(t/)(E — )V ru(z,t) = / N / k(e 1y, U)uly, £)dydt' /1.

An argument based on a modified Hausdorff-Young inequality, see Lemmata 2.19 and
2.21, below, will then conclude the proof.

2.18 Remark. Note that u = u(z,t) € H*(+D/2(RE x Ry ,),s € N, if and only if
(t8,)'0%u € L*(R" x Ry, dzdt/t) for all | 4 |af < s.

2.19 Lemma. (Modified Hausdorff-Young Inequality) Let A € L}(R*xR., dzdt/t)
and u € L*(R™ x Ry,dzdt/t). By exp denote for the moment the mapping R* x R —
R"™ x Ry given by (z,t) — (z,e'). Then

00
1™ [ = v tsute, Oyt e neneraea
0

” // /\(33 - y’ea/ea‘)u(yve,’)dde’IILQ(R"xR,dzda)

I[A o exp] * [u o0 exp]|L2rrxR)
< |I[A o exp]|lLirrxry {4 0 explll 2wy
A || Lt (R xRzt 6] 22 (Re xRy dodife)s

where the only inequality is Hausdorff- Young’s.
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2.20 Remark. Let M € N. Then H;M'(“+1}/2(R“ x Ry ) is the space of all distributions
u € D'(R" x Ry) that can be written

u(z,t) = Z (t8,)' 0%uie(z,t) with suitable ug, € HO/Z(R" x R,).
4|aj<M

2.21 Lemma. (a) Let k = k(z,t,y,t') be a continuous function on R x Ry x R* x R,
and suppose that there is a function go € L'(R™) and a function ¢ € L'(R4) with
|k(z,t,y,t")| < o(t/t)go(z — y). Then the operator K, defined by

Ku(z,t) :/ /k(..":, t,y, tu(y, t')dydt' [ (1)
0
for v € C§°(R™ x Ry), has a continuous extension
K HOEHI(RY  Ry) — HOOHD/A(RM x Ry).
(b) Let M € N, and suppose that, for some gy € L'(R") and ¢y € L*(Ry), we have
|(¥'00) (t0) 20205 k(z, t,y, )| < Yum(t/t)gm(z — y) whenever ji + j2 + |a| + 8] < M.
Then the above operator K extends to a continous operator

K : H-MED/ZRe « Ry) - HMH/ZR™ « R,).

Proof. (a) We apply Remark 2.18 as well as the modified Hausdorfl-Young inequality and
obtain

”I{UHHD'("“)/’(R"XL) = ||KUI|L2(Ran+ dzdt/t)

00
H ] / IC(:C, ta Y, tf)u(yy t’)dydtl/t,”L’(R"xn_i.,dzdt/t)
¢}

l|/0 /%(i/t')go(ﬁﬂ — y)|uly, ') |dydt’ [t'|| 2R xRy dzdese)

< ol (ry dryollgoll L ey 1wl 22 (e x Ry dzde/e)
= |[Yollrt Ry at/0) |90]| L1 (o) el [0, nt )2 (R xR ) -

IA

(b) It follows from the definition of HM{"+1)/2(R" x R,) and Remark 2.20 that K has
the asserted continuity property if and only if, for all 7y, j2, @, 8 with j; + ja + |e| + 8] <
M, the operators with the kernels kjj,ap(z,t,y,t') = (/00 (t8,)7820%k(,t,y,1') are
bounded on HO*1/2(R"* x R,). In view of (a), the estimate guarantees precisely this.
<

2.22 Outline (continued). It remains to show that the kernel ky for opi,[qb(t/t’)(t' -
t)Vry satisfies the estimates in Lemma 2.21. This is essentially very easy, since we already
have the function ¢(t/t’) implying compact support with respect to t/t/, and we know that
the kernel has compact support with respect to (z,y). So we only have to establish the ex-
istence of the kernel and to check that the derivatives (t'0p)" (18,)2020Ckn(z, t,y,t'), 1 +
72+ |al + |8l £ M are bounded, provided N is large. So let us have a look at the kernel:
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kN($7 tay: t’)

= / / ellz-v)t (ti) - (/Y —t)Nrn(t, b, 7,2, y, E)drde

= // efl-ukt (%) - (/1)1 =t/ In~N (t/t) (=it YWV rn(t,t', T,z y, £)drdE
(=)

(N—_)l)! B(1/t)(1 -t/ ln~N (1))

LS |
. // e (=¥} (%) / (1-— ﬂ)N']FN,g(t,t','r, z,y,E)dddrde,
0

'FNt?(ta t’a I,Y, 'S) = aft’N(at]Yﬁ)(t)t + 0(t’ - t)’ T Y, E)
= (t’/U)NafuNaivg(t,u,T,x, ya£)|u=t+ﬂ(t’—t)- (1)

Note that u/t' = t/t'+J(1—1/t") is both bounded and bounded away from zero on supp ¢.
As far as the derivatives are concerned, we use the following lemma.

where

2.23 Lemma. For arbitrary N,j € N,
N &gt ¢ 7, 2,,€) = O((E,7))* V).

Proof. We already have computed these derivatives in the proof of Lemma 2.15. In-
stead of the smoothness of (t'0y)* F(z,t,y,t')|v=: and (¢8v)* A(z,,y,t')|s=¢, we now use
the boundedness of (t'0;)¥F(z,t,y,t) and (#dy)*A(=z,t,y,t'), which was established in
Lemma 2.4 and Proposition 2.9. <

2.24 Remark. Let ¢ € CP(R4). Then, for all j,j/ € N,
(t'8y)" (t8,) $(t/t") is bounded on R, x R.
Moreover, it again is a C§° function of t/t', since

19 (t/t) = (205)(2)|amijp and t'Oud(t/t) = (—282)$(2)) o=t/

2.25 Conclusion. According to 2.22 we only have to check the boundedness of the
derivatives (0, )" (t@t)j’D;‘ngN(:c,t,y,t') forall jy +j2+ |a+ 8| < M. .

By Lemma 2.23 the integral for ky in Lemma 2.22 will converge whenever p — N <
—n — 1 and furnish a bounded continuous function on R® x R; x R" x R,. Moreover,
differentiating under the integral sign, we see that D;'kaw(:v,t,y,t’) will be bounded if
p—N+|a+ 8l <—n-1

What about the totally characteristic derivatives (¢'0u)"(t0,)2D2DEkN(z,t,y,1')?
According to Remark 2.24, we need not worry about the terms ¢(¢/t')(1—t/t')¥ In"N(2/t);
furthermore, we have

(U8 ) (1) (/) = (=1)P (=i )2 (/)
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so we may focus on the question how the derivatives act on 7yy.

From the observations that (i) uM8% is a linear combination of totally characteristic
derivatives (u8,)’,7 < N, and that (ii) u/t’ = t/t' + 9(1 — t/t) is a function of ¢/#,
we conclude that it is sufficient to show that (¢'0y)"(t8,)2D2DBONG(t, 1,71, 2,y,€) =
O(((¢,7))*~N. This, however, is (essentially) what we have done already in Lemmata
2.15 and 2.23, so the proof is complete. <
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