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ABSTRACT. Let Y bc a CW-complex with a single O-cell, let K be its Kan group,
a free simplicial group whose realization is a model for the space OY of based loops
on Y, and let C be a compaet, conneeted Lie group. We carry out an explicit
purely finite dimensional construction of generators of the equivariant cohomology
of thc geometrie realization of the cosimplicial manifold Hom(K, C) and hence, in
view of earlier results, of the space Mapo (Y, BG) of based maps from Y to the
classifying space BG of G where G aets on BG by conjugation. For a smooth
manifold Y, this may be viewed as a rigorous approach to lattice gauge theory,
and we show that it. then yields, (i) when dim(Y) = 2, equivariant de Rham
representatives of generators of the equivariant cohomology of twisted representation
spaces of the fundamental group of a closed surface including generators for moduli
spaces of semi stable holomorphic vector bundles on complex curves so that , in
particular, the known structure of a stratified symplectic space results; (ii) when
dim(Y) = 3, equivariant cohomology generators including the Chern-Simons funetion;
(iii) when dim(Y) = 4, the generators of the relevant equivariant cohomology from
which for example Donaldson polynomials are obtained by evaluation against suitable
fundamental classes corresponding to moduli spaces of ASn connections.
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1. Introduction

The paper might as wen have been entitled "A purely finite dilnensional approach
to gauge theory". We pursue further the approach in [60J: Let Y be a CW­
complex with a single O-cell, let ]( be its l(an group [301, a free sirnplicial group
whose realization is a model for the space ny of based loops on Y, and let G
be a compact and connected Lie group. In this paper we carry out an explicit
construction of the generators of the G-equivariant de Rham cohomology of the
realization IHom(](, G)I of the cosiInplicial manifold Hom(K, G) and hence, in view
of the main result in our paper [60], of the space MapO(y, BG) of based rnaps
from Y to the classifying space BG of G where G acts on BG by conjugationj
we thereby exploit the fact that the chains on the simplicial nerve of ]( yield a
model for the chains of Y. Since Hom(](, G) is a smooth finite dinlensional manifold
in each cosiIl1plicial degree, cf. [60], the construction is purely finite dimensional:
every de Rham form will be constructed on a piece 0/ finite dimension. A concise
statement is given in Theoreul 7.1 below. The finite dimensional pieces belong to
the cosinlplicial manifold Hom(](, G). Integration then carries these forms to fornls
on the realization IHom(](, G)l. This requires a suitable interpretation of fonns on
mapping spaces. Using the theory of difJerentiable space [56], [57] 01', what aUlounts
to the same, that of "difJeological" space ("espace diffeologique") [63], [64], forms
on mapping spaces admi t a purely finite dimensional interpretation in tenns of
what are called plots [56], [57] 01' "plaques" [63], [64] and do not require infinite
dimensional techniques. For a smooth ruanifold Y, our construction of forms may
be viewed as a rigorous approach to lattice gauge theory, whereby plots aelrnit a
natural interpretation as (equivariant) families of principal bundles witk connectionj
see Section 5 below for details.

We offer three applications; they tuay be viewed as classical topological field theory
constructions: At first we show that the construction yields, when dim(Y) = 2, explicit
equivariallt de Rham representatives of equivariant generators of the cohomology
of 1110duli spaces of twisted representation spaces of the fundatnental group of a
closed surfacej in particular, this yields the structure of a stratified symplectic
space on such a rnoduli space already obtained by other rl1eatlS [21], [23], [25]. We
expect that part of what is said in [65] can be understood within our framework.
It is worthwhile pointing out, though, that even for the case of a bundle on a
closed surface ~, the present more general construction involving a rnodel for the
fuH loop space rather than merely a presentation of the fundamental group of the
surface [21], [22], [25], [271, [28J goes beyond earlier constructions: The realization
1111 of 1l = Hom(](E, G) contains the spaces of based gauge equivalence classes
of all central Yang-MiHs connections [2], not just those which con'espond to the
absolute rninimum 01', equivalently, to projective representations of the fundanlental
group 7r of E, anel hence the space 1111 COllIes with a kind of Harder-Narasimhan
filtration, cf. Section 2 of [60]. The latter cannot be obtained fr0 III the earlier
extended moduli space constructions. Perhaps infonnation about the multiplicative
structure of the cohornology of moduli spaces can be derived from the models we
shall construct below 01' from variants thereof. Secondly, when dim(Y) = 3, we
obtain equivariant cohomology generators including an explicit expression for the
Chern-Simons function on our tllodel of the space of based gauge equivalence classes
of connections, thereby answering a question raised by ATIYAH in [4] where he
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eOllllllents on a possible eombinatorial approach to the path integral quantization
of the Chern-Siluons funetion. Thirdly, when dim(Y) = 4, we obtain the generators
of the equivariant eohomology of the appropriate spaee frolu whieh for example
Donaldson polynolllials are obtained by evaluation against suitable fundaluental
classes corresponding to moduli spaces of ASD connections.

Dur construetion is rigid in the sense that it gets away with various ehoices
made in the earlier approaches; the theory, admittedly technically a bit cOlnplicated, "
will take care of itself, no choices of appropriate clata must be lllacle except that
of various ehains representing certain homology classes, and the oceurrence of the
homotopy operator on fornls in thc cited references will get its natural explanation
in terms of a realization procedure involving integration of fonus; see Section 5
below for details. Dur approach is vastly more general than those in [21], [22], [25],
[27], [28] since it applies to a bundle over aI1 arbitrary snlooth compact manifold
via a cell decomposition or triangulation as explainecl above. Formally it is not
even "necessary to know that the siluplicial group we are working with arises from
a smooth manifoldj we shall therefore expose the theory for an arbitrary simplicial
group or groupoid. In this way we arrive at a kind of gauge theory over arbitrary
CW-colnplexes. By meaI1S of the SiUlplicial groupoid constructed in [17] for an
arbitrary connected simplicial set the present approach CaI1 be extended to arbitrary
conneeted silnplieial complexes, in particular, to triaI1gulated smooth manifolds.

Dur models for the space of gauge equivalence classes of connections involve classical
low dimensional topology notions such as identity among relations (Section 3 of [60])
allel universal quadratic group (Section 4 of [60]); this sonlewhat establishes a link
between classical algebraic topology anel thc more recent gauge theory developments
in low diInensions. We expect that our lllodels will also prove useful for various
calculations recently clone in quantulll COhOlllOlogy allel that related finite dimensional
construetions lllay be applied to other gauge theory situations.

SOlne historical COlnments about the origin of the present purely finite dimensional
techniques lllay be in order: Extending an approach by KARSHON [33], A. Weinstein
[48] constructed a closed equivariant 2-forrn on (the smooth part) of certain spaces
of homomorphisms Hom(1r, G) from the fundaIUental group 7T" of a closeel surface to
a Lie group G with a biinvariant metric and showed by techniques from equivariant
cohomology [53] that this 2-fonn descends to (the non-singular part of) Rep(1r, G).
In [21], [25], anel [27], Weinstein 's methoel has been refined so as to yield a smooth
finite dimensional sYluplectic manifold with a hamiltonian action so that the space
of representations anel lllore general twisted versions thereof arise by symplectic
reeluction; this approach has been extended thereafter in [22] and [59] to more
general planar groups than just surface groups so that for example moduli spaces of
parabolie bundles ean be successfully treateel. Another generalization in [28] yields
explicit representatives for NEWSTEAD 's generators [62] for various lnoduli spaces
over a surface; in the algebro-geoluetric context, these arise as moduli spaces of
certain semi stable holomorphic vector bundles on complex curves. The present
paper gives such a construction for an arbitrary gauge theory situation. It may
be vieweel as the "grand unifieel theory" searched for by A. Weinstein in [48]. Dur
principal innovation is to replace the bar construction of a discrete group coming
into play in [33], [48], and in the subsequent papers [21], [22], [25], [27], [28], [59],
by the siInplieial nerve of the Kan grollp !( on Y so that we ean handle the space
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of based gauge equivalence classes of connections on an arbitrary principal bundle
with compact structure group on a general lnanifold Y.

Any unexplainecl notation is the same as that in our papers [21] and [60]. Details
about cosinlplicial spaces nlay be faund in [8] ancl (10]. All spaces are assnmed to
be compactly generated, that is to say, a set that meets every cOlnpact set in a
closed set is closed.

I am inclebted to S. Bauer, H. J. Baues, anel D. Puppe for discussions, and to
J. Stasheff for a nUlnber of most helpful conlments on a draft of the lnanuscript.
The paper has been written during a stay at the Max Planck Institut at Bann. I
wish to express lny gratitucle to it and to its director Professor F. Hirzebruch for
hospitality anel snpport.

2. Forms on spaces of representations

Let II be a finitely generated groupoid, for example a group, and write (C~(II),Ob)
and (Cb (II), <Sb) for the complexes of normalized chains and cochains, respectively,
on its nerve NIl or inhomogelleous reduced llormalized bar construction. We use
the dummy synlbol q to distinguish bar resolution and hence group or groupaid
(co)-hol1l0Iogy degree fronl fornl degree which will be written *. Further, let G be a
connected Lie group; the extension of the construction to be given below to general
non-connected Lie groups will be studied elsewhere. View G as a groupoid with a
single object, and consider the space H = Hom(II, G). This space is not necessarily
smooth at every point, and the interpretation of de Rham forms will in general
require some care. However in the present paper we shall only need the special
case where II is free so that H amounts to a product of finitely many copies of G.

Equivariant de Rham forms on H lllay be constructed in the following way: Given
a k-tuple [xllx21 ... ]Xk] of elelnents of II, k 2: 1, and an equivariant de Rham fonn
0: E n~j(Gk), i,j 2: 0, the evaluation map

(2.1 )

yields the form

(2.2)

This construction ean be formalized in the following way:

Let k 2: 0, anel consider the differential graded algebra

(2.3) 0* (Hom(II, G) x IIk
) = fl*(Hom(II, G)) 0 Ck(ll).

The evaluation map E from Hom(II, G) x llk to Gk is compatible with the obvious
G-actions and induces a morphisln

of equivariant de RhaIl1 algebras. Moreover, as k varies, these maps assemble to a
morphism
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of trieomplexes; In a given tridegree (i,j,k), it goes from n~(Gk) to
n6J (Hom(TI, G)) 0 Ck(Il). For each bar cOluplex degree k, pairing with ehains
in Ck (II), we obtain the graded bilinear pairing

whieh is eOll1patible with the operators d ancl Oe and, for every u E n~;* (H) 0 C k (Il)
and every v E Ck+l (II), satisfies

(2.7)

where the right-hand side refers to (2.6) for k+ 1 rather than k; here the sign (-1 )k+l
is foreed by the Eilenberg-Koszul convention for the differential on a Hom-eomplex.
Combining (2.6) with (2.5) and abllsing the notation (".) slightly, we then obtain
the pairing

whieh is eOInpatible with the operators d and Je and, Inoreover, satisfies

whatever k ~ O. ThllS pairing a forll1 Q in nd*(GQ) against a ehain c in Cb(Il),
we obtain the form (Q, c) in n6*(H). We shall need an explieit expression for the
value D(Q, c) in tenns of Q anel c of the total differential D on the right-hand
siele of (2.8). There is no real obstacle to ealculating this value in terms of the
pairing (2.8) and the operators d, 0G, J~, and aU, but sinee (2.8) does not behave as
a pairing of ehain eOlnplexes for the operators oU and aU, cf. (2.9), this ealculation
is sOlnewhat of a mess. The eure is provideel by an extension of the construction
whieh leads to the formula (2.15) below: Recall that, for an arbitrary differential
graded eoalgebra C with diagonal ~ anel arbitrary ground ring R, - in fact, we
could take an arbitrary differential graded algebra here - the eap pairing n from
Hom( C, R) 0 C to C is given by the conlposite

Hom(C,R) 0 C Id0 6) Hom(C, R) 0 C 0 C ev0Idc) R 0 C ~ C

where "ev" denotes the evaluation pairing. \Nhen we take for C the inhomogeneous
reduced normalized bar construetion of II, we obtain the cap pairing from (Cb(Il), 8b)0
(Cb(II), ab) to (Cb(II), ab) inducing on hOlnology the cap pairing n from Hb(II) 0
Hb+t(Il) to Hl(Il), for e2:: O. Tensoring the identity morphisln with the cap pairing
yields an extension

(2.10)
Id 0 n: (nd* (H); d, oe) 0 (Cb(Il), Jb) 0 (Cb (II), ab)

---+ (nd* (H)j d, oe) 0 (Cb (II), ~)

of (2.6) above which is compatible with all the operators cOffilng into play and
hence ineluces a pairing
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of the ehain eomplexes resulting froln totalization, whieh we write I· I. Reeall that
the total differential on l(nd*(H); d,<Se)1 is sirnply the surn d + Oe. Finally, when
we eOlllbille (2.10) with (2.5), we obtain the pairing

(2.12) (" .): (nd*(Cb); d,Oe, ob) ® (Cb(II), ~) --t (n;;*(H); d,oe) ® (Cb(II), ab )

which is cOlnpatible with a11 the operators and induees a pairing

(2.13)

(2.14)

(2.15)

of the chaill complexes resulting frorn totalization. We remind the reader that, for
every (i, j, k), on the homogeneous component n~j ( G k ), thc total differential da on
l(nd*(Cb); d, Oe, <Sb)1 is given by

da = d + Oe + (_l)i+iJb.

The eompatibility property of (2.13) Ineans that, when D refers to the tensor
product differential on the right-hand side I(nd* (H); d, oe) I 0 (Cb (TI), ~) of (2.13),
for Q E Irl;;*(Cb)1 and c E Cb(II),

D(Q,c) = (deQ,c) + (-l)IQI(Q,abc)

where IQI denotes the total degree of Q. Notice in a given quadruple degree
(i,j, k, k + €), (2.12) goes from n~j(C~) 0 Ck+l(II) to n~j(H) 0 Cl(II).

The pairing (2.12) and hence (2.13) is natural, in fact covariant, in the variable
II but notiee that II also occurs in H = Hom(II, C) so that the forms nd* (H) are
also eovariant in II.

The total eOluplex ](Od*(Cb);d,oe,ob)1 = (jnd*(Cb)l,de) inherits a structure of
differential graded algebra in the following way: For each pairs (i, j) and (i I , j ') of
bidegrees and for each k, k' , consider the eanonieal pairing

it amounts to the dual of the Alexander- Whitney rnap for the usual bar construetion.
These pairings induce the searehed for structure of differential graded algebra. It is
natural in ternlS of the data.

The differential graded algebra ( In6· (Cb )I, de ) eomputes the equivariant real
cohomology algebra of the classifying spaee BC for G where C aets on BG via
cOlljugatioll. To recall what this eohomology looks like, we assume helleeforth
G compactj the general case Inay as usual be reduced to this oue by taking a
maximal eOlnpact subgroup. Let I 9 be the graded algebra of invariant polynolllials
on 9, where 9 is endowed with degree 2 as usual; it is we11 known to be itself a
finitely generated polynomial algebra. Inspection of the Serre spectral sequence for the
Borel construetion EG Xe BG shows at onee that the equivariant cohomology algebra
Hc(BG) of BG is isomorphie to 19 0 19. In particular, every class in H*(BG) has
an equivariantly closed representative in the total eomplex (Ind· (Cb) I, de ), that JS,
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the restrietion mapping from (1 n~-;* (GQ) I, dG ) to I(n* (GQ), d, JQ) I induces a surjection
from Hc(BG) to H*(BG) on cohomology.

Explicit generators arise as follows: Take the realization of tbe nerve NC of C as
a model for the classifying space BG, and let Q be an invariant degree r polynolllial
on g. SHULMAN '5 simplicial Chern-V"eil construction [45], [7], [9], applied to the
universal sirnplicial principal C-bundle (~o, ~I, .•. ) over the simplicial space NC,
yields forms

(2.16) Qr,r E nr (er), Qr+ 1,1'-1 E nr+1 (cr- 1 ), ••• , Q2r-l,1 E n2r- 1 (G),

and the surn Qr,r + ... +Q2r-l ,1 is a closed element of I(n* (GQ); d, JQ) I which represents
the dass [Q] E H2r(BC)(= H21'(NG)) arising frorn Q. More precisely, for each q 2: 1,
the Maurer-Cartan fonns yield a connection on the corresponding (trivial) principal
G-bundle ~q: Gq+l X 6 q --+ Gq x 6 q having curvature Fq E n2(Gq x 6 q, ad(~q)), and,
for 1::; q ::; r,

Q2r-q,q = r Q(Fq) E n2r- q(cq).
J6. q

Note that Q2r-l,1 is a closed form on G representing the generator of H2 r-1 (C)
which transgresses to [Q].

As observed in [28], the equivariant Chern-Weil construction [54] yields explicit
equivariant extensions of these fOrIlls: Given a Lie group Hand an arbitrary
H-equivariant principal G-bundle ~: P -7 M, for an H-equivariant connection on ~

wi th connection from {) E n) (P, g) H, define the moment J.l = J1. () E n2 ,0 ( M, ad(~)) of
the connection by

J.l:h --+ nO(M,ad(~)) = COO(P,g)G, J.l(X) = 19(Xp)

where X p denotes the vector field on P induced by X. Then an invariant degree
r polynomial Q on 9 determines the closed form

Q(F + J.l) = QO,2" + Q2,21'-2 + ... + iJ2r,0 E In;;*(M)12r

where Q"] E nij (M). vVhen we apply this to the principal C-bundle ~q with
H = C acting by conjugation, with the notation J.lq E n2 ,0 (cq x 6 q, ad(~q)) for the
corresponding nloment, we obtain the closed form

Q(Fq + rtq) = QO,2r + Q2,21'-2 + ... + (j2r,0 E In~*(Gq x ,6.q)1 21'

where Qi ,j E n~ (cq x 6 q), and integration yields the forms

QO,21'-q,q = r (j0,21' E nO,2r-q (cq),
J6. q

Q2,21'-2-q,q = r Q2,21'-2 E n2,2r-2-q (Gq),
J6. q

Q27'-q,0,q = r Q21'-q
,Q E n2r- q,0(cq), if q IS even,

J6. q

Q21'-q-l,l,q = r Q2r-q-l,q+l E n2r- q- 1 ,1(cq), if q is odd.
J6. q
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For an invariant polynoluial Q on 9 of degree r, write

rl _ "'Q2i,j,qHQ -.:.....J , 2·i + j + q = 2r, q ::; 2i + j,

this is a dosed elenlcllt of l(n*'*(G~);d,8c8~)1 representing a dass (nQ] E H~(BG).

Theorem 2.17. For every invariant polynomial Q on 9 0/ degree r, the dass
[nQ] E H2[(BG) restriets to the dass [Q] E H2r(BG) arising /rom Q. Furthermore,
when Q runs through a set 0/ polynomial genemtors o/lg, the dasses [nQ] together
with the elements Q viewed as elements 0/ n*,o (GO) constitute a set 0/ polynomial
generators 0/ Ha(BG) = H* !(n*,* (GQ); d, Oe, O~) 1.

Proof. The first statell1ent is inlmediate. The "Furthermore" dause is an ill1mediate
fonnal consequellce thereof. D

For example, let Q be an invariant sYlnlnetric bilinear fonn . on 9, so that r = 2.
The above construction then yields

QO,3,1 E n~3(G), Q2,1,1 E n~I(G), for q = 1,

QO,2,2 E n~2(G x G), Q2,O,2 E n~o(G x G), for q = 2,

and their SUln is a closed 4-form in the total conlplex I(n*,* (GQ); d, Oe, oQ) I. ActuaIly
it may be shown that the tcrm Q2,0,2 is irrelevant and Inay be clropped. Thc
elelnent QO,3,1 is the fundamental 3-fonn on G constructed by E. Cartan.

The singular cochains C*(G) of G constitute a Hopf algebra, the requisite diagonal
map being induced from the multiplication mapping on G by Ineans of the shuffic
map, and it is weIl known and classical that the cobar construction on C*(G)
yields a model for the (singular) cochains on BG. The bar de Rhalll bicomplex
(n*(G ~ ); d, oQ) serves as a replacement for the co bar construction on the differential
graded algebra n* (G) of forms on Gwhich is not available in the strict sense;
while the multiplication luapping of Ginduces a map from n* (G) to n* (G x G)
we cannot algebraically project down the latter to n* (G) 0 n* (G) in such a way
that a coalgebra structure on n* (G) results. The bar de Rham bicomplex may be
viewed as a completed cobar construction.

3. Representations of free simplicial groupoids

Recall that allY cosimplicial manifold M = {M~} gives rise to a simplicial differential
graded de Rhanl algebra nM = (n*(M~),d, ... ), cf. [8]. Here ni(Mq ) are the
j-forms on M q , for q 2: 0, the operator d is the usual de Rham operator on each
M q , and ... stands for the operators between usual de Rham algebras induced
by the cosilnplicial structure. In particular, let n1l be thc siulplicial differential
graded algebra of de Rham forms 011 the cosimplicial manifold 1l = Hom(I(, G).
The constructioll in the previous Section yields de Rham forms on 1l. We shall
explain this in Section 4 below. V\Te need some preparation first.

Let k ~ 0. Since 1( is assumed free, the product Hom(I<, G) X K k iu-
herits a canonical structure of cosimplicial-simplicial luanifold, and the coend
Hom(I(, G) x~ I(k, cf. e. g. [36], is a (non-connected) smooth manifold; actu­
ally the coend will play 110 role in this paper. Moreover, the callonical evaluation
map

(3.1) E: HOlll(I(, G) X l(k --+ C k
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is well defined and smooth in the sense that, for each (simplicial) degree q, the
eorresponding eomponent

(3.2)

is smooth; we note that the evaluation lllap factors through the eoend
Hom(I(, G) x 6. I(k but this will not be important for uso We eall now apply
the eonstruction in the previous Section separately for eaeh simplicial degree q.
However the naturality of the eonstructions provides mores structure.

Write CQ(II) and CQ(II) for the normalized Eilenberg-Mae Lane ehains and
coehains, respectively, of an ordinary groupoid II so that Cb(II) = Cb(NII) and
Cb(ll) = Cb(NII). The nerve or sim])licial bar conl~truction N]{ of !( inherits a
structure of bisimplicial set, one simplicial structure cOllling from that of !( and
the other one from the nerve construction. Its bicomplex CN!( of ehains which are
normalized in the Q-direction looks like

(3.3)

Its vertieal differentials a~ are indueed by the alternating sums of the face operations
induced by the simplicial structure of !{ = {](~} and its horizontal ones 8Q by the
alternating StilUS of the face operations induced by the nerve construction for I(q

separately for each I(q' Normalizing in the ~-direction yields the bicomplex

(3.4)

where the notation 80, a~ is abused. Its total cOlllplex

has INI(lo = Z and

(3.5)

and the total differential 8 is given by

(3.6)

where on elenlents of Ck(K r- k) the operator 8p looks like

k - -
(3.7) 8p = (-1) a~:Ck(I(r-k) --+ Ck(!(r-k-l).

Note that, by normalization, Co(Kr) is zero for r ~ 1. Thus for

(3.8)

we have

(3.9)

8(c) = 80(c) + L (-1)k8tt C k,q

k+q=r

~ (cr,o) +(-1) ,'-1 8tt ( Cr-1 ,1 )

+8Q(C r -l,t} + (-1)r-2a~(Cr_2,2)

+ ...
+8Q (C2,r-2) + a~ (Cl ,r-l).
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Let ]{ = ](Y for a CW-complex Y. Since]( is a loop complex for Y, the
luap frolll Y to BI](! is a homotopy equivalence, and the two spaces BI](I and
IN ](1 are hOlueoulorphic; as CW-coulplexes they are not the salue, though, and
the cell decoluposition of INKI IUUSt be refined, in the same way as the canonical
homeomorphisnl between the realization 151 x 521 of the product of two sinlplicial
sets 51 and 52 and the product 151 1 x 152 1 of the realizations will be a cellular
isolllorphism only after refinement of the decomposition of 151 X 521 j cf. [42] for
details. It follows that the homology of INKI coincides with that of Y. However
this may be seen directly. To this end we observe at first that, for ~ fixed, since
each I(~ 1S a free group, the chain cOluplex (3.3) aIuounts to an exact sequence

(3.10)

and (3.3), viewed as a simplicial chain complex, with simplicial structure in the
~-direction, induces a structure of sinlplicial abelian group H1 (I(d = {H l (](q)}q>ü.
Here we have written EU for the projection from 1-cycles to homology. For q 2:: 0,
denote by ](q the free group generated by the degree q generators, that is, by
the non-degenerate basis eleluents of ](q' By construction, the nornlalized cllain
complex IR1 (](ö) I of H1 (](~) has

(3.11)

where G. (Y) refers to the cellular chains on Y. Furthermore1 Ho (](~) = {Ho (1(q ) } q,2::0

amounts to the free simplicial abelian group generated by a single point.

Proposition 3.12. The canonical projection map from (3.3) onto H1 (](~) induced
by Cö together with the canonical map from IN1(10 = Z onto Co(Y) = Z passes to a
deformation retraction from JNKI onto G.(Y) which is natural in Y.

Proof. The canonical projection luap from (3.3) onto H1 (K#) induced by e~ yields
adeformation retraction frolu the totalization I(CQ(](~), BQ, a~) I onto the totalization
of H1(](~). A little thought reveals that this implies the claim. 0

N. B. The normalization CQ( ](d contains CQ(]( ~ ) in an 0 bvious fashion but does
not coincide with it since products of degenerate free generators are in general
non-degenerate.

4. Forms on representations of free simplicial groupoids

We can now extend the construction of fonus in Section 2 to representations of
the simplicial groupoid 1(. For each simplicial degree q, with II = K q , the pairing
(2.12) looks like

and these assemble to the pairing

The left- and right-hand side of (4.2) both inherit a simplicial structure from that
of !(; in fact, on the left-hand side we have such a structure on CQ(]{) and, on
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the right-hand side, the induced cosiInplicial structure on 1i = Horn([\, G) induces a
sirnplicial structure on (n~;* (1i); d, oe). The naturality of the constructions iUlplies
that (4.2) is cornpatible with these structures, whence we arrive at the pairing

compatible with all the operators. In a given quintuple degree (i,j, k, k + I!, q),
this pairing goes from n~j(Gk) (2) Ck+e([{q) to n~j(Hq) 0 Ct([{q). Vve note that,
with reference to the ~-grading, (n~((H~);d,oG)® (CQ([{~),ab) is the graded object
underlying the diagonal of a certain bisiIUplicial object; we have chosen the paren­
theses '[' anel ']' on the right-hand side of (4.3), with the operator a~ outside these
parentheses to indicate this.

The normalization (n6*(H~);d,oe,a~)= (nd*(H_)/f},d*(Htt)degen;d,oc,a~) of
(nd* (H U); d, oe, au) is the quotient by the subspace of degenerates where, for each
simplicial degree q ;::: 1, the subspace f},~( (Hq)degen of degenerates is the sum of the
images of the degeneracy operations S j from nd*(H q-1) to S1d* (H q ), for 0 ::; j ::; q- 1.
Here the notation d, Oe, au is abused. Ignoring the equivariant theory for the moment,
we recall [8] that the realization (jS1(1i)j,D) of f2(1i) = (n*(Htt),d,Ott) is the total
cochain complex of the normalized bicomplex

whose vertical differentials are the de RhaIll operators and whose horizontal ones 8, are
induced by the alternating sums of thc sin1plicial operations 8p : n*(H q ) --+ n*(Hq_ 1 ).

The graded module 1f},(1i)I underlying the total complex

1(n*(H), d, a, )1= (In(H) I, D)

of this bicornplex is by definition in degree r the direct sum (not the product) of
the f2p(H q) for p - q = r. Thus

Notice when [( has a finite set of free generators this surn is finite in each clegree.
Moreover this construction has an obvious extension

to the equivariant theory so that

The compatibility of (4.3) with all the operators entails that after totalization
anel normalization we arrive at the pairing
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where N~ refers to nonllalization in the ~-direetion. The generalized Eilenberg-Zilber
theorelll [58] yields a natural chain equivalence from the right-hand side of (4.4)
oato (I!16* (1-l)), D) 0 IN]<1. Henee (4.4) cOlllbined with this surjeetion yields thc
palnng

(4.5)

When we cOlllbine it with the ehain lllap Id 0 E where E is the augmentation map
from INKl to the reals indueed by the obvious projeetion from N!( to a point, we
arnve at the pairing

(4.6)

This pairing ean be understood without explieit referenee to the generalized Eilenberg­
Zilber thearelll: it amounts to pieking the eomponents of the right-hand side of (4.4)
whieh involve only Co(K~) and ignoring the rest, but the generalized Eilenberg­
Zilber theorem provides the appropriate formal eireUIllstanees. The preeise geometrie
analogue

of (4.6) for a smooth lnanifold Marises from the evaluation paInng froln
SllloOthO(M, BG) x M to BG eomhined with integration against chains on M
and subsequent composition with the ehain lllap indueed by the augmentation lllap
from C*(A1) to the reals R.

The pairing (4.6) produees equivariant fonns on the realization 1(!16*(H~);d,JG,au)1
aIld henee, as we sha11 see later, on the cosinlplicial manifold 1-l = HOIll(](, G), in
the following way: Let u and r be positive integers, let !1 be an equivariant form,
that is, an element of

of total degree 'll + r, and let c be a ehain of IN ](1 of total degree r 2: 1, cf. (3.5).
For k fixed l let nk E EB i+ j= u +r- k n~ (Gk) be the indieated eonlponent. Then

LeUllua 4.7. Suppose !1 and c are closed. Then (n, c) is a closed form U1

of total degree u.

Proof. This follows at anee from the identity

D(rt, c) = (den, c) + (_1)111 I(n, ßc).
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5. Realization and integration

A standard eonstruetion endows (10* (H) I, D) with a strueture of differential graded
algebra; we shall explain this below in the equivariant setting. Before doing so
for illustration, we point out that, for !( the I(an group on the 2-sphere with its
standard decoluposition with two ceIls, for a Lie group C, IHom(!(, C)l amounts to
the spaee OC = MapO(Sl, G) of based loops on C and we have on the one hand the
bar construction BO,*C on the de Rham complex O*C, with its shuffie multiplication,
as a model for the algebra of cochains on the based loop spaee. On the other
hand, as a cosiInplicial spaee, H = Hom(!(, C) looks like (0, C, C2, . .. ,cq, . .. ), and
the realization of the simplieial differential graded algebra O*(H) (whose algebra
structure is yet to be explained) has eonstituents n*(cq). The canonieal maps fron1
(,0* (G))q to ,Q* (Gq) now induee a n10rphisn1 of differential graded algebras fron1
Bn*G to (IO*(H)LD) which is a hOlnology isoInorphisIn.

We now reeall the construetion of differential graded algebra structure on
(Ind*(H)I,D): For eaeh pairs (i,j) anel (i',j') of bidegrees, we have the sin1-

plidal vector spaces n~j(Hu) anel n~J (Hu), anel for eaeh pair (q, q') the shuffle map
\7 yields a natural 1110rphism

of veetor spaees whieh, eOInbined with usual multiplieation of forms, yields a pairing

This pairing endows (I S1d*(H) I, D) wi th a strueture of differential graded eomInIItative
algebra which is natural in thc data; by eonstruction, it arises from a differential
trigraded algebra strllcture.

We now relate this algebra with forms on the geometrie realization. To this end,
piek q ;::: 0 and consider the evaluation mapping from D.q x Smooth( D.q,H q) to H q.
For each T ;::: 0, integration over D. q induces a map

with a suitable interpretation of fonns on the Inapping spaees. Using the theory of
differentiable space [56], [57] or, what aInounts to the SaIne, that of udiffeological"

space ("espace diffeologique") [63], [64], fonns on the mapping spaees admit a purely
finite dimensional interpretation and da not require infinite dimensional teehniques.
With a suitable interpretation of fonns S1*(IHlsmooth) on the geometrie realization
IHlsmooth, the integration maps assemble to a Inorphism

(5.1 ) I: I(O*(H)jd,a~)1 = (lf2*(H)I,D) ---+ (f2*(IHlsmooth),d)

of differential graded algebras, cf. Scction 5 of [8]. The problem here is that the
geometrie realization IHlsmooth will have singularities. This difficulty is overeome
by means of the already cited concept of differentiable space, in the following way:
Recall that a plot for 11ilsmooth is a lllap F froln a smooth finite dimensional
manifold W to IHlsmooth which is smooth in the sense that the adjoint

F:: IIV x 6. q ---+ Hq
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of each cornponent
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Fq : W -+ Smooth(.6. q , Hq )

of F is smooth [56, 57]; in this theory, a form on 11ilsmooth is the assignment
of a form on vV to each plot which is natural for smooth Inaps in the dOlnains
of the plots. vVith this interpretation of forms on (Sl*(I1ilsffiOOth), d) the above
integration rnapping I makes strict sense. In particular, when M is a subspace of
11ilsmooth which is sInooth we can combine the integration mapping with restriction,
and there results a morphism I of clifferential graclecl algebras from (In* (1i) I, D) to
(f2* (j\lf) ,d). Furthennore the whole construction is G-invariant whenee, with the
appropriate notion of G-equivariant plots, we finally obtain a morphisnl

(5.2) I: 1( f2d*(1i);d,Je ,8dJ = (l f2d*(1i)I,D) -+ I(Sld*(I1ilsmooth);d,oc)1

of differential bigraded algebras.

Under our circumstances, G-equivariant plots admit a natural interpretation as
G-equivariant families of principal bundles with connection: a G-equivariant plot
F: W -+ 11ilsmooth' eonlbined with the map cI> (cf. (1.6)), yields a map froln W to
SrnoothO(y, BG) having a "smooth" G-equivariant adjoint

F:W x Y -+BC

satisfying F(w,o) = o. Consequently a G-equivariant plot F for J1ilsmooth clefinecl
on vV amounts to a smooth G-equivariant falnily of G-bundles with eonnection on
Y pararnetrized by vV.

A eosimplieial spaee is said to converge [1], [8], [10], when integration yields a
cohomology equivalence from the cohomology of the realization -of the simplicial de
Rharn algebra to the cohonl0logy of the realization. The cosirnplicial space 1i will
rarely have this property; however see Section 7 below.

6. Extended 1110duli spaces for a closed surface and generalizations

Let ~ be a closed topological surfaee of genus e 2:: 0, endowed with the usual
CW-elecomposition with a single O-cell 0, with 1-cells Ul, VI, ... ,ui, Vi, and with a
single 2-cell c, anel let

P = (XI,Yl, ... ,Xt,Yl;r)

be the corresponding presentation for the fundamental group 7f of 2;. We maintain
the notation as in Section 2 of [60] without repeating it. Dur aim is to show how
the results of [21], [25] may at onee be deduced from our general theory: Write Q
for the given bilinear 2-fonn on 9, and let

be the resulting equivariantly closed fornl of total degree 4, cf. (2.17). Since H2(~)

is infinite cyclic, in view of (3.12), there is a 2-cycle

of IN1(! whieh under the deformation retraction onto the celllllar chains of ~ goes
to a 2-cycle representing a generator. It is very easy to manufacture such a 2-eycle:
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Let C2,O E C2 (1{0) = C2 (F) be a 2-chaill with ~C2,O = II[xj,Yj] E F; such a C2,0

exists since II[xj,Yj] is zero in HI(F) = pAb; luoreover, let C1,l = r E 1(1 so that,
by construction, aUCl,l = II[xj, Yj] E K o. Then c is closed in INKI, and (Q, c) is
a closecl eleluent of I(nd* (HU); d, oe, 8u) I of degree 2. Notice when f = 0 we have
C2,0 = O.

Embed the Lie algebra 9 into Smooth(.6. 1 , G) by the assignment to X E 9 of the
corresponding path t I-t exp(tX), let 0 ~ 9 be the subspace where the exponential
luapping is regular, and let Jvt be the subspace of 11-llsmooth consisting of pairs
( 10, X) E G2l X 0 so that exp (X) = r (10 ). This is a smooth finite dimensional
G-manifold and the inclusion F fronl M to 11ilsmooth is a G-equivariant plot. By
construction, the equivariantly closecl fonu

of degree 2 has components

W c = 1(QO,3,l, CI,I) +1(QO,2,2, C2,0) E n~2(M)

J-lU = I(Q2,l,l, Cl,l) + I(Q2,0,2 , C2,0) E n~o(M)

so that J-1~: 9 --+ COO(M) is the adjoint of a smooth map J.l from M to g. The sunl
W c + J-lu to be equivariantly closed amounts to the closedness of W c in the usual
sense together with the property that

which is the momentum mapping property. In particular, the integration mapping
fronl the realization of the equivariant simplicial differential graded de Rhalll algebra
to the equivariant differential graded de Rham algebra on the realization reproduced
in Section 5 above now provides a natural explanation for the operation of integration
along linear paths in gwhich in [21], [25] seemed somewhat ad hoc. The term
I(Q2,0,2, C2,O) is actually irrelevant and may be ignored; it anlOlll1ts to a constant
modification of the momentum mapping.

The whole approach may be extended to arbitrary 2-complexes Y with a single
O-cell and a single 2-cellj write r for the corresponding relator. The fundamental
group 7r of such a 2-complex is a one-relator group. It is weH known that Y
and 7T have second homology group a copy of the integers if and only if the
exponent sunl of each generator in the relator r equals zero. In this case the above
construction carries over verbatim and there results an extended moduli space M
together with a closed 2-form wand mOlllentulll Illapping. However in order for
w to be non-degenerate we must require the relevant cup pairings on H1 (7T, .) to
be non-degenerate. This is related with the question whether 7T is a 2-climensional
Poincare duality group over the reals. We do not pursue this question here.

7. Cohomology

Let r 2:: 1, let c be a ceHular r-cycle of Y representing an integral homology class,
and let Ch" be an r-cycle of IN1(1 which under the deformation retraction onto
the cellular chains of Y goes to c, cf. (3.12) . For every invariant polynolllial
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Q on 9 of degree u, with r ::; 2u, by (4.7), (!1Q, CK) is a closed element of
(lfld*(1-l)I, D) of degree 2u - rj here flQ refers to the corresponding closed eleluents
of l(fld*(GQ);d,oa,oQ)1, cf. (2.17). Recall that in Section 1 of (60] we constructed
a weak chain equivalence between the space of based maps from Y to BG and the
realization of 11..

Theoreln 7.1. As a graded commutative algebra, the eq'll,ivariant cohomology 0/ each
connected component 0/ 111.1 and hence 0/ the space 0/ based maps /rom Y to BG
is freely generated by the classes 0/ the elements I(OQ, CI() where Q runs through a
set 0/ invariant polynomials on 9 and c thr07lgh a set 0/ representatives in degree
2:: 1 0/ the real homology 0/ Y subject to the restriction lei< 21QI, together with the
invariant polYllomials Q viewed as elements 0/ fl;;o (c;o).

Proof. This is proved by induction on dinlension, with reference to the fibration
(1.8.1). The argtunent is fornlally the same as that hinted at on p. 181 of [15],
cf. also Note 5.1.2 on p. 206. The induction starts with the observation that
Hom(I(yl, G) amounts to a product of as Inany copies of G as Y has 1-cells and
that, for a circle I( = 51, when e represents the generator of its first homology group,
the elenlent (flQ, CI() yields the exterior generator of H2IQI-l (G) which transgresses
to the class of [Q] in H2 IQI(BG). vVe leave the details to the reader. 0

Here the realization 11I.Ismooth of 11. is viewed as aspace with differentiable
structure in the sense of [56, 57, 63, 64] as explained in Section 5 above.

ILLUSTRATION. Let Y be a closed surface L: of genus e 2:: 0, let G = U(n), the
unitary group, let Ql,"" Qn be the Chern polynomials, and let 111, ... , 11n be thc
corresponding closed elelnents of l(fld*(Gb); d, oG, Sb)l. Maintaining the notation In

the previous Seetion, for r = 1, ... ,n and j = 1, ... ,f, we get the elements

Ir = (nr, c), Ifr I = 21' - 2,

bt = (nr, Uj), Ibtl = 2r - 1,
+l +e
~ = (nr,Vj), I&:. 1= 2r -1,

ar = Qr, larl = 2r, viewed as an element of n~,o(GO).

They freely generate the equivariant cohonlology of the space MapO(E, BG) or, what
amounts to the same, of the union over all topological types of G-bundles of spaces
of based gauge equivalence classes, cf. what is said in Section 1. Notice fl picks
the topological type of connected component. The generators Ir and b!- coincide
with those construeted in [62], see also Section 2 of [2] and [28]. Likewise, for genus
I! = 0 and arbitrary connected G, when Q denotes the given invariant symmetrie
bilinear form on 9 so that QO,3 ,1 is E. Cartan's fundamental 3-forn1 on C, cf. what
was said at the end of Seetion 2, the resulting 2-fonn on OC restriets to the Kirillov
form on each conneeted component of Hom(51

, C), when identified with the adjoint
orbits in 9 generated by some X with exp(X) = e.

When G is simply cOllnected the cosimplicial space 11. = HOln(KE, G) converges,
that is, the integration 111apping (5.2) is a cohomology equivalence from the coho­
mology of the realization of the sinlplicial de Rhaln algebra to the COhOlllology of
the realization.
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8. 3-colnplexes and 3-manifolds

Let Y be a 3-complex with a single 3-cell, for exalnple, a closed cOlnpact 3­
manifold, endowed with a regular C\tV-decomposition with a single O-cell 0, with
1-cells 'llI,"" Uf., 2-cells Cl, .•• , Cl, and a single 3-cell c, and write

for the corresponding spine for Y; in particular, (i) the data P = (Xl, ... ,Xli rl, ... ,Te)
constitute a presentation of the fundatnental group 1r of Y so that the attaching
lnaps of the 2-cells assign a word Wj in the free group F on the generators to
each relator r j, and (ii) the attaching lnap a of the single 3-cell assigns atl identity
among relations

to C representing the element of the second homotopy group 1rz (yZ ) of the 2-skeleton
Y z of Y which is killed by the 3-cell c. See Section 3 of [60] for more details and
notation. We shall give a purely finite dilnensional description of the Chern-Simons
function. This will be the assignment to every G-equivariant plot

F: W --+ l1llsIDooth

of a slnooth G-invat'iant map 'lJ froln W to the cirde SI which IS natural In

G-equivariant plots.

\tVrite Q for the given bilinear 2-fonn Oll 9, and let

be the resulting equivariantly c10sed fornl of total degree 4, cf. (2.17). Suppose H3 (Y)
infinite cyclic; for exalnple this will be true when Y is an orientable 3-manifold. In
view of (3.12), there is a 3-cycle

of INKI which nnder the defonnation retraction onto the cellular chains of Y goes
to a cellular 3-cycle representing a generator of H3 (Y). An explicit such a 3-cycle
is obtained as follows: Let Cl,Z = a E Cl (I{z); then

aI1d the dass of the Iatter in H1( ](1) is zero. In fact, HI ( ](1) is the free abelian
group on the relators Tl,' .. ,Tt and the degeneracies SaX}, . .. ,SaXt of the generators
in P, aI1d the subgroup generated by the relators atnOUIÜS to the group Cz(Y) of
cellular 2-chains of Y. The assignnlent to a of the image of 8.a in Cz(Y) under
the map from Cl (Kd to HdI{I) cOlnbined with the projection onto C2 (Y), cf.
(3.10) above, is the value of the boundary Ba E C2 (Y) under the cellular boundary
B: C3 (Y) -+ C2 (Y) aI1d this is zero since a represents a 3-cycle. However, the inlage
of a~a in HI (KI ) lies in the suhgroup of Hl (K1) generated by the relators Tl, ... ,Te
and this subgroup is Inapped isomorphically onto Cz(Y) whence the image of B~a
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in H1 (K1 ) is zero. Since the sequence (3.10) is exact, we conclude that there is a
chain C2,1 E C2 (K1 ) with

Next,
~a~C2,1 = aU~C2,1 = 8a8aC1,2 = 0

whence, again in view of the exactness of (3.10), there is a chain C3,0 E C3 (I{0) with

Then

c = C3,0 + C2,1 + Ct,2

is the desired 3-cycle in INI{I, ancl (Q,c) is a closed element of I(Od*(Ha);d,oa,8a)1
of degree 1. In some more detail, (Q, c) has components

(QO,3,1 ) E 0°,3 (H ),CI,2 2 ,

(QO,2,2 C ) E 0°,2 (H ), 2,1 a 1,

(Q2,1,1,C1,2) E 02,I(H2),

(Q2,0,2, C2,1) E n2 ,0 (H1 ).

Notice that here (QO,3,1, Cl,2) E f2o,3(H 2 ) is just the form pulled back frolu Cartan's
form A E n3 (G) via the canonical projection from H2 onto its prinlitive part
P2 = G. Thus, keeping in Iuind that H1 = G2l , under the present circumstances,
the constructioll yields thc 2-form

having the property that
da = i*.\ E f2~3(G2e)

where i refers to the smooth map frolll G2l to G induced by the identity among
relations (3.1) in [60}. Notice also that there is no component involving a form on
Ho. This relies on the fact that the (non-equivariant) Shulman construction (2.16)
yields only non-zero forms in nj(G k ) for j ~ k. Thus (a,.\) E f22(Hd x 03(G) is a
pair of fonus which yields an equivariant form in

of total elegree 1, anel, under the integration Iuapping (5.2), this fonn passes to an
equivariant 1-from in I(nd* (11llsmooth); d, 00 )1. Hence, given a G-equivariant plot

p: W -+ 11-llsmooth,

its adjoint pb has cOlnponents
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anel here only F1
Q and F~ are relevant; they fit into the commutative diagram

WX~I Idx!:2) WX~2

F:1 prF~1
H 1 G

19

where pr refers to the canonical projection froill Hz onto its primitive part ~P2 = G.
Now

is a closed G-equivariant I-form on W having integral periods and hence integrates
to a smooth map 'l' frolll ltV to the circle SI. Moreover, SlQ is equivariantly closeel,
the tenn QZ'o,z is irrelevant, and, for every X E 9, the value oe'ljJ(X) = -7./;(Xw) is
calculated by

df(QZ,l,1 C ), I,Z
2 1where (QZ,1,1,CI,2) E fld (Hz) and where d is the de Rhanl operatorj however,

for clegree reasons, 1(QZ,I,I, Cl,Z} is zero whence, for every X E 9, the value
oc7./;(X) = -7j;(Xw) is zero and hence \lJ is constant on G-orbits, that is to say,
G-equivariant. Thus, the choice of the cycle c detennines, for every G-equivariant
plot F defined on a sillooth G-manifold W, a smooth G-equivariant map W fronl
W to the circle SI which is natural in C-equivariant plots. This is our description
of the Chern-Simons function.

We conclude this Section with an observation: Formally, we can interpret thc
smooth map i fr0 111 CU to C induced by the above mentioned identity alnong
relations as arising froln the presentation

of a one relator group arising frolll fl l , the free group on XI, ... , Xe, 1'1, ... ,1'e,
by interpreting the identi ty among relations (3.1) in [60] as a relation alnong the
generators of 1(1. The lllap i from from GZl to G then amollnts to the ward map
given by the assaciation

where W k ( a) E G is obtained by snbsti tuting each occurrence of X j in Z k by aj .

Plainly, then

w = (QO,J,1,Cl,2) + (Qo,Z,z,C2,1) E n~3(Hz) + n~2(Hl)

fl~ = (Q2,1,1, Cl,Z) E n~l (Hz)

satisfy
Oew = ±dfl~

anel w is a closed 2-fonn In the appropriate sense, just as In the case of surface
granps stndied before.
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9. Simply conl1ected 4-nlanifolds

As in Section 4 of [60], we describe a sirllply connected 4-manifold Y as the cofibre
of a map f from the 3-sphere S3 to a bunch V lSI of e copies of the 2-sphere.
We luaintain the notation in [ibidelll] but do not reproduce it. When Y underlies
a sluooth 4-nlanifold, the space of based maps from Y to BG is a model for the
space of based gauge equivalence classes of connections on a11 topological types
of bundles on Y and Theorem 7.1 above gives a c0111plete description of its real
equivariant cohonl010gy. For inte11igibility, we reca11 that the smooth geonletric
realization of our cosinlplieial luanifold 1-l = Hom(I(Y, C) luay be deseribed as the
space of pairs (4)1,4>3) of snlooth l11aps 4>1:.6.1 ---7 H1 = Cl and cP3:.6.3 ---7 C subject
to the condi tions

(1) 4>1(0)=ePl(1)=e,
(2) 4>3 has constant value e on the first three faces of .6.3, and
(3) the diagraIn

.6.2
,!3

.6.3

(9.1 ) (rPi 011
0

,rP1 0"/1)1 .1 rP3

Cl X Cf G
r

is eommutative; see Section 4 of [60] for details. Perhaps moduli spaces of based
gauge equivalence classes of ASD-connections ean be found within the geometrie
realization of 1-l in the following way: Endow thc 4-manifold Y with ametrie as
usual and view Y as a eompaetification of the interior R 4 of the 4-ball, with the
induced l11etrie. When this metrie -is flat up to a diffeomorphisln of R\ standard
constructions yield a11 finite energy ASD-eonneetions on R 4

• vVhether 01' not this
happens to be the ease, finite energy ASD-eonneetions should correspond to eertain
maps of the kind 4>3. In the Rat ease, such connections can be extended over
the 4-sphere, by Uhlenbeck's renl0vable singularities theorem. In general there are
presluuably additional eonstraints eorresponding to the requirement that for a choice
of 4>1 determined by the data the diagralll (9.1) be eomnlutative. Perhaps these
additional eonstraints explain the additional tenn -dbt in the formula for the
dimension of the moduli space which comes from the index theorem where d refers
to the dirnension of the strueture group and bt to the rank of the self dual part
of H2 (Y) as usual. Also in special eases the deseription of ASD-connections on
the 4-sphere and related 4-manifolds as hololuorphie maps fro111 the 2-sphere 01'
related 2-manifolds to ne might be relevant here, cf. [52], [61]. Another question is
whether anything reasonable ean be said about the eomponent 4>1, which is a point
of thc product of ecopies of the loop space ne. Is there a way to relate Yang-Mills
theory over Y with Yang-Mills theory over the elnbedded 2-spheres where critical
points are known to correspond to geodesics or hOlnomorphisms? The map <P from
the realization of 1-l to MapO(y, BG) [60] involves choices, in particular a choice of
homotopy inverse from Y to ISYI of the eanonical map frolll ISYI to Y, and this
ehoice destroys the symmetry of the situation. The ASD-condition will presulnably
only come down to a eertain fixed luap from Sl to G for each 2-sphere in y~. A
finer decolnposition, e. g. a triangulation of Y, will provide a canonical map from
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Y to ISYI and hence might restore the missing sYlnmetry. We hope to settle these
issues eventually elsewhere.
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