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REDUCTION OF MODULI SCHEMES OF ABELIAN VARIETIES

WITH DEFINITE QUATERNION MULTIPLICATIONS: THE

MINIMAL CASE

CHIA-FU YU

Abstract. In this paper we make an initial study on type D moduli spaces

in positive characteristic p 6= 2, where we allow the prime p ramified in the

defining datum. We classify explicitly the isogeny classes of p-divisible groups

with additional structures in question. We also study the reduction of the type

D moduli spaces of minimal rank.

1. Introduction

1.1. PEL moduli spaces parametrize abelian varieties with additional structures of
polarizations, endomorphisms and level structures. They are divided into types A,
C and D according to the Dynkin type of their defining algebraic groups. Previous
studies of these moduli spaces and their integral models are mainly focusing on the
spaces of types A and C in the case of good reduction. There is comparatively less
known about type D moduli spaces in the literature. Certain important results on
all smooth PEL-type moduli spaces, which of course include the case of type D, have
been obtained by Wedhorn [32, 33] and Moonen [15, 16, 17], where they concern the
density of the µ-ordinary locus and the Ekedahl-Oort (EO) strata. In this paper we
study the type D moduli spaces in mainly positive characteristic and certain basic
classification problems for abelian varieties and associated p-divisible groups with
additional structures in question. A main point here is that we allow the prime
p ramified in the definite quaternion algebra concerned. In a very special case (of
the minimal rank), we also exhibit a method for studying the case with arbitrary
polarization degree, different from some previous studies limited to polarizations of
prime-to-p degree.

Through out this paper, let p denote an odd prime number. Let F be a totally
real algebraic number field and OF the ring of integers. Let B be a totally definite
quaternion algebra over F and let ∗ be the canonical involution on B, which is
the unique positive involution on B. Let OB be an OF -order in B which is stable
under the involution ∗ and maximal at p, that is, the completion OB⊗ZZp at p is a
maximal order in the algebra Bp := B ⊗Q Qp. A polarized abelian OB-variety is a
tuple (A, λ, ι), where (A, λ) is a polarized abelian variety and ι : OB → End(A) is a
ring monomorphism such that λ◦ ι(b∗) = ι(b)t ◦λ, i.e. the map ι is compatible with
the involution ∗ and the Rosati involution induced by the polarization λ. Clearly,
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2 CHIA-FU YU

this notion can be defined over any base scheme and one can study families of such
objects.

If (A, λ, ι) is a complex polarized abelian OB-variety, then one has dimA =
2m[F : Q] for some positive integer m. A type D moduli space is the moduli
space parametrizing 2m[F : Q]-dimensional polarized abelian OB-varieties, for some
integer m ≥ 1, with auxiliary structures and certain conditions. These conditions
are imposed in order to make more precise study of the moduli space. The minimal
case we refer to in the title is the case where m = 1. Although the minimal
type D moduli spaces are special cases of type D moduli spaces, some speculation
indicates that the geometry of this family behaves quite different from that of the
non-minimal cases. Therefore, it would be good to have an individual and detailed
study for this particular family.

The main contents of this paper settle the following two basic problems:

(a) Classify explicitly the isogeny classes of quasi-polarized p-divisible groups
with additional structures in question over an algebraically closed field of
characteristic p. Here we are not limited to the minimal case.

(b) Study the reduction of the minimal type D moduli spaces.

As the reader can see from known results of classical moduli spaces like Siegel
or Hilbert moduli spaces, the results obtained so far in the type D moduli spaces
are comparably weaker. However, several points of the present paper are already
subtle and technical. Below we illustrate main results.

1.2. Part (a). Let k be an algebraically closed field of characteristic p. For a po-
larized abelian OB-variety A = (A, λA, ιA) over k, the associated p-divisible group
(H,λH , ιH) := (A, λA, ιA)[p∞] with additional structures is a quasi-polarized p-
divisible OB ⊗ Zp-module (see Section 5.1). We like to determine the slope se-
quences and isogeny classes of these quasi-polarized p-divisible OB ⊗ Zp-modules.
As the first standard step, we can decompose these p-divisible groups with addi-
tional structures and study the problems for each component independently. Write

(1.1) F ⊗Q Qp =
∏
v|p

Fv, B ⊗Q Qp =
∏
v|p

Bv, OB ⊗Z Zp =
∏
v|p

OBv

and we get a decomposition (H,λH , ιH) =
∏
v|p(Hv, λHv , ιHv ). The slope sequence

ν(A) of A is defined to be a collection of slope sequences ν(Hv) indexed by the
set of places v|p of F . So we reduce the problems for quasi-polarized p-divisible
OBv -modules. We shall write B, F and OB for Bv, Fv and OBv , respectively for
brevity. In this part we do the following:

(1) Study the structure of skew-HermitianOB⊗W -modules and quasi-polarized
Dieudonné OB-modules (see Section 5.1), where W denotes the ring of Witt
vectors over k. See Sections 4 and 5.

(2) Determine all possible slope sequences of quasi-polarized Dieudonné OB-
modules of rank 4dm, where d = [F : Qp]. Moreover, we show that these
slope sequences can be also realized by separably quasi-polarized Dieudonné
OB-modules. See Theorems 6.4 and 7.3 for the precise statement; also see
Corollaries 7.7 and 7.8 for the list of all possible slope sequences in the cases
m = 1, 2.

(3) Classify the isogeny classes of quasi-polarized Dieudonné OB-modules of
rank 4dm. See Section 9.
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The method of finding possible slope sequences in (2) is using a criterion for
embeddings of a simple algebra into another one over a local field (see [39] and
Section 6.3). This gives a description for possible slope sequences. Then we
construct a separably quasi-polarized Dieudonné OB-module realizing each pos-
sible slope sequence. The construction is divided into the supersingular part and
non-supersingular part. For the supersingular part we write down a separably
quasi-polarized superspecial Dieudonné OB-module that also satisfies the determi-
nant condition. For the definition of the determinant condition; see Section 5.2.
The construction of such a Dieudonné module is given in Section 8. For the non-
supersingular part we use the “double construction”; see Lemma 7.1. The construc-
tion easily produces a separable OB-linear polarization. However, a Dieudonné
OB-module obtained in this way rarely satisfies the determinant condition; also see
Remark 8.1. In fact, given a possible slope sequence ν as in (2) or in Theorem 7.3,
it is not always possible to construct a Dieudonné OB-module M with slope se-
quence ν which both admits a separable OB-linear quasi-polarization and satisfies
the determinant condition. We will discuss this in more details in the minimal case
later.

To classify the isogeny classes of the p-divisible groups with additional structures,
it suffices to classify those with a fixed slope sequence ν. Rapoport and Richartz
[28] have given a cohomological description of this finite set I(ν) (for the defining
Qp-groups which is non-connected, or not quasi-split, see Kottwitz [13]). We carry
out a more elementary approach through invariants as what is done for quadratic
forms and Hermitian forms. One can first reduce to the case where ν is supersin-
gular; see Lemma 9.1. Then we construct a bijection between the set of I(ν) (ν is
supersingular) and the set of isomorphism classes of skew-Hermitian B′-modules for
some quaternion F-algebra B′ which is easily determined; see Theorem 9.2. When
B′ is the matrix algebra, one reduces to classify quadratic forms over F, and we
apply the classical theory of quadratic forms over local fields (cf. O’Meara [23]).
When B′ is the quaternion division algebra, we use the work of Tsukamoto [30].

1.3. Part (b). In this part we restrict ourselves to the minimal case. Part (b)
consists of Section 3 and Sections 10–14 of this paper.

Let M be the coarse moduli scheme over SpecZ(p) of 2[F :Q]-dimensional po-

larized abelian OB-varieties (A, λ, ι). Let M(p) ⊂ M be the open and closed
subscheme consisting of objects (A, λ, ι) with prime-to-p polarization degree. Both
moduli spaces M and M(p) are schemes locally of finite type. Each of them is an
union of infinitely many open and closed subschemes of finite type:

(1.2) M =
∐
D≥1

MD, M(p) =
∐

D≥1,p-D

MD,

whereMD is the subscheme parametrizing objects (A, λ, ι) inM with deg λ = D2.
LetMK ⊂M be the closed subscheme parametrizing objects inM that satisfy

a determinant condition; see Section 2. Let M(p)
K = M(p) ∩MK be the scheme-

theoretic intersection.
First of all, all geometric fibers of the moduli scheme M(p)

K are non-empty; see
Lemma 2.3. To show this, one uses the analytic construction and Grothendieck’s
semi-stable reduction [7]. We also show that any 2[F : Q]-dimensional abelian
OB-variety over any field is potentially of CM type; see Proposition 3.3 and also
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Section 3 for some discussions. This indicates that objects in a minimal type D
moduli space have rich arithmetic properties. This is of course expected as these
moduli spaces are expected to be zero-dimensional (though this is not true; see
Theorem 1.3).

As one of the main results in this part, we prove the following result.

Theorem 1.1.

(1) Suppose that p is unramified in B, that is, the algebra B ⊗ Qp is a prod-
uct of matrix algebras over unramified field extensions of Qp. Then the
moduli scheme MK → SpecZ(p) is flat and every connected component is
projective of relative dimension zero.

(2) The moduli scheme M(p)
K → SpecZ(p) is flat and every connected compo-

nent is projective of relative dimension zero.

Theorem 1.1 confirms some cases of the Rapoport-Zink conjecture on integral
models of Shimura varieties; see [29]. This implies that all geometrically fibers of
the above moduli spaces are zero-dimensional. Theorem 1.1 (1) is proved in [34].
The proof of Theorem 1.1 (2), given in Section 10, uses the theory of local models
(see Rapoport-Zink [29]). More precisely, let MΛ be the local model over SpecZp
associated to a unimodular skew-Hermitian free OB ⊗ Zp-module Λ of rank one.
Following Rapoport and Zink we have the following local model diagram

(1.3) M(p)
K ⊗ Zp

ϕmod

←−−−− M̃ ϕloc

−−−−→ MΛ.

See Section 10 for more precise descriptions. The morphism ϕmod is a G-torsor,
where G is the automorphism group scheme of Λ over SpecZp, and the morphism

ϕloc is G-equivariant. Locally in etale topology singularities of M(p)
K are governed

by the local model MΛ, so one reduces to prove the flatness of MΛ, which is done
in Section 11. For this, we show that any point in the special fiber MΛ(k) can be
lifted to characteristic zero and that all its geometric fibers are zero-dimensional.

Returning to the local model diagram (1.3), it is a basic question whether the
morphism ϕloc is surjective. That is, whether the following induced map

(1.4) θk :M(p)
K (k)→ G(k)\MΛ(k)

surjective. This map factors through the map

(1.5) α : DieuOB⊗Zp(k)→ G(k)\MΛ(k),

where DieuOB⊗Zp(k) denotes the set of isomorphism classes of separably quasi-
polarized Dieudonné OB⊗Zp-modules of rank 4d satisfying the determinant condi-
tion. We show that α is surjective; see Section 12 and Proposition 12.1. That is, the
surjectivity of ϕloc is confirmed at the level for p-divisible groups with the additional
structures. We plan to further work out the surjectivity of this morphism.

For the possible slope sequences of objects in the minimal case, we have the
following refined results (cf. Theorem 7.3).

Theorem 1.2 (Theorem 12.3). Let M be a separably quasi-polarized Dieudonné
OB-module of rank 4d satisfying the determinant condition, where d = [F : Qp].

(1) If B is the matrix algebra, then

ν(M) =

{(a
d

)2d

,

(
d− a
d

)2d
}
,
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where a can be any integer with 0 ≤ a < d/2, or

ν(M) =

{(
1

2

)4d
}
.

(2) If B is the division algebra, then

ν(M) =

{( a
2d

)2d

,

(
2d− a

2d

)2d
}
,

where a can be any odd integer with 2[e/2]f ≤ a < d, or

ν(M) =

{(
1

2

)4d
}
.

Here e and f are the ramification index and the inertia degree of F over
Qp, respectively.

In the remaining of this part (Sections 13 and 14) we limit ourselves to the case
F = Q. The goal is to determine the dimensions of the special fibers of above
moduli schemes. Write MFp for the base change M⊗ Fp; similarly we do this

for M(p)

Fp
, MK,Fp etc. Theorem 1.1 (2) implies that dimM(p)

K ⊗ Fp = 0. For the

remaining cases we prove the following result.

Theorem 1.3 (Theorem 14.1 and Proposition 14.7). Let notations be as above.
Assume that F = Q.

(1) If p is unramified in B, then dimMFp = 0.

(2) If p is ramified in B, then dimMFp = 1.

(3) We have dimM(p)

Fp
= 0.

(4) If p is ramified, then dimM
K,Fp

= 1.

We explain the ideas of the proof. For (1) any object A = (A, λ, ι) ∈ M(k)
is either ordinary or superspecial. Then we use the canonical lifting for ordinary
abelian varieties and the fact that the dimension of the generic fiber has dimension
zero. For the other case we use the fact that the superspecial locus has dimension
zero. For (2) and (4), we construct a Moret-Bailly family of supersingular polarized
abelian OB-surfaces. See the construction in Section 13. This produces a non-
constant one-dimensional family in the moduli space MFp . A close exam shows

that this P1-family actually lands in the locus MK,Fp ⊂ MFp ; see Lemma 14.6.

This gives a lower bound for the dimensions

1 ≤ dimMK,Fp ≤ dimMFp .

For the other bound, we consider the finite morphism f :MFp → A2,Fp to the mod-

uli space A2,Fp of polarized abelian surfaces, through forgetting the endomorphism

structure. As p is ramified, every object inM(k) is supersingular, cf. Corollary 7.7
and hence the whole spaceMFp is supersingular. The image ofMFp in A2,Fp then

lands in the supersingular locus S2 of A2,Fp . Then we use a result of Norman-Oort

[22] (also cf. Katsura and Oort [9] for principally polarized case) that dimS2 = 1
to get the other bound dimMFp ≤ 1. This shows (2) and (4). This above result on
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dimS2 = dimA(0)

2,Fp
is a special case of a theorem of Norman and Oort which states

that the p-rank zero locus A(0)

g,Fp
of the Siegel moduli space Ag,Fp has co-dimension

g. (3) We only need to treat the case when p is ramified case. In this case we
show that any separably quasi-polarized OB ⊗ Zp-Dieudonné module (of rank 4d)
is superspecial, and again use the dimension zero of the superspecial locus.

We end this part with a few remarks about Theorem 1.3.

(1) Theorem 1.3 (1) yields another proof of the result dimM(p)

K,Fp
= 0, which

follows from Theorem 1.1.
(2) When p is ramified in B, the one-dimensional moduli spaces MFp and

MK,Fp both contain components of dimension zero and one. This fol-

lows from the fact that the both moduli spaces M(p)

Fp
and M(p)

K,Fp
are zero-

dimensional and non-empty.
(3) Suppose p is ramified in B. By Theorem 1.3 (2) and (4), we conclude that

the moduli schemes M and MK are not flat over SpecZ(p). Moreover,
there is a polarized abelian OB-surface satisfying the determinant condition
which can not be lifted to characteristic zero.

(4) When p is unramified in B, we have M(p) = M(p)
K and hence the moduli

scheme M(p) is flat over SpecZ(p). When p is ramified in B, we construct
a superspecial prime-to-p degree polarized abelian OB-surface which does
not satisfy the determinant condition; see Lemma 14.3. In particular, this
point can not be lifted to characteristic zero. This shows that the inclusion

M(p)
K (k) ⊂M(p)(k) is strict. This phenomenon is different from the reduc-

tion modulo p of Hilbert moduli schemes or Hilbert-Siegel moduli schemes.
In the Hilbert-Siegel case, any separably polarized abelian varieties with
RM by OF of a totally real algebraic number field F satisfies the determi-
nant condition automatically; see Yu [35], Görtz [5] and Vollaard [31].

(5) To generalize Theorem 1.3 to the case where B is a quaternion algebra over
any totally real field F , one can construct Moret-Bailly families to get a
lower bound for the dimensions. However, we do not know how to produce
the other good bound.

2. Moduli spaces

2.1. Moduli spaces. Let p be an odd prime number. Let F be a totally real
field of degree d = [F : Q] and OF the ring of integers. Let B be a totally definite
quaternion algebra over F and let ∗ be the canonical involution on B, which is the
unique positive involution on B. Let OB be an order in B which is stable under
the involution ∗ and maximal at p, that is, OB ⊗Z Zp is a maximal order in the
algebra Bp := B ⊗Q Qp. A polarized abelian OB-scheme over a base scheme S is a
tuple (A, λ, ι), where

• (A, λ) is a polarized abelian scheme over S, and
• ι : OB → EndS(A) is a ring monomorphism that satisfies the compatibility

condition λ ◦ ι(b∗) = ι(b)t ◦ λ.

The pair (A, ι), where A and ι are as above, is called an abelian OB-scheme. A
polarization λ on an abelian OB-scheme (A, ι) satisfying the above compatibility
condition is said to be OB-linear. Similar objects can be also defined when the
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algebra B is replaced by an arbitrary semi-simple Q-algebra together with a positive
involution.

Let m ≥ 1 be a positive integer, and let M be the coarse moduli scheme over
SpecZ(p) of 2dm-dimensional polarized abelian OB-varieties (A, λ, ι). Let M(p) ⊂
M be the subscheme parametrizing the objects in M which have a prime-to-p
degree polarization. The moduli spaces M and M(p) are schemes both locally of
finite type. Each of them is an union of infinitely many open and closed subschemes
which are of finite type:

(2.1) M =
∐
D≥1

MD, M(p) =
∐

D≥1,p-D

MD,

whereD runs through all positive integers andMD ⊂M is the subscheme parametriz-
ing the objects (A, λ, ι) with polarization degree deg λ = D2.

2.2. Study of MC. Let (V, ψ) be a Q-valued non-degenerate skew-Hermitian B-
module of B-rank m. That is, ψ : V × V → Q is a non-degenerate alternating
pairing such that ψ(ax, y) = ψ(x, a∗y) for all a ∈ B and x, y ∈ V . Let G1 ⊂ G be
the algebraic groups over Q defined as follows: For any commutative Q-algebra R,
one has

G(R) = {g ∈ AutB⊗QR(V ⊗Q R) | c(g) = g′g ∈ R× },
G1(R) = {g ∈ AutB⊗QR(V ⊗Q R) | g′g = 1 },

(2.2)

where g 7→ g′ is the adjoint involution with respect to ψ. Denote by c : G → Gm

the multiplier homomorphism. We have an exact sequence of algebraic groups

(2.3) 1 −−−−→ G1 −−−−→ G
c−−−−→ Gm −−−−→ 1.

One can easily show that G1 ⊗ Q is isomorphic to the product of d-copies of the
orthogonal group O2m over Q (see Lemma 3.1). Therefore, both G1 and G have 2d

connected components (cf. [12, Section 7]).
There is a unique B-valued skew-Hermitian pairing ψB : V × V → B, i.e.

ψB(a1x, a2y) = a1ψB(x, y)a∗2, ∀ a1, a2 ∈ B, x, y ∈ V,

such that ψ(x, y) = TrdψB(x, y), where Trd is the reduced trace from B to Q. Note
that the property ψB(ax, y) = ψB(x, a∗y) for all a ∈ B and x, y ∈ V does not hold
anymore. We can choose an orthogonal basis {ei} for ψB and put bi := ψB(ei, ei).
Then b∗i = −bi for i = 1, . . . ,m and

ψ

(
m∑
i=1

xiei,

m∑
i=1

yiei

)
=

m∑
i=1

Trd(xibiy
∗
i ).

For any anti-symmetric element b ∈ B×, i.e. b∗ = −b, we define a (Q-valued) rank-
one skew-Hermitian B-module (B,ψb), where ψb(x, y) := Trd(xby∗). Then we have
a decomposition of skew-Hermitian B-modules

(2.4) (V, ψ) =

m⊕
i=1

(B,ψbi).

Lemma 2.1. There is a B ⊗ R-linear complex structure J0 on VR = V ⊗Q R
such that ψ(J0x, J0y) = ψ(x, y) for x, y ∈ VR and the symmetric bilinear form
(x, y) := ψ(x, J0y) is negative definite.
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Proof. By (2.4) we may assume that m = 1 and (V, ψ) = (B,ψb). Let J0 be
the right multiplication of the element b/

√
NrB/F (b) in B⊗R, where NrB/F is the

reduced norm from B to F . Then one obtains ψb(x, J0y) = −Trd(xy∗), which is
negative definite.

We call a complex structure J0 as in Lemma 2.1 an admissible complex structure
on (VR, ψ). The group G1(R) of real points acts transitively on the set of all
admissible complex structures on (VR, ψ) by conjugation (see [12, Lemma 4.3]). It
is well known that the Hermitian symmetric space

X1 := G1(R)/K∞

has dimension dm(m−1)/2, whereK∞ is the stabilizer of a fixed admissible complex
structure J0. Fix an OB-lattice Λ such that ψ(Λ,Λ) ⊂ Z and let ΓΛ ⊂ G1(Q) be
the arithmetic subgroup which stabilizes the lattice Λ. The natural map g 7→
(VR/Λ, Int(g)J0, ψ) induces an open and closed immersion of analytic spaces

Φ(Λ,ψ) : ΓΛ\X1 ↪→M(C).

LetM(Λ,ψ) denote the open and closed subscheme ofMC over C whose underlying
space is the image of Φ(Λ,ψ). Then we have a decomposition

MC =
∐

(Λ,ψ)

M(Λ,ψ).

ofMC into open and closed subschemes, where (Λ, ψ) runs through the isomorphism
classes of all Z-valued non-degenerate skew-Hermitian OB-lattices of rank m.

Lemma 2.2.

(1) There is an anti-symmetric element b ∈ B× such that (a) ψb(OB , OB) ⊂ Z
and (b) OB ⊗ Zp is a self-dual lattice with respect to ψb.

(2) The moduli space M(p)
C is non-empty

Proof. (1) We have the decomposition OB ⊗ Zp = ⊕v|pOBv with respect to
OF ⊗ Zp =

∏
v|pOFv . We first show that for each place v of F over p, one can

choose an anti-symmetric element bv ∈ B×v so that ψbv is a Zp-valued perfect
paring on OBv . When v is unramified in B, we are reduced to finding a Zp-valued
perfect symmetric pairing on O2

Fv
which clearly exists, and let bv be the element

corresponding to this perfect pairing. When v is ramified in B, one may choose a
prime element Πv of Bv so that Π2

v is a uniformizer of Fv, and let bv := δvΠ
−1
v ,

where δv is a generator of the inverse difference D−1
Fv/Qp .

Using the weak approximation, there is an anti-symmetric element b ∈ B× close
to bv for each place v|p. Replacing b by a prime-to-p multiple bM of b, one gets a
pairing ψb that satisfies the properties (a) and (b).

(2) Choose a pairing ψ = ψb on B as in (1). Then the triple (VR/OB , J0, ψ)
defines a 2d-dimensional polarized complex abelian OB-variety (A0, λ0, ι0). Put
A = (Am0 , λ

m
0 , ι), where ι : OB → End(Am0 ) is the diagonal embedding. This gives

an object in M(p)(C) and hence that M(p)
C is non-empty.
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2.3. Moduli spaces with the determinant condition. Let (V, ψ) be any skew-
HermitianB-module ofB-rankm. Let J0 be an admissible complex structure on VR.
Let VC = V −1,0⊕V 0,−1 be the eigenspace decomposition where J0 acts respectively
by i and −i on V −1,0 and V 0,−1. Let Σ := Hom(F,R) = Hom(F,C) be the set of
real embeddings of F . We have

BC := B ⊗Q C =
∏
σ∈Σ

Bσ, Bσ := B ⊗F,σ C ' Mat2(C).

The action of BC on V −1,0 gives the decomposition

V −1,0 =
∑
σ∈Σ

Vσ,

where each subspace Vσ is a Bσ-module of C-dimension 2m and it is isomorphic
to the direct sum of m-copies of the simple Bσ-module C2. If a ∈ B, then the
characteristic polynomial of a on Vσ is equal to σ(charF (a)m), where charF (a) ∈
F [T ] is the reduced characteristic polynomial of a. Therefore, the characteristic
polynomial of a ∈ B on V −1,0 is given by

char (a|V −1,0) =
∏
σ∈Σ

σ(charF (a))m = char (a)m ∈ Q[T ],

where char (a) = NF/Q charF (a) ∈ Q[T ] is the reduced characteristic polynomial of
a from B to Q.

Let AS = (A, λ, ι) ∈ M(S) be a polarized abelian OB-scheme over S, where
S is a connected locally Noetherian Z(p)-scheme. Since the Lie algebra Lie(A) is
a locally free OS-module, the characteristic polynomial char (ι(a)|Lie(A)), for any
element a ∈ OB , is defined and it is a polynomial in OS [T ] of degree 2dm. The
determinant condition for AS is the quality of the following two polynomials

(2.5) (K) char (ι(a)|Lie(A)) = char (a)m ∈ OS [T ], ∀ a ∈ OB .

This is a closed condition and it only depends on the rank of the skew-Hermitian
B-module (V, ψ).

LetMK ⊂M (resp.M(p)
K ⊂M(p)) denote the closed subscheme parametrizing

the objects A in M (resp. M(p)) that satisfy the determinant condition (K).
Let L ⊂ B be a maximal subfield such that any place v of F lying over p is

unramified in L and that the order L∩OB is maximal at p. We can construct such
a maximal subfield L by

(a) constructing a maximal commutative semi-simple subalgebra L ⊂ B ⊗ Qp
such that L is the unramified quadratic extension of F⊗Qp and the maximal
order OL of L is contained in OB ⊗ Zp, and

(b) applying the weak approximation.

Clearly the condition (K) implies the trace condition

(2.6) (T) Tr(ι(a)|Lie(A)) = mTrL/Q(a) ∈ OS , ∀ a ∈ OL.

Similarly, letMT ⊂M (resp.M(p)
T ⊂M(p)) denote the closed subscheme parametriz-

ing the objects A in M (resp. M(p)) that satisfy the trace condition (T).

Lemma 2.3. The special fiber M(p)
K ⊗ Fp is non-empty.
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Proof. We may assume that m = 1 by the same reduction step we show in the

non-emptiness of M(p)
C . In this case, M(C) =M(Q) as each subscheme MD ⊗Q

is zero-dimensional and of finite type. By Grothendieck’s semi-stable reduction
theorem [7], any object (A, λ, ι) ∈M(Qp) has good reduction as the Z-rank of OB
is larger than dimA. Since M(p)(Qp) is non-empty (Lemma 2.2), the reduction

modulo p gives some point x inM(p)(Fp). Since x is the specialization of an object

in characteristic zero, it lands in the M(p)
K . Thus, the special fiber M(p)

K ⊗ Fp is
also non-empty.

2.4. Study of M(Λ,ψ). Let H denote the real Hamilton quaternion algebra. One
has

(2.7) H = C + C j, j a = āj , a ∈ C.

It is a standard fact that any non-degenerate skew-Hermitian H-module of rank
m is isomorphic to (Hm, ψ0), where ψ0(ei, ej) = j δi,j . Put Jm := diag(j, . . . , j) ∈
Matm(H). We extend the canonical involution ∗ on Matm(H) by (aij)

∗ = (a′ij),
where aij ∈ H and a′ij := a∗ji. Let O∗2m denote the algebraic R-group of isometries
of (Hm, ψ0); one has

(2.8) O∗2m(R) = {A ∈ GLm(H) | AJmA
∗ = Jm }.

The group G1 ⊗ R is isomorphic to
∏
σ∈Σ O∗2m.

Lemma 2.4. One has G1(R) = G0
1(R), G(R) = G0(R) and c(G(R)) = R×.

Proof. Let SO∗2m = {A ∈ O∗2m|Nrd(A) = 1}. The group SO∗2m is a form of SO2m

and hence it is the connected component of O∗2m. We show that if g ∈ O∗2m(R)
then Nrd(g) = 1. It suffices to show that for any element g ∈ GLm(H) one has
Nrd(g) > 0. Since the set GLm(H)ss ⊂ GLm(H) of semi-simple elements is open and
dense in the classical topology, it suffices to show Nrd(g) > 0 for g ∈ GLm(H)ss.
Since such g is contained in a maximal commutative semi-simple subalgebra of
Matm(H), which is isomorphic to Cm, one has Nrd(g) > 0. Therefore,

(2.9) G1(R) =
∏
σ

O∗2m(R) =
∏
σ

SO∗2m(R) = G0
1(R).

It follows from G1(R) = G0
1(R) that G(R) = G0(R). For the last statement we

just need to find an element g such that c(g) < 0. Consider diagonal elements
x = diag(y, . . . , y) and we are reduced to show this in the case where m = 1. In
this case one has iji∗ = −j and hence c(i) = −1. This proves the lemma.

Lemma 2.5.

(1) The Lie group G1(R) is connected.
(2) The Lie group G(R) has two connected components with the neutral com-

ponent

G(R)+ = {g ∈ G(R) | c(g) > 0 }.

Proof. (1) It suffices to show that the Lie group O∗2m(R) = SO∗2m(R) is con-
nected. We embed H ↪→ Mat2(C) as

H 3 a+ bj 7→
(
a b
−b̄ ā

)
∈ Mat2(C),
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and have Matm(H) ⊂ Mat2m(C). Let J and Jm the image of j and Jm in Mat2(C)
and Mat2m(C), respectively. Clearly, J tm = −Jm and J−1

m = −Jm. The complex
conjugation on Mat2(C) coming from the R-structure of H is given by JAJ−1,
where A 7→ A is the usual complex conjugation. Thus, we can recover Matm(H)
from Mat2m(C) by

(2.10) Matm(H) = {A ∈ Mat2m(C) | JmAJ−1
m = A }.

We have A∗ = At for A ∈ Matm(H). By (2.8) and (2.10), one gets

(2.11) O∗2m(R) = {A ∈ Mat2m(C) | AJmAt = Jm, JmAJ
−1
m = A, det(A) = 1 }.

The first condition in (2.11) gives

(2.12) JmAtJ
−1
m = A−1.

Taking the transpose, the second condition in (2.11) becomes the condition

(2.13) At = J−tm AtJ tm = J−1
m AtJm = JmAtJ

−1
m

With (2.12), the condition (2.13) becomes AtA = I2m. Therefore,

(2.14) O∗2m(R) = {A ∈ Mat2m(C) | AJmAt = Jm, A
tA = I2m, det(A) = 1 }.

This is the group SO∗(2m) defined in [8, Chapter X, Section 2]. By [8, Chapter X,
Lemma 2.4], the Lie group O∗2m(R) is connected.

(2) This follows from (1) and Lemma 2.4.

Remark 2.6. Using the complex coordinates as in the proof of Proposition 2.5, one
sees that there is a section for c : G→ Gm over C. Thus, GC ' G1 oGm over C.

We show that there is no section over R when m is odd. Suppose that there is a
section over R. Then one has G ' G1 oGm over R. The restriction of the reduced
norm map Nrd to Gm gives the character Nrd(t) = tm. Write y = (x, t) ∈ G(R) =
G1(R) o Gm(R) and we have Nrd(y) = Nrd(x)tm = tm. As Nrd(y) > 0, we have
tm > 0 for all t ∈ R×. This is possible only when m is even.

Proposition 2.7. Let (Λ, ψ) be a non-degenerate skew-Hermitian OB-lattice. The
subscheme M(Λ,ψ) of MC is irreducible. In particular M(Λ,ψ) is defined over Q.

Proof. This follows immediately from Lemma 2.5 (1).

Corollary 2.8. If m = 1, then the group G1(R) is isomorphic to (C×1 )d and the
quotient space X1 = G1(R)/K∞ consists of one point, where C×1 = {z ∈ C×|zz̄ =
1}.

The following result is an immediate consequence of Proposition 2.7.

Proposition 2.9. Suppose that m = 1. The map that sends each object (A, λ, ι) ∈
M(Q) = M(C) to its first homology group (H1(A(C),Z), ψλ) with the Riemann
form induces a bijection between the space M(Q) and the discrete set of isomor-
phism classes of Z-valued rank one skew-Hermitian OB-modules (VZ, ψ).

Moreover, the subspace M(p)(Q) corresponds to the subset of classes with the
property that VZ ⊗ Zp is self-dual with respect to the pairing ψ.



12 CHIA-FU YU

2.5. Connection with the adelic description. Let (V, ψ), G1, G, J0 be as
before. Let h0 : C → EndB⊗R(VR) be the R-algebra homomorphism defined by
h0(i) = J0 and denote again by h0 : C× → GR the homomorphism of R-groups.
Let X be the G(R)-conjugacy class of h0. Fix an OB-lattice Λ0 in V and let

U ⊂ G(Af ) be the open and compact subgroup that stabilizes the lattice Λ0 ⊗ Ẑ.

Here Ẑ is the profinite completion of Z and Af = Ẑ ⊗ Q is the finite adele ring of
Q. One forms a Shimura variety

ShU (G,X) = G(Q)\X ×G(Af )/U.

Lemma 2.10. The Hermitian symmetric space X is G(R)/R×K∞ and it has two
connected components.

Proof. Since c(G(R)) = R× (Lemma 2.4), the closed immersion G→ GSp(V, ψ)
induces a surjective map π0(X) → π0(H±g ), where H±g is the Siegel double space.
On the other hand G(R) has two connected components (Lemma 2.5). Therefore
X has two connected components and X = G(R)/Z(G(R))K∞ = G(R)/R×K∞.

By Lemma 2.5, the group G(Q) is dense in G(R). Thus,

ShU (G.X) = G(Q)+\X1 ×G(Af )/U

=

h∐
i=1

Γi\X1, Γi = G(Q)+ ∩ ciUc−1
i ,

(2.15)

where G(Q)+ = G(Q)∩G(R)+ and c1, . . . , ch are coset representatives for the finite
set G(Q)+\G(Af )/U .

We now describe (2.15) in terms of lattices. We say two OB-lattices Λ and Λ′ in
V are similar (resp. strictly similar), denote Λ ∼ Λ′ (resp. Λ ∼s Λ′), if there is an
element g ∈ G(Q) (resp. g ∈ G(Q)+) such that Λ′ = gΛ. We say Λ and Λ′ are in
the same idealcomplex if Λv ∼ Λ′v for all finite places v of F , where Λv := Λ⊗OFv .
Let

I := {Λ ⊂ V | Λv ∼ Λ0,v ∀ v}
be the idealcomplex containing the OB-lattice Λ0. The map c 7→ cΛ0, where c ∈
G(Af ), induces a bijection between the double coset space G(Q)+\G(Af )/U and
the set of strict similitude classes in I. In particular, the complex Shimura variety
ShU (G,X) has h(I) connected components, where h(I) is the strict class number
of I.

Put Λi = ciΛ0 and {Λ1, . . . ,Λh} represents the strict similitude classes of I.
After rescaling we may assume that ψ takes Z-values on Λi for all i. It is easy to
verify Γi = Aut(Λi, ψ) = ΓΛi . Thus, we get

(2.16) ShU (G,X) '
h∐
i=1

M(Λi,ψ).

3. Arithmetic properties

In this section we study polarized abelian OB-varieties from the arithmetic point
of view.
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3.1. Let A = (A, λ, ι) be a 2dm-dimensional polarized abelian OB-variety over K,
where K a field of finite type over its prime field. Let Ks be a separable closure
of K, and let GK denote the Galois group of Ks over K. Let T` denote the Tate
module of AK , and put V` := T`⊗Z`Q`, where ` is a rational prime with ` 6= charK.
Finally we let

ρ` : GK → Aut(T`)

be the attached `-adic representation of the Galois group GK .
Let 〈 , 〉A : T`(A) × T`(A

t) → Z`(1) be the canonical pairing, where At de-
notes the dual abelian variety of A. We may identify T`(A

t) with the linear dual
T`(A)∗ := Hom(T`(A),Z`(1)). The polarization λ induces an alternating non-
degenerate (i.e. with non-zero discriminant) pairing 〈 , 〉 : T`(A) × T`(A) → Z`(1)
by 〈x, y〉 := 〈x, λy〉A. Let g 7→ g′ be the adjoint of the pairing on g ∈ End(V`);
one has the relation g′ = λ−1gtλ, where gt ∈ End(V ∗` ) is the pull-back map. The
pairing also respects the GK-action:

(3.1) 〈ρ`(σ)x, ρ`(σ)y〉 = ρ`(σ)(〈x, y〉) = χ`(σ)〈x, y〉

for all x, y ∈ V` and σ ∈ GK , where χ` : GK → Q×` is the `-adic cyclotomic character.
This shows that

(3.2) ρ`(σ)′ρ`(σ) = χ`(σ).

Put B` := B ⊗Q`, and let G` be the group of B`-linear similitudes on V`. Due to
the relation (3.2) the `-adic representation ρ` factors through this subgroup

ρ` : GK → G`(Q`).

We have the following basic properties:

Lemma 3.1. Let notations be as above.

(1) T` is a free OF ⊗ Z`-module of rank 4m.
(2) V` is a free OB ⊗Q`-module of rank m.
(3) If OB is maximal at `, i.e. OB ⊗ Z` is a maximal order, then T` is a

OB ⊗ Z`-module of rank m.
(4) If m = 1, then the connected component G0

` of G` is a torus and G`(Q`)/G0(Q`)
is a finite elementary 2-group.

(5) The center of G`(Q`) is given by

Z(G`(Q`)) = {x ∈ (F ⊗Q`)× | x2 ∈ Q×` }.

Proof. The statement (1) follows from the fact that Tr(a;V`;Q`) = 4mTrF/Q(a)
for all a ∈ OF and that OF ⊗ Z` is a maximal order. The statements (2) and (3)
are obvious.

(4) Let V` = B` as a left B`-module. Let ( , ) : B` × B` → B` be the lifting
of 〈 , 〉. One has 〈x, y〉 = TrdB`/Q`(xαy

∗). where α := (1, 1) with α∗ = −α. Any
element in EndB`(V`) is a right translation ρg by an element g ∈ B`. The condition
〈xg, yg〉 = c(g)〈x, y〉 gives the relation gαg∗ = c(g)α. Replacing g by g−1, the group
G` is identified with the subgroup of B×` defined by the relation gαg∗ = c(g)α for
some c(g) ∈ Gm.

For each embedding σ ∈ Σ := Hom(F`,Q`), put Bσ = B` ⊗F`,σ Q` ' M2(Q`).

Let j =

(
0 −1
1 0

)
and g ∈ Bσ, one has jg∗j−1 = gt. Write α = βj, then βt = β
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and the relation defining G` becomes gβgt = c(g)β for some c(g) ∈ Gm. Therefore,

GQ` ' {(gσ) ∈ GLΣ
2 ; gσg

t
σ = c for some c ∈ Q×` ,∀σ ∈ Σ}, and

G0
Q`
'
{(

aσ bσ
−bσ aσ

)
∈ GLΣ

2 ; a2
σ + b2σ = c for some c ∈ Q×` ,∀σ ∈ Σ

}
.

This shows that G0
` is a torus. The second statement follows from G(Q`)/G0(Q`) ⊂

G/G0(Q`) ' (Z/2Z)d.
(5) This follows directly from the computation in (4).

Remark 3.2. (1) The group G`(Q`) need not to be Zariski dense in G`. For example,
if F` = F ⊗Q` remains a field and B splits at `, then [G`(Q`) : G0

`(Q`)] = 1 or 2.
However, we always have [G` : G0

` ] = 2d.

Recall that an abelian variety A over any field k is said to have sufficient many
complex multiplications or be of CM-type over k if there is a semi-simple commu-
tative Q-subalgebra L ⊂ End0

k(A) = Endk(A)⊗Z Q such that [L : Q] = 2 dimA. It
is said to have potentially sufficient many complex multiplications or be potentially
of CM-type if there is a finite field extension k1 over k so that the base change Ak1
is of CM type over k1.

Proposition 3.3. Let A = (A, λ, ι) be a 2d-dimensional polarized abelian OB-
variety over K, where K a field of finite type over its prime field. Then A is
potentially of CM-type.

Proof. Let Q`[G`] be the subalgebra of End(V`) generated by the image G` :=
ρ`(GK). Replacing K by a finite extension of K, we may assume that G` ⊂ G0

`(Q`)
is abelian. By the semi-simplicity of Tate modules due to Faltings and Zarhin (see
[3] and [40]), Q`[G`] is a commutative and semi-simple subalgebra. Let L be a
maximal semi-simple commutative subalgebra in End0(A), then so is L ⊗ Q` ⊂
End0(A) ⊗Q Q`. By the theorem of Faltings and Zarhin on Tate’s conjecture (see

[3] and [40]), we have End0(A)⊗Q` = EndQ`[G`](V`). As Q`[G`] is commutative and
semi-simple, any maximal semi-simple commutative subalgebra in EndQ`[G`](V`) has
degree 2 dimA over Q`. This shows [L : Q] = 2 dimA and finishes the proof of the
proposition.

Corollary 3.4. Let A and K be as in Proposition 3.3.

(1) If charK = 0, then A is, up to a finite extension of K, defined over a num-
ber field. That is, there are a finite field extension K1 of K and an abelian
variety A0 with additional structure over a number field K0 contained in
K1 such that there is an isomorphism A⊗K K1 ' A0 ⊗K0

K1.
(2) If charK = p > 0, then A is, up to a finite extension of K and up to isogeny,

defined over a finite field. That is, there are a finite field extension K1 of
K and an abelian variety A0 with additional structure over a finite field K0

contained in K1 such that there is an isogeny A⊗K K1 ∼ A0 ⊗K0
K1.

Proof. The statement (1) follows from Proposition 3.3 and a basic fact in the
theory of complex multiplication. The statement (2) follows from Proposition 3.3
and a result of Grothendieck on isogeny classes of CM abelian varieties in positive
characteristic (see [24] and [36]).
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4. Skew-Hermitian OB ⊗W -modules

4.1. In this section we investigate the basic properties of related local modules with
additional structures. We use the following notations.

Let k be an algebraically closed field of characteristic p > 0. Let W = W (k) be
the ring of Witt vectors over k, and B(k) := FracW the fraction field of W . Let
σ be the Frobenius map on W and on B(k). Let F be a finite field extension of
Qp and O the ring of integers. Let e and f be the ramification index and inertial
degree of F/Qp, respectively, and π a uniformizer of O. Let Fnr denote the maximal
unramified subfield extension of Qp in F, and put Onr := OFnr the ring of integers.

Let B be a quaternion algebra over F and OB be a maximal order. As before,
we denote by ∗ the canonical involution. If B is the matrix algebra, then we fix an
isomorphism B = Mat2(F) with OB = Mat2(O).

Choose an unramified maximal subfield L ⊂ B so that the integral ring OL is
contained in OB. If B is a division algebra, then OL is contained in OB always. In
this case we choose a presentation

(4.1) OB = OL[Π] = {a+ bΠ; a, b ∈ OL}
with the relations

(4.2) Π2 = −π and Πa = āΠ, ∀ a ∈ OL,

where a 7→ ā is the non-trivial automorphism of L/F.
Indeed we first choose a presentation of OB as (4.1) with relations Πa = āΠ

and Π2 = −πu for some element u ∈ O×. Then replacing Π by αΠ for some
element α ∈ O×L , one gets the relation Π2 = −π. Similarly, one could also choose a
presentation but with the relation Π2 = π instead. Nevertheless we simply fix the
presentation of B as (4.1) and (4.2).

We may regard OB as an O-subalgebra of Mat2(OL) by sending

Π 7→
(

0 −1
π 0

)
, and a 7→

(
a 0
0 ā

)
, ∀ a ∈ OL.

Thus,

OB =

{
a+ bΠ =

(
a −b
πb̄ ā

) ∣∣ a, b ∈ OL

}
⊂ Mat2(OL).

We also have the following properties

Π∗ = −Π, and (a+ bΠ)∗ = ā− bΠ.

4.2. Let Σ0 := HomZp(Onr,W ) be the set of embeddings of Onr into W . Write
Σ0 = {σi}i∈Z/fZ in the way that σσi = σi+1 for all i ∈ Z/fZ. For any W -module
M together with a W -linear action of Onr, write

(4.3) M i := {x ∈M | ax = σi(a)x, ∀ a ∈ Onr}
for the σi-component, and we have the decomposition

(4.4) M =
⊕

i∈Z/fZ

M i.

If V is a finite-dimensional k-vector space with a k-linear action of Fpf , we write

(4.5) V = km0 ⊕ · · · ⊕ kmf−1

for the decomposition V = ⊕V i as in (4.4) with mi = dimk V
i for all i ∈ Z/fZ.
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Let P (T ) ∈ Onr[T ] be the minimal polynomial of π; one has O = Onr[π] =
Onr[T ]/P (T ). For any i ∈ Z/fZ, set W i := W [T ]/(σi(P (T )) and denote again by
π the image of T in W i. Each W i is a complete discrete valuation ring and one has
the decomposition

(4.6) O ⊗Zp W =
∏

i∈Z/fZ

W i.

The action of the Frobenius map σ on O ⊗Zp W through the right factor gives a

map σ : W i → W i+1 which sends a to σ(a) for a ∈ W and σ(π) = π. If M is an
O ⊗Zp W -module, then we have the decomposition (4.4) with each component M i

a W i-module. Note that the structure of M as an O ⊗Zp W -module is determined

by the structure of each M i as a W i-module for all i ∈ Z/fZ.
Let Lnr be the maximal unramified extension of Qp in L, and let OLnr be the

ring of integers. Let Σ := HomZp(OLnr ,W ) be the set of embeddings of OLnr into
W . Write Σ = {τj}j∈Z/2fZ in the way that στj = τj+1 and τj |Onr = σi where i = j
mod f for all j. The Galois group Gal(L/F) acts on the set Σ by composing with
the conjugate: τ̄i(x) := τi(x̄). One has τ̄i = σf ◦ τi = τi+f . For any W -module M
together with a W -linear action of OL, write

(4.7) M j := {x ∈M | ax = τj(a)x, ∀ a ∈ OLnr}

for the τj-component, and we have the decomposition

(4.8) M =
⊕

j∈Z/2fZ

M j .

Similarly, each M j is a W i-module where i = j mod f and the structure of M as
an OL ⊗Zp W is determined by the structure of each M j as a W i-module for all
j ∈ Z/2fZ.

4.3. Finite OB⊗ZpW -modules. Suppose M is a finite W -module together with
a W -linear action by OB.

If B is the matrix algebra, then one has the decomposition

(4.9) M = e11M ⊕ e22M =: M1 ⊕M2

where e11 and e22 are standard idempotents of Mat2(O), and M1 and M2 are finite
W -modules with a W -linear action by O with rankW M1 = rankW M2. The Morita
equivalence states that the module M is uniquely determined by the O ⊗Zp W -
module M1. Furthermore, the structure of M1 as an O ⊗Zp W -module is given

by its decomposition M1 = ⊕i∈Z/fZM i
1 as W i-submodules and the W i-module

structure of each component M i
1. This describes finite OB ⊗ W -modules when

B is the matrix algebra. In particular, if M is free as a W -module, then M is
uniquely determined by the numbers rankW iM i, which equals 2 rankW iM i

1, up to
isomorphism (and these ranks can be arbitrary even non-negative integers). The
module M is a free OB⊗W -module if and only if the ranks rankW iM i are constant.

Suppose B is the division algebra. Write OB = OL[Π] as in Subsection 4.1. The
action by OLnr gives the decomposition

(4.10) M =
⊕

j∈Z/2fZ

M j



DEFINITE QUATERNION MULTIPLICATION 17

with each component M j a finite W i-module. Moreover, one has

Π : M j →M j+f , Π2 = −π

for all j ∈ Z/2fZ. To see this, if x ∈M j , then for a ∈ OLnr ,

a ·Πx = Π ā · x = Π (τj(ā))x = Π τj+f (a)x = τj+f (a)Πx.

As a consequence, we obtain

(4.11) rankW iM j = rankW iM j+f , ∀ j ∈ Z/2fZ.

This is the only constraint for M to be an OB ⊗W -module. Put

(4.12) aj := dimkM
j/ΠM j−f

If M is free as a W -module, then M is uniquely determined by the numbers {aj}j up
to isomorphism. The number aj can be arbitrary between 0 and rankW iM j subject
to the condition aj +aj+f = rankW iM j , Furthermore, M is a free OB⊗W -module
if and only if the numbers aj are constant.

4.4. Skew-Hermitian OB ⊗Zp W -module. Let M be a finite non-degenerate
skew-Hermitian OB-module over W , that is, it is a finite and free W -module with
a W -linear action of OB and together with an alternating non-degenerate bilinear
pairing

ψ : M ×M →W

satisfying the condition

(4.13) ψ(bx, y) = ψ(x, b∗y), ∀x, y ∈M, b ∈ OB.

(non-degeneracy here means that the induced map M → M t := HomW (M,W ) is
injective). If the pairing ψ is perfect, we call M self-dual.

Suppose B is the matrix algebra. Let C :=

(
0 1
−1 0

)
be the Weyl element. Put

ϕ(x, y) := ψ(x,Cy). Then the pairing ϕ : M ×M → W is symmetric and the
decomposition M = M1 ⊕M2 in (4.9) respects the pairing ϕ; indeed, this follows
from the property C∗ = −C. One also has C−1a∗C = at for any a ∈ B = Mat2(F).
The Morita equivalence then reduces to describe the symmetric O ⊗ W -module
M1. The condition (4.13) then becomes ϕ(ax, y) = ϕ(x, ay) for x, y ∈ M1 and

a ∈ O and this implies that ϕ(M i
1,M

i′

1 ) = 0 for i 6= i′ in Z/fZ, where M i
1’s are

the components in the decomposition (4.4). Consider the restriction of ϕ to each
component M i

1. Then there is a unique W i-bilinear pairing

ϕi : M i
1 ×M i

1 → D−1
W i/W

such that ϕ = TrWi/W ϕi on each M i
1, where D−1

W i/W is the inverse difference of W i

over W . Then it suffices to describe symmetric W i-modules M i
1 and this description

is well known; see O’Meara [23]. As the ground field k is algebraically closed, if
M i

1 is self-dual (with respect to the values in D−1
W i/W ), then the isomorphism class

of M i
1 is determined by its rank rankW iM i

1. Note that M is self-dual with respect
to the pairing ψ if and only if each submodule M i

1 is self-dual with respect to the
pairing ϕi (with values in D−1

W i/W ). Following from this, we conclude the following

result.
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Lemma 4.1. Assume B is the matrix algebra. Any two self-dual skew-Hermitian
OB ⊗W -modules M and N are isomorphic if and only if rankW iM i = rankW i N i

for all i ∈ Z/fZ. Moreover, for any given non-negative even integers ni for i ∈
Z/fZ, there is a unique up to isomorphism self-dual skew-Hermitian OB ⊗ W -
modules M such that dimW iM i = ni for all i ∈ Z/fZ.

Suppose B is the division algebra. Let M = ⊕jM j be the decomposition by
the action of OLnr as (4.8). It is easy to see using (4.13) that ψ(M j1 ,M j2) = 0 if
j1 − j2 6= f in Z/2fZ and hence ψ is determined by its restriction

ψ : M j ×M j+f →W

for 0 ≤ j < f . Note that rankW iM j = rankW iM j+f (4.11). Let D−1
W i/W = W iδi,

where δi is a generator. Then there is a unique W i-bilinear pairing

ψi : M j ×M j+f →W i

where i := j mod f such that ψ = TrW i/W (δiψi). Clearly, the module M is self-
dual with respect to the pairing ψ if and only if each ψi is a perfect pairing.

Now we only consider the case where M is self-dual. For any x, y ∈ M j , one
easily sees

ψi(x,Πy) = ψi(Π
∗x, y) = ψi(y,Πx),

so the pairing

ϕi : M j ×M j →W i, ϕi(x, y) := ψi(x,Πy),

is symmetric. Put M j := M j/πM j . Then ψi induces the perfect pairing which we

still denote by ψi : M j ×Mf+j → k. Recall aj := dimkM
j/ΠM j+f . From the

isomorphisms

Π : M j+f/ΠM j ' ΠM j+f/πM j

we get

aj + aj+f = dimkM j = dimkM j+f .

Lemma 4.2. For j ∈ Z/2fZ and let notations be as above. Then there are W i-
bases

{xj1, . . . , x
j
aj+aj+f

}, {xj+f1 , . . . , xj+faj+aj+f
}

for M j and M j+f , respectively, where the positive integers aj and aj+f are as
above, such that

(4.14)

{
Π(xjk) = xj+fk , ∀ 1 ≤ k ≤ aj ,
Π(xj+faj+k

) = xjaj+k, ∀ 1 ≤ k ≤ aj+f ,

and for 1 ≤ k, l ≤ aj + aj+f , one has

(4.15) ψi(x
j
k, x

j+f
l ) = δk,l.

Proof. Consider the induced symmetric pairing ϕi : M j ×M j → k. Since ΠM j

and ΠM j+f are mutual orthogonal complemented with respect to the pairing ψi,
one obtains a non-degenerate symmetric pairing

(4.16) ϕi : M j/ΠM j+f ×M j/ΠM j+f → k.



DEFINITE QUATERNION MULTIPLICATION 19

We prove the statement by induction on the rank of M j (or of M j+f ). Suppose

aj > 0, using (4.16) we may choose an element xj1 ∈ M j such that ϕi(x
j
1, x

j
1) = 1.

This is because W i× = (W i×)2. Put xj+f1 := Πxj1 ∈M j+f . Then we have

M j ⊕M j+f = N ⊕N⊥,

where N is the W i-submodule generated by xj1 and xj+f1 and N⊥ is the orthogonal
complement of N . Clear N is stable under the OB-action and hence so N⊥. By

induction we can choose bases {xj1, . . . , x
j
aj+aj+f

} and{xj+f1 , . . . , xj+faj+aj+f
} for M j

and M j+f , respectively, satisfying (4.14) and (4.15). If aj = 0 then aj+f > 0 and
we do the same for M j+f . This completes the proof of the lemma.

We obtain the following classification result.

Corollary 4.3. Assume that B is the division algebra. Any two self-dual skew-
Hermitian OB ⊗W -modules M and N are isomorphic if and only if

dimkM
j/ΠM j+f = dimkN

j/ΠN j+f , for all j ∈ Z/2fZ.

Moreover, for any given non-negative integers aj for j ∈ Z/2fZ, there is a unique
up to isomorphism self-dual skew-Hermitian OB ⊗W -modules M such that aj =
dimkM

j/ΠM j+f for all j ∈ Z/2fZ.

5. Quasi-polarized Dieudonné OB-modules

5.1. All Dieudonné modules in this paper are assumed to be finite and free as
W -modules. For basic theory of Dieudonné modules, we refer to Manin [14] and
Zink [41]. When working with Dieudonné modules, we use the standard notations
F and V for the Frobenius and Verschiebung operators, respectively. This should
not bring much danger of confusion with the totally real starting with.

By a Dieudonné OB-module we mean a Dieudonné module M together with
a ring monomorphism OB → EndDM(M) of Zp-algebras. Recall that a quasi-
polarization on a Dieudonné module M is an alternating non-degenerate W -bilinear
form

〈 , 〉 : M ×M →W,

such that 〈Fx, y〉 = 〈x, V y〉σ for all x, y ∈ M ; a quasi-polarization is called OB-
linear if it satisfies the condition

(5.1) 〈bx, y〉 = 〈x, b∗y〉, ∀x, y ∈M, b ∈ OB.

A quasi-polarized Dieudonné OB-module is a Dieudonné OB-module M together
with an OB-linear quasi-polarization.

We also recall that a quasi-polarized p-divisible OB-module is a triple (H,λ, ι)
where G is a p-divisible group, ι : OB → End(H) is a ring monomorphism of
Zp-algebras and λ : H → Ht is a quasi-polarization (i.e. an isogeny λ satisfying
λt = −λ) such that λ◦ι(b∗) = ι(b)t◦λ for all b ∈ OB, where Ht is the Cartier dual of
H. For a quasi-polarized p-divisible OB-module (H,λ, ι), the associated (covariant)
Dieudonné module M = M(H) with the additional structures is a quasi-polarized
Dieudonné OB-module.

Clearly these notions can be defined for orders in general semi-simple Qp-algebras
with involutions (i.e. for general PEL data); cf. [36, Section 2.1].
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Let (M, 〈 , 〉) be a (not necessarily separably) quasi-polarized Dieudonné OB-
module.

Suppose B is the matrix algebra. Similarly to Subsection 4.4 we define the sym-
metric pairing (x, y) := 〈x,Cy〉 and have the decomposition M = e11M ⊕ e22M =:
M1 ⊕M2, which respects the pairing ( , ), where C is the Weyl element. Hence
the Morita equivalence reduces to considering the anti-quasi-polarized Dieudonné
O-module M1. It admits the properties

(5.2) (ax, y) = (x, ay) and (Fx, y) = (x, V y)σ ∀ a ∈ O, x, y ∈M1.

Let M1 = ⊕i∈Z/fZM i
1 be the decomposition by the action of Onr. Then one has

F : M i →M i+1, V : M i+1 →M i

and (M i1
1 ,M

i2
1 ) = 0 if i1 6= i2 in Z/fZ. This shows that the ranks rankW iM i

1 (or
equivalently rankW iM i) for i ∈ Z/fZ are constant. As a result, the module M1

(or M) is free as an O ⊗Zp W -module (This only uses the property that M is a
Dieudonné O-module).

Lemma 5.1. Assume that B is the matrix algebra. Let M and N are two separably
quasi-polarized Dieudonné OB-modules, then M and N are isomorphic as skew-
Hermitian OB ⊗W -modules.

Proof. This follows from the fact that M1 (or M) is free as an O⊗ZpW -module
and Lemma 4.1.

Suppose B is the division algebra. Let M = ⊕j∈Z/2fZM j be the decomposition
as (4.10). Then we have

F : M j →M j+1, V : M j+1 →M j ,

and 〈M j1 ,M j2〉 = 0 if j1− j2 6= f in Z/2fZ. This shows that the ranks rankW iM j

for j ∈ Z/2fZ are constant. As a result, M is free as an OL ⊗Zp W -module (This
only uses the property that M is a Dieudonné OL-module).

5.2. From now on until Section 9 we assume that rankW M = m[B : Qp] for some
positive integer m. We say a Dieudonné OB-module M satisfies the determinant
condition if one has the equality of the characteristic polynomials, cf. (2.4)

(5.3) (K) char (ι(a)|M/VM) = char (a)m ∈ k[T ], ∀ a ∈ OB,

where char (a) ∈ Zp[T ] is the reduced characteristic polynomial of a from B to Qp,
which is of degree [B : Qp]/2. If we let d = [F : Qp], then the above polynomials
are of degree 2dm.

Lemma 5.2. Let M be a Dieudonné OB-module.

(1) If B is the matrix algebra, then M satisfies the determinant condition (K)
if and only if for all i ∈ Z/fZ, one has dimk(M1/VM1)i = em.

(2) If B is the division algebra, then M satisfies the determinant condition (K)
if and only if for all j ∈ Z/2fZ, one has dimk(M/VM)j = em.

Proof. (1) Using the Morita equivalence, M satisfies the condition (K) if and
only if M1 satisfies (K) for all a ∈ O. Choose an algebraically closure B(k)alg of
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B(k) := W (k)[1/p] and put ΣF := Hom(F, B(k)alg). For a ∈ O, the left hand side
of the equation (5.3) is ∏

i∈Z/fZ

(T − σ̃i(a))dimk(M1/VM1)i ,

where σ̃i ∈ ΣF is any lift of σi ∈ Σ0. The right hand side of the equation (5.3) is
equal to ∏

σ∈ΣF

(T − σ′(a))m =
∏

i∈Z/fZ

(T − σ̃i(a))em .

Therefore, the condition (K) is satisfied if and only if dimk(M1/VM1)i = em for
all i ∈ Z/fZ.

(2) As B is generated by the element Π over L, it suffices the check the equality
(5.3) for a = Π and all a ∈ OL. Since ι(Π) on M/VM is nilpotent, its characteristic
polynomial is T 2dm, where d = [F : Qp]. The (reduced) characteristic polynomial
of Π is the product of (T 2 + π) which is also equal to T 2dm in k[T ]. The same
proof of (1) then shows that M satisfies the determinant condition if and only if
dimk(M/VM)j = em for all j ∈ Z/2fZ.

Lemma 5.3. Suppose M is a separably quasi-polarized Dieudonné OB-module.

(1) If B is the matrix algebra, then for any i ∈ Z/fZ, one has dimk(M1/VM1)i =
em.

(2) If B is the division algebra, then for any i ∈ Z/fZ, one has dimk(M/VM)i =
2em (recall that (M/VM)i denotes the σi-component of M/VM).

Proof. (1) ConsiderM1 as a separably anti-quasi-polarized DieudonnéO-module.
Using the similar proof of [35, Lemma 2.6 (2)], we show that the numbers dimk(M1/VM1)i

are constant, therefore, dimk(M1/VM1)i = em for all i ∈ Z/fZ.
(2) ConsiderM as a separably quasi-polarized DieudonnéO-module (the Hilbert-

Siegel analogue). Again using the similar proof of [35, Lemma 2.6 (2)], we conclude
that the numbers dimk(M/VM)i are constant, therefore, dimk(M/VM)i = 2em
for all i ∈ Z/fZ.

Remark 5.4. According to Lemma 5.3, if B is the matrix algebra, then any sep-
arably quasi-polarized Dieudonné OB-module satisfies the determinant condition.
However, in the case where B is the division algebra, there are a few possibili-
ties for dimk(M/VM)j , so that the determinant condition would impose a further
condition for separably quasi-polarized Dieudonné OB-modules.

5.3. We discuss the relationship between the numbers aj := dimk(M/ΠM)j and
the numbers dimk(M/VM)j when B is the division algebra. Put

(5.4) cj := dimk(M/VM)j for j ∈ Z/2fZ.

Write Vj : M j+1 → M j for the restriction of V on M j+1, and Πj : M j → M j+f

for that of Π on M j . We have the commutative diagram

(5.5)

M j Vj←−−−− M j+1

Πj
y Πj+1

y
M j+f Vj+f←−−−− M j+f+1.
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Let ord be the normalized valuation on W i, that is, one has ord(π) = 1. Let
ord det Πj denote the valuation of det(Aj), where Aj is the representative matrix
of the map Πj with respect to a set of W i-bases for M j and M j+f respectively;
this is well-defined. Similarly we define ord detVj for suitable bases of M j+1 and
M j . It is easy to see that

(5.6) ord detVj = cj , and ord det Πj = aj+f , ∀ j ∈ Z/2fZ.

As Πj+1 = V −1
j+f ◦Πj ◦ Vj , one has the relation

aj+f+1 = aj+f + cj − cj+f ,

or equivalently

(5.7) aj+1 = aj + cj+f − cj , ∀ j ∈ Z/2fZ.

Since rankW iM j = 2m, it follows from Πj ◦Πj+f = −π that

(5.8) aj + aj+f = 2m.

Since a′js are integers between 0 and 2m, it follows from (5.7) that

(5.9)
∣∣ j+r∑
i=j

(ci+f − ci)
∣∣ ≤ 2m, ∀ j ∈ Z/2fZ, 0 ≤ r ≤ f − 1.

On the other hand, the collection {cj} satisfies the condition

(5.10)
∑

j∈Z/2fZ

cj = 2dm.

If M admits an OB-linear quasi-polarization which is separable, or called separably
quasi-polarizable, then one has the additional property

(5.11) cj + cj+f = 2em, ∀ j ∈ Z/2fZ.

Lemma 5.5. Notations being as above, the sets of numbers {aj} and {cj} satisfy
the conditions (5.7)–(5.10). Moreover, if M is separably quasi-polarizable, then one
has in addition the condition (5.11).

Proposition 5.6. Let M be a Dieudonné OB-module of rank 4dm, where d = [F :
Qp].

(1) Suppose B is the matrix algebra.
(a) The module M is free as an OB ⊗W -module.
(b) The module M is separably quasi-polarizable if and only if it satisfies

the determinant condition.
(2) Suppose B is the division algebra. Then M is free as an OB ⊗W -module

if and only if it satisfies the determinant condition.

Proof. (1) Part (a) is discussed in the paragraph before Lemma 5.1. (b) The only
if part follows from Lemmas 5.2 and 5.3. For the if part, we refer to the discussion
in [35, Lemma 2.6].

(2) If M satisfies the determinant condition. then each cj is equal to em by
Lemma 5.2. By (5.7) and (5.8), each aj is equal to m. Therefore, M is free as an
OB ⊗W -module. Conversely, if M is free as an OB ⊗W -module, then cj = cj+f
for all j by (5.7). By (5.11), each cj is equal to em. It follows from Lemma 5.2 that
the Dieudonné OB-module M satisfies the determinant condition.
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Corollary 5.7. Let Λ be a Zp-valued unimodular skew-Hermitian OB-module of
Zp-rank 4dm. For any separably quasi-polarized Dieudonné OB-module M of rank
4dm that satisfies the determinant condition, one has an isomorphism M ' Λ⊗ZpW
as skew-Hermitian OB ⊗W -modules.

Proof. By Proposition 5.6, M is free as an OB ⊗W -module. When B is the
matrix algebra, the assertion follows from Lemma 4.1. When B is the division
algebra, by Proposition 5.6 M is a free OB⊗W -module. The assertion then follows
from Lemma 4.2.

6. Isogeny classes of p-divisible OB-modules

6.1. Keep the notations of the previous section. Our goal is to classify the isogeny
classes of quasi-polarized p-divisibleOB-modules H = (H,λ, ι) over an algebraically
closed field k of characteristic p. Let (M, 〈 , 〉, ι) be the associated Dieudonné module
with the additional structures. Assume that rankW M = m[B : Qp] for some integer
m ≥ 1. Note that this is the general type D case (in the local situation). Let
d := [F : Qp]. So the p-divisible group H has height 4dm.

The slope sequence (or Newton polygon) of a p-divisible group H is denoted by
ν(H). Write

{βmii }1≤i≤t
for the slope sequence with each slope βi of multiplicity mi.

Two quasi-polarized p-divisible OB-modules H = (H,λ, ι) and H ′ = (H ′, λ′, ι′)
are said to be isogenous if there is an OB-linear quasi-isogeny ϕ : H → H ′ such that
ϕ∗λ′ = λ. This is equivalently saying that the associated F -isocrystals M⊗ZpQp '
M ′⊗ZpQp are isomorphic compatible with the additional structures. Similarly, one
defines the isogenies for p-divisible OB-modules (H, ι). Clearly, the slope sequence
of a (quasi-polarized) p-divisible OB-module is determined by its isogeny class. The
relationship between the Newton polygon and isogeny class of p-divisible groups
with additional structures (in the general setting of F -isocrystals with G-structure)
is known due to the works of Kottwitz [11, 13] and Rapoport-Richartz [28]. Here
we describe the image of the Newton map ν for p-divisible OB-modules.

6.2. We describe the isogeny classes of p-divisible OB-modules.

Lemma 6.1. Let (H, ι) and (H ′, ι′) be two p-divisible OB-modules of same height.
Then (H, ι) is isogenous to (H ′, ι′) if and only if ν(H) = ν(H ′).

Proof. The direction =⇒ is obvious and we show the other direction. Since
ν(H) = ν(H ′), we may choose an isogeny ϕ : H → H ′. Then we have an iso-
morphism j : End0(H ′) ' End0(H) of Qp-algebras, sending a 7→ ϕ−1aϕ, where

End0(H) := End(H) ⊗Zp Qp. Put ι1 := j ◦ ι′ : B → End0(H). Since the center of

End0(H) is a product of copies of Qp, by the Noether-Skolem theorem, there is an

element α ∈ End0(H)× such that ι1 = Int(α) ◦ ι. For b ∈ B, one has

ϕ−1 ι′(b)ϕ = ι1(b) = α ι(b)α−1.

Therefore, ϕ ◦ α : H → H ′ is an OB-linear quasi-isogeny.
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6.3. The isoclinic case. Let H be an isoclinic p-divisible OB-module of height
h > 0 of the slope β, and let M be the associated Dieudonné OB-module. Let
E := End0(H) be the endomorphism algebra. Write E = Matn(∆), where ∆ is a
central division Qp-algebra with inv(∆) = β.

Suppose B is the matrix algebra. Then H = H1 ⊕H2, H1 has height h1 := h/2
and deg(End0(H1)) = h1. It is well known that there is an monomorphism F →
End0(H1) if and only if d|h1, or equivalently 2d|h. As deg(End0(H1)) = h1, one
has β = a/h1 for some integer 0 ≤ a ≤ h1. Therefore,

ν(H) =

{(
a

h1

)h}
for some integer 0 ≤ a ≤ h1. Conversely, suppose 2d|h and we are given a slope
sequence ν = {(2a/h)h} for some integer 0 ≤ a ≤ h/2. Then there is a p-divisible
group H of height h and with an monomorphism B→ End0(H) such that ν(H) =
ν. Replacing H by another p-divisible group in its isogeny class, the map B →
End0(H) can be extended to a map ι : OB → End(H).

Suppose that B is the division algebra. Write β = a/h for some integer 0 ≤ a ≤
h. Suppose

∆⊗Qp Bop = ∆F ⊗F Bop = Matc(∆
′),

where ∆F := ∆ ⊗Qp F, Bop is the opposite algebra of B, ∆′ is a central division
F-algebra.

By an embedding theorem for general simple algebras [39, Theorem 2.7], there is
an embedding of B into E = Matn(∆) if and only if the following condition holds

(6.1) [B : Qp] | nc.
Write δ := deg(∆) and δ′ := deg(∆′). As the field L can be embedded into E,

one has 2d|h. So we can put h = 2dh′ for some integer h′.

Lemma 6.2. The condition (6.1) is equivalent to the condition

(6.2) a ≡ h′ (mod 2)

Proof. We have cδ′ = 2δ and h = nδ. Then

4d|nc ⇐⇒ 4dδ′|ncδ′ ⇐⇒ 2dδ′|nδ = h

and this is equivalent to the condition

(6.3) δ′|h′.
As δ′ is the denominator of inv(∆′), the condition (6.3) holds if and only if h′ ·
inv(∆′) ∈ Z. We compute

inv(∆′) = d · a
h
− 1

2
=
a− h′

2h′
and hence h′ · inv(∆′) =

a− h′

2
.

Therefore, the condition (6.3) holds if and only if the condition (6.2) holds. This
proves the lemma.

By Lemma 6.2 one has

ν(H) =

{(a
h

)h}
for some integer 0 ≤ a ≤ h with a ≡ h′ (mod 2). Conversely, suppose h = 2dh′ for
some h′ ∈ Z≥1 and we are given a slope sequence ν = {(a/h)h} for some integer
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0 ≤ a ≤ h with a ≡ h′ (mod 2). Then there is a p-divisible OB-module H of height
h such that ν(H) = ν.

We conclude the discussion in the following proposition.

Proposition 6.3. Let h = 2dh′ with h′ ∈ Z≥1, and let (H, ι) be an isoclinic p-
divisible OB-module of height h over k.

(1) If B is the matrix algebra, then

ν(H) =

{( a

dh′

)h}
,

where a can be integer with 0 ≤ a ≤ dh′.
(2) If B is the division algebra, then

ν(H) =

{(a
h

)h}
,

where a can be any integer with 0 ≤ a ≤ h and a ≡ h′ (mod 2).

6.4. The general case. It is not hard to state the general case for possible slope
sequences of p-divisible OB-modules based on the isoclinic case. One simply con-
siders the decomposition H ∼ H1 ×H2 × · · · ×Ht into the isoclinic components in
the isogeny class.

Theorem 6.4. Let h = 2dh′ with h′ ∈ Z≥1, and let (H, ι) be a p-divisible OB-
module of height h over k.

(1) If B is the matrix algebra, then

(6.4) ν(H) =

{(
ai
dh′i

)2dh′i
}

1≤i≤t

,

where h′1 + · · ·+h′t = h′ is any partition of the integer h′ and ai can be any
integer with 0 ≤ ai ≤ dh′i. Moreover, after combining the indices i with
same slope ai/dh

′
i and rearranging the indices, we may assume that

ai
dh′i

<
ai+1

dh′i+1

, i = 1, . . . , t− 1.

(2) If B is the division algebra, then

(6.5) ν(H) =

{(
ai

2dh′i

)2dh′i
}

1≤i≤t

,

where h′1 + · · · + h′t = h′ is any partition of the integer h′ and ai can be
any integer with 0 ≤ ai ≤ 2dh′i and ai ≡ h′i (mod 2). Similarly, we may
rearrange the indices so that

ai
2dh′i

<
ai+1

2dh′i+1

, i = 1, . . . , t− 1.
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7. Slope sequences of quasi-polarized Dieudonné OB-modules

Let h = 4dm with m ∈ Z≥1, and let (H,λ, ι) be a quasi-polarized p-divisible
OB-module of height h over k. Then the slope sequence ν(H) of H is given as
Theorem 6.4 together with the symmetric condition: for all 0 ≤ i, j ≤ t with
i+ j = t+ 1, one has h′i = h′j and

ai
dh′i

+
aj
dh′j

= 1 in the matrix algebra case,

ai
2dh′i

+
aj

2dh′j
= 1 in the division algebra case,

(7.1)

where h′1 + · · ·+ h′t = 2m is a partition of 2m.
Note that the integer t is even if and only if H has no supersingular component.

For any symmetric slope sequence ν which has the form in Theorem 6.4, we write

ν = νn ∪ νs, ,

where νn consists of all slopes in ν which are not 1/2 and νs consists of all slopes
1/2 in ν.

Lemma 7.1. Let h be a positive integer and β a positive rational number so that
there exists an isoclinic p-divisible OB-module of height h and with slope β. Then
there exists a separably quasi-polarized p-divisible OB-module (H,λ, ι) of height 2h
such that ν(H) = {βh, (1− β)h}.

Proof. Choose an isoclinic p-divisible OB-module (H1, ι1) of height h and with
the slope β. Put H2 := Ht

1, which is an isoclinic p-divisible OB-module of height
h and with the slope 1 − β. The monomorphism ι2 : OB → End(H2) is given
by ι2(a) := ι1(a∗)t for a ∈ OB. Put H := H1 × H2, and then Ht = Ht

1 × Ht
2.

Let λ = (λ1, λ2) : H → Ht be an OB-linear isogeny, where λ1 : H1 → Ht
2 and

λ2 : H2 → Ht
1 are OB-linear isogenies. Then λt = (λt2, λ

t
1), so λt = −λ if and only

if λ2 = −λt1. Choose λ1 an OB-linear isomorphism and put λ = (λ1,−λt1). Then λ
is a separably OB-linear quasi-polarization.

Note that the construction in Lemma 7.1 works for any finite-dimensional simple
Qp-algebra B with involution. This method of construction appears quite often in
dealing with symmetric slope sequences with two slopes and we call this the double
construction.

For the supersingular case, we have the following result.

Theorem 7.2. For any positive integer m, there exists a superspecial separably
quasi-polarized Dieudonné OB-module M of rank 4dm that satisfies the determinant
condition (K).

The proof of this theorem is placed in the next section. We conclude the main
result in this section.

Theorem 7.3. Let h = 4dm with any m ∈ Z≥1. Let ν be a slope sequence of
the form in Theorem 6.4 that satisfies the symmetric condition (7.1), where h′1 +
· · ·+ h′t = 2m is any partition of 2m. Then there exists a separably quasi-polarized
Dieudonné OB-module M of rank h and with ν(M) = ν.
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Proof. Write ν = νn + νs into non-supersingular part and supersingular part,
say of length 4dmn and 4dms, respectively. As each isoclinic component {βmii } of
νn can be realized by a p-divisible OB-module (Theorem 6.4), by Lemma 7.1 there
is a separably quasi-polarized p-divisible OB-module (Hn, λn, ιn) of height 4dmn

such that ν(Hn) = νn. On the other hand, by Theorem 7.2, there is a superspecial
separably quasi-polarized p-divisible OB-module (Hs, λs, ιs) of height 4dms that
satisfies the determinant condition. The product (Hn, λn, ιn)× (Hs, λs, ιs) satisfies
the desired properties.

Remark 7.4.
(1) In Lemma 7.1 one may choose H so that H is a minimal p-divisible group in

the sense of Oort, that is, the endomorphism ring End(H) of H is a maximal Zp-
order in the semi-simple Qp-algebra End0(H). This follows from the construction of
the minimal isogeny; see Section 4 (particularly Proposition 4.8) in [38]. Therefore,
the p-divisible OB-module in Theorem 7.3 can be chosen to be minimal.

(2) We shall see that when B is the division algebra, the determinant condition
(K) will rule out some possibilities of the slope sequences that are realized by
separably quasi-polarized Dieudonné OB-module in Theorem 7.3. That is, not all
symmetric slope sequences in Theorem 7.3 occurring as those of separably quasi-
polarized Dieudonné OB-modules that satisfy the determinant condition. We refer
to Section 12 for more details in the case of rank 4d.

Corollary 7.5. There is an ordinary separably quasi-polarized p-divisible OB-
module of height 4dm if and only if one of the following holds:

(1) B is the matrix algebra;
(2) B is the division algebra and m is even.

Proof. Any ordinary p-divisible OB-module always admits an OB-linear separa-
ble quasi-polarization.

If B is the matrix algebra, then the ordinary slope sequence appears in Theo-
rem 6.4 (or in Proposition 6.3). Therefore, by Theorem 7.3 there is an ordinary
separably quasi-polarized p-divisible OB-module of height 4dm.

Suppose B is the division algebra. Then the slope sequence {(a1/2dh
′
1)2dh′1 , (a2/2dh

′
2))2dh′2}

of the form (6.5) can be the ordinary slope sequence if and only if h′1 = h′2 = m
and m ≡ 2dm (mod 2) (taking a2 = 2dh′2 and h′2 = m). That is, m is even.

Remark 7.6. For a smooth PEL-type moduli space M, the ordinary locus of M⊗
k(v) is non-empty if and and if Ev = Qp, where E is the reflex field. Corollary 7.5
shows that the latter condition is not sufficient for the non-emptiness of the ordinary
locus in ramified cases.

We give a few examples of possible slope sequences of quasi-polarized Dieudonné
OB-modules.

Corollary 7.7 (m = 1). Let (H,λ, ι) be a quasi-polarized p-divisible OB-module of
height 4d.

(1) If B is the matrix algebra, then

ν(H) =

{(a
d

)2d

,

(
d− a
d

)2d
}
,
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where a is any integer with 0 ≤ a < d/2, or

ν(H) =

{(
1

2

)4d
}
.

(2) If B is the division algebra, then

ν(H) =

{( a
2d

)2d

,

(
2d− a

2d

)2d
}
,

where a is any integer with 0 ≤ a < d with a ≡ 1 (mod 2), or

ν(H) =

{(
1

2

)4d
}
.

Corollary 7.8 (m = 2). Let (H,λ, ι) be a quasi-polarized p-divisible OB-module of
height 8d.

(1) If B is the matrix algebra, then we have the following possibilities of ν(H):
(a) one slope case:

ν(H) =

{(
1

2

)8d
}
.

(b) two slopes case:

ν(H) =

{( a
2d

)4d

,

(
2d− a

2d

)4d
}
, 0 ≤ a < d, a ∈ Z.

(c) three slopes case:

ν(H) =

{(a
d

)2d

,

(
1

2

)4d(
d− a
d

)2d
}
, 0 ≤ a < d

2
, a ∈ Z.

(d) four slopes case:

ν(H) =

{(a
d

)2d

,

(
b

d

)2d

,

(
d− b
d

)2d

,

(
d− a
d

)2d
}
,

where a and b are any integers with 0 ≤ a < b < d/2.
(2) If B is the division algebra, then we have the following possibilities of ν(H):

(a) one slope case:

ν(H) =

{(
1

2

)8d
}
.

(b) two slopes case:

ν(H) =

{( a
4d

)4d

,

(
4d− a

4d

)4d
}
, 0 ≤ a < 2d, a ∈ Z, a ≡ 0 (mod 2).

(c) three slopes case:

ν(H) =

{( a
2d

)2d

,

(
1

2

)4d(
2d− a

2d

)2d
}
,

where a is any integer with 0 ≤ a < d and a ≡ 1 (mod 2).
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(d) four slopes case:

ν(H) =

{( a
2d

)2d

,

(
b

2d

)2d

,

(
2d− b

2d

)2d

,

(
2d− a

2d

)2d
}
,

where a and b are any integers with 0 ≤ a < b < d and a, b ≡ 1
(mod 2).

8. Proof of Theorem 7.2

In this section we construct a superspecial separably quasi-polarized Dieudonné
OB-module of rank 4dm that satisfies the determinant condition for any m ∈ Z≥1.
It suffices to construct such a Dieudonné module M of rank 4d and we take M⊕m.

8.1. The matrix algebra case. Suppose B is the matrix algebra. Using the
Morita equivalence, one reduces to construct DieudonnéO-modules in question. We
shall construct a superspecial separably anti-quasi-polarized Dieudonné O-module
(M, ( , )) of rank 2d. Then such a M is a free O⊗W =

∏
i∈Z/fZW

i-module of rank

2 and (M i1 ,M i2) = 0 if i1 6= i2 in Z/fZ. We shall also impose the condition that
M/VM is a free O ⊗Zp k =

∏
i k[π]/(πe)-module. Let

M = ⊕i∈Z/fZM i

where each M i is a free rank two W i-module generated by elements Xi and Yi. We
define the symmetric pairing ( , ) : M i ×M i →W , for each i ∈ Z/fZ, with

(8.1) (Xi, π
e−1Yi) = 1 and (Xi, π

bYi) = 0, ∀ 0 ≤ b ≤ e− 2.

Note that the symmetric pairing ( , ) with the property (5.2) is uniquely determined
by its values (Xi, π

bYi) for 0 ≤ b ≤ e − 1. As (πaXi, π
bYi) ≡ 0 (mod p) for all

a+ b > e− 1, the pairing ( , ) is a perfect one. We define the Frobenius map by

(8.2) FXi = Yi+1, FYi = pXi+1, ∀ i ∈ Z/fZ.

This defines a superspecial Dieudonné O-module M . If f = 2r is even, one has

F 2rX0 = prX0, F 2rY0 = prY0.

If f = 2r + 1 is odd, one has

F 2r+1X0 = prY0, F 2r+1Y0 = pr+1X0.

One easily checks the compatibility

p (πaXi, π
bYi)

σ = (FπaXi, Fπ
bYi) = p (πaYi+1, π

bXi+1) = p (πaXi+1, π
bYi+1).

for all 0 ≤ a, b ≤ e − 1, and in particular for a = 0 and 0 ≤ b ≤ e − 1, cf. (8.1).
This gives a superspecial separably quasi-polarized Dieudonné O-module of rank
2d such that M/VM is a free O ⊗ k-module. We have completed the construction
for the case where B is the matrix algebra.
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8.2. The division algebra case. Suppose B is the division algebra. We want to
construct a superspecial separably quasi-polarized Dieudonné OB-module of rank
4d that satisfies the determinant condition. Let

M =
⊕

j∈Z/2fZ

M j ,

where each M j is a free rank two W i-module generated by elements Xj and Yj ,
where i = j mod f . We need to construct

(i) a Frobenius map F on M such that F 2M ⊂ pM and that dimk(M/VM)j =
e for all j ∈ Z/2fZ,

(ii) a map Π on M which shifts the degree by f (i.e. Π : M j → M j+f ) such
that Π2 = −π, and

(iii) a perfect W i-bilinear pairing

〈 , 〉F : M j ×M j+f →W i, ∀ j ∈ Z/2fZ,

such that
(a) 〈X,Y 〉F = −〈Y,X〉F,
(b) 〈FX,FY 〉F = p 〈X,Y 〉σF, and
(c) 〈ΠX,ΠY 〉F = π〈X,Y 〉F

for all X ∈M j , Y ∈M j+f and j ∈ Z/2fZ.

Choose a generator δ of D−1
O/Zp and one has D−1

O/Zp ⊗Zp W = O ⊗Zp W · δ. The

pairing 〈 , 〉F above defines a self-dual alternating O-bilinear pairing

〈 , 〉F : M ×M → O⊗Zp W.

Put

(8.3) 〈x, y〉 := TrF/Qp(δ〈x, y〉F) : M ×M →W.

Then one would obtain a desired Dieudonné OB-module.
Write Fj : M j → M j+1 for the restriction of the Frobenius map F on M j , and

Πj : M j →M j+f for that of Π on M j . As the maps F and Π commute, one has

(8.4) Πj+1Fj = Fj+fΠj : M j →M j+f+1.

Therefore, if the Frobenius map F has been chosen, then the map Π on M is
uniquely determined by the map Π0; of course the maps F and Π0 should be
chosen so that each map Πj defined by the recursive formula (8.4) sends the lattice
M j into M j+f . Observe that if Πf ◦ Π0 = −π, then Πj+f ◦ Πj = −π for all j, as
one easily checks

Πj+f ◦Πj = F j Πf F
−j F jΠ0 F

−j = −π.

Suppose the maps F f : M0 → Mf and F f : Mf → M0 have the representative
matrices in the form

(8.5) A0 =

(
0 a
b 0

)
, Af =

(
0 a
b 0

)
with respect to the bases {X0, Y0} and {Xf , Yf}, where a and b are non-zero ele-
ments in W 0. Set

(8.6) Π0 =

(
1 0
0 −π

)
.
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Then one computes

Πf =

(
0 a
b 0

)(
1 0
0 −π

)(
0 a
b 0

)−1

=

(
−π 0
0 1

)
,

and gets Πf ◦Π0 = −π.
Suppose the maps F f : M0 → Mf and F f : Mf → M0 have the representative

matrices in the form

(8.7) A0 =

(
a 0
0 a

)
, Af =

(
a 0
0 a

)
,

where a is a non-zero element in W 0. Set

(8.8) Π0 =

(
0 −π
1 0

)
.

Then one computes Πf =

(
0 −π
1 0

)
and gets Πf ◦Π0 = −π.

Let c := [e/2]. Suppose the Frobenius map F on M has the following represen-
tative matrix (with respect to the bases {Xj , Yj} of M j):

(8.9) Fj =

(
0 aj
bj 0

)
, ∀ j ∈ Z/2fZ

for some elements aj , bj with ord(bj) = c and ord(aj) = e− c. Then F satisfies the
property (i).

Consider the case where f is even. Put

(8.10) Fj =

(
0 −pπ−c
πc 0

)
, ∀ j ∈ Z/2fZ.

One computes that the matrices A0 and Af have the form as in (8.7). Set

Π0 =

(
0 −π
1 0

)
and we have

(8.11) Πj =



(
0 −π
1 0

)
, if j is even,(

0 −pπ−2c

π2c+1p−1 0

)
, if j is odd.

Clearly, the properties (i) and (ii) for M are satisfied.
For each j ∈ Z/2fZ, define a W i-bilinear pairing

〈 , 〉F : M j ×M j+f →W i

by
〈Xj , Xj+f 〉F = 〈Yj , Yj+f 〉F = 0, and 〈Xj , Yj+f 〉F = 1.

Then one has 〈Yj , Xj+f 〉F = −1 for all j ∈ Z/2fZ. We check the condition (b):

p = 〈FXj , FYj+f 〉F = 〈πcYj+1,−pπ−cXj+1+f 〉F = p.

We check the condition (c) by (8.11)

(8.12) 〈ΠXj ,ΠYj+f 〉F =

{
〈Yj+f ,−πXj〉F = π, if j is even,

〈π2c+1p−1Yj+f ,−pπ−2cXj〉F = π, if j is odd.
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This finishes the case where f is even.

Now consider the case where f = 2r + 1 is odd.
Suppose first that e = 2c is even. Let F be such that Fj is the matrix (8.10).

One computes that the matrices A0 and Af have the form as in (8.5). Set Π0 to
be the matrix (8.6). We have

(8.13) Πj =



(
1 0

0 −π

)
, if j is even,(

−π 0

0 1

)
, if j is odd.

Clearly, the properties (i) and (ii) for M hold.
For each j ∈ Z/2fZ, define a W i-bilinear pairing

〈 , 〉F : M j ×M j+f →W i

by

〈Xj , Yj+f 〉F = 〈Yj , Xj+f 〉F = 0

and {
〈Xj , Xj+f 〉F = (−1)j ,

〈Yj , Yj+f 〉F = (−1)j+1pπ−2c.

We check the compatibility:

〈Xj+f , Xj〉F = −〈Xj , Xj+f 〉F = (−1)j+f ,

〈Yj+f , Yj〉F = (−1)〈Yj , Yj+f 〉F = (−1)j+1+fpπ−2c.

We check the condition (b):

p(−1)j = 〈FXj , FXj+f 〉F = 〈πcYj+1, π
cYj+1+f 〉F = (−1)jp.

p(−1)j+1pπ−2c = 〈FYj , FYj+f 〉F
= 〈−pπ−cXj+1,−pπ−cXj+1+f 〉F = (−1)j+1p2π−2c.

It is easy to check the condition (c) by (8.13). This finishes the case where e = 2c
is even.

Suppose e = 2c+ 1 is odd. Define the maps F and Π as follows:

Fj =

(
0 −πc+1

πc 0

)
, Πj =

(
0 −π
1 0

)
∀ j ∈ Z/2fZ.

It is easy to see that the maps F and Π commute and that the properties (i) and
(ii) for M hold.

We choose elements uj and vj in W i×, where j ∈ Z/2fZ, such that

(8.14) uj+f = −vj , puσj = −π2c+1vj+1 and pvσj = −π2c+1uj+1.

for all j ∈ Z/2f/Z. This can be done by an analogue of Hensel’s lemma and we
leave the details to the reader.

For each j ∈ Z/2fZ, define a W i-bilinear pairing

〈 , 〉F : M j ×M j+f →W i

by

〈Xj , Xj+f 〉F = 〈Yj , Yj+f 〉F = 0
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and

〈Xj , Yj+f 〉F = uj , 〈Yj , Xj+f 〉F = vj .

We check the condition (b):

puσj = 〈FXj , FYj+f 〉F = 〈πcYj+1,−πc+1Xj+1+f 〉F = −π2c+1vj+1,

pvσj = 〈FYj , FXj+f 〉F = 〈−πc+1Xj+1, π
c+Yj+1+f 〉F = −π2c+1uj+1.

It is easy to check the condition (c). This finishes the case where e = 2c+ 1 is odd.
This way we construct a separable OB-linear quasi-polarization on M . This

completes the construction of a superspecial separably quasi-polarized Dieudonné
OB-module of rank 4d in the case of the division algebra.

The proof of Theorem 7.2 is complete.

Remark 8.1. (1) When B is a division algebra and ef is odd, the double con-
struction as in Lemma 7.1 provides an alternative way to produce a separably
quasi-polarized superspecial Dieudonné OB-module M . However, we checked that
such a Dieudonné module M rarely satisfies the determinant condition.

(2) We refer to [37] for a classification of superspecial quasi-polarized Dieudonné
OF ⊗ Zp-modules of HB type.

9. Isogeny classes of quasi-polarized p-divisible OB-modules

Consider rational quasi-polarized Dieudonné B-modules N with B(k)-rank =
4dm, or quasi-polarized B-linear F -isocrystals. When all slopes of N are between
0 and 1, there is a Dieudonné OB-lattice M in N , so N = M ⊗W (k) B(k) for
some quasi-polarized Dieudonné OB-module. We like to classify the isomorphism
classes of these rational Dieudonné B-modules with a fixed slope sequence ν. This
gives the classification of isogeny classes of quasi-polarized p-divisible OB-modules
of height 4dm.

Let ν be a symmetric slope sequence as in Theorem 7.3. Let I(ν) denote the set
of isogeny classes of quasi-polarized p-divisible OB-modules (H,λ, ι) of height 4dm
such that ν(H) = ν. Rapoport and Richartz [28] have obtained a description for
I(ν) in terms of a Galois cohomology set H1(Qp, J) for a certain reductive group J
over Qp when the structure group is connected. The description in terms of Galois
cohomology set helps us to understand the classification problem. For the present
case one still needs to work a bit more as the structure group is not connected,
though a similar description is expected.

We shall work along with Dieudonné modules and translate the classification
problem into the theory of (skew-)Hermitian forms over local fields; see Theo-
rem 9.2.

Write ν = νn + νs into the non-supersingular and supersingular parts.

Lemma 9.1. We have I(ν) = I(νn) × I(νs) and I(νn) consists of one isogeny
classes.

Proof. Suppose N1 and N2 are rational quasi-polarized Dieudonné B-modules
with ν(N1) = ν(N2) = ν. Write

N1 = Nns
1 ⊕Nss

1 , N2 = Nns
2 ⊕Nss

2
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into the non-supersingular component and supersingular component, respectively.
Clearly, N1 ' N2 if and only if Nns

1 ' Nns
2 and Nss

1 ' Nss
2 . This shows the first

part.
For the second part, we decompose the rational Dieudonné modules

Nns
1 = ⊕β<1/2(N1,β ⊕N t

1,β), Nns
2 = ⊕β<1/2(N2,β ⊕N t

2,β)

into isotypic components. By Lemma 6.1, we have an isomorphism N1,β ' N2,β

as rational Dieudonné B-modules for each β < 1/2. It follows that Nns
1 ' Nns

2 as
quasi-polarized Dieudonné B-modules.

By Lemma 9.1, one reduces to classify the isomorphism classes of supersingular
rational quasi-polarized Dieudonné B-modules of B(k)-rank 4dms, where 4dms is
the length of the supersingular part νs.

Let N be a supersingular rational quasi-polarized Dieudonné B-module of B(k)-
rank 4dms. Put

Ñ := {x ∈ N |F 2x = px}.
This is a B(Fp2)-vector space of dimension 4dms such that

• W (k)⊗B(Fp2 ) Ñ = N ,

• F = V on Ñ , and

• the action of B leaves Ñ invariant.

Let D be the quaternion division algebra over Qp. We can write D = B(Fp2)[F ]

with relations F 2 = p and Fa = σ(a)F for all a ∈ B(Fp2). Then Ñ naturally
becomes a left D-module of Qp-rank 8dms. Define the involution ∗D on D by
(a+ bF )∗D := σ(a) + bF . This is an orthogonal involution as the fixed subspace is

3-dimensional. As the actions of B and D commute, Ñ becomes a left B ⊗Qp D-
module. Write

B⊗Qp D = B⊗F (F⊗Qp D) ' Mat2(B′),

where B′ is a quaternion algebra over F. One can easily determine whether B′

splits or not by the following

inv(B′) = 1/2[F : Qp]− inv(B).

The alternating pairing

〈 , 〉 : Ñ × Ñ → B(Fp2)

has values in B(Fp2) satisfying 〈Fx, y〉 = 〈x, V y〉σ. Define

ψ(x, y) := TrB(Fp2 )/Qp〈x, Fy〉.

One has the following properties: For all x, y ∈ Ñ , a ∈ D, and b ∈ B one has

(i) ψ(y, x) = −ψ(x, y),
(ii) ψ(ax, y) = ψ(x, a∗Dy), and

(iii) ψ(bx, y) = ψ(x, b∗y).

That is, Ñ is a Qp-valued skew-Hermitian B ⊗Qp D-module with respect to the
product involution ∗ ⊗ ∗D. We check (i)–(iii). For (i), one has

ψ(y, x) = Tr〈y, Fx〉 = Tr〈Fy, x〉σ = −Tr〈x, Fy〉 = −ψ(x, y).

For (ii), one has for a ∈ B(Fp2)

ψ(ax, y) = Tr〈ax, Fy〉 = Tr〈x, Faσy〉 = ψ(x, aσy),
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ψ(Fx, y) = Tr〈Fx, Fy〉 = Tr p〈x, y〉σ = Tr〈x, F 2y〉 = ψ(x, Fy).

For (iii), one has

ψ(bx, y) = Tr〈bx, Fy〉 = Tr〈x, Fb∗y〉 = ψ(x, b∗y).

Note that if we replace Ñ by Ñ ′ := {x ∈ N |F 2x + px = 0}, then F = −V on Ñ ′

and the pairing ψ′(x, y) := Tr〈x, Fy〉 becomes Hermitian instead of skew-Hermitian.
Moreover, the adjoint involution ∗′D on D is the canonical involution.

Since the canonical involution ∗ is symplectic and ∗D is orthogonal, the product
involution ∗⊗∗D is symplectic. Therefore, we can choose an F-algebra isomorphism
B⊗Qp D ' Mat2(B′) so that the induced involution is the map (bij) 7→ (b∗

′

ji), where
∗′ is the canonical involution on B′.

Let e11 and e22 be the standard idempotent of Mat2(B′) and let Ñ = Ñ1 ⊕ Ñ2

be the corresponding decomposition. We have proven

Theorem 9.2. The association (N, 〈 , 〉) 7→ (Ñ1, ψ) gives rise to a bijection between
the set I(νs) and the set of isomorphism classes of Qp-valued skew-Hermitian free
B′-modules of B′-rank ms, where B′ is the quaternion algebra (unique up to iso-
morphism) over F with inv(B′) = 1/2[F : Qp]− inv(B).

Corollary 9.3.

(1) If B′ is the matrix algebra, then there is a natural bijection between the set
I(νs) and the set of isomorphism of non-degenerate symmetric space over
F of dimension 2ms.

(2) If B′ is the quaternion division algebra, then there is a natural bijection
between the set I(νs) and the set of isomorphism classes of non-degenerate
skew-Hermitian B′-modules of B′-rank ms.

Proof. For the matrix algebra case, we do the Morita equivalence again as before.
The corollary follows from Theorem 9.2.

In the following we use the theory of quadratic forms and the skew-Hermitian
quaternionic forms over local fields; see O’Meara [23, Chapter IV] and Tsukamoto [30].

Consider non-degenerate symmetric spaces V of dimension n0 over a non-Archimedean
local field k0 of characteristic different from 2. Recall the discriminant δV ∈ k×0 /k

×2
0

of V is defined by

δV := (−1)[n0/2] detV.

Note that we have δV = [1] when V is the hyperbolic plane. Let S V ∈ {±1} denote
the Hasse symbol of V (see [23, p. 167]). Denote by Q(n0) the set of isomorphism
classes of non-degenerate symmetric spaces V of dimension n0 over k0.

Theorem 9.4. Notations as above.

(1) For any n0 ≥ 1, the map (δ, S) : Q(n0)→ k×0 /k
×2
0 ×{±1} is injective. This

map is also surjective for any n0 ≥ 3.
(2) For n0 = 1, the map δ : Q(1) ' k×0 /k

×2
0 is a bijection.

(3) For n0 = 2, the image of the map (δ, S) is

{([a],±1); [a] 6= [1]} ∪
{

([1],

(
−1,−1

k0

)
)

}
.

Proof. See Theorems 63:20, 63:22 and 63:23 of [23, p. 170-171].
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Corollary 9.5. If k0 is non-dyadic, then one has

|Q(1)| = 4, |Q(2)| = 7, and |Q(n0)| = 8, ∀n0 ≥ 3.

Let B0 be the quaternion division algebra over k0 together with the canonical
involution ∗. Denote by SQ(n0) the set of isomorphism classes of skew-Hermitian
B0-modules (V, ψ) of rank n0 for n0 ≥ 1. The discriminant δV ∈ k×0 /k

×2
0 is defined

by
δV := (−1)[n0/2] Nr (ψ(ei, ej)) ,

where {ei} is a basis for V over B0 and Nr : Matn0(B0)→ k0 is the reduced norm.

Theorem 9.6.

(1) For n0 ≥ 2, the map δ : SQ(n0)→ k×0 /k
×2
0 is a bijection.

(2) For n0 = 1, the map δ : SQ(n0) → k×0 /k
×2
0 is injective and its image is

equal to {[a]; [a] 6= [1]}.

Proof. This is Theorem 3 in [30].

Corollary 9.7. If k0 is non-dyadic, then one has

|SQ(1)| = 3, and |SQ(n0)| = 4, ∀n0 ≥ 2.

Theorem 9.8. Let notations be as above.

(1) If B′ is the matrix algebra, then we have

(9.1) |I(νs)| =

{
7 if ms = 1,

8 if ms ≥ 2.

(2) If B′ is the quaternion division algebra, then we have

(9.2) |I(νs)| =

{
3 if ms = 1,

4 if ms ≥ 2.

Proof. These follow from Corollaries 9.3, 9.5 and 9.7.

Combining Lemma 9.1, Theorem 9.2, Corollary 9.3 and Theorem 9.8, we ob-
tain an explicit classification of isogeny classes of quasi-polarized p-divisible OB-
modules.

10. Integral model M(p)
K

For the remaining of this paper we restrict ourselves to the minimal case m = 1.
We shall use the notations in Section 2 and in Subsection 4.1.

10.1. Local models. Let Λ be a free OB⊗ZZp-module of rank one together with
a perfect Zp-valued skew-Hermitian pairing

ψ : Λ× Λ→ Zp.
For such a lattice Λ, we define, following Rapoport and Zink [29], a projective

Zp-scheme MΛ, called the local model associated to Λ (and ψ), which represents
the following functor. For any Zp-scheme S, MΛ(S) is the set of locally free OS-
submodules F ⊂ Λ⊗Zp OS of rank [B : Q]/2 = 2d such that

(i) F is isotropic with respect to the pairing ψ;
(ii) locally for Zariski topology on S, F is a direct summand of Λ⊗Zp OS ;
(iii) F is invariant under the OB-action;
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(iv) F satisfies the determinant condition (cf. Subsection 2.3):

(K) char (a|Λ⊗OS/F) = char (a) ∈ OS [T ], ∀ a ∈ OB .

Recall that for an abelian scheme A over a base scheme S, we have the Hodge
filtration

0→ ωA/S → H1
DR(A/S)→ Lie(At/S)→ 0.

Taking the dual one obtains the short exact sequence

0→ ωAt/S → HDR
1 (A/S)→ Lie(A/S)→ 0.

If M is the covariant Dieudonné module of an abelian variety A over a perfect
field k0, then there is a canonical isomorphism M/pM ' HDR

1 (A/k0) with the
Hodge filtration VM/pM corresponding to ωAt . This justifies the definition of the
determinant condition for objects in the local model MΛ in (iv).

By an automorphism of the lattice Λ⊗OS , where S is a Zp-scheme, we mean an
OB ⊗Zp-linear automorphism of the OS-module Λ⊗OS that preserves the pairing
ψ. We denote by AutOB⊗OS (Λ⊗OS , ψ) the group of automorphisms of Λ⊗OS .

Let G = AutOB⊗Zp(Λ, ψ) be the group scheme over Zp that represents the group
functor

S 7→ AutOB⊗OS (Λ⊗OS , ψ).

We know that G is an affine smooth group scheme over Zp whose generic fiber GQp
is a Qp-form of (ResF/QO2,F ) ⊗Q Qp; see Section 3. The group scheme G acts
naturally on MΛ on the left.

10.2. Local model diagrams. Let S be a Zp-scheme and A = (A, λ, ι) be an

object in M(p)
K (S). A trivialization γ of the de Rham homology HDR

1 (A/S) by
Λ ⊗Zp OS is an OB ⊗ Zp-linear isomorphism γ : HDR

1 (A/S) → Λ ⊗Zp OS of OS-

modules such that ψ(γ(x), γ(y)) = 〈x, y〉λ for x, y ∈ HDR
1 (A/S), where

〈 , 〉λ : HDR
1 (A/S)×HDR

1 (A/S)→ OS
is the perfect alternating pairing induced by λ.

Let M̃ = M̃(p)
K denote the moduli space over Zp that parametrizes equivalence

classes of objects (A, γ)S , where

• A = (A, λ, ι) is an object over a Zp-scheme S in M(p)
K ⊗ Zp, and

• γ is a trivialization of HDR
1 (A/S) by Λ⊗OS .

The moduli scheme M̃ has two natural projections ϕmod and ϕloc. The morphism

ϕmod : M̃ →M(p)
K ⊗ Zp

forgets the trivialization. The morphism

ϕloc : M̃ →MΛ

sends any object (A, γ) to γ(ωAt/S), where ωAt/S ⊂ HDR
1 (A/S) is theOS-submodule

in the Hodge filtration. Thus, we have the so called local model diagram:

(10.1) M(p)
K ⊗ Zp

ϕmod

←−−−− M̃ ϕloc

−−−−→ MΛ.

The local model diagram above was introduced by Rapoport and Zink [29] in

a more general setting. The moduli scheme M̃ also admits a left action by the
group scheme G. Recall that k denotes an algebraically closed field of characteristic
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p > 0 and W = W (k) the ring of Witt vectors over k. Using Corollary 5.7, for any

k-valued point A in M(p)
K , there is an OB ⊗ Zp-linear isomorphism of W -modules

M(A) ' Λ⊗W
which is compatible with the alternating pairings. This shows that the morphism
ϕmod is surjective. It follows that ϕmod is a left G-torsor, and hence this morphism
is affine and smooth.

By the Grothendieck-Messing deformation theory of abelian schemes (see [6] and

[20]), for any k-valued point x ofM(p)
K , there is a k-valued point y in MΛ such that

there is a (non-canonical) isomorphism

(10.2) α :M(p)
K |
∧
x 'MΛ|∧y

of formal local moduli spaces. This shows particularly that if the local model MΛ

is flat over SpecZp, then the integral model M(p)
K is flat over SpecZp.

The morphism ϕloc is smooth, G-equivariant, and of relative dimension same as
ϕmod. However, at this moment we do not know whether the morphism ϕloc is

surjective yet. If this is so, then the integral modelM(p)
K is flat over SpecZp if and

only if the local model MΛ is flat over SpecZp.
We shall show that the local model MΛ is finite and flat in the next section

(Theorem 11.8). Then we get the main result of this section.

Theorem 10.1. The moduli scheme M(p)
K → SpecZ(p) is flat and every connected

component is projective and of relative dimension zero.

11. Computation of local models

11.1. A reduction step. Let Λ and MΛ be those as in the previous section. Let

Λ = ⊕v|pΛv
be the decomposition of Λ obtained from the decomposition OF ⊗ Zp =

∏
v|pOv,

where Ov is the ring of integers in the local field Fv of F at v. Then we have

MΛ =
∏
v|p

MΛv ,

where the product Π means the fiber product of the schemes MΛv ’s over SpecZp
and MΛv is the local model defined by the lattice Λv in the same way as MΛ; see
Subsection 10.1.

Write OB ⊗Z Zp =
∏
v|pOBv for the decomposition with respect to OF ⊗ Zp =∏

v|pOv. Then OBv is a maximal order in Bv. Similarly we have the automorphism

group scheme Gv = AutOBv (Λv, ψv) associated to the local lattice (Λv, ψv), and have
the fiber product decomposition

G =
∏
v|p

Gv.

Now we fix a place v of F over p. Let Onr
v ⊂ Ov be the maximal etale extension

of Zp in Ov and put

Iv := HomZp(Onr
v ,W ).

Let e = ev be the ramification index and f = fv be the inertia degree. Let π be a
uniformizer of Ov and let P (T ) be the minimal polynomial of π over Onr

v . For any
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σ ∈ Iv put Wσ := W [T ]/(σ(P (T ))) and denote by π again the image of T in Wσ.
One has Wσ = W [π] and the element π satisfies the equation σ(P (T )) = 0. We
have the decomposition

Λv ⊗Zp W = ⊕σ∈IvΛσ, Λσ := Λv ⊗Onr
v ,σ

W.

Write

ψσ : Λσ × Λσ →W

for the induced alternating pairing.
Similarly we define the local model MΛσ over SpecW attached to each skew-

Hermitian lattice (Λσ, ψσ). If Fv ⊂ Λv ⊗ OS is an object in MΛv and let Fv =
⊕σ∈IvFσ be the natural decomposition, then every factor Fσ is a locally free OS-
module of rank 2e; this follows from the determinant condition (K). Therefore we
have a natural isomorphism

f : MΛv ⊗W '
∏
σ∈Iv

MΛσ , Fv 7→ (Fσ)σ∈Iv ,

where the product Π means the fiber product of the schemes MΛσ ’s over SpecW .
We shall compute the special fiber MΛσ ⊗k of MΛσ . Put OBσ := OBv ⊗Onr

v ,σ
W

for σ ∈ Iv.

11.2. Unramified case. Suppose v is unramified in B. Then OBσ = Mat2(Wσ).
By the Morita equivalence reduction as before, we have Λσ = Λσ,1 ⊕ Λσ,2 and a
unimodular Hermitian pairing

ϕσ : Λσ,1 × Λσ,1 →W.

Recall that ϕσ(x, y) is the restriction of the symmetric pairing ψ(x,Cy) on the first
factor Λσ,1, where C is the Weyl element. The local model Mϕσ associated to the
symmetric lattice (Λσ,1, ψσ) is defined to parametrize the Wσ ⊗OS-submodules F

of Λσ,1 ⊗OS with the following properties:

(i) F is a locally free OS-module of rank e and locally for Zariski topology on
S is a direct summand of Λσ,1 ⊗OS ;

(ii) F is isotropic with respect to the pairing ϕσ.

Any Fσ is an object in MΛσ has the decomposition Fσ = Fσ,1 ⊕ Fσ,2.

Lemma 11.1. The map which sends any object Fσ in MΛσ to its first factor Fσ,1
induces an isomorphism of schemes

MΛσ 'Mϕσ .

Proof. It suffices to check that Fσ is isotropic with respect to the pairing ψσ if
and only if Fσ,1 is isotropic with respect to the pairing ϕσ(x, y) = ψσ(x,Cy). Using
e∗11 = e22, we get ψσ(Fσ,Fσ) = 0 if and only if ψσ(Fσ,1,Fσ,2) = 0. On the other

hand, the isomorphism C : Λσ
∼−→ Λσ induces the isomorphism C : Λσ,1

∼−→ Λσ,2.
Therefore, ϕσ(Fσ,1,Fσ,1) = 0 if and only if ψσ(Fσ,1,Fσ,2) = 0. This shows the
lemma.

Put Λσ := Λσ/pΛσ and Λσ,1 := Λσ,1/pΛσ,1. Let D−1
Wσ/W

be the inverse difference

of the extension Wσ/W and choose a generator δσ of this fractional ideal. Then
there is a unique Wσ-valued Wσ-bilinear symmetric pairing

ϕ′σ : Λσ,1 × Λσ,1 →Wσ
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such that ϕσ(x, y) = Tr [δσ · ϕ′σ(x, y)]. One can show that a k[π/(πe)-submodule
Fσ,1 ⊂ Λσ,1 is isotropic with respect to the pairing ϕσ if and only if so it is for the
pairing ϕ′σ.

Since Λσ,1 is a self-dual lattice and k is algebraically closed, we can choose a
Wσ-basis x1, x2 for Λσ,1 such that

ϕ′σ(x1, x1) = ϕ′σ(x2, x2) = 0 and ϕ′σ(x1, x2) = ϕ′σ(x2, x1) = 1.

Denote by x̄i, for i = 1, 2, the image of xi in Λσ,1. Let F ⊂ Λσ,1 be an object in

Mϕσ (k). As Λσ,1 is a free k[π]/(πe)-module of rank two, one has

Λσ,1/F ' k[π]/(πe1)⊕ k[π]/(πe2)

for some integers e1, e2 with 0 ≤ e1 ≤ e2 ≤ e and e1 + e2 = e. The pair (e1, e2) will
be called the Lie type of the object F. We can write

F = Span{πe1 ȳ1, π
e2 ȳ2},

where ȳ1 and ȳ2 generate Λσ,1 over k[π]/(πe). Moreover, we can write either

(a) ȳ1 = x̄1 + tx̄2 and ȳ2 = x̄2, or
(b) ȳ1 = tx̄1 + x̄2 and ȳ2 = x̄1,

where t ∈ k[π]/(πe). We can represent t as

t = t0 + t1π + · · ·+ te−2e1−1π
e−2e1−1, ti ∈ k

because if ordπ(t) ≥ e − 2e1 then one can replace x̄1 + tx̄2 by x̄1 in the case (a)
(and the same for the case (b)). Now one easily computes that

ϕ′σ(F,F) = 0 ⇐⇒ 2tπ2e1 = 0.

This condition gives t0π
2e1 + · · ·+ te−2e1−1π

e−1 = 0 and hence

t0 = · · · = te−2e1−1 = 0.

Therefore, we get two objects.

F = Span{πe1 x̄1, π
e2 x̄2}, or F = Span{πe1 x̄2, π

e2 x̄1}.
Notice that these two members are in the same orbit under the action of the group
Gσ(k) as the automorphism of Λσ,1 switching x̄1 and x̄2 lies in Gσ(k), where

Gσ = AutWσ
(Λσ,1, ϕσ)

is the automorphism group scheme of the symmetric lattice (Λσ,1, ϕσ) over W . We
obtain the following the result.

Proposition 11.2. Assume that v is unramified in B and let σ ∈ Iv. Then Mϕσ (k)
consists of the k[π]/(πe)-submodules

Fe1 = Span{πe1 x̄1, π
e−e1 x̄2}, for 0 ≤ e1 ≤ e.

Moreover, two objects Fe1 and Fe′1 are in the same orbit under the action of Gσ(k)
if and only if e1 = e′1 or e1 + e′1 = e.

Proposition 11.3. Assume that v is unramified in B, and let σ ∈ Iv.

(1) The special fiber Mϕσ ⊗W k is zero-dimensional and two objects F and F′

in Mϕσ (k) are in the same orbit under the Gσ(k) if and only if they have
the same Lie type.

(2) The structure morphism Mϕσ → SpecW is finite and flat.
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Proof. (1) This follows immediately from Proposition 11.2.
(2) Since the morphism f is quasi-finite and projective, f is finite. We now

show that any object F0 in Mϕσ (k) can be lifted to an object FR over an integral
domain R with residue field k and fraction field K of characteristic zero. Then the
coordinate ring of Mϕσ is torsion-free as a W -module and hence is flat over W .

By Proposition 11.2, write F0 = Span{πe1 x̄1, π
e2 x̄2} for two integers e1, e2 with

0 ≤ e1, e2 ≤ e and e1 + e2 = e. Write Wσ = W [T ]/(σP (T )). Let R be the ring
of integers in a finite separable field extension K of B(k) = Frac(W ) such that the
polynomial σP (T ) decomposes completely over R:

σP (T ) = (T − π1) · · · (T − πe) ∈ R[T ].

Let πR be a uniformizer of R. We have Wσ ⊗W R = R[T ]/(σP (T )). As Wσ is a
free W -module, we have an exact sequence:

0 −−−−→ Wσ ⊗W (πR) −−−−→ Wσ ⊗W R −−−−→ Wσ ⊗W k −−−−→ 0.

So an element f(T ) in R[T ]/(σP (T )) specializes to zero in Wσ ⊗ k = k[T ]/(T e) if
and only if f(T ) ∈ πR ·R[T ]/(σP (T )). We shall construct a Wσ ⊗W R-submodule
FR ⊂ Λσ,1 ⊗W R such that

(i) FR ⊗R k = F0;
(ii) FR and (Λσ,1 ⊗W R)/FR are both free of rank e over R;
(iii) FR is isotropic with respect to the pairing ψ′σ.

Now we let FR be the submodule generated by the elements (T −π1) · · · (T −πe1)x1

and (T − πe1+1) · · · (T − πe)x2. Clearly πi ∈ πRR for all i so one has (i). The
statement (ii) follows from (i) by the right exactness of the tensor product. To
check (iii), as FR ⊂ FK := FR ⊗K, it suffices to check (iii) for FK . Now we have

Wσ ⊗W K =

e∏
i=1

K and FK = (FK,i)1≤i≤e.

It is easy to see that each component FK,i is one-dimensional K-subspace generated
by either x1 or x2 and hence FK satisfies the condition (iii).

Let Fv be an object in MΛv (k) and let Fv = ⊕σ∈IvFσ be the natural decomposi-
tion. The reduced Lie type of Fv is defined to the system of pairs (eσ,1, eσ,2) indexed
by Iv, where (eσ,1, eσ,2) is the Lie type of Fσ,1. Proposition 11.3 immediately gives
the following result.

Theorem 11.4. Suppose that v is unramified in B.

(1) The special fiber MΛv ⊗Zp Fp is zero-dimensional and two objects Fv and
F′v in MΛv (k) are in the same orbit under the Gv(k) if and only if they have
the same reduced Lie type.

(2) The structure morphism MΛv → SpecZp is flat and finite.

11.3. Ramified case. Now we compute the local model MΛv for the case where
v is ramified in B. Recall that Λv is a free OBv -module of rank one together with a
perfect Zp-valued skew-Hermitian pairing ψv : Λv × Λv → Zp. We fix a unramified
quadratic field extension Lv ⊂ Bv as in Subsection 4.1. Notice that the ring OLv of
integers is contained in the unique maximal order OBv . We choose a presentation
OBv = OLv [Π] as in (4.1) and (4.2)



42 CHIA-FU YU

Let OLnr
v

denote the maximal etale extension over Zp in Lv, and put Jv :=
HomZp(OLnr

v
,W ). Let pr : Jv → Iv be the restriction map from OLnr

v
to Onr

v ; this
is a two-to-one map. We have the decomposition

Λv ⊗Zp W = ⊕σ∈IvΛσ, Λσ = Λτ ⊕ Λτ ′

where {τ, τ ′} = pr−1(σ) and Λτ (resp. Λτ ′) is the τ -component (resp. τ ′-component)
of Λv. Notice that the pairing ψσ induces a perfect pairing

ψσ : Λτ × Λτ ′ →W.

Let

ψ′σ : Λτ × Λτ ′ →Wσ

be the unique Wσ-valued Wσ-bilinear pairing such that ψσ(x, y) = Tr[δσ ·ψ′v(x, y)].
The local model MΛσ over SpecW parametrizes the Wσ ⊗W OS-submodules

Fv = Fτ ⊕ Fτ ′ ⊂ (Λτ ⊕ Λτ ′)⊗OS
such that

(i) Fτ and Fτ ′ are locally free OS-modules of rank e and they are locally direct
summands of Λτ ⊗OS and Λτ ′ ⊗OS , respectively;

(ii) Π(Fτ ) ⊂ Fτ ′ and Π(Fτ ′) ⊂ Fτ ;
(iii) ψσ(Fτ ,Fτ ′) = 0.

As Fτ and Fτ ′ are of rank e, the condition (iii) says that one is the orthogonal
complement of the other and hence one submodule determines the other.

We check that ψσ(Fτ ,Fτ ′) = 0 if and only if ψ′σ(Fτ ,Fτ ′) = 0. As D−1 =
D−1
Wσ/W

is the largest Wσ-submodule in Wσ[1/p] such that tr(D−1) ⊂W , therefore,

tr(π−1D−1) = p−1W . So tr(πe−1D−1) = W . Consider the structure map φ :
W → OS . If kerφ = 0, then ψ′σ(Fτ ,Fτ ′) 6= 0 implies ψσ(Fτ ,Fτ ′) 6= 0. Suppose
kerφ = prW . If ψ′σ(Fτ ,Fτ ′) 6= 0, then

δσψ
′
σ(Fτ ,Fτ ′) ⊃ pr−1πe−1D−1 ⊗W OS

Taking the trace one gets

ψσ(Fτ ,Fτ ′) ⊃ pr−1W ⊗W OS 6= 0.

This verifies the assertion.
By Lemma 4.2 we can choose a Wσ-basis x1, x2 for Λτ and a Wσ-basis x′1, x

′
2 for

Λτ ′ such that

(11.1) ψ′σ(xi, x
′
j) = δi,j , for 1 ≤ i, j ≤ 2

and

(11.2) Π(x1) = x′1, Π(x2) = −πx′2, Π(x′1) = −πx1, Π(x′2) = x2.

Put Λτ := Λτ/pΛτ and Λτ ′ := Λτ ′/pΛτ ′ Write x̄i or x̄′i for the image of xi or x′i
in Λτ or Λτ ′ , respectively. Let Fσ = Fτ ⊕ Fτ ′ be an object in MΛσ (k). One has

Λτ/Fτ ' k[π]/(πe1)⊕ k[π]/(πe2)

as k[π]/(πe)-modules for some integers e1, e2 with 0 ≤ e1 ≤ e2 ≤ e and e1 + e2 = e;
the pair (e1, e2) is called the Lie type of Fτ . It is easy to see that Fτ ′ has the same
Lie type as Fτ . The reduced Lie type of Fσ is defined to be the Lie type of Fτ . We
call a reduced Lie type (e1, e2) of an object Fσ minimal if e2 − e1 ∈ {0, 1}.
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Similar to the unramified case, we can write

Fτ = Span{πe1 ȳ1, π
e2 ȳ2},

where ȳ1 and ȳ2 are in one of the following cases

(a) ȳ1 = x̄1 + tx̄2 and ȳ2 = x̄2, or
(b) ȳ1 = tx̄1 + x̄2 and ȳ2 = x̄1,

where t ∈ k[π]/(πe).
In the case (a), we compute

Fτ ′ = Span{πe1(tx̄′1 − x̄′2), πe2 x̄′1}.

As Fτ and Fτ ′ are orthogonal to each other, the condition (ii) is equivalent to

(11.3) ψ′σ(Fτ ,ΠFτ ) = ψ′σ(ΠFτ ′ ,Fτ ′) = 0.

This yields the equation

(11.4) π2e1(1− tπ2) = 0.

If e = 2c + 1 is odd, then there is no solution for the equation (11.4). If e = 2c is
even, then the only one solution is (e1, e2) = (c, c) and t = 0. That is,

(11.5) Fτ = πcΛτ and Fτ ′ = πcΛτ ′ .

In the case (b), we compute

Fτ ′ = Span{πe1(x̄′1 − tx̄′2), πe2 x̄′2}.

The condition (11.3) yields the following equation

(11.6) π2e1(t2 − π) = 0.

If e = 2c is even, then we have only one solution (e1, e2) = (c, c) and t = 0 and get
the object Fσ as in (11.5). If e = 2c + 1 is odd, then we have (e1, e2) = (c, c + 1)
and t = 0. That is,

(11.7) Fτ = Span{πcx̄2, π
c+1x̄1} and Fτ ′ = Span{πcx̄′1, πc+1x̄′2}.

Proposition 11.5. Notations as above and assume that v is ramified in B.

(1) If e = 2c is even, then MΛσ (k) consists of the single k[π]/(πe)-submodule
Fσ = Fτ ⊕ Fτ ′ with

Fτ = πcΛτ and Fτ ′ = πcΛτ ′ .

(2) If e = 2c+1 is odd, then MΛσ (k) consists of the single k[π]/(πe)-submodule
Fσ = Fτ ⊕ Fτ ′ with

Fτ = Span{πcx̄2, π
c+1x̄1} and Fτ ′ = Span{πcx̄′1, πc+1x̄′2},

where the bases {xi} and {x′i} are chosen as in (11.1) and (11.2).

In particular, only the minimal reduced Lie type can occur in the space MΛσ (k).

Proposition 11.6. Assume that v is ramified in B, and let σ ∈ Iv. The structure
morphism f : MΛσ → SpecW is finite and flat.
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Proof. As f is projective and quasi-finite (Proposition 11.5), the morphism f is
finite. Let B(k)alg be an algebraic closure of the fraction field B(k) = Frac(W ).
Since MΛσ (k) consists of only one element, the specialization map

sp : MΛσ (B(k)alg)→MΛσ (k)

is surjective. Therefore, any (the unique) object in MΛσ (k) can be lifted to charac-
teristic zero. This shows that the coordinate ring of MΛσ is torsion free and hence
f is flat.

Theorem 11.7. Suppose v is ramified in B. The structure morphism

f : MΛv → SpecZp
is finite and flat.

Proof. This follows from Proposition 11.6 immediately.

11.4. Flatness of MΛ.

Theorem 11.8. Let Λ be a free unimodular skew-Hermitian OB ⊗ Zp-module of
rank one and let MΛ be the associated local model. The structure morphism f :
MΛ → SpecZp is finite and flat.

Proof. This follows from Theorems 11.4 and 11.7.

12. More constructions of Dieudonné modules

In this section we handle two technical problems raised from the results of pre-
vious sections.

12.1. Dieudonné OB-modules with given Lie type. In Section 10 we studied

the moduli scheme M(p)
K through the local models. A basic problem is whether or

not the morphism ϕloc in the local diagram is surjective on their geometric points.
The local model diagram gives rise to a morphism of Artin stacks

(12.1) θ :M(p)
K ⊗ Zp → [G\MΛ],

and this amounts to ask the surjectivity of the map of the sets of geometric points

(12.2) θk :M(p)
K (k)→ G(k)\MΛ(k).

Let DieuOB⊗Zp(k) (resp. DieuOBv (k)) denote the set of isomorphism classes of sepa-
rably quasi-polarized Dieudonné OB⊗Zp-modules (resp. Dieudonné OBv -modules)
of rank 4d (resp. of rank 4dv) satisfying the determinant condition. The map θk
factors through the natural map M(p)

K (k)→ DieuOB⊗Zp(k) and let

(12.3) α : DieuOB⊗Zp(k)→ G(k)\MΛ(k)

be the induced map.
LetM = ⊕v|pMv be a DieudonnéOF⊗Zp-module of rank 4d such that rankW Mv =

4dv = 4[Fv : Qp]. The Lie type of M , denoted by e(M), is defined to be a sequence
of 4-tuples of non-negative integers indexed by I :=

∐
v|p Iv

(12.4) e(M) := {ei; i ∈ I}, ei := (ei,1, ei,2, ei,3, ei,4)
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where ei,1 ≤ ei,2 ≤ ei,3 ≤ ei,4 are the integers such that

(M/VM)i ' k[π]/(πei,1)⊕ k[π]/(πei,2)⊕ k[π]/(πei,3)⊕ k[π]/(πei,4),

where (M/VM)i denotes the i-component of the tangent space M/VM . Put

e(Mv) := {ei; i ∈ Iv} and one has e(M) = (e(Mv))v|p. When Mv ∈ DieuOBv (k),
there are unique two integers 0 ≤ ei,1 ≤ ei,2 ≤ ev with ei,1 + ei,2 = ev for all i ∈ Iv
such that

e(Mv) = {(ei,1, ei,1, ei,2, ei,2); i ∈ Iv}.

In this case we define the reduced Lie type of Mv and that of M , respectively, by

(12.5) er(Mv) := {(ei,1, ei,2); i ∈ Iv} and er(M) := (er(Mv))v|p.

The following result gives a partial answer to the above basic problem.

Proposition 12.1. The map α in (12.3) is surjective.

Proof. It suffices to show the surjectivity of the map

(12.6) αv : DieuOBv (k)→ Gv(k)\MΛv (k)

for each place v|p. The target orbit space in (12.6) is classified by the reduced Lie
types of the objects (Theorem 11.4 and Proposition 11.5). When v is unramified
in B, this is is a sequence of pairs (ei,1, ei,2) of integers indexed by i ∈ Iv with
0 ≤ ei,1 ≤ ei,2 ≤ ev and ei,1 + ei,2 = ev. When v is ramified in B, this is a sequence
of pairs (c, ev − c) indexed by Iv, where c := [ev/2].

In the ramified case, the construction in Section 8 produces a separably quasi-
polarized Dieudonné OBv -module M with the determinant condition whose Lie
type is the minimal one, that is, (M/VM)j ' k[π]/(πc) ⊕ k[π]/(πev−c) for all
j ∈ Z/2fvZ. So one has the surjectivity of αv.

It remains to treat the unramified case. We need to write down a separably
anti-quasi-polarized Dieudonné Ov-module M1 of rank 2dv such that the Lie type
e(M1) of M1 is equal to the given one {(ei,1, ei,2); i ∈ Iv}. Fix an identification
Iv ' Z/fvZ. Let M1 = ⊕i∈Z/fZM i

1, where each M i
1 is a free rank two W i-module

generated by two elementsXi and Yi. For each i ∈ Z/fZ, define a symmetric pairing
( , ) : M i

1 ×M i
1 →W by (8.1). Define the Verschiebung map V : M i+1

1 →M i
1 by

(12.7) V Xi+1 = πei,1Xi, V Yi+1 = pπev−ei,2Yi.

It is easy to show that (V X, V Y ) = p(X,Y )σ
−1

for X,Y ∈ M1 and that the Lie
type e(M1) of M1 is equal to {(ei,1, ei,2); i ∈ Iv}. Therefore, one has the surjectivity
of αv.

Remark 12.2. The Dieudonné module M1 constructed in the proof of Proposi-
tion 12.1 has the slope sequence

(12.8) ν(M1) =

{(∑
i ei,1
dv

)dv
,

(∑
i ei,2
dv

)dv}
.

This exhausts all possible slope sequences that can occur in Corollary 7.7 in the
case where v is unramified in B.
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12.2. Slope sequences of Dieudonné OB-modules: a refinement. Our goal
is to determine all possible slope sequences that can be realized by Dieudonné OB⊗
Zp-modules that admit both a separable quasi-polarization and the determinant
condition (still in the minimal case m = 1). This problem is local and one only
needs to consider those of Dieudonné OBv -modules for each place v over p. To
simplify the notations as we did in Sections 4 and 9, we write B, F, etc. for Bv,
Fv etc. and drop the subscript v from our notations.

Theorem 7.3 determines exactly all possible slope sequences for separably polar-
ized Dieudonné OB-modules of rank 4dm, in particular for our current focus case
of rank 4d (Corollary 7.7). Recall that d, e, f denote the degree, ramification index
and inertia degree of F, respectively. The following result settles the case for those
Dieudonné modules in addition satisfying the determinant condition.

Theorem 12.3.

(1) Suppose that B is the 2 × 2 matrix algebra. Let ν be a slope sequence as
follows:

(12.9) ν =

{(
1

2

)4d
}
, or ν =

{(a
d

)2d

,

(
d− a
d

)2d
}

for an integer a with 0 ≤ a < d/2. Then there exists a separably quasi-
polarized Dieudonné OB-module M of rank 4d satisfying the determinant
condition such that ν(M) = ν.

(2) Suppose that B is the quaternion division algebra. If M is a separably
quasi-polarized Dieudonné OB-module of rank 4d satisfying the determinant
condition. Then

(12.10) ν(M) =

{(
1

2

)4d
}
, or ν(M) =

{( a
2d

)2d

,

(
2d− a

2d

)2d
}
,

for an odd integer a with 2[e/2]f ≤ a < d. Conversely, if ν is a slope
sequence as (12.10), then there exists a separably quasi-polarized Dieudonné
OB-module M of rank 4d satisfying the determinant condition such that
ν(M) = ν.

Proof. (1) This is proved in Proposition 12.1 and Remark 12.2.
(2) Proposition 11.5 asserts that the reduced Lie type er(M) of M is the minimal

one {(c, e−c); i ∈ Z/fZ}, where c := [e/2]. This yields F 2f (M) ⊂ π2fcM and hence
that smallest slope β ≥ 2cf/2d. Then the first assertion follows from Corollary 7.7.

Suppose that ν is a slope sequence as (12.10). When e = 2c is even, ν is
supersingular and the construction in Section 8 produces such a Dieudonné OB-
module. It remains to treat the case where e = 2c+ 1 is odd. We may also assume
that ν is non-supersingular as the supersingular case is done in Section 8. Write
a = 2cf + 2r + 1, where 0 < 2r + 1 < f . Let

M =
⊕

j∈Z/2fZ

M j ,

where each M j is a free rank two W i-module generated by elements Xj and Yj . As
before, we fix a presentation OB = OL[Π] as in (4.1) and (4.2). We describe the
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Frobenius map F and the map Π by their representative matrices with respect to
the bases {Xi, Yi} (see Subsection 8.2):

Fj : M j →M j+1, Πj : M j →M j+f , ∀ j ∈ Z/2fZ.

Put

(12.11) Πj =

(
0 −π
1 0

)
, ∀ j ∈ Z/2fZ.

For each j ∈ Z/2fZ, define a W i-bilinear pairing

〈 , 〉F : M j ×M j+f →W i

by
(12.12)
〈Xj , Xj+f 〉F = 〈Yj , Yj+f 〉F = 0, 〈Xj , Yj+f 〉F = 1 and 〈Yj , Xj+f 〉F = −1.

It is easy to show that 〈ΠX,ΠY 〉F = π〈X,Y 〉F for X ∈ M j and Y ∈ M j+f . So
〈 , 〉F gives an unimodular skew-Hermitian form on M over W ⊗O. Put

(12.13) Fj =



(
0 −pπ−c

πc 0

)
, j = 0,(

πc 0

0 pπ−c

)
, 1 ≤ j ≤ r,(

pπ−c 0

0 πc

)
, r < j < f.

Using the commutative relation Πj+1Fj = Fj+1Πj (8.4) we compute

(12.14) Fj =



(
0 −πc+1

pπ−cπ−1 0

)
, j = f,(

πc 0

0 pπ−c

)
, f + 1 ≤ j ≤ f + r,(

pπ−c 0

0 πc

)
, f + r < j < 2f.

As the matrix coefficients of Fj lie in the image of Zp[π] and detFj = p, one has
〈FX,FY 〉F = p〈X,Y 〉σF for X ∈M j and Y ∈M j+f .

Taking the trace (see (8.3)) we obtain a separable OB-linear quasi-polarization
〈 , 〉 : M ×M → W . It is easy to see that dimk(M/VM)j = e for all j ∈ Z/2fZ
and hence M satisfies the determinant condition.

We compute

(12.15) F f = pr
(

0 −(pπ−c)f−2r

(πc)f−2r 0

)
: M0 →Mf ,

(12.16) F f = pr
(

0 −(πc)f−2rπ
(pπ−c)f−2rπ−1 0

)
: Mf →M0,

and

(12.17) F 2f = p2r

(
−(πc)2(f−2r)π 0

0 −(pπ−c)2(f−2r)π−1

)
: M0 →M0.
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The valuation of the first diagonal entry of this matrix is

2er + 2c(f − 2r) + 1 = 2cf + 2r + 1 = a.

This shows that the slope sequence of the Dieudonné module M is equal to ν.

13. Construction of Moret-Bailly families with OB-action

In Sections 13 and 14 we shall restrict ourselves even to the case where F = Q
(still in the minimal case m = 1). Our goal is to determine the dimension of the
special fiber of moduli spaces in question.

In this section we assume that p is ramified in B. We shall prove

Theorem 13.1. There is a non-constant family of supersingular polarized abelian
OB-surfaces over P1

k.

13.1. Case B = Bp,∞. We begin with a construction of Moret-Bailly families
for the case where the algebra B is equal to the quaternion algebra Bp,∞ over Q
ramified exactly at {p,∞}. Choose a supersingular elliptic curve E over k. There
is an isomorphism B ' End0(E) := End(E) ⊗ Q of Q-algebras and we fix one.
Then the endomorphism ring End(E) is a maximal order OB of B. The subgroup
scheme E[F ] := kerF = αp is OB-stable as the Frobenius morphism is functorial.
This induces a ring homomorphism

(13.1) φ : OB/(p) = Fp2 [Π]/(Π2)→ Endk(αp) = k.

Since k is commutative, this map factors through the maximal commutative quo-
tient (Fp2 [Π]/(Π2))ab = Fp2 [Π]/(Π2, I), where I is the two-sided ideal of Fp2 [Π]/(Π2)
generated by elements of the form ab − ba for all a, b ∈ Fp2 [Π]/(Π2). Since
Πa − aΠ = (ap − a)Π and ap − a is invertible if a 6∈ Fp, the element Π lies in
I. This shows that the action of OB on E[F ] = αp factors through the quotient
OB � Fp2 . Put HomFp(Fp2 , k) = {σ1, σ2). We may assume this action is given by
the embedding σ1 : Fp2 → k.

Let A0 := E × E and let ι0 : OB → End(A0) be the diagonal action. Let M
be the Dieudonné module of A0 and the Lie algebra Lie(A0) = M/VM has the
decomposition of σi-components (Section 2.1):

(13.2) Lie(A0) = Lie(A0)1 ⊕ Lie(A0)2 = k2 ⊕ 0,

and satisfies the condition

(13.3) Π(Lie(A0)) = 0.

Consider the functor

X (S) := {ϕ : αp,S ↪→ A0[F ]S = αp × αp × S | ϕ(αp,S) is OB-stable}

for any k-scheme S. Clearly this functor is representable by a projective variety
(again denote by) X ⊂ P1, as the condition that ϕ(αp,S) is OB-stable is closed.
Every map ϕ corresponds to a rank one locally free OS-submodule L in O2

S =
Lie(A[F ]S) which locally for Zariski topology is a direct summand. As the ring
OB acts on Lie(E[F ]S) through the map σ1 : Fp2 → k → OS and by the scalar
multiplication, the condition that L is OB-stable is automatically satisfied. This
shows that X = P1.
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Let ϕuniv be the universal family, and put H := ϕuniv(αp,P1), which is an OB-
stable finite flat subgroup scheme of A0×S. Let A := A0×S/H. As H is OB-stable,
this defines a family of supersingular OB-surfaces over P1. Ignoring the structure
of the OB-action, this family is constructed by Moret-Bailly [18] and it has been
shown to be a non-constant. By [12, Lemma 9.2], one can choose an OB-linear
polarization λ0 on (A0, ι0). Replacing λ0 by pλ0 if necessary one may assume that
kerλ0 ⊃ A0[F ]. Since H is isotropic with respect the Weil pairing defined by λ0

(any rank-p finite group scheme has this property), the polarization λ0×S on A0×S
descends to a polarization λA on A which is also OB-linear. Therefore, we have
constructed a non-constant family of supersingular polarized abelian OB-surfaces
(A, λA, ιA) over P1 for B = Bp,∞.

13.2. Arbitrary case. Now we retain B an arbitrary definite quaternion algebra
over Q. Using the construction above, we only need to construct a superspecial
abelian OB-surface (A0, ι0) that satisfies the conditions (13.2) and (13.3).

We first find a superspecial p-divisible OB ⊗ Zp-module (H2, ι2) (of height 4)
over k such that the conditions (13.2) and (13.3) for Lie(H2) are satisfied. One can
directly write down a superspecial Dieudonné OB ⊗Zp-module of rank 4 with such
conditions (see an example in Subsection 13.3) and let (H2, ι2) be the corresponding
p-divisible OB ⊗ Zp-module. Alternatively, let OBp,∞ be the maximal order in
Subsection 13.1 and (A0, λ0) be the superspecial abelian OBp,∞-surface used there.
After identifying OB⊗Zp with OBp∞⊗Zp, the attached p-divisible OB⊗Zp-module
(H2, ι2) := (A0, ι0)[p∞] shares the desired property.

Choose a supersingular abelianOB-surface (A1, ι1). It exists by the non-emptiness
of moduli spaces and Corollary 7.7, or using an elementary proof (Basically it suf-
fices to show that there is an embedding B → Mat2(Bp,∞) of Q-algebras and this
is easy.) Let (H1, ι1) := (A1, ι1)[p∞] be the associated p-divisible OB ⊗Zp-module.

Lemma 13.2. There is an OB ⊗ Zp-linear isogeny ϕ : (H1, ι1)→ (H2, ι2).

Proof. Since H1 and H2 are supersingular, one chooses an isogeny ϕ : H1 → H2.
Define the map ι′2 : OB ⊗ Zp → End0(H1) so that the following diagram

H1
ϕ−−−−→ H2yι′2(a)

yι2(a)

H1
ϕ−−−−→ H2

commutes for all a in an order of OB ⊗ Zp. We have two algebra homomorphisms

ι1, ι
′
2 : Bp := B ⊗Qp → End0(H1).

Since the center of the algebra End0(H1) is Qp, by the Noether-Skolem theorem

there is an element g ∈ End0(H1)× such that

ι′2 = Int(g) ◦ ι1 = g ◦ ι1 ◦ g−1.
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Replacing g by pmg for some integer m, we may assume that g ∈ End(H1). That
is, we have the following commutative diagram

H1
g−−−−→ H1

ϕ−−−−→ H2yι1(a)
yι′2(a)

yι2(a)

H1
g−−−−→ H1

ϕ−−−−→ H2.

Replacing ϕ by ϕ ◦ g, we get an OB ⊗ Zp-linear isogeny ϕ : (H1, ι1)→ (H2, ι2).

By Lemma 13.2, we choose an OB ⊗ Zp-linear isogeny ϕ : (H1, ι1) → (H2, ι2).
Let K := kerϕ; this is an OB-stable subgroup scheme of A1. Let A0 := A1/K
and let ι0 : OB → End(A0) the induced action. Then one has an isomorphism
(A0, ι0)[p∞] ' (H2, ι2). This finds an abelian OB-surface satisfying the conditions
(13.2) and (13.3). Proceed the construction for (A0, ι0) in Subsection 13.1 and we
have constructed a non-constant family of polarized abelianOB-surfaces (A, λA, ιA)
over P1. This finishes the proof of Theorem 13.1

13.3. An example. We write down a superspecial Dieudonné OB ⊗ Zp-module
M so that the conditions (13.2) and (13.3) for M/VM are satisfied. Write M =
M1⊕M2 as a free W -module with a Zp2-action, where M1 and M2 are free module
generated by elements {e1

1, e
1
2} and {e2

1, e
2
2}, respectively. Define the Verschiebung

map V by

V (e2
1) = pe1

1, V (e2
1) = pe1

1, V (e1
1) = e2

1, V (e1
1) = e2

1.

This determines the Frobenius map and defines a Dieudonné module with a Zp2 -
action which satisfies the condition (13.2) for M/VM . It follows from Πa = σ(a)Π
for a ∈ Zp2 that we gets Π : M1 → M2 and Π : M2 → M1. Since Π2 = −p, the
restriction of the map Π to M1, Π|M1 : M1 → M2 determines Π. The condition
(13.3) implies that Π(M2) = pM1 and hence Π(M1) = M2.

It is easy to see that that ΠV = VΠ if and only if ΠV (eij) = VΠ(eij). Define

the map Π by putting Π(eij) := V (eij) for all i, j; so the condition ΠV = VΠ is
satisfied. Therefore, we get a superspecial Dieudonné OB ⊗ Zp-module so that the
conditions (13.2) and (13.3) are fulfilled.

14. Dimensions of special fibers

We keep the setting in the previous section. We have proven that dimM(p)
K ⊗

Fp = 0; see Theorem 10.1. Our goal is to determine the dimensions of the special

fibers MFp :=M⊗ Fp, MK,Fp :=MK ⊗ Fp and M(p)

Fp
:=M(p) ⊗ Fp.

Theorem 14.1.

(1) If p is unramified in B, then dimMFp = 0.

(2) If p is ramified in B, then dimMFp = 1.

(3) We have dimM(p)

Fp
= 0.

A further exam shows that when p is ramified in B, one has dimMK,Fp = 1; see

Proposition 14.7. This refines the result Theorem 14.1 (2).
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14.1. Unramified case. Suppose that p is unramified in B. Let (A, λ, ι) be a
polarized abelian OB-surface over k. By Corollary 7.7 A is either ordinary or
supersingular. If A is ordinary, then one has the canonical lifting (A, λA, ιA) over
W of (A, λ, ι). Since the generic fiber MQp has dimension zero, each subscheme

MD,Qp has finitely many points, if it is not empty. Recall that MD ⊂M denotes

the subscheme parametrizing the objects (A, λ, ι) in M with polarization degree
deg λ = D2. This implies that the ordinary locus Mord

D,Fp
of MD,Fp has finitely

many points and hence it has dimension zero. Therefore, the ordinary locus Mord
Fp

has dimension zero.
Suppose now that A is supersingular. Then A must be superspecial. To see this,

let H := A[p∞] be the associated p-divisible group. Since OB ⊗ Zp := OB ⊗ Zp '
Mat2(Zp), the p-divisible group H is isomorphic to H1×H2, where H1 and H2 are
supersingular p-divisible group of height 2. Therefore, A is superspecial.

For any positive integers g and D, let Ag,D denote the coarse moduli space over

Fp of polarized abelian varieties (A, λ) with polarization degree deg λ = D2. Let
Λg,D ⊂ Ag,D be the superspecial locus. It is known that Λg,D is a finite closed
subscheme. Let f :MD,Fp → A2,D be the forgetful morphism: f(A, λ, ι) = (A, λ).

The morphism f induces a map

f :Mss
D,Fp

→ Λg,D,

where Mss
D,Fp

is the supersingular locus of MD,Fp . As dim Λg,D = 0 and the

forgetful map f is finite (see [34]), the supersingular locusMss
D,Fp

also has dimension

zero. We conclude that MFp has dimension zero. This shows Theorem 14.1 (1).

14.2. Ramified case. Suppose that the prime p is ramified in B. We know that
any polarized abelian OB-surface over k is supersingular (Corollary 7.7). By Theo-
rem 13.1, there is a non-constant family A→ P1

Fp
of supersingular polarized abelian

OB-surfaces. This gives rise to a non-constant moduli map

f ′ : P1
Fp
→MFp .

Therefore, dimMFp ≥ dim f ′(P1) = 1.

On the other hand, the forgetful morphism f : MD,Fp → A2,D factors through

the supersingular locus Ass
2,D ⊂ A2,D. Since f is finite, one gets

(14.1) dimMD,Fp ≤ dimAss
2,D.

For any integer i with 0 ≤ i ≤ g, let A(i)
g,D ⊂ Ag,D denote the reduced locally closed

subscheme that consists of objects (A, λ) of p-rank equal to i. Norman and Oort
[22] showed that the collection of p-strata forms a stratification and for each i

dimA(i)
g,D = g(g − 1)/2 + i.

When g = 2, one has A(0)
2,D = Ass

2,D and gets dimAss
2,D = 1. This shows the other

direction

dimMD,Fp ≤ 1.

We conclude that dimMFp = 1. This shows Theorem 14.1 (2).
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14.3. Dimension ofM(p)

Fp
. We come to show Theorem 14.1 (3) For the case where

the prime p is unramified in B, we have shown in Theorem 14.1 (1) that MFp is

zero-dimensional. Therefore, dimM(p)

Fp
= 0 in the unramified case.

We now treat the other case where p is ramified in B.

Proposition 14.2. Assume that p is ramified in B. Any prime-to-p degree polar-
ized abelian OB-surface over k is superspecial.

Proof. Let M be the associated covariant Dieudonné OB ⊗ Zp-module with
a separable quasi-polarization 〈 , 〉. Recall that OB ⊗ Zp = Zp2 [Π], Π2 = −p,
Πa = σ(a)Π for a ∈ Zp2 .

Suppose M/VM = k2⊕ 0 with respect to the action of Fp2 ⊗Fp k = k× k. Then

VM2 = pM1 and VM1 = M2, and hence FM1 = M2 and FM2 = pM1. This
shows that FM = VM and that M is superspecial

We show that if Π(M/VM) = 0, then M is superspecial. Indeed, it follows that
ΠM ⊂ VM . From dimM/ΠM = 2 (as Π2 = −p) and dimM/VM = 2 it follows
that ΠM = VM . Then V 2M = VΠM = ΠVM = Π2M = pM and hence M is
superspecial. So far we have not used the separability of polarizations.

Suppose that M/VM = k ⊕ k. Consider the induced perfect pairing 〈 , 〉 :
M ×M → k, where M = M/pM . Since Π is nilpotent on M/VM one may assume

for example that ΠM2 = VM2. Taking the orthogonal complements of ΠM2 and
VM2, we have ΠM1 = VM1. This shows that Π(M/VM) = 0. By the above
argument, M is superspecial.

Since the superspecial locus of the Siegel moduli space is zero-dimensional, the
superspecial locus of any PEL-type moduli space is zero-dimensional, too. Propo-

sition 14.2 implies that dimM(p)

Fp
= 0. This shows Theorem 14.1 (3) and hence

completes the proof of Theorem 14.1.

Lemma 14.3. Assume that p is ramified in B. There is a prime-to-p degree polar-
ized superspecial abelian OB-surface that does not satisfy the determinant condition.

Proof. Using the construction in Section 13.1, we have a superspecial p-divisible
OB ⊗ Zp-module (H, ιH) of height 4 such that the conditions (13.2) and (13.3)
for Lie(H) are satisfied. Thus, (H, ιH) does not satisfy the determinant condi-
tion. There is a superspecial abelian OB-surface (A0, ι0)) such that (A0, ι0)[p∞] '
(H, ιH). We fix an identification (A0, ι0)[p∞] = (H, ιH).

We can choose a separable OB ⊗ Zp-linear quasi-polarization λH . Note that
(H, ιH) is isomorphic to the p-divisible OBp,∞ ⊗Zp-module E0[p∞]2 (E0 is a super-
singular elliptic curve) through the identification OBp,∞ ⊗ Zp = OB ⊗ Zp. We can

pick the product principal polarization on E2
0 which yields such a quasi-polarization

λH .
Choose an OB-linear polarization λ on (A0, ι0) and let ∗ denote the Rosati in-

volution induced by λ. Then λap = λH for some element ap ∈ End0
OB⊗Zp(A0[p∞])

with a∗p = ap. Since End0
B(A0)⊗Qp = End0

B⊗Qp(A0[p∞]), by the weak approxima-

tion we can choose a totally positive symmetric element a ∈ End0
B(A0) such that a

is sufficiently close to ap. Then we have (A, λa, ι)[p∞] ' (H,λH , ιH). Replacing a
by Na for a positive prime-to-p integer N if necessary, we get a prime-to-p degree
OB-linear polarization λ0 = λa on (A0, ι0). This proves the lemma.
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We know that when p is ramified in B, the whole moduli spaceMFp is supersin-

gular. On the other hand when p is unramified in B, the moduli space may have
both supersingular and ordinary points according to Proposition 7.7. The following
lemma says that this is the case.

Lemma 14.4. When p is unramified in B, the moduli space M(p)

K,Fp
consists of

both ordinary and supersingular points.

Proof. As p is unramified in B, the determinant condition is automatically
satisfied for objects in M(k). Let (H,λH , ιH) be a supersingular or ordinary sepa-
rably quasi-polarized p-divisible OB ⊗ Zp-module. Since B can be embedded into

End0(A) for any supersingular abelian surface, we can find a supersingular abelian
OB-surface with (A0, ι0)[p∞] ' (H, ιH). We use the argument in the proof of
Lemma 14.3 again to obtain a prime-to-p degree OB-linear polarization. For the
ordinary case, we choose any imaginary quadratic field K such that K splits B and
p splits in K. Then there is a Q-algebra embedding of B into Mat2(K). Choose
an ordinary elliptic curve E such that End0(E) ' K and take the ordinary abelian
surface A = E2. As End0

B(A)⊗Qp = End0
B⊗Qp(A[p∞]), we can repeat the previous

argument and get a prime-to-p degree polarized ordinary abelian OB-surface.

Remark 14.5.
(1) We used local models to show that dimM(p)

K ⊗Fp = 0. Proposition 14.2 gives

a different proof of this result. Lemma 14.3 shows that the inclusion M(p)
K (k) ⊂

M(p)(k) is strict at least for B is a definite quaternion Q-algebra. This phenomenon
is different from the reduction modulo p of Hilbert moduli schemes or Hilbert-
Siegel moduli schemes. In the Hilbert-Siegel case, any separably polarized abelian
varieties with RM by OF of a totally real field F satisfies the determinant condition
automatically; see Yu [35], Görtz [5] and Vollaard [31].

(2) We know thatM(p)

Fp
is non-empty (Lemma 2.3). When p is ramified in B, the

moduli spaceMFp consists of both one-dimensional components (e.g. Moret-Bailly

families) and zero-dimensional components (e.g. points in M(p)

Fp
).

14.4. Dimension of MK,Fp . As before, we only need to treat the ramified case.

Lemma 14.6. Assume that p is ramified in B. Let M0 be a Dieudonné OB ⊗ Zp-
module such that

M0/VM0 = k2 ⊕ 0,

that is the Lie type of M0 is (2, 0). Let M be any Dieudonné module such that
VM0 ⊂M ⊂M0 and dimk(M0/M) = 1. Then one has

M/VM = k ⊕ k.

Proof. Choose bases {X1
1 , X

1
2} and {X2

1 , X
2
2} for M1

0 and M2
0 , respectively.

Since VM ⊃ V 2M0 = pM0. We can check this in M0 := M0/pM0. Write xij for

the image of Xi
j in M0. One has

VM0 = Spank{x2
1, x

2
2}, M := M/pM0 = Spank{x2

1, x
2
2, ax

1
1 + bx1

2},
for some (a, b) 6= (0, 0) ∈ k2. Then

VM = Spank{V (ax1
1 + bx1

2)} ⊂M2

0, and dimVM = 1.
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This gives M/VM = k ⊕ k.

Proposition 14.7. Assume that p is ramified in B. We have dimMK,Fp = 1.

Proof. In the previous section, we constructed a polarized abelian OB-surface
(A, λA, ιA) over P1 starting from a superspecial abelian surface (A0, λ0, ι0) with
additional structures and get a non-constant moduli map f ′ : P1 → MFp . The

Dieudonné module M0 of A0 has the property M0/VM0 = k2⊕0. By Lemma 14.6,
every fiber of the family (A, λA, ιA) → P1 has Lie type (1, 1). Then the image
f ′(P1) is contained in MK,Fp . This shows that dimMK,Fp = 1.

Remark 14.8. A consequence of Proposition 14.7 asserts that when p is ramified in
B, there is a polarized abelian OB-surface over k with the determinant condition
that can not be lifted to a polarized abelian OB-surface in characteristic zero.

Acknowledgments

Part of the present work was done while the author’s visit at the RIMS, Ky-
oto University, the IEM, Universität Duisburg-Essen, the IMS, Chinese University
of Hong Kong, the PMI of POSTECH, and the Max-Planck-Institut für Mathe-
matik in Bonn. He wishes to thank Akio Tamagawa and Ulrich Görtz for helpful
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