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ABSTRACT. We construct the motivic tree-level system of Gromov-Witten
invariants for convex varieties.

0. INTRODUCTION

Let V be a projective algebraic manifold. In [11], Sec. 2, Gromov-Witten invari-
ants of ¥V were described axiomatically as a collection of linear maps

IV o0 HY(V)®" o H*(M,,.,Q), B€ H,(V,2Z)

gng -

satisfying certain axioms, and a program to construct them by algebro-geometric
(as opposed to symplectic) techniques was suggested. The program is based upon
Kontsevich’s notion of a stable map (C,=z,,...,2,,f), f : C — V. This data
consists of an algebraic curve C' with »n labeled points on it and a map f such that
if an irreducible component of C' is contracted by f to a point, then this component
together with its special points is Deligne-Mumford stable. For more details, see
(10] and below.

The construction consists of three major steps.
A. Construct an orbispace (or rather a stack) of stable maps M, .(V, B) such that

g = genus of C, f.([C]) = B, and its two morphisms to V™ and M, ,. On the level
of points, these morphisms are given respectively by

pi(Ciay.mn f) — (f(21), ..., f(24),
q: (6‘11:11"‘1""!1).[) — [(C'axl;---,mu)]'uhs
where the last expression means the stabilization of (C, zy,...,z,).

B. Construct a “virtual fundamental class” [M,.(V, 8], or “orientation” (see
Definition 7.1 below) and use it to define a correspondence in the Chow ving CY, 4 €

A(V® x M, ).
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This step suggested in [10] is quite subtle and has not been spelled out in full
detail. It can be bypassed for y = 0 and V = G/P (generalized flag spaces) where
the virtual class coincides with the usual one (see [11]).

In general, it involves a definition of a new Z-graded supercommutative structure
sheafl on M, ,(V, ). The virtual class is obtained as a product of the class of this
sheaf and the inverse Todd class of an appropriate tangent complex. Geometrically,
it serves as a general position argument furnishing the Dimension Axiom of [11] and
replacing the deformation of the complex structure used in the symplectic context.

C. Use C;n'ﬂ in order to construct the induced maps ]gv.n,a on any cochomol-
ogy satisfying some version of the standard propertics making it functorial on the
category of correspondences.

[n this approach, the main features of 1}, , axiomatized in {11] reflect functorial
properties of M, (V, 3} and the cotangent complex with respect to degenerations of
stable maps. In particular, the key “Splitting Axiom” (or Associativity Equations
for g = 0) expresses the compatibility between the divisors at infinity of M, ,(V, )
and Mg ..

A neat way to organize this information is to introduce the category of marked
stable modular graphs indexing degeneration types of stable maps and to treat
various modular stacks M, (V, B) as values of this modular functor on the simplest
one-vertex graphs. Then the check of the axioms in [11] essentially boils down to a
calculation of this functor on a family of generating morphisms and objects in the
graph category.

The degeneration type of (C,x\,...,x,, f) is described by the graph whose ver-
tices are the irreducible components of C', edges are singular points of C, and tails
(“one-vertex edges”) are x1,...,x,. In addition, each vertex is marked by the ho-
mology class in V which is the f-image of the fundamental class of the respective
component of C' and by the genus of the normalization of this component. The
description of morphisins is somewhat more delicate, cf. Sec. 1 below.

This philosophy is an extension of the operadic picture which already gained
considerable importance from various viewpoints. In turn, it leads to a new notion
of a I'-operad as a monoidal functor on an appropriate category I' of graphs, and
an algebra over an operad as a morphism of such functors. This approach will be
developed elsewhere (see [7]). It clarifies the origin of the proliferation of the types
of operads considered recently (May’s, Markl’s, modular, cyclic, ...)

In Part I of the present paper we treat in this way Step A, stressing the func-
toriality not only with respect to the degeneration types with fixed V but also
with respect to V, expressed by the change of the marking semigroup of abstract
non-negative homology classes. We hope also that our approach will help to intro-
duce quantumn cohomology with coefficients and to understand better the Kiinneth
formula for quantum cohomology from [12].

Part 11 is devoted to Steps B and C for ¢ = 0 and convex manifolds V. The
formalism of orientation classes is introduced axiomatically, but we did not attempt
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to justify the relevant claims of [10] in general.

A word of warning and apology is due. The reader will meet several different cat-
egories of marked graphs in this paper of which the most important are ®, (cf. Def-
inition 1.12), &,(A) (cf. Definition 6.8 and the preceding discussion) and &, (V).
(cf. Definition 6.9). They dilfer mainly by their classes of morphisms. Specifically,
certain elementary arrows which are combinatorially “the same”, run in opposite
directions in different categories, which affects the whole structure of the morphism
semigroups. The reason is that functorial properties of moduli stacks of maps con-
sidered by themsclves are dilferent form the functorial properties of their virtual
fundamental classes treated as correspondences. Since graphs are used mainly as a
bookkeeping device, their categorical properties must reflect this distinction.

Acknowledgements. The authors are grateful to the Max-Planck-Institut fiir
Mathematic in Bonn where this work was done for support and stimulating at-
mosphere.



4 K. BEHREND AND YU. MANIN

Part I. Stacks of Stable Maps
1. GrRAPHS

Definition 1.1. A graph 7 is a quadruple (Fy, V4, 7.,0;), where F, and V, are
finite sets, &, : F. = V. is a map and j; : F, — F, an involution. We call F, the
set of flags, V, the set of wvertices, S, = {f € F; | j.f = f} the set of tails and
E, = {{fi, f2} C F; | fo=3:f1} theset of edges of 7. For v € V, let F, (v) = 97 (v)
and |v]| = #F,(v), the valence of v,

Definition 1.2. Let 7 be a graph. We define the gcometric reslization |7| of T as
follows. We start with the disjoint union of closed intervals and singletons

[T o, 311 TT {1l}-

IGF.- veV,

We denote the real nuinber = € [0, 1] in the component indexed by f € F, by z;.
Then for every v € V, we identify all elements of {0, | f € F,(v)} with {v] and for
every edge {fi, fo} of 7, we identify %h and %h‘ Finally, we remove for every tail
f € S, the point %j. We consider |r] as a topological space with base points given
by {Jv| | v € V;}, the vertices of |r|. It should always be clear from the context
whether |v]| denotes the geonetric realization of a vertex or it’s valence.

Definition 1.3. Let 7 and o be graphs. A contraction ¢ : 7 — o is a pair of maps
¢F : F, — F, and ¢y : V., = V, such that the following conditions are satisfied.
(1) ¢ is injective and ¢y is surjective.
(2) The diagram
DR VA

#F 1 Lo
F,o25 v,

commuites,

(3) ¢ oja = j,rod", s0 that ¢ induces injections ¢5 : S, = S, and ¢€ : E, = E,
on tails and edges.

(4) ¢° is a bijection, so F, — ¢F(F,) consists entirely of edges, the edges being
contracted.

(5) Call two vertices v, w € V, cquivalent, if there exists an f € F, —¢F (F,) such
that f € F,(v) and j,f € F,(w). Then pass to the associated equivalence
relation on V. The map ¢v : V., = V, induces a bijection V,/~ — V.

For a vertex v € V, the graph whose set of flags is

{feF | f¢¢"(F) and ¢v(d:f) = v},

whose set of vertices is ¢;' (v} and whose j and @ are obtained from j, and &,
by restriction, is called the graph being contracted onto v. If the graphs being
contracted have together exactly one edge, we call ¢ an elementary contraction.

Remarks 1.4. (1) It is clear how to compose contractions, and that the com-
position of contractions is a contraction.
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(2) f ¢ :7 > oand ¢ : 7 = ¢ are contractions with the same set of edges
being coutracted, then there exists a unique isomorphism ¢ : ¢ = ¢’ such
that 1o ¢ = &',

(3) Every contraction is a composition of elementary contractions.

(4) To carry out a construction for contractions of graphs, which is compatible
with composition of contractions, it suffices to perform this construction for
elementary contractions and check that the construction is independent of
the order in which it is realized for two elementary contractions.

Definition 1.5. A moduler graph is a graph 7 endowed with a map ¢, : V, —
Zs;v— g(v). The number g(v) is called the genus of the vertex v.

We say that a semigroup A has indecomposable zero, if a + b = 0 implies ¢ = 0
and b = 0, for any two clements a,b € A.

Definition 1.6. Let 7 be a modular graph and A a semigroup with indecomposable
zero. An A-structure on 7 is a map « : V, = A. The element «(v) is called the
class of the vertex v. The pair (7, «) is called a modular graph with A-structure (or
A-graph, by abuse of language).

A marked graph is a pair (A, 1), where A is a semigroup with indecomposable
zero and 7 an A-graph.

Definition 1.7. Let (7, ) and (7, 8) be A-graphs. A combinatorial morphism « :
(e,) = (7,8) is a pair of maps ap : F, = F; and ay : V, = V;, satisfying the
following conditions.
(1) The diagram
P2 v,
ar | Lav

ur
FF—5 W

commutes. In particular, for every v € V,, letting w = ay(v), we get an
induced map ay, : Fy(v) = F(w).
(2) With the notation of (1), lor cvery v € V, the map ey, : F,(v) = F,(w) is
injective.
(3) Let f € F, and f = jo(f). If f # f, there exists an » > 1 and 2n (not
necessarily distinct) flags fy,... ,f,,,fl, . f, € F, such that
(a) fi = ap(f) and .= ar(f),
{; )Jr(f,) foforalli=1,...,n,
(c) 2:-(f) = f)(f,+1)foralli:],...,'n-l,
(d) forall i =1,...,n—1 we have

T:’ # fiy1 = g(v;) = 0 and f(v) =0,

where v; = (f,) = 0(fir1),
(4) for every v € V, we have a(v) = B(ay (v)),
(5) for every v € V, we have g(v) = g(ay (v)).
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A combinatorial morphism of marked yraphs (B, o, 8) = (A, 1, @) is a pair (, a),
where € : A = B is a homomorphism of semigroups and « : (0,8) = (1, ) is a
combinatorial morphism of B-graphs.

Usually, we will suppress the subscripts of «.

Remarks. (1) The composition of two combinatorial morphisms is again a com-
binatorial morphism.

(2) We say that a combinatorial morphism a : ¢ — 7 is complete, if for every
v € V, the map ay, : F,(v) = F;(a(v}) is bijective. Examples of complete
combinatorial morphism are

(a) the inclusion of a conuected component,

(b} the morphism ¢ — 7, where & is obtained from T by cutting an edge,
i.e. changing 7 in such a way as to turn a two element orbit into two
oue element orbits.

(3) Let 7 be an A-graph and f € S, atail of 7. Let F, = F, = {f}, V., = V;
and define d, and j, by restricting d; and j,. Then ¢ is naturally an A-
graph called obteined from r by forgetting the tail f. There is a canonical
combinatorial morphism o — 7,

(4) Every combinatorial morphism @ : ¢ — 1 is a composition ¢ = bec, where bis
complete and ¢ is a finite composition of morphisms forgetting tails. If ¢ and
7 are stable (Delinition 1.9), all intermediate graphs in such a factorization
are stable.

(5) Condition (3) of Definition 1.7 can be rephrased in a more geometric way—
see the remark after Proposition 5.2.

Definition 1.8. A conlraciion ¢ : (1,«) = (o, 8) of A-graphs is a contraction of
graphs ¢ : 7 = a such that for every v € V, we have

(1)

gwy= > glw)+dimH(|r.]),
|4r€¢;][u)

where 7, is the graph being contracted onto v,
(2)

Bv) = Z ow).

wed (v}

Definition 1.9. A vertex v of a modular graph with A-structure (r, ) is called
stable, if a(v) = 0 implies 2¢g(v) + |v] > 3. Otherwise, v is called unstable. The
A-graph 7 is called stable, il all its vertices are stable.

We now come to an important construction which we shall call stable pullback.
Counsider the following setup. We suppose given a homomorphism of semigroups
£ : A = B, a contraction of A-graphs ¢ : ¢ = 7 and a combinatorial morphism
a : (B,p) = (A,7) of marked graphs. Morcover, we assume that p is a stable
B-graph. We shall construct a stable B-graph =, together with a contraction of
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B-graphs ¥ : # = p and a combinatorial morphism of marked graphs b : 7 — 0.
This B-graph = will be called the stable pullback of p under ¢.

B T % op
ET b,L la
A o —¢+ T

According with Remark 1.4(4), we shall assume that ¢ is elementary and contracts
the edge {f, f} of a. Let v, = 8,(f), vy = 0. (f) and vy = ¢(v,) = ¢p(v2).

Case I (Contracting ¢ loop). In this case v; = v,. Let wy, ..., w, be the vertices
of p that map to vy under a. Note that g(w;) > 1, since g{uy) > 1. Let 7 be equal to
p with aloop {f;, f;} attached to w;, for each i = 1,...,n and g, (w;) = g,(w;) — 1.
Clearly, m is stable, the drop in certain genera is made up for by the addition of
flags. The morphism b : # — a is the obvious combinatorial morphisin mapping
every one of the loops {fi, f;} to {f, f}. The contraction ¥ : ¥ — p simply contracts
all the added loops.

" N
] = N
o~ -
lfl
s R
o — < T

Cuase IT (Contracting a non-looping edge).  In this case v, # wvy. Again, let
wy, ... ,w, be the vertices of p that map to v, under . First we shall construct an
intermediate graph n'. Let us fix an ¢ = 1,...,n. Construct 7’ from p by replacing
w; with two vertices w} and w!, connected by an edge {f;, f;}, such that d(f;) = w!
and 9(f;) = w!. Let f be a flag of p such that 8,(f) = w;. If 3,97 (a(f)) = v,
we attach f to w! and if 8,¢" («(f)) = v, we attach f to w{. Set g(w)) = g(v1),
g(w!) = g{va), B(w)) = &(x(vy)) and B(w!) = {(a(v,)). This defines the B-graph
n’. The problem with 7' is that it might not be stable. So to construct = we
proceed as follows. Fix an 2 =1,...,n If w; and w! are stable vertices of 7' we
do not change anything. If either of w} or w! is unstable, we go back to where we
started, by contracting {f:, f;} again, obtaining the stable vertex w;. This finally
finishes the construction of m. The contraction ¥ : 7 —= p is defined by contracting
all the edges that were just inserted into p to construct m. There is an obvious
combinatorial morphism ' : 7 = ¢ mapping the edge {f;, F;} to {f, f}. Moreover,
we define a combinatorial morphism ¢ : # — 7’ as follows. If ¢ = 1,...,n is an
index such that either of w} or w! is an unstable vertex of ', we map the vertex
w; of m to the stable one ol the two, say w!, to fix notation. If fis a flag of p such
that f = w;, then f is also considered as a flag of # and =, and under ¢ we map
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f toitself, if d..(f) = w}, and to f;, otherwise. Finally, b : 7 = ¢ is defined as the
composition b =1, c.

S B N B v
mo e o - ,
A
el
(1) : N e
! IR O
; b

/1 #, N/ .
N L/ N
[terating this construction leads to the construction of a stable pullback for ar-

bitrary contractions of A-graphs.

Remark. Let

=

B .4 p
et vl La
A a 2 7
be a stable pullback,
(1) The diagram
v, ¥ v,
bJ, ‘La
v, & v,
comimutes.
(2) The diagram
F, & F,
b,l, ,La
¢P
F, — I

does not commute (except for special cases, e.g. if the B-graph 7' constructed
above is stable).
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Proposition 1.10. Stable pullback is independent of the order in which ¢ is de-
composcd into elementary contractions. Moreover, if

B T p
¢T ol la
A A
and
B o 2 or
¢ b ) b
A o 5 o
are stable pullbacks, then
B 7! M p
et v 4 la
A o B4

ts « stable pullbuck, too.

Proof. To check that stable pullback is well-delined, it suffices by Remark 1.4(4) to
check that the above construction yiekls the same result for both orders in which two
elementary contractions can be composed. This is a straightforward, though maybe
slightly tedious calculation. The compatibility of stable pullback with compositions
of contractions follows trivially from the definition. O

Proposition 1.11. [f
N

B Y p
) bl la
) A o 27
and
C ™ X
w T o 1 a
B N p
are stable pullbacks, then
C 5
nog T bot’ | J aca’
A o Y 7

is a stable pullback, too.

Proof. Of course, it suffices to consider the case that ¢ is an elementary contraction.
Then the claim follows immediately from the construction. [J

We are now ready to define the notion of morphism of marked stable graphs.
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Definition 1.12. Let (A, 7} and (B, o} be marked stable graphs. A morphism from
(A, 1) to (B,0) is a quadruple (&, «,7',¢), where { : A - B is a homomorphism
of semigroups, v’ is a stable B-graph, a : 7" = 7 makes (£,a) a combinatorial
morphism of marked graphs, and ¢ : 7' — o is a contraction of B-graphs. We also
say that (¢, 7', ¢) is a morphisin of marked stable graphs covering €.

Let (&, a,7',¢) : (A, 7) = (B,e) and (,b,0',9) : (B,0) = (C, p) be morphisms
of stable marked graphs. Then we define the composition (7,b,0',9)o (€, a,7',¢) :
(A, 7) = (C,p) to be (9€, ac, T, 9x), where (¢, 7", x) is the stable pullback of ¢
under ¢.

C . S R N p
v T el Lo
B 7 Y 0
et ol
A T
Remarks. (1) In reality a morphism is an isomorphy class of quadruples as in
this definition. But we shall always stick to the abuse of language begun

here.

(2) The composition of morphisms is associative by Propositions 1.10 and 1.11.

(3) Every combinatorial morphism of marked graphs whose source and target
are stable defines a morphism of marked stable graphs, but in the opposite
direction.

(4) Bvery contraction of A-graphs whose source (and hence target) is stable
defines a morphism of marked stable graphs (in the same direction).

The category of stable marked graphs shall be denoted by &,. Let 2 be the
category of (additive) semigroups with indecomposable zero element. By projecting
onto the first component, we get a functor a : &, =5 A. For A € ob2 let &,(A) be
the fiber of a over A, i.e. the category of stable A-graphs.

Proposition 1.13. Let 7 be an A-graph. Then there exists a stable A-graph 7°,
together with « combinatorial morphism " — 1, such that every combinatorial
morphism ¢ — 7, where a is a stable A-graph, factors uniquely through 1. We call
72 the stabilization of 7.

Proof. let o denote the A-structure of 7.

Case I. Assume that 7 has a vertex u, such that g{n) = 0, a(wg) = 0, vy has
a unique flag fy, and f, := j5(f1) # fi- Let 7" —= 1 be the ‘subgraph’ defined by
Foo= [ — {fl}, V=V, - {“ll}: Or = arlFr’w JrlFp = {fz} = jo|Fp = {fz} and
Jr(fa) = fo

Cuase II. Assume that 7 has a vertex v, such that ¢(vy) = 0, a(vy) = 0, vy has
exactly two flags, f; and f,, f, is a tail of 7 and fy = j(Js) # fo. Let 7" = 7
be the ‘subgraph’ defined by F, = F, = {fi, fu}, Voo = Vo = {w}, O = O, |Fy,
jT‘lFT' - {fa} = jr“:‘r’ - {fﬂ} and j1’(f3) = f:l'

Cuse III. Assume that 7 has a vertex v, such that g(ve) = 0, a(my) = 0, vy has
exactly two flags, fi and fo, f, = 5(f1) # fr and [, := j(fs) # fo. Let 7/ = 7
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be the ‘subgraph’ defined by Fyo = F, = {f1, fo}, Vi = Vi — {va}, 0 = 0;|Fy,
jr'lF'r‘ - {fu f,z} = jTlFT' - {fl?f'g} fl.ll(l j-r'(fl) = f'z'

Case TV. Assume that 7 has a vertex vy such that 2¢{ve) + |ve] < 3, a(ve) =0
and F,(vy) is a union of orbits of j,. Let 7" — 7 be the ‘subgraph’ defined by
Foo=F, — F(w), Vo =V, — {w}, 8 = O-|Fp and j. = j,|Fp.

In each of these four cases every combinatorial morphism o — 7, with ¢ stable
factors uniquely through 7. By induction on the number of vertices of 7, the graph
7' has a stabilization, which is thus also a stabilization of 7. If 7 has no vertices vq
of the kind covered by the above four cases, 7 is stable and 7 itsell may serve as
stabilization of 7. O

See Section 10 in [G, Exp. VI]) for the definition of cofibration of categories.
Proposition 1.14. The functor a : &, = U is « cofibration.

Proof. Let £ : A = B be a homomorphisin in 4, and (7, ) a stable A-graph. We
need to construct a stable B-graph o = £, 7, together with a morphism (a, 7/, @) :
(A, ) = (B, a) covering &, with the following universal mapping property. When-
ever 77 : B — C'is another homomorphism in %, p is a stable C-graph and (b, 7", ¢) :
(A,7) = (C,p) is a morphisim covering 7 o &, there exists a unique morphism
(¢,0',x) : (B,0) = (C,p) covering 9, such that (¢,a’,x) o (¢, 7', @) = (b, 7", %),
i.e. such that 7”7 is the stable pullback of &’ under ¢.

In fact, it is not difficult to see that the stabilization of (r,£ ¢ «) satisfies this
universal mapping property. 0O

Remark 1.15. Choosing a. clivage normalisé (sce Definition 7.1 in [6, Exp. VI]) of
&, over A amounts to choosing a pushforward functor &, : 8,(A) = &,(B) for any
homomorphism & : A = B in A, We may call £, stabilization with respect to €. 1f
B = {0}, we speak of absolute stabilization (or simply stabilization, if no confusion
scems likely to arise).

2. PreESTABLE CURVES

We recall the definition of prestable curves. A morphism of prestable curves is
defined in such a way that it has degree at most one and contracts at most rational
components.

Definition 2.1. A prestable curve over the scheme T is a flat proper morphism
7+ C = T of schemes such that the geometric fibers of 7 are reduced, connected,
one-dimensional and have at most ordinary double points (nodes) as singularities.
The genus of a prestable curve C'— T is the map t — dim H'(C,, O¢,), which is a
locally constant function g : T = Zyq. If L is a line bundle on €', then the degree
of L is the locally constant function deg L : T — Zyq given by ¢t = x(L;) + g - 1.

A morphism p . C — D of prestable curves over T is a T-morphisin of schemes,
such that for every geometric point ¢ of T we have

(1) if 7 is the generic point of an irreducible component of Dy, then the fiber of
pe over 7 1s a finite -scheme of degree at inost one,
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(2} if C" is the normalization of an irreducible component of C,, then p,(C") is
a single point ouly if C” is rational.

If Vis a scheme and f : C = V a morphism, then L w deg [~ L defines a locally
constant function 7' — Homgz(Pic V, Z) which we shall call the homology class of f,
by abuse of language, denoted f,[C].

If V is a scheme admitting an ample invertible sheaf let

Hy(V)* = {a € Homg(Pic V,Z) | «(L) > 0 whenever L is ample}.

Note that H,(V)T is a semigroup with indecomposable zero. This is because if V
admits an amnple invertible sheaf then Pic V' is generated by ample invertible sheaves
(see Remarque 4.5.9 in [4]). Soif f: C = V is a morphismn from a prestable curve
into V, then the homology class is a locally constant function 7" — Hy(V)*.

Lemma 2.2, Let [ : X = Y be a proper surjcctive morphism of T-schemes such
that f,.Ox = Oy. Let g : X = U be another morphism of T-schemes, such that
Jor every geometric point t of T the map ¢, : X, = U, is constant (as a map of
underlying Zariski topological spaces) on the fibers of fi + X, = Y. Then g fuctors
uniquely through f.

Proof. This follows easily, for example, from Lemma 8.11.11in {4}, O

Corollary 2.3. Let C be a prestable curve over T and f : C — V « morphism,
where V is « scheme admitting an ample invertible sheaf. Then f[C] = 0 if and
only if f factors through T. O

We shall need the following two results about gluing marked prestable curves at
the marks.

Proposition 2.4, Let T be a scheme and Cy, Cy two prestable curves over T. Let
z, € C(T) and zy € Cy(T) be sections such that for every geometric pointt of T we
have that ¢y () and x,(t) are in the smooth locus of C, , and Cy,, respectively. Then
there exists a prestable curve C over T, together with T-morphisms py : Cy = C
and py : Cy = C, such that

(1) mi(er) = pa(e),

(2) C is universal minong all T-schemes with this property.
The curve C' is uniquely determined (up to unique isomorphism) and will be called
obtained by gliing C, and C. along the sections z, and z,, notation

C' = Cl u-l'-l.I: C'g.

Ifw: 8 = T is a morphism of schemes, then Cs is the curve obtained by gluing
Cys and Cy s along z, s and xy ¢ If g; is the genus of C;, for i = 1,2, then for the
genus g of C we have g = g1+ g2, If, fori=1,2, f; : C; = V is a morphism into
a scheme such that fi(x,) = fa(wy), and f: C = V is the induced morphism, we

have f.[C] = f1.[C\]+ [..[C:] in Homg(PicV,Z). O
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Proposition 2.5. Let T bc « scheme and C' a prestable curve over T. Let x, €
C(T) and x4 € C(T) be sections such that for every geometric point t of T we have
that =, (t) and x4(t) arc in the smooth locus of Cy and @\ (t) # 2,(t). Then there
exists a prestuble curve C over T, together with a T-morphisn p : C' — C', such
that

(1) plu1) = plrs),

(2} C is universal among all T-schemes with this property.

The curve C is uniquely determined (up to unique tsomorphism) and will be called
abtained by gluing C with itself along the sections z; and z,, notation

C=Clz, ~

Ifu: 8 = T is a morphism of schemes, then (C)s is the curve oblained by gluing
Cs with itself elong v, ¢ and xy 5. If y is the genus of C, then for the genus §
ofa' we have g = g+ 1. If f: C = V is a morphism into a scheme such that
f(xy) = f(xa), and f:C = V is the induced morphism, we have f,[C] = f.[C] in
Homg(PicV,Z). 0O

Definition 2.6. Let 7 be a modular graph. A m-marked prestable curve over T is
a pair (C,a), where C = (C,)vev, is a family of prestable curves m, : C, = T and
r = (#i)igr, 15 a lamily of sections x; : T — Cj, (), such that for every geometric
point ¢t of T we have

(1) @;(t) is in the smooth locus of Cy gy, for all i € 7,
(2) l) # 2;(0), 165 # ., for ,j € Fy,
(3) 9(Cy.) = g(v) for all v € V.
We define a marked prestable curve over T to be a triple (7,C, ), where 7 is a
modular graph and (C,x) a r-imarked prestable curve over T'.

3. STABLE MAPS

We now come to the definition of stable maps, the central concept of this work,
which is due to Kontsevich.

Fix a field & and let U be the category of smooth projective (not necessarily
connected) varieties over k. Consider the covariant functor

Hf 0 — «
Vo Ha (V)Y

where 2 is the category of semigroups with indecomposable zero (see Section 1).
Define the category B, as the fibered product (sce Section 3 in [6, Exp. V1))

TG, — 6,
I O 1l
w}
T — A

To spell this definition out, we have
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(1) objects of VB, are pairs (V, 1), where V is a simooth projective variety over
k and 1 is a stable H.(V)*-graph,

(2) a morphism {(V, 1) = (W, ) is a quadruple (€,«,7',¢), where £ : V o W
is a morphism of k-varieties and (HJ(€),a,7',¢) is a morphism in &, as
defined in Definition 1.12.

Remark 3.1. By Corollary 6.9 of [6, Exp. V1] and Proposition 1.14 the category
BB, is a cofibered category over .

Definition 3.2. Let (V,7,a) be an object of VB, and T a k-scheme. A stable
V, 7, &)-map over T is a triple (C, =, f), where (C, z) is a 7-marked prestable curve
| p
over T and f = (f,)uev, 1s a fanily of k-morphisms f, : C, = V, such that the
following conditions are satisfied.
1} For every 1 € F, we have fy_ (%) = fo. ;.00 ) as k-morphisms from
#(7) ERCHRGEFC))
TtoV.
(2) For all v € V; we have that [, [C,] = a(v) in Hy(V)*.
3) For every geonctric point ¢ of T and every v € V, the stability condilion is
g
satisfied. This means that if C’ is the normalization of a component of C, ;
that maps to a point under f,, : C,, — Vi, then
a) if the genus of C7 is zero, then C’ has at least three special points,
g I
(b} if the genus of C' is one, then C” has at least one special point.
Here, a point of C" is called special if it maps in C,; to a marked point or
a node.

We define a stable map over T to be a sextuple (V,7,a,C\x, f), where (V, 7, a)
is an object of VB, and (C, =, f) is a stable (V, 7, a)-map over 7.

A morphisne (Vy7,0,CL 2, fY = (W, 0,8, D, y, 1) of stable maps over T is a quin-
tuple (&, @, 7', ¢, p), where (&, a, 7", @) : (V,7,0) = (W, 0, 8) is a morphism in VS,
and p = (po)uev,, is a family of morphisms of prestable curves p, : Cuy = Dy (u),
such that the following are true.

(1) For every i € F, we have pygrin(@asriy) = i,

(2) If {7),4,} is an edge of 7" which is being contracted by ¢, then py,(z.u,)) =
p,,,(:na(,-,)), where vy = diy and vy = 97,. So, in particular, if v, # v, there
exists an induces morphism

Pzt C’a(ul] [-Ixu(
where w = ¢(v,) = ¢(vy).

(3) With the notation of (2), if v; # vs, the morphism py, is a morphism of
prestable curves.
(4) For every v € V. the diagramn

C"n(u»,) — Dw)

iyhTaliz)

C'u(u] {“(_“g %4

pod e
hago) ’

1)¢(,,) — W

comnmumules.
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In this situation we also say that p: (C,x, f) = (D, y, 1) is a morphisin of stable
maps covering the morphism (€, ¢, 7', o) in V&,

To define the composition of morphisms, let (§,a,7,¢,p) : (V,7,0,C, 2, f) =
(‘/Vs a,p,D,y, h) and (7/1 b, ‘7’) P, f]) : (VV! a,B,D,y, h) — (Ul Y E,z, C) be mor-
phisms of stable maps over T. We already know how to compose the morphisms
(& a, 7', ) and (1,b,0',4) in DB,. Use notation as in Definition 1.12. Then this
composition is (9§, ac,7",¥x). Define the family » = (r,)uev,, of morphisms of
prestable curves r,, @ Ciociu) = Eyy(u) 28 T = fy(u) © Pe(u), Which is well-defined, since
dve(n) = ayxv(n). Then we define our composition as

(1,! b’ (7’, ‘l/)! '[) ¢ (6? ”‘1 T” qs’ [’) = (”E‘ ”C) T”’ d)X’ r)'

Proposition 3.3. The composition of morphisms of stable maps s « morphism of
stable maps.

Proof. The proof will be given at the same time as the proof of Theoremn 3.6 be-
low. O

Definition 3.4. Let V € ob B be a variety, 8 € H,(V)* a homology class and
¢,n > 0 integers. Then (V,g,n, ) shall denote the object (V, 7, 8) of VB, whose
modular graph 7 is given by F, = n, V, = {@}, 3, : F, — V, the unique map,
jr =id, and g(@) = g. The H(V)*-structure on 7 is given by (@) = . A stable
(V,g,n, B)-mapis also called a stable map from an n-pointed curve (of genus g) to
V' (of cluss ). Here we use the notation » = {1,...,n}.

Lemma 3.5. Ouver an algebraically closed ficld, let (C,x, f) be a stable map from
an n-pointed curve of genus g Lo V of class § and let (D, y, h) be a stable map from
an m-pointed curve of genus g to 'V of class 8, where m < n. Letp:C =3 D bea
morphisin such that p(x;) = y; for i <m and hp = f. If C' C C' is a subcurve (a
connected union of irveducible components), such that

(1) letting C" be the closure of the complement of C' in C, the curves C' and
C" have exacily one node in common,

(2) 9(C") =0,

(3) f(C") is a point,

(4) fori < m the z; do not lic on C' except for at most one of them,

then p maps C' lo « point in D, [J

Let us denote the category ol stable maps over 7' by M(T). It comes together
with a functor

M(T) — 06,

defined by projecting onto the first components. For a morphism « : S = T, pulling
back defines a U&,-lunctor

u”: M(T) — M(S).
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Theorem 3.6. For every k-scheme T the functor M(T) = DS, is a cofibration,
whose fibers are groupoids. In other words, M(T) is cofibered in groupoids over
T6,.

For every base change w : S = T the VS,-functor v . M(T) = M(S) is

cocarlesian,

Proof. To prove that M(T) — &, is a cofibration, we need to prove the follow-
ing. Let (§,a,7,¢): (V,7) = (W, o) be a morphism in VS, and (C, =, f) a stable
(V,7)-map over T. Then there exists a pushforward (D,y,h) of (C,z, f) under
(&,a,7,¢). This pushforward comes with a morphism p : (C, =z, f) = (D,y,h)
of stable maps covering (§, a, 7', @) and is characterized by the following universal
mapping property. Whenever (,b,0’,4) : (W,0) = (U, p) is another morphism in
V&,, (F, z,e) a stable (U, p)-map over T and r: (C,x, f) = (E, z,€) a morphisin
of stable maps covering (n€, ac, 7, 9y) : (V,7) = (U, p) (in the notation of Defini-
tion 1.12), there exists a unique morphism of stable maps ¢ : (D, y,h) = (E, z,e)
covering (1, b, ', ) : (W, o) = (U, p) such that r = ¢op.

r

/—_\
(Cz, [y S (D, y, ) g, (E,z,e)
(2) | ‘ 1 ‘ |
vy 2250w T (W)

\_’/

(n€,ac, 7" ¥x)

To prove that u* : M(T) — M(S) is always cocartesian, we need to prove that this
pushforward commutes with hase change.

Recall that we also wish to prove Proposition 3.3, i.e. that if inorphisms of stable
maps p: (C, 2, f) = (D,y, 1) and ¢ : (D,y,h) = (F, z,¢) are given as in (2), then
the composition r : (C, z, f) = (E, z,¢) is also a morphism of stable maps.

Purely formal considerations tell us that to prove these three facts, we may
decomnpose the morphism (&, ¢, 7', ¢) : (V,7) = (W, o) into a composition of other
morphisms in any way we wish and prove the three facts for the factors of this
decomposition. We shall thus consider the following-five cases.

Case I (ChangingV' ). In this case ¢ = £.7. This means that o is the pushforward
of r under £ : V — W, using the fact that U6, = U is a cofibration (Remark 3.1).
In other words, ¢ is the stabilization of r with respect. to the induced H,(W)*-
structure (Proposition 1.13). Thus 7 = ¢ and ¢ = id,.

In all other cases W = V and £ is the identity. In the next two cases @ = id, and
=r.

Case II (Contracting and cdygc).  The contraction ¢ : 7 — o contracts exactly
one edge {i,,i,} C F, and we have v, # vy, where v; = 9(i;) and v, = 9(iy). To fix
notation, let vy, = ¢(v;) = P{u).

Cuse I (Contracting a loop). This is the same as Case 11, except that we have
U = Uy,

In the last two cases 7 = o and & = id,.
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Case 1V (Complete combinatorial). The combinatorial morphism « : @ — 7 has
the property that « : F,(v) = F;(a(v)) is a bijection, for all v € V,.

Cuse V (Removing a tail). I this case, V, = V,, we have given a vertex v, € V,
and a tail iy € Fr(v) of 7 and we have

(1) Fﬂ - FT - {i(;},

(2) 0o = 0:|F,

(3) jﬂ' = j'r Fa-

Note that the proof of Proposition 3.3 is only interesting (if at all) for Case II,
since only in this case carrying out the composition of (£, e, 7', ¢) and (7, b, a',¥)
involves the second case of the construction of stable pullback (Section 1).

Casc I.  First we note the following trivial lemmma.

Lemma 3.7. Assume that v is stable with respect to the induced Ho(W)*-structure,
sothat = 7 and a = id,. Then if (C, 5,80 f) satisfies the stability condition it
may scrve as pushforward of (C,«, f) under §&. O

We shall now reduce Case [ to Cases IV and V. By the claimed compatibility with
base change, we may construct the pushforward locally, and pass to an étale cover
of T, whenever desirable. Thus we add tails to 7, obtaining 7, and corresponding
sections of C', obtaining (C,%) until 7 with the induced H,(W)*-structure is stable
and (C,7,€ o f) satisfies the stability condition. Then we have the comnmutative
diagratn

(V,7) — (V,7)
(3) ! !

(W, 7y — (W, a)

in V&,. The top row of (3) is covered by (C,Z, f) = (C, =, f),and clearly (C, x, f}is
the pushforward of (C, %, f} under (V,7) — (V, 7) (see also Case V). The first column
of (3) is covered by (C,, f) = (C,F, &0 f), which is a pushforward by Lemma 3.7.
Now the pushforward of (C,7,&0 f) under (W,7) = (W, a) will also be the sought
after pushforward of (C, =, [} under (V,7) = (W, ¢). But (W,7) - (W, 0) is covered
by Cases IV and V, achieving the reduction. [

Case II. The diagram defining the composition of ¢ and (b, o', 9) is

N SO TN p
c.l, lb

&
T — 0.

Let us first deal with the proof of Proposition 3.3.
Lemma 3.8. For every i € Fp we have

Go(iyPocxF(i) (mc,\"’(i)) = o \PogFu(i) (37¢Fb(-‘))~
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Proof. Assume that ex (i) # ¢"0(i), since otherwise there is nothing to prove. In
this case, necessarily, cx¥ (i) is being contracted by ¢. Without loss of generality,
let exf(?) = i, so the sitnation is as in the following diagram (cf. (1)).

7! X6} *L) i ::'.:'..:'_ o
] N el N
!
~ . S Lo
) —\‘.:::-
A
B 8 Ml e = otiy A
RN s o L ~J

Here, 7' is the stable pullback and 7 the intermediate graph used in the construction
of 7. Using the fact that p is a morphism of stable maps we get a morphism
iz Cre = D, of prestable curves, where

C‘l'..' = C'u] u.:,'l'r,‘g C'w‘-

Compose this with gaiy @ Du, = Eyoeq). Let fip : Cip = V be the map induced
from f,, and f,, and ¥ = & F (v;) U F(v2) — {i1,4:}. Then (C14, &, f12) is a stable
map and
Jogiy e P12 ¢ (Crar i, f12) — (Ewn(mZ|Fp(¢0(i))v‘3wﬂ(i))

is a morphisin of stable maps to which Lemna 3.5 applies, with ¢’/ = C,, and
Tyrpy € C' being the only marked point coming from F,(d(i)), if there exists
such a point at all (this is because 7' # 7'). So by Lemmna 3.5 qpiypu,(Cy,) is a
point in Eyuiy. To be precise, this holds if 77 is the spectruin of an algebraically
closed field. For the general case, applying Lemma 2.2 yields that ¢s() o p,, factors
thought 7. In particular,

fla(u')]’u,(mquh(i)) = ’]a(f)]'u,(ﬂ-'s,) = Ga(;‘)]’u,('f'il),
which is what we set out to prove. [

Let us check that r : (C,u, f) = (LI, z,¢) is a morphisin of stable maps, i.e.
satisfies Properties (1) through (4) from Definition 3.2.
Property (1), Let i € F,. The we have

ToxFgF (i) {(ToxFyr (1)) = fog? (i) Poex o (i) (TexFyr (i)

by Definition 3.2,

= GoyryPagreyr () (Torber (i)
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by Lemma 3.8,

= f/w"‘(i)(ywp(i))
= Zi
since p and ¢ are morphisms of stable maps.
Property (2). Let {j1, 72} be an edge of 7" which is being contracted by ¢x. Let
wy = Jfy and uy = 37..
Case 1. Let {j;, 72} be contracted by y. Then {c(7,), ¢(7.)} is being contracted
by ¢. So without loss of generality ¢(j;) = 7, and ¢(j,) = i». Then

ruy(#4,) = "fx(m)l”u,(mil)
= qx(,,,)pu,(mi,)
= ru, (24},
since p is a morphisin of stable maps and y(w,) = x(uy).

Case 2. 1f {7,, 2} 15 not contracted by y, then there exists a unique edge {j;, 74}
of o' being contracted by ¢, such that j, = xF(4}) and j, = xF(j3). Then

Pu (Fe(iny) = Uyt Petn) (Feiin)
= (y(uy)Posro(il) (Tere(hy)

by Lemma 3.8,

= (fy(u1) (Ub(ji})
= fx(uz) (Mosy))

since ¢ is a morphism of stable wmaps,

= rua(Fein)

by symimetry.

Property (3).  This follows from the fact that the composition of morphisms of
prestable curves is again a morphisin of prestable curves.

Property (4). Straightforward.

This finishes the proof of Proposition 3.3 in Case II. Let us now construct the
pushforward (D, y, k) of (C,z, f} under ¢.

Let w € V,. If w # vy, let v be the unique vertex v € V, such that ¢y (v) = w
and set D, = C,. If w=u, set

Dy, =C\y U, 2, Coye
This defines a family of prestable curves D. For every v € V; let p, : C, = Dy
be the canonical map. Define sections y;, for 7 € Fy, by
Wi = P(’hﬁp(i)(:“dip(i))'
Finally, define for every w € V, a map ¢, : D, = V from f (by using Proposi-
tion 2.4, if w = v,). Essentially hy definition, (D, y, 1) is a stable (V, a)-map and
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p:(C 2, fY = (D,y, 1) is a morphism of stable maps covering ¢ : (V,7) = (V, o).
It remains to check that (D, y, 1) satisfies the universal mapping property of a
pushforward under ¢. So let r : (C, =, f) = (E, z,¢) as in Diagram (2) be given.

Let u € V. We need to define a unique morphism ¢, 1 Dyy = Eyquy such that
for every v’ € V.., satisfying x(#') = u, the diagram

C'c(u‘)
Po(u) ,L \‘ L

Db(u) _.Q_u) Eu’;(u)

commutes. If () # vy, necessarily, ¢, = ry. So let b(n) = vy. If there are two
vertices ) and ), such that x(u}) = x(«}) = u, then we have two maps rys : Cy,, =
Eyy and 1y 2 Cy, = Eyg,y giving rise to a unique map ¢, : D,, = Ey,y. Il there
is only one vertex u] of 7/ such that y(u}) = », then we are in a situation as in
Diagram (4), and by Lemma 3.5 ¢, has to map C,,, C D,, to a single point of Ey .
and 7y : Clu, = Ey suflices to determine ¢, : Dy, = Eyy uniquely. This defines
q : D — E satislying all properties required of a morphism of stable inaps, as some
routine considerations reveal. This finishes Case 1. [

Case Il This case is similar to Case 11, but much simpler, because the con-
struction of the composition of ¢ and (b, o, 4) is simpler, and thus for every i € F,.
we have cx?'(i) = ¢7b(i). We use Proposition 2.5 instead of Proposition 2.4 to
construct the pushforward of (C, =z, f) under ¢, gluing the two sections #;, and z;,
of C,, = C,, to obtain D,,. O

Casc IV.  To construct the pushforward, set. D, = Couy, o @ Cawy = Dy the
identity and h, = fo.), for every v € V,. Morcover, for i € F, set y; = z4;,. To
check that (D, y, 1) is astable map and p: (C,x, f) = (D, y, k) a morphism of stable
maps, the only fact to check is that for every ¢ € F, we have Loy (1) = hagan(¥im),
in other words

Joa (#uiiy) = Jatiom (Faggen)-
Here, Condition (3) in the definition of combinatorial morphism of A-graphs (Defi-
nition 1.7) enters in. It iimplies this claim together with Corollary 2.3. The universal
mapping property of (D, y, h)is easily verified. [

Case V. Before we can treat this case, we need a few preparations.

Proposition 3.9. Let (C,xy, ..., %, f) be a stable map over a field from a curve
of genus g to V and M an ample invertible sheaf on V. Then

L=we(oy+...42,)® [TM?
s ample on C. Here we is the dualizing sheaf of C'.

Proof. Let us first consider the case that C has no nodes, so that ' is irreducible
and non-singular, Then is suffices to prove that deg L > 0.
Cuse 1. The image f(C) is a point. Then deg f~AM = 0 and we have

deg L=deguwec+n=20-24n2>1,

by the stability condition.
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Case 2. The image f(C) is not a point. Then deg f*M > 1 and so
degL=2g—24+n+3deg "M 2>22¢-24+0+3=2g+n+1>0.

So suppose now that C' has a node P. Let ¢ : €' = C be the curve obtained by
blowing up P and let P, P, € C' be the two points lying over P. Let L' = ¢"L and
fl=feq .

Case 1. The curve C' is connected. Then (C',xy,... &y, Py, Py, f') is a stable
map and

=wel(n+...+e, + P+ P)Q fTM®,

Cuasc 2. The curve C’ is disconnected. Let C{ and C7 be the two components
of C’ and L, L), the restriction of L' to C] and CY, respectively. Let f/ : Cl = V
for i = 1,2 be the map induced by f'. Without loss of generality assume that
Tyyeooyo, € CLand @,4y,...,2, € C), forsome 0 < r <nand P, € CY, P, € CY.
Then (C @y, ...y, Py fD) and (C w40, ... 2, Py, f3) are stable maps and

L, = L;JC;(:L'I+..-+:Er+Pl)®f{.M®3
Ly = we(@epr+ .otz + P)© [T MO

Thus by induction on the the number of nodes we may assume that L' is ample
on C’. Let F be a coherent sleaf on € and F* = ¢*F. Then there exists an
ny such that for all # > ny we have that 7/ @ L‘@"(-PI), F'® L'e'"(—P-,) and
F'® L'® (=P, — P,) are generated by global sections. This implies that F @ L&"

is generated by global sections. So L is ample. O

We will now consider the following setup. Let (C 2y, ..., %41, f) be a stable
map over T {rowm an (n + 1}-pointed curve of genus g to V of class § € H,(V)*,
where 29 +n > 3 il § = 0 (otherwise, n > 0).

If ¢ is a geometric point of T and C’ a component of C,, then we say that C’ is to
be contracted, if, alter removing x, 4, the normalization of C' violates the stability
condition. Equivalently,

(1) C"is rational without self intersection (so that C’ is equal Lo its normaliza-
tion},

(2) w41 € C,

(3) C” has exactly two special points besides @4, at least one of which is not
a marked point, but a node,

(4} [f.(C') is a single point of V.

Pictorially, the only two possible components to be contracted look as follows.

M LW \ N }
7C

Al E)
Tnti Tnga




22 K. BEHREND AND YU. MANIN

Note that every geometric fiber of 7 : € — T has at most one component to be
contracted.

We say a T-morphism ¢ : C = U, for a T-scheme U, contracts the components
to be contracted, if for every geometric point ¢ of T the map (of underlying Zariski
topological spaces) ¢, : Cy — U, maps every component to be contracted to a single
point in U,. For example, f : C = Vr contracts the components to be contracted.

Proposition 3.10. There exists a universal morphism p: C = C contracting the
components to be contracted.  Let f . C = V be the unique map given by the
universal wmapping property of (C,p). Then (6',1;(:1:1), cooy ), f) is a stable map
from an n-pointed curve of genus g to V of class f.

Proof. This is a variation on Section 1 of [9]. Let us first prove the proposition
for the case that T is the spectruin of an algebraically closed field. Let C' be a
component. to be contracted. _

Case 1. The component C’ lias one node. We define C = C - (C' ~ ) and let
p:C = C be the ohvious map. Clearly, Oz = p.O¢, so C satisfies the universal
mapping property by Lemma 2.2. The rest is trivial.

Cuse 2. The component ¢ has two nodes. We define C = C - (C' — C) and let
P, and P, be the two points of C that intersect C'. Then we set C = C/P, ~ Py,
i.e, we identify the two points Py and P,. We then proceed similarly as in Case 1.

Lemma 3.11. Let T be the spectrum of an alyebraically closed field and let C be
the universal curve contracting the components of C' to be contracted. Choose an
ample invertible sheaf M on V. Let

L=we(m+...+2,)® f[*M®
and 5 B
L=wz(plz)+...+p()) @ T M,

Then for all k> 0 we have

(1) IO = p.Lo¥,

(2) L0 = L%,

(3) R f.L®* =9,

(4) HY{(C, L%}y = H{(C, L®*), fori=0,1.
Proof. This is analogous to Lemma 1.6 of [9]. O

Lemma 3.12, Let T be the spectrum of an alyebraically closcd field and let L be
defined as in Lenmima 3.11. Define the open subset U of C by

U = {& € C|xis smooth and = is not in any component to be contracted}.

Then for k sufficiently large we have
(1} L®* is generated by global sections,
(2) HYC, L®*) =0,
(3) L®* is normally gencrated,
(4) L®*(=P) is generled by global sections for all P € U,
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(The sheaf L is normally generated if 1'(C, L)®* — [(C, L9*) is surjective, for all
k>1.)

Proof. Let C and L be as in Lemma 3.11. Note that one can apply Proposition 3.9

to C and L. Then the results are implied by Lemma 3.11. O

We can now proceed with the proof of Proposition 3.10 for general base T. Choose
an ample invertible sheal A on V' and consider on C the invertible sheaf

L:L‘-"C/T(:El +...+In)®ftnff®3,

where wer 15 the relative dualizing sheaf of €' over T'. Then form

S= @W_Lgk,

k>0

where 7 : C' = T is the structure map, and let
C = ProjS.

Claim 1. The formation of C comnutes with base change.

Proof. Clearly, the formation of L®* commutes with hase change. That the forma-
tion of m. L®* commutes with base change for & sufficiently large follows from the
fact that HY(C\,, L®*) = 0, for all t € T, by Lemma 3.12. For k£ = 0 this is trivially
true. Thus the formation of

S =P S,

d|k

commutes with base change, for a suitable d > 0. This implies the claim for C,
since

C = ProjS = ProjS™. 0O
Claim 2. The structure map 7 : € = T is flat and projective.

Proof. The flatness of ProjS™ follows from the fact that 7, L®* is locally free, for
d | k, which follows from the fact that its formation commutes with base change.
By passing to a larger d if necessary, we mnay assume that for every & > 0 the
homoemorphism

T (L0 — 1 (LO*)

is surjective. This may be checked on fibers and thus follows from Lemma 3.12(3).
So S is generated by 8 and hence ProjS@ is projective by Proposition 5.5.1
in [4]. O

Claim 3. The canonical morphism from an open subset of C to C' is everywhere
defined, proper and surjective.
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Proof. This canonical morphism is defined by 7S — @, L®*, or equivalently by
S = P, 7. L® (see Section 3.7 in [4]). For it to be everywhere defined, it suffices
to prove that 77, L® — L® is an epimorphism, for k sufficiently large. This may
be checked on fibers and thus follows from Lemmma 3.12(1). That the canonical
morphism is domminant follows immediately, since § = @ 7. L®* is an isomorphism.
That it is proper, is clear. So it has to be surjective. [

We call this canonical morphism p: C — é;,

Claim: 4. Let 2 be a geometric point of C and p~*(z) the fiber of p over z.
Then either the cardinality of p~!(x) is one or p~'(x) is a component of Crsy to be
contracted.

Proof. Without loss of generality we may assume that 7" is the spectrum of an alge-
braically closed field. Then with the notation of Lemna 3.12 and by Property (4)
of the same lemma, we have that p|lU : U — C is an open tmmersion. If C” is to
be contracted, then L|C" 2 O/, and so C' is mapped to a point in C. These facts
clearly imply Claim 4. O

Claim 5. We have p,O¢ = OF.
Proof. With the notation of Clalm 4, note that
H (p~ (), O¢ Qo k(z}) =0,

since p~'(z) is rational if it is one and not zero dimensional. So by Corollary 1.5 in
[9], the formation of p.O¢ commutes with base change in T. So to prove the claim,
we may assume that T is the spectrun of an algebraically closed field, but then it
is clear. J

Now by Lemma 2.2 the last three clalins imply that p: C — C is a universal mor-
phism contracting the components to be contracted. In particular, we get a unique
morphism f : C' = V such that fop = f. The fact that (C, p(e),...,p(x,), f)is a
stable map from an n-pointed curve of genus g to V of class # may now be checked on
fibers, which has already been done. This finishes the proof of Proposition 3.10. 0O

We now proceed with the prool of Theorem 3.6 in Case V. Let n = #F,(v,).
Choose an identification 2 + 1 — F, (vy) mapping n+1 to iq, the flag being removed.
Then (Ch,y 21y -y Znsg1, fuo) 18 @ stable map to which Proposition 3.10 applies and
we let p,, : Cy, = D,, be the universal morphisin contracting the components to be
contracted. For v # vy we let D, = C, and p, : C, = D, be the identity. It is then
clear how to defiue y and & to get a stable map (D, y, h) satisfying the universal
mapping property of a pushforward under the graph morphismm 7 = ¢ given by
a0 — r. This completes the proof of Case V. O

To complete the proof of Theorem 3.6 we need to show that if (V, 7, &) is an
object of VB, and p: (C,x, f) —= (D, y,h) is a morphism of stable (V, 7, o)-maps
(covering the identity of (V, 7, @)}, then p is an isomorphism.

This is immediately rednced to the case that (V,7,¢) = (V,g,n, @) and using
Lemma 2.2 to the case that T is the spectrmin of an algebraically closed field.
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Then it follows from the stability condition that p cannot contract any rational
components, so it is injective. To prove that p is surjective use induction on the
number of nodes of D. So let P be a node of D and let D’ be the curve obtained
from D by blowing up P and let 3/ : C' = D' by the pullback of p: C' — D under
D' — D. '

Casc 1. The curve D' is disconnected, D' = D{ U D;. Then C' = C}] LI C, with
induced maps g} : C{ = D}, fori=1,2. Let g; = (D) and o; = f.[D}], fori =1, 2.
Then g = g, + g2 and @ = &, + ey Now g;(C7) < gi(Dj) and £,[C]] < £.[Dj] imply
that ¢;(C}) = ¢; and f.[C!} = a; and thus we may apply the induction hypothesis
to p} and pl, proving the surjectivity of p.

Casc 2. The curve ' is connected. Then C' is connected, since otherwise we
would have two curves contradicting the induction hypothesis. So me may apply
the induction hypothesis to p' : C' = D',

This finally completes the proof of Theorem 3.6. O

Definition 3.13. For a given object (V,7) of U&,, we let M (V, 7)(T) be the fiber
of M(T) over (V,7) under the cofibration of Theorem 3.6.

Letting T vary we get a stack M(V,7) on the category of k-schemes with the
fppf-topology.

For (V,7) = (V,g,n,8) we denote M(V,7) by M, . (V,8).
Theorem 3.14. For cvcry (V,7) the k-stack M(V, 1) is a proper algcbraic Deligne-
Mumford stack over k.

Proof. The proof will be postponed to a later section (see Corollary 4.8). O
Remark, Theorems 3.6 and 3.14 give rise to a functor
M D6, —  (proper algebraic DM-stacks over k)
(V,1) — M(V, 1),

by choosing for every k-scheme T a clivage normalisé (see Definition 7.1 in [6,
Exp. VI)) of the cofibered category M(T) over T®,. Of course, this functor M is
essentially independent of the choice of the clivage normalisé.

Another way of stating this would be to construct a fibered category M over
PGP x (k-schemes), such that M(V,7)(T) is the fiber of M over (V,r,T) and
M(T) is the fiber of M over 7.

4. FURTHER STUDY OF M
Proposition 4.1. Let (V, 1) be an object of BS,. Then the dingonal
A:MWV,7)— MV, 1) x M(V,1)
is representable, finite and unramificd.

Proof. By Lemia 4.2 we may reduce the case of stable maps to the case of stable
curves, wlich is well-known., 0O
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Lemma 4.2. Let (C,«, f) and (D, y, h) be n-pointed stable maps to V over the base
T, and t € T(K) a geometric point of T. Then there exists an étale neighborhood
S = T oft, an integer N, markings o’ = (2, ... ,2%) of Cs and y = (y},...,yn)
of Ds such that (Cs,xg,2") and (Dg, ys,y') arc stable marked curves over S and «
closed immersion of sheaves on (S-schenies)

Isom((C, =, f),(D,y,h))s — Isom((Cs, x5, 2"}, (Ds, ys,y'))-

Proof. Witliout loss of generality assume that C and D have the same genus ¢ and
f and h have the same class . Choose an embedding p : V — P7, let d = p.f
and reduce to the case V = P" and d = 8. Let N = d(r + 1). Choose linearly
independent. hyperplanes Hy, ..., H, in P such that for each ¢ = 0,...,r

(1) no special point of C, or D, is mapped into H; g under f, or g,

(2) fi and g, are transversal to H; k.

Then there exists an étale neighborhood S = 7 of ¢ such that
(1) foreach ¢ =0,...,r
(a) H; s Cy gives rise to d sections @i, ..., & ,4 of Cs over S,
(b) H;sN Dg gives vise to o sections Yy ..., Yypq of Ds over S,
(2) (Cg,uws,2") and (Ds,ys,y') are marked prestable curves.
Then (Cg,xg, ") and (Dg,ys,y') are in fact stable and there exists an obvious
morphism

__]SOIH((C', €, f)v (Di /B h‘))b‘ — lSO“'((C‘S’ Is, ":r)v (DSv Ys, U’))1

which is clearly a closed immersion. O

Lemma 4.3. Let (Chay, ... #yy41, ) be a stable map and (D, y,, ... ,y., h) the sta-
bilization under forgetling x,4y. Let p 0 C = D be the structure morphism. Then
any section yy of D making (D, yo, ..., ys) « marked prestable curve lifts uniquely
to a section xy of C making (C,xq, ..., x,) a marked prestable curve. If y, avoids
P agr), then (Cyzg, ... 2,qy) 18 @ marked prestable curve.

Proof. Let V. C D be the open subset consisting of smooth points of D which are
not in the image of y;, for any i = 1,...,n. Let U = p~!(V). Then p induces an
isomorphism p|U : U 3 V. Moreover, U is smooth and z,,, is the only section of
C which may mect U. 0O

Proposition 4.4. Let (C,xy,... 004, f) and (5’,:’51, e ,:T:,,,;_,,f) be stable maps
with isomorphic stabilizations forgetting the (n+ 1)-st section. Let (Cy i, ... yn, )
be such a stabilization, with structure maps p : C — D and p - C - D. If
P@np1} = P(E,4) then there crists a unique isomorphism g + C — C of stable
maps such that yoq = p.

Proof. This is local over the base, so we may freely choose sections as necessary. In
fact, choose sections z;,...,zy of D in the smooth locus, avoiding ¥, ..., ¥, and
A = p(#,g1) = P(Z,4,) and making

(Dlzls-"s:N)yli"'1.7/11) :
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a stable marked curve. By Lemma 4.3 these lift uniquely to sections w,,...,wy of
C and 1wy, ...,y of C making

i}
(C) L TR L PR P ,.’B"+1)
and
1~ v ~ o~
(Cody, .. N, Ty ey Erg)
marked prestable curves. Moreover, these are clearly marked stable curves with a
comtnon stabilization
(D2, 2N, Y e oy Un)
forgetting the last section, such that p(x = p(Z . Then they have to be
1 {31 n+1

isomorphic by Knutson’s theorem (see [9]) that Mg yyny1 is the universal curve
over My,,. O

Proposition 4.5. Let (Cyxy, ..., 2,, f} be a stable map and A « section of C.
Then there crists up to isomorphism a unique stable map (C,%y,..., Ty, [) such
that (C,xy, ..., ¢, f) is the stabilization of (C, &y, ... Fopq, f) forgetting the (n +

1)-st scction and p(F,4.) = A, where p C = C is the structure map.

Proof. Uniqueness follows from Proposition 4.4, hence existence is a local question.
Thus we may choose sectious zj,..., 2y of C such that

(Coziy oo 2N, ELy ey )

is a stable marked curve. By Knudsen’s result again, there exists a stable curve

T T "
(C 2l 2hn e )

whose stabilization forgetting the last section is
(Crzy, oo 2N, @y ey itiy)

and such that ¢(x;, ) = A, where ¢ : €7 — C' is the structure map. Clearly,

(C",Z;,... as;\f1:':'1="'?:5:|+l1f°(/)

-

is a stable inap. Then let (C,%y,..., %41, f) be the stabilization of

/ ? ’ ot !
(C' 2, 2y a, ey fod)

forgetting the sections zi,...,z4. By its universal mapping property there ex-

ists a morphism p : C — C which makes (C,#y,...,¢,, f) the stabilization of
(C,E1y oo Fugy, f) forgetting #,4,. O

Corollary 4.6. Let C, . (V, ) be the universal curve over M, (V,8). Then the
canonical morphism My, (V, ) = C, o (V, ) induced by the (n + 1)-st section is
an isomorphism. O

Proposition 4.7. Let (C,x, f) bc a stable (V, g, 1, B)-map over T. Then the set of
t €T such that (C,x) is a stable marked curve is open in T,
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Proof. The set of such ¢ is the set of all ¢ € T for which (C,z) is isomorphic to
its stabilization. For any morphisin of schemes, the set of elements of its source
at which it is an isomorphism is always open. Finally, use properness of prestable
curves. O

By this proposition we may define
I

Uﬂ‘." (V: ﬁ) C Hg.n (V: ﬁ)

to be the open substack of those stable maps, whose underlying marked curve is sta-
ble. The canonical morphism Uy, (V, ) = M, has as fiber over the marked curve
(C, z) the scheme of morphisms form C to V of class . By results of Grothendieck
in [3] this is a quasi-projective scheme. Hence U, (V, f) is an algebraic k-stack of fi-
nite type. Now, for given n there exists an N > nsuch that U,y (V, ) = M, . (V, 5)
is surjective. Since this morphism is flat by Corollary 4.6, it is a flat epimorphism,
hence a presentation of 3, (V, 8). Together with Proposition 4.1 this implies that
M, .(V, ) is a finite type separated algebraic Deligne-Mumford stack over k. This
is then true for all objects of VB,

Corollary 4.8. Tlcorem 3.14 is true.

Proof. 1t only remains to show properness. This is easily reduced to the case (V, 1) =
(P, g, n,d) and follows fromn Proposition 3.3 of [13]. O

5. AN OPERADIC PICTURE

Definition 5.1. Let (7, ) bhe an A-graph. Let R, C F, x F, be defined by (f, f) €
R, if and only if one of the conditions

(1) T = j" (i)a i _
(2) 0f = df and for v=df = 9f we have g(v) = a(v) =0

is satisfied. Let ~ be the equivalence relation on F, generated by R, and let
Po=F/~.

(In fact, P; ) would be better notation, but we will stick with the abuse of notation

P

Proposition 5.2. Let a: (B,0) = (A, 1) be a combinatorial morphisin of marked
graphs., Then ap : F, = F, preserves eguivalence. [

Remark. In fact, Condition (3) of Definition 1.7 inay be replaced by requiring ap
to preserve equivalence.

Proposition 5.3. Let ¢: 7 = 0 be a contraction of A-graphs. Then ¢F 1 F, = F,
preserocs equivalence. [
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Proposition 5.4. If

B r p
et b da
A o 4 o7
is a stable pullback, then the induced diagram
u‘)F
Py & P,
b J, .l, [
¢F
P, «— P

commuies. [J
By Propositions 5.2, 5.3 and 5.4, we have a contravariant functor
P&, — (finite sets)

given by P(A,7) = P; on objects. Composing with the functor D&, = 6, we get
a contravariant functor

P:06, — (finite sets)
(V,7) — P,

There is an obvious functor

D x (finite sets) — T
(V,P) — V7,
contravariant in the second argument, and composing with P times the natural
functor B, — U gives rise to a covariant functor
P:08, — U
(V,7) — VPr
still denoted P, by abuse of notation. We may consider U as a subcategory of the

2-category of proper algebraic Deligne-Mummnford stacks over &£ and consider this as
a functor

P : 86, — (proper algebraic DM-stacks over k).
Now fix an object (V,7) of UB,. Let (C,x, f) be a stable (V,7}-map over T,
Then # and f define a morphism
fle): T — VF
o= (f(@:()Dier.-

By Corollary 2.3 this morphism f(x) factors through V- ¢ V¥ so we consider it
as a morphism

fle): I'— Ve
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Thus we get a map M(V,7)(T) = P(V,7)(T). Since it is compatible with base
change S — T, we have a morphism of k-stacks

ev(V,7): M(V,7) — P(V,7).

Proposition 5.5. We have defined a natural transformation of functors from V&,
to (proper algebraic DM-stacks over k)

ev: M — P,
called evaluation.

In the general framework of T-operads, this allows us to consider (appropriate
subfunctors of) M and P as a modular operad and a cyclic endomorplisin operad,
respectively. The evaluation functor then induces a structure of M-algebra on V.
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)

Part II. Gromov-Witten Invariants

. ISOGENIES

Definition 6.1. Let 7 be a stable A-graph.
(1) The class of 7 is
pir) = Y Blo).
neV,

(2) The Euler characteristic of 7 is

)= 3 g(v).

VEN,

x(m) = x(

(3) If |7| is non-empty and connected the genus of 7 is

g{r) = 1= x(7).
Definition 6.2. Let 7 be a stable V-graph, where V is of pure dimension.

(1) The dimension of T is

dim(V,7) = x(7)(dim V = 3) — B{r){wv) + #5, - #E;,
where wy is the canonical line bundle on V.
(2) The degree of T is
deg(V, 1) =
Br)(wy) + (dimV = 3)(x(7") = X(7)) + (#S: — #5;) — (# L. - #E,),
where 7 is the absolute stabilization of 7.

Note that,

dimn(V,7) — dim(+") = y(v") dim V — deg(V, 7).

Definition 6.3. The stable A-graph with one vertex of genus and class zero and
three tails (no edges) shall be called the A-tripod, or simply a tripod.

Definition 6.4. Let @ : 7" = 7 be a combinatorial morphism of stable A-graphs.
We say that « is of type stebly forgetting « tail, or that ' is obtained form 7 by
stably forgetting a tail, il there exists a tail f of 7 such that 7' is the stabilization
of 7, where 7" is obtained from 7 by forgetting the tail f.

Remark 6.5. Every combinatorial morphism of type stably forgetting a tail is of
one of the following types (notation of Definition 6.4).
Type I (Incomplete casc). No stabilization is needed, i.e. 7 = 7",
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Type H (Removing a tripod from a lail).

Type 1V (Forgetting a lonely tripod or a lonely elliptic component.) Only in this
case does the number of connected components of the geometric realization change.

e u N
. } e Rt

—_— e

Here, the genus of the vertex displayed in the last diagram is equal to one.
Definition 6.6. Let (n,7',¢) : 7 = o be a morphism of stable A-graphs. We call
(e, 7', ¢) an isogeny, if

(1} ais a composition of morphisins of type stably forgetting a tail,
(2) my|a| = mojr] is bijective.

We call the isogeny ® : 17— a an clementary isogeny, if it is an elementary contrac-
tion, or if @ is obtained from 7 by stably forgetting a tail.

Note. If @ .7 = o is an isogeny of stable A-graphs, then g(a) = ¢(7).

An clementary isogeny either contracts a loop, or a non-looping edge or is of type
stably forgetting a tail [, H, or 111

Proposition 6.7. The composition of isogenics 18 an isogeny.

Proof. Let

A r P
i(lT b.l, .Lu
A a 2 o7

be a stable pullback, where « stably forgets the tail f of 7, my|p| = mol7| is bijective
and ¢ is an elementary contraction of stable A-graphs. Then b stably forgets the
tail ¢F(f) of a. Even if there is a vertex oy of 7 which does not appcar in p, this
vertex v, cannot be the vertex onto which ¢ contracts an edge. O
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Fix a semi-group with indecomposable zero 4. We shall define a category &, (A)
from &,(A), retaining only isogenies and morphisms of type cutting edges, but
reversing the direction of the latter, making them morphisms gluing tails,

In fact, define the category &,(A) as follows. Objects of 8,(A) are stable A-
graphs. A morphism ¢ = 7 is a triple (¢, o', &), where a : ¢ = ¢’ is a combinatorial
morphism of A-graphs of type cutting edges and ¢ : ¢’ = 7 is an isogeny of stable
A-graphs. To compose (a,0',®) : 0 = rand (0,7, V) : 7 — p, we need to construct
a diagram

NEf‘p
o = T — p

¢ T T b
(5) a o7
at
(T!
where ¢ 1 0’ — ¢” is a combinatorial inorphisim of type cutting edges and = : " — 7/

is an isogeny of stable A-graphs.

Let, in fact, & : ¢’ = 7 be any morphisin of stable A-graphs such that the
induced map ®F : F, = F,, induces an injective map on tails &5 : S, = S,.. Let
b:7 = 7 be a combinatorial morphism of type cutting an edge and let f and f be
the two tails of 7 such that {b(f),b(f)} is an edge of /. Then construct o from o’
by gliing the two tails ®F(f) aud ¢F(F) 1o an edge. For general b, cutting more
than onc edge, iterate this process to construct ¢”. This finishes the definition of

composition of morphisims in ®,(A), which is clearly associative.

Note. In the sitnation of (5), we get a diagram in &,(A)

p = !
a4 $ 5
' Dy
a — T

which is casily seen to commute. Here, b and T are the morphisms ol stable A-graphs
induced by b and ¢, respectively.

Definition 6.8. We call @,(A) the catended category of isogenies of stable A-
graphs, or the catended isogeny category over A.

The morphisms in &,(A} are called extended isogenies. An extended isogeny is
called elementary, if it is an elementary isogeny or glues two tails to an edge.

Remark. 1£€: A — Bis a homomorphism of semigroups with indecomposable zero,
stabilization defines a functor &,(4) = &,(B). These functors satisfy the cocycle
condition, so we may think of &, : A — (categories); A — &,{4) as a cofibered
category &, over 2.

Now consider the following situation. Fix a smooth projective variety V of pure
dimension. Let & : 7 — o be an elementary extended isogeny of stable modular
graphs. Let o' be a stable V-graph and & : ¢ — ¢’ a combinatorial morphism
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identifying ¢ as the absolute stabilization of o', Note that b is injective on vertices
and complete, so that b : F, (v) = F, (b(v)) is bijective, for all v € V,. Let (a;, 7i)ies
be a family of pairs, where I is a finite sct and for each 7 € I we have a combinatorial
morphist «; : 7 - 7; identifying 7 as the absolute stabilization of 7;. Finally, let
for every i € I be given an extended isogeny of stable V-graphs &; : ; — o’ such
that @ is the absolute stabilization of ®;. In particular, for each 7 € I we have a
commutative diagram of stable marked graphs

P '

TN — a
al . 1%
r 2 o

We shall now define what we mean by (a;, 75, ©;)ies to be cartesian, or a pullback of
o’ under ¢. We have to distinguish six cases, according to which kind of elementary
extended isogeny P is.

Let us first consider the case that ¢ is an elementary contraction ¢ : 7 — o,
contracting the edge {f, f} of 7. As usual, let v; = 3f, vy = 0f and vy = ¢(v,) =
d(vy). Let wy = b{wy).

Case | (Contracting a loop). In this case vy = v,. The set I has one clement,
say 0, and (n.,,,n,,q)n) is cartesian, if ¢, is a contraction contracting a smgle loop

{ao(f), a0 (7)} onto g,

Case Il (Contracting a non-looping cdge). In this case vy # vy. We require each
®; to contract exactly one edge, namely {;(f), a;(f)} onto wy. In particular, this
means that the only way the various {u;, 7, ®;) differ is in the classes of u;(v,) and
a;(vy). We require that (A(a;(v)), #(a;(v2)))ier e a complete and non-repetitive
list of all pairs of elements of H,(V)* adding up to f{wy).

Let us now deal with the case that ¢ : 7 — o stably forgets a tail. Then ¢ is
given by a coinbinatorial inorphism ¢: o —= 7. There are three cases to consider.

Case 111 (Forgetting a tail, incompletely).  lu this case 7 has a unique flag f € F,
that is not in the image of ¢p : F, = F;. We require I to have one element, say 0,
and call (ag, 7y, ®y) cartesian if $, lorgets the tail ay(f) (and does nothing clse).

Case IV (Removing « tripod from a tail).  Again, we require I to have one
element, say 0, and we call any {aq, 7, Py} cartesian for which &, stably removes a
tail. In fact, &, will theu be of type removing a tripod from a tail or an edge. Some
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examples:

E Il)u
T e - o'

RS Do
To O-T-— y o'

aoy T

g

T — a

Casc V (Removing a tripod from an edge). This is the same as Case 1V, except
that @ will necessarily be of type removing a tripod from an edge. An example:

dry,
' ﬂ‘

Es
ia{ —

Cuse VI (Gluing two tails to an edye).  Finally, let us consider the case that @
is given by a combinatorial morphism ¢ : 7 — a, gluing the two tails f and f of 7
to an edge {¢(f),c(f)} of . Again, I is required to have one element, say 0, and
(20, To, o) s called cartesian il &, glues two tails of 7, to an edge of o' (and does
nothing clse}. An example:

Py
?" _) al
T

I

o

Note that in each case pullbacks exist, even though they are not necessarily
unique, even up to isomorphising in the last three cases. Note also, that for cach
1 € I we have deg(r) = deg(a’).

We shall now define still another category, denoted 5,(\/)“.,,1, called the cartesian
extended isogeny category over V.
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Definition 6.9. Objects of @t,(V)(m are pairs (7, (#;, Ti)ier), where T is a stable
modular graph, 7 is a finite set and for each i € T the pair (a;, 7} is a stable V-graph
7;, together with a combinatorial morphism «; : 7 — 7, identifying 7 as the absolute
stabilization of 7;.

A wmorphism from (7, (a;, 7y)ier) to (o, (bj, 05)jes) is a triple ($, A, (P:)ies), where
$ .7 = o is an extended isogeny of stable modular graphs, A : I — J is a map and
for each i € I we have an extended isogeny of stable V-graphs &, : 7; = 0,(;) whose
absolute stabilization is . Such a triple is subject to the following constraint.

There exists an n > 0 and

(1) forall v =1,...,n =1 an object (p,, (€vs, puidien ),
(2) forall v =1,...,n a triple

(q’wf\m (q’u,-‘)ier.,-l) : (ﬂu-u (Cu—l,iypu—l,t')iel.,_l) - (/’w (Cu.i,ﬂu,.‘)-'el.,).

with @, clementary, such that for each j € I, we have that

(Cu—l,i!pu—l,iyq’u,i);eA:I(j)
is cartesian in the sense defined in Cases 1 though VI, above.

Here we have used the notation

(,ﬂm (Cn,.',ﬂu,.').'e.r.,) = (T| (”-;. T.').‘el)
and
(]”rn (("n,h f'u,i)fEI,.) = (‘Tv (hja (Tj)jEJ)'
It is clear how to compose such triples and that composition is associative. More-

over, the composition ot lwo triples satisfying the constraint also satislies the con-
straint, so we do indeed get a category &,(V) n.

Remark 6.10. Projecting onto the first component defines a functor
@ﬁ(l/)c.ul _—} (5! (0)‘

Despite the notation, this is not a fibration of categories.

We shall, in what follows, often shorten the notation (7, (@, 7:)ier) to (7, {Ti)ier)
or even (7;)ier.

Call an object (7i)ier of (V) homogeneous of degree n € Z, if for all ¢ € 1
we have deg(V, ) = n.

For a stable modular graph 7, we niay consider the fiber &,(V)..../- of the functor
B, (V)esn = 6,(0) over 7. Tn every such fiber 8,(V),,,./» we have a functor

P Q—ja(‘/)cnn/f X 63(‘/)«'.\“/7 — 68(‘/)(«!(/?!

given hy

(ri)ier B (05)je0 = ((T)ier, (05)je4)s
where we think of the object on the right hand side as a famnily parametrized by
I 11.J. The functor @ satisfies some ohvious properties, which we shall not list.
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Every object X = (;)ier of 8,(V)eun has a unique decomposition X = Dz Xn
into homogencous components. Every morphism in @,(V)m" respects this decoin-
position.

Finally, 6,(V).,.. is a teusor category (in the sense of [1]) with tensor product
given by _ B N

& Ba(V errs X B3 (V)errs — &, (V)orres

which is defined by the formula

(1, (Ti)ier) ® (o, (”j)je.r) = (rx o, (nx Uj)(i‘j)elx.])-

For two graphs ¢ and 7 we denote by o X 7 the graph whose geometric realization is
the disjoint union of |a| and |r|. This notion extends in an obvious way to marked
graphs. The identity object for @ is the one element family with value the empty
grapl.

There are obvious compatibilities between these various structures on 6,(V)mt.
For example, if X = @, X, and Y = @,, Y., are objects of L".VS,(V)c,m, then the
decomposition of X @ Y into homogencous components is given by

Xey =64 ( & X..®Y,,.) :

r 4=y

We summarize these properties by saying that LB,(V)C,‘,‘ has @, ® and deg struc-
tures.

A formally similar situation arises, for example, if we consider the category of
worphisins of an additive tensor category € in which all homomorphism groups are
graded. If we denote this morphism category by 9T, there is a funcltor ME - Cx T,
given by source and target, whose fibers have a graded @-structure as above. Also,
ME becones a tensor category compatible with deg and @. So MM has @, ® and
deg structures. In fact, Gromov-Witten invariants may be thought of as a functor
from 6,(‘/)“.[ to ME respecting the @, @ and deg structures. In this case € will
be a category of motives,

Definition 6.11. A full subcategory T,(A) C &,(A) is called admissible, if it sat-
isfies the following axioms.
(1) f ®: 0 > 7is an isogeny in &,(A) and 7 € ob T, (A), then o € ob T, (A).
(2) If @ : ¢ = 7 cuts edges and o € obT,(A), then 7 € ob T, (A).
(3) If o and 7 are in T,(A), then sois o x 7.

For an admissible subcategory T,(A) C 6,(A) and a homomorphism £ : A — B
the essential image T, (B) C 6,(B) under the stabilization functor &,{A) = &,(B)
is admissible. _ _

If T,(A) is an admissible subcategory of &,(A4), we let T,(A4) C 6,(A4) be the
full subcategory whose objects are in T,{A). For a smooth projective variety V of
pure dimension, we may construct the full subcategory ‘Ff,(V)cm C G’), (V)can, called
the associated cartesian calegory, which may be characterized as the subcategory of
B, (V)eane stich that for each object (7, (4, 7 )ies) we have that 7 € ob%,(0) and for
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all 2 € I'that r; € 0|>‘i',(V), and for each morphism (@, A, ($;)ier), that ¢ € 1l %,(0)
and for all + € I that ®&; € i T, (V). Note that T,(V).,,, inherits the @, ® and deg
structures from 6,(V).,,..

Example. Call a marked graph 7 a forest, if

(1) Hi(|7)) =0,

(2) g(v) =0, for all v € V.
Let T,(A4) C &,(A) be the full sibcategory whose objects are forests. Then T,(A)
is an admissible subcategory, called the tree level subcategory of &,(A).

7. ORIENTATIONS

Fix a sinooth projective variety V of pure dimension. Recall the following five
basic properties of M.

Property I (Mapping to « point),  Let r be a stable V-graph of class zero. Then
7 is absolutely stable. The evaluation morphism lactors through Vel « VP and
the canonical morphism

MV, 1) — V™l 5 R (1)

is an isoworphism. This follows immediately from Corollary 2.3. In particular,
M(V, ) is smooth.

Assume that |r| is non-emply and connccted. Let (C,x) be the universal family
of stable marked curves over M(r). Glue the (C,)yep, according to the edges of
7 to obtain a stable marked curve 7 : C — M(r) over M(r). Denote the vector
bundle of rank g(r)dimV on M(V,7) given by 7y & R'r, Oz by T,

Property IT (Products).  Let o and 7 be stable V-graphs and ¢ X 7 the obvious
stable V-graph whose geometric realization is the disjoint union of |o} and |7].
There arc obvious combinatorial morphisms ¢ = ¢ x 7 and 7 = @ X 7 giving rise
to morphisms of stable V-graphs ¢ X r = @ and o X 7 — 7 called the projections.
The induced morphisim

MWV, axt) — M(V,a) x M(V,1)

is an isomorphism. This follows directly from the definitions.

Property 11T (Cutting edges).  Let @ o = 7 be a morphism of stable V-graphs
of type cutting an edge. So ¢ is induced by a combinatorial morphism a : 7 — o.
Let f and [ be the tails of 7 that come from the edge of & which is being cut by ®.

So this edge is {a(f),a(f)}. The diagran of algebraic A-stacks

M(V,o) "~y
(6) ] la
My, ST vxvy,

where the horizontal maps are evaluations at the indicated flags, is cartesian. In
particular, M (P} is a closed timmersion. Again, this follows directly from the defi-
nitions.
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Property 1V (Forgetting tails). Let @ : o — 7 be a morphisi of stable V-graphs
stably forgetting a tail. Denote the combinatorial morphisin giving rise to & by
a:T > a.

If ®is of Type I (i.e. incomplete), let [ € F, be the forgotten tail and v = 3, (f).
Let ' : ¢ — M(V, o) be the universal curve indexed by v and = : M(V,0) = C'
the universal section given by f. Let 7 : C — M(V,7) be the universal curve
indexed by the unique vertex w of 7 such that a(w) = v. Then by definition there
is a commutative diagram

o — C
x’ ,L ,l, x

M(V, o) Mew M(V, 1),

and the section = induces an M (V, 7)-morphism

M(V,0) = C.

This is an isomorphisin. In particular, M ($) is proper and flat of relative dimension
one. This follows from Corollary 4.6.
If & :0 — 1 removes a tripod from a tail or an edge, then

M(®): M(V,0) = M(V,1)

is an isomorphism. This is because M (0-tripod) = My 3 = Spec k.
Property V (Isogenies). Let

(@, A, (P)ier) : (7, (i, Ti)ier) — (o, (b, 05) 5e0)

be a morphism in 6.(\/)”.1, where ¢ (and hence all ¢;) is an isogeny, i.e. free of
any tail gluing factors. For each j € .J we have a commutative diagram

11 ™(v,r) "28 31, a5)

e
A(i)=y
us @) 4 0]
M (r) T M)

This diagram should be considered close to being cartesian. See Definition 7.1 for
a more precise statement. For the moment let us note that the induced morphisin

H MV, 1) — M(r) Xn(n)ﬂ_f.’(V, a;)
i
is surjective.

If X is a separated algebraic Deligne-Mumford stack, by A.(X) we shall mean
the rational Chow group of X (see [15]). If X — ¥ is a morphisin of separated
algebraic Deligne-Mumford stacks, A*(X — ¥7) will denote the rational bivariant
intersection theory defined in [15].
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Definition 7.1. Let T,(V) C 6,(V) be an admissible subcategory. Let for each
7 € ob T, (V) be given a cycle class

J(‘/g T) € A(Iim(\’,r)(m( 1/? T))

This collection of cycle classes is called an orientation of M over T, (V), if the
following axioms are satisfied.

(1)

(2)

(3)

(5)

(Mapping to « point). We have
J(V,7) = eypryainav (TH) - [M(V, 7)),

for every stable 7 € ob T, (V) of class zero such that {7| is non-empty and
connected.
(Products). In the situation of Property 11 we have

J(V,ax1t)=J(V,a)x J(V,7).

(Cutting edges). In_the situation of Property 111 the following is true. Let
[M(®)] € AV (M(V,0) = M(V,7)) be the orientation class of M(®)
obtained by pullback (using Diagram (6)) from the canonical orientation
[A] € AV (V 5 V x V). Then we have

J(V,a) = [M(®)]- J(V,T).
In other words,

J(V,a) = A J(V, 1),

wlere A' is the Gysin homomorphisin given by the complete intersection
morphism A.

(Forgetting tails). In the situation of Property IV the morphisin M(®) has
a canonical orientation [M(P)] € A”(M(V,a) = M(V,1)). We require that
J(V, o) = [M(D)]- J(V,7).

In other words,
J(V,0) = M(®) J(V, 1),
where M (®)* is given hy flat pullback.
({sogenies). In the sitnation of Property V, we have for every j € J a class
H(‘I))’J(V, {TJ') € A(li,[l(V,aj)(H(T) XF (o) M(V, (TJ-)),

since M (@) has a canonical orientation, M(7) and M (o) being smooth of
pure dimension. We also have a morphism

h: I MV, 7) — M(r) X570, M(V, 03)),
Alf)=j
which is proper. The requirement is that

ho( Y J(V, 7)) = M(®)YJ(V,T).

Ai)=j
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Remark 7.2. To check Axiom (5), it suffices to do so for @ an elementary isogeny,
#J =1 and (a;, 7, P;)ier a pullback. This follows from the projection formula.

Example. If 7 is a stable V-graplh such that |r| is non-empty and connected, define

Cu(T)dim"(’r(l)) ' [H(V! T)] if /B(T) =0,

0 otherwise.

Jo(V, 1) = {

For an arbitrary stable V-graph 7, let 7 = 7y X. .. X1y, forstable V-graphs r, ..., 7,
such that |7| = | |11, . .U|7,| is the decomposition of |7| into connected components.
Then set

J[](‘/, T) = J(](V, Tl) X ... X J(](v, Tn).

We claim that J, is an orientation of M over &,(V), called the trivial orientation.

Definition 7.3. Call a smooth projective variety V conveg, if for every morphism
[ :P' = V {defined over an extension K of &) we have HY(P!, f*Ty) = 0.

Proposition 7.4. Let Vobe conver and T a stable V -forest. Then M (V, 1) is smooth
of dimension dim(V, 7). Morcover, the morphism

MV, 1)~ M(r7)
is flat of rclative dimension x(r*) dim V — deg(V, 7).

Proof. Let us start with some general remarks. Let 7 be an absolutely stable V-
graph. Then we define

UV, 7y C M(V,T)
to be the open substack of those stable maps (C, x, f), such that (Cy, (%:)ier,(v)) 18
a stable marked curve, for all v € V. Let (C,2): T = M(r) be a T-valued point
of M{(7), i.e. (Co, (®:)ier,(w))vev, 15 a family of stable marked curves parametrized

by T. Let (C,F) be the stable marked curve over T obtained by gluing the C,
according to the edges of 7. The diagram

Morp(C,Vy) — T
il 4
U, ry — M(r)

is cartesian. In particular, by Grothendieck {3], the morphism U(V,7) = M(r) is
representable, separated and of finite type. Moreover, let (C,x, f) be a K(-valued
point of U(V, 7). Let (C,F) be the marked curve obtained by gluing the C, and
f :C =V the morphisu induced by the f,. If l-[‘((_::', f‘TV) =0, then {(C,z, f) is

a smooth point of U(V,7) = M (1) and we have
TU(VJ)/T]-(T) (C') € f) = ff”((;', f‘Tp')

for the relative tangent space. (This is the case, if 7 is a V-forest and V is convex.)
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I this smooth ¢ase we may calculate the relative dimension of U(V, 1) aver M (1)
at (C, =, f) as
(“lllK [‘In(é,f‘T\/) = ,\'(ftTv)
= deg [*Tv + tk(f*Tv)x(C)
= —B(7)(wy) +dim Vx(r)
= dim(V, 7} = dimn(r).

Since A (7) is smooth of dimension dim(7), we get that U(V, 7) is smooth of dimen-
sion dim(V, ) at (C, =, f).

Now let 7 be an arbitrary stable V-graph. Then there exists an absolutely stable
V-graph 7/, together with a morphismn 7 = 7 of type forgetting tails, such that the
morphisim

Uuiv,ry — H(V,T)

is surjective, hence a flat epiinorphism of relative dimension #5, — #S,. So if
U(V, 7') is smooth of dimension dim(V, r), then M (V, ) is smooth of dimension

dim(V, ") = #S, + #5, = dim(V, 7).
Finally, by considering the commutative diagram

U,y — M(V, 1)
i
M(ry — M(m),

we see that in this case M(V, 1) = M (%) is flat of relative dimension x(r*) dim V -

deg(V,7). O

Theorem 7.5. Let V' obe a conver varicty and T,(V) C 6,(V) the admissible sub-
category of V-forcsts. Then the collection

-](V, T) = [H(V! T)]
is an orientation of M over T (V).

Proof. Let us check the axioms.
(1) Mapping to a point.  This follows from the fact that ¢(r) = 0 and hence

Cy(r)dim V(T“)) = co(0) = L.

(2) Products. In complete generality we have for smooth proper Deligne-
Mumford stacks X and ¥ that

[X x Y] =[X]x[Y]
in A,(X xY).
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(3) Cutting edges.  Again we have a general fact to the following eflfect. Consider
the cartesian diagram of separated Deligne-Mmmlord stacks

X L v
il b
Y — W,

where 7 and j are regutar embeddings such that for the normal bundles we have
["Nypv = Nxyy.

Then *[Y] = [X]. I all four participating stacks are smooth and i and j are
closed immersions of the same codimension, then these conditions are automatically
satisfied (see for example Proposition 17.13.2 in [5]). Thus we may apply this fact
in our case.

More generally, we have that ¢*[Y] = [X] if all participating stacks are smooth
and

dim X +dim W =dimY + dim V.,

(4) Forgetting tails.  Again, there is a general fact that f'[Y] = [X]if f: X 2 ¥
is a flat morplism of smooth and proper Deligne-Mumnford stacks.

(5) Isogenics. In accordance with Remark 7.2 we assume that @ is an elementary
isogeny, #J = 1 and that (a;, 7, ®)ier is a pullback. There are five cases to
consider, according to what type of elementary isogeny ¢ is. We use notation as in
the definition of pullback.

Case I (Contracting a loop). This case does not occur, since o and 7 are forests.

Case 1 (Contracting an edge).  We will start, with some general remarks. Let
7 be a stable V-graph, and v, ..., v, absolutely stable vertices of 7, i.e. vertices v
such that 2¢{v) +{v| > 3. (To avoid ill-defined notation we assume that n > 1.) Let

Ulll,... M (‘/! T) C ;W(‘/'l T)
be the open substack of all those stable waps (C,x, f) € M(V, ) such that

(C'u,,y ("“i)l'EF‘,.(U.,))

is a stable marked curve, for all w =1,... ,n.
With this notation the diagram

H Uﬂ.’("n).ﬂ.‘(":—)(vm ) — Ub(uu) (V, o)
ief
g 1

M (r) — M(a)
is cartesian. Consider for a fixed 7 € I the open immersion
Uity (V, 7) € M(V, 73).

Let
Zu.-(u.)-,n,'(u;r)( v; Tr') C —IW(‘/) Tl')
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be the closed complement. We have
dim Zo;),ai(0a) (V, ) < dim M(V, 7).

Thus, to prove the equality of two cycles of degree dim(V, 1) in M (7) X35 l,)H( V,ao'),
it suffices to prove the equality of the cycles restricted to []; Uﬂi(u‘).ui(u,)év, 7;). This
reduces us to proving that

M(®Y [V (V, 0N = D Wi aston (V7).

1

This claim finally follows from the general fact already mentioned in the proof of
Axiowm (3).
Case I (Forgetting a tail, incompletely).  Let f € F, be the forgotten flag,
v = Op, (10(f)) and w € V,» the vertex of o' corresponding to v via ®;. We have an
open inunersion
U, (V,70) C M(V, )
with closed complement

Z,(V,m) C A_'{(Vf To)

of strictly smaller dimension. Thus, as in the previous case, we may reduce to
proving that

M(®)'[U(V,0')] = [Un(V, 7).

This follows from the fact that the diagram

U,V,me) — Un(V,0)
l —
i) MY T (o)
is cartesian.
Cascs IV and V (Removing a tripod). These cases are trivial, since M (@) and

M (®) are isomorphisms. O

8. DELIGNE-MumroRD-Clow MOTIVES

We shall imitate the usnal construction of the category of Chow motives, as
described for example in [14].

Fix a ground field k. Let 20 be the category of smooth and proper algebraic
Deligne-Mumford stacks over k. For an object X of 20, let. A“(X') be the rational
Chow ring of X defined by Vistoli [15]. Then A” is a generalized cohomology theory
with coefficient field Q in the sense of [8]. Moreover, it is a graded global intersection
theory with Poincaré duality and cycle map in the terminology of [8].

If X and Y are objects of 20 we define S4(Y, X), the group of correspondences
from Y to X of degree d, to be

SUY, X) = A™H(Y x X),
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if Y is purely n-dimensional and
‘Y, X) @ SHY;, X)),

if ¥ =11, ¥ is the decomposition of YV into irreducible components. Note that
SU4Y, X} C A*(Y x X). The isomorphisin ¥ x X 2 X x Y exchanging components
induces an isomorphism

cf(yl-.') ~ Sd+n m(Y Y)

if dimY = n and dim X = m. We call this isomorphism frenspose of correspon-
dences. Forohjects Z, ¥V and X of 20 we define composition of correspondences by
the usual formula
9o f = pa.(piaf - 1iag),

for f € SYZ,Y) and g € S¢(Y, X). Then go f € SH*(Z, X).

The category W of Deligne-Mumford-Chow motives  (or DMC-motives) is now
defined to be the category of triples (X, p, n), where X € ob 20, p € S*(X, X) such
that p? = p and n € Z. Homomorphisms are defined by

Homgg((Y, ¢, m), (X, p,n)) = pS"~"(¥, X)q.

Note that Homgg((Y, g, m), (X, p,n}} € S"~™(¥,X). Composition of homomor-
phisms in 20 is defined as composition of correspondences.

There is a contravariant involution 20 — 2, denoted M — MY, defined by
(X,pyn)Y = (X! p,dim X ~ n), where ‘p is the transpose of p, on objects and by
transpose of correspondences on homomorplhisins.

Proposition 8.1. The catcgory W is a Q-lincar pseudo-abelian category. [

Every morphisin f : X = ¥ in 20 defines a correspondence of degree zero f €

S%Y, X) by
T=T.[X] € 4"y x X),

where Ty + X = Y x X is the graph of f. We define the contravariant functor
h 20— W by h(X) = (X,idx,0) and h(f) = f. We usually write f* for h(f) and
f. for h{f)V. B

Let L = (Spec &, id, —=1) be the Lefschetz motive. We shall use the notation

M@»)y=M@eL™"

We set
Homgg(M, N) = Homg(M ® L', N)
and
Homg (A, N) @Hom%(M, NY.
f€Z
The category with the same objects as 90, but with homomorphisim groups given
by Hoing (M, N) will be called the category of graded DMC-motives.
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For a DMC-motive M, dcfine
A{(M) = Hom(L', M)

and

A"(M) = P A'(M).

Proposition 8.2 (Identity principle). If f, g : M = N are two homomorphisms
of DMC-motives, such that the induced homomorphisms

A (M @ (X)) — A" (N W{X}))
agree, for all X € obQ0, then f=¢. O

Let T be the category of Chow motives (which is defined as 20 is above, but
starting with U instead of ). There is a natural fully faithful functor U — 0.

Question 8.3. [s the functor 0 — W an cquivalence of calegories?

Let H be a graded generalized cohomology theory on 20 with a coefficient field
A of characteristic zero, possessing a cycle map such that P! satisfies epu (see [8]).
Then I induces a covariant functor (called a realization functor)

H : (graded DMC-motives) — (graded A-algebras),

such that for X € obh? we have H((X)) = H(X) and for a correspondence
£ € SUY, X) we have an induced homomorphism
H(): H(Y) — H{(X)
o ) ]}X_(])y‘ (ﬂ) U Clyxx(f)).
The functor H doubles the degree of a homomorphism.
The following are examples of such a cohomology theory H.

(1) If & = C, consider to X the associated topological stack X*°". This is a
stack on the category of topological spaces with the étale topology. It has
an associated étale topos X3, Set

Hy(X) = H* (X, Q)
and call it the Betli cohomology of X. Here A = Q.
(2) If € # chark set
H(X)=H(X., Q)= 111111'@“, Z/0),

ihcre X=X X $pec k Spccf is E.l.'.e lift of X to an algebraic closure of & and
X denotes the étale topos of X. We call H,(X) the €-adic colomology of
X. In this case A = Q..
(3) If chark = 0, let Q3 be the algebraic deRham complex of X and set
Hun(X) = H (X, Q).

We call H,p(X) the algcbraic deRham cohomology of X. Here A = k.
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9. MoTivic GroMov-WITTEN CLASSES

Define the contravariant tensor functor
h(A) : 8,(0) — (DMC-motives)

by h(-ﬂ_)_(‘r) = h@ 7)) on objects. For a morphism (a,a’,®) : 0 — 7 we have
M (@) : M(a') = M(o) aud M(®) : M(0') = M(r). Then let

h(M)(a, o', @) = M (@), « M(®)".

This makes sense, because M (@), is of degree zero, M(@) being an isomorphisin.
This is also why h(A) is functorial.

Now {ix a smooth projective variety V of pure dimension and consider the con-
travariant tensor functor

L(V)Y®S (v dim V) : 6,(0) — (DMC-notives)
defined on objects by
T — L(V)®¥ (x(7) dim V).

For a morphism (a,a’,®) : ¢ = 7 let £ be the set of edges of ¢’ which are cut by
a:0— o'. Then we have Vo = VS x (V x V)E, Let p: VS« x VE 5 V5 be
the projection, A : VS« x VE o V9 x (V x V)E = V¥ the identity times the
E-fold power of the diagonal. Finally, we have an injection ®° : S, — S, giving
rise to ®% 1 V' 5 V3 We deline the homomorplism

(VYOS (x(7) dim V) — L(V)®% (x(0) dim V)
as the composition of the three homomorphisms
(B L(V)®F (v(r) dim V) — h(V)®% (x(a') dim V),

P (V)5 (x(a) dim V) — R(V)®FYE (y (') dim V)
and
AL (VYRS YE (x (o) dim V) — W(V)®5 (x(a) dim V),

noting that x(7) = x(¢’) and x(¢') = x(¢) = #E. Functoriality is a straightforward
check using the identity principle.

Pulling back h(A) and £(V)®(y dim V) to the cartesian extended isogeny cate-
gory over V o via the functor of Remark 6,10, we get two contravariant tensor functors

@,(V)m‘ — (graded DMC-motives).

Now let T,(V) C &,(V) be an admissible subcategory and J an orientation of M
over T, (V). For every object 7 of T,(V) we have a morphism

¢(V,r) : E-’T(‘/, T) — VS" X H(T’).
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The first component is given by evaluation, noting that we have a map F, — F,.
Then
QS(V,-r)_J(V‘ T) € Sdiln(r')—clim(l.’,r) (VS" .H(T‘))
= HomgB " (Vo) (x(v*) dim V), (M (7*))).
Definition 9.1. Decfine
I(V, T) = d)(v'r)_.](v, T),

so that we have a homomorphism
IV, 1) s (V)®S (X (") dim V) — h(M(r*)) (deg(V, 7))

of DMC-motives over k. We call [ the system of Gromou-Witten clusses associated
to the orientation J.

Restricting the two functors h(AT) and 1{(V)®8 (y dim V) 10 T,(V)eu, we get two
contravariant tensor functors

To (Vs — (graded DMC-motives).
We shall now deline a natural transforiation
I h(V)®S (v dim V) — h(M).
So let (7, (Ti}ies) be an object of %,(V)ml, and define
7 (mYies) = Y1V, 1) s h(V)®¥ (x(7) dim V) — L(M (7).
i€l
Theorem 9.2, The Gromov-Willen bransformation I is a natural transformation

compatible with the @, @ und deg structures. Morcover,

(1) (Mapping to a point). The triangle

ROV)ES (v(r)dim V) 25 A(V)(x(r) dim V)
Iv,r) \ _~L Cg(r)d;mv(’r(”)
h(M(r))
conanutes, for any stable V-graph 1 of class zero in T,(V'), such that 7| is
non-cmply and connected.

(2) (Divisor). Let £ € Pic(V) be a line bundle, so its Chern class induces a
homomorphism ¢,(L) : L = (V). Let @ : 0 = 1 be a morphism in T,(V)
of type forgetting a tail, such that the corresponding vertex of T is absolutely
stable. Then the square

Ve _—

H(VY®%a (xy(a*) dimm V) — (M {c*))(deg(V, o))
ear(e) T . $ ),
R(V)eSe (x(r) dim V)@ L "Xy (@7 (7)) (deg(V, 7)) @ L

conuniles,
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Remark. To make this statement more precise, consider to (graded DMC-motives)
the associated category of morphisms. Then the natural transformation 7 may be
considered as a functor

I : 'f,(V)r,,. — (graded morphisms of DMC-motives).

Both categories have @, @ and deg structures and I preserves them. This essentially
means that

(1) I{(n) e (ﬂ;) (T=))+1((ﬂj)),

(2) deg I{(r;)) = deg(m), il (7;) is homogeneous,

)
() I{(r,7) ® (0,0;)) = [(7,7) © {0, 0;).

Proof. All this follows formally from Definition 7.1 using the identity principle and
the bivariant formalisin (as explained for example in [2]). O

Remarks. (1) Applying Theorem 7.5 we get the tree level system of Gromov-

Witten invariants lor convex varieties.

(2) By applying a realization functor, we get Betti, f-adic or deRhamn Gromov-
Witten classes.

(3) Theorem 9.2 implies all the axioms for Gromov-Witten classes listed in [11).
Perhaps ouly Formula (2.7} is not quite evident. In view of its importance
(it implies that the fundammental class remains the identity with respect to
quantum multiplication), we will show that it follows from the rest of the
axioms. In fact, assume that

(7) (hl".t,ﬁ)('f] & v ® C“) # 0.

Choose a divisorial class § with nonvanishing intersection with §. In view
of the Divisor Axiom, we must then have

(Inap)( @12 ©@8@c") £ 0.

In view of (2.6), the last class is the lift of

(o) (11 @72 ®9).

But this cannot be non-vanishing sirmultaneously with (7) because the Grad-
ing Axiom does not. allow this. '

More generally, this argument shows that whenever ¢ is among the argu-
ments, then (1) = 0 for § £ 0, any genus, any n. Geometrically: ‘if one of
the points on €' 18 unconstrained, the problem cannot lLave finitely many
(and non-zero) soluitions.’
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