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Abstract. The Ruelle zeta-funetion of the geodesic flew on the

sphere bundle SeX) of an even-dimensional eompact loeally symmetrie

spaee X of rank 1 is a meromorphie funetion in the eomplex plane

that satisfies a funetional equation relating its values in sand

-s. The multiplieity of its singularity in the eentral eritieal

point s = 0 only depends on the hyperbolie strueture of the flow

and ean be ealeulated by integrating a secondary characteristie

elass eanonieally assoeiated to the flew-invariant foliations cf

SeX) for whieh a representing differential form is given.

Let Y = G/K be a rank one symmetrie spaee of the non-eompaet

type, i.e., Y is areal, eomplex or quaternionie hyperbolic spaee

or the (16-dimensional) hyperbolie cayley-plane. Let r be a uniform

lattice in the (eonneeted simple) isometry group G of Y without

torsion. r aets properly diseontinucus on Y = G/K (K a maximal

compaet subgroup cf G) and'X = r\G/K is a ecmpaet loeally symmetrie

spaee. We eonsider X as a Riemannian manifold with respect to an

arbitrary (constant) multiple 9 ef the metric 9 indueed by thec
Killing form on the Lie algebra cf G. Then the ~iemannian manifeld

(X,g) is aspace cf negative eurvature.

The negativity of the curvature cf the metric 9 on X implies the

existence of an infinite countable set of prime closed geodesics in

X with a discrete set of prime periods aecumulating at infinity.

Let ~t be the geodesie flow on the unit sphere bundle SeX) cf

the spaee (X,g).

The prime period cf a periodic orbit of wt on SeX) coincides
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with the length of the closed geodesic in X obtained by

the periodic orbit into X. Now we use these periods to

zeta-function

projecting

define the

(1 ) n -1
ZR(s) = (l-exp(-slc»

c

for s e ~ such that Re(s»h (h being the topological entropy of the

geodesic flow §t on SeX»~. The product in (1) runs over all closed

oriented geodesics c in X and lc denotes the length of c as a curve

in X. Note that for each (unoriented) closed geodesic c in X there

are two lifts of c as periodic orbits of ~t in correspondence with

the two possibilities to orient c.

The function ZR is well-known as the Ruelle zeta-function of the

geodesic flow ([F1]). The Euler product (1) defines a holomorphic

function in the half-plane Re(s»h.

Now by symbolic dynamics the zeta-function ZR can be writte~ for

large Re(s) as an alternating product of zeta-functions associated

to suspensions of subshifts of finite type. The latter

zeta-functions coincide with Fredholm-determinants det(l-L.(s» (in

sense of Grothendieck) of holomorphic families L.(s) of nuclear

transfer operators on certain spaces of differential forms. This

representation implies that ZR has a ~eromorphie eontinuation to

the eomplex plane (see [Fl], [R]). While these arguments establish

the existenee of a meromorphie continuation it seems to be rather

diffieult to prove results on the positions and the mUltiplicities

cf the singularities ef ZR by the same method.

On the ether hand, the zeta-function ZR ean be written as a

product of generalized Selberg zeta-functions. Generalized Selberg

zeta-functions are also defined by Euler produc~s similar to (1)

but with more cornplicated loeal Euler factors containing monodromy

contributions of the loops e in certain vector bundles on SeX) (see

[F1], [G], [W]). The generalized Selberg zeta-functions in turn can

be investigated by using trace formula techniques which are at

present the only known methods to uncover, for instance, the deeper

relations between periodic orbits and the geometry and topology of
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the underlying space. However, in contrast to the dynamical point

of view, along the usual trace formula arguments the relation

between the hyperbolic structure and the analytical properties of

the zeta-function remains mysterious.

The main result of the present note describes a direct relation

between the multiplicity of the singularity of ZR in the central

critical point s = 0 and the hyperbolic structure of the flow.

Let us first consider the well-known special case of the Ruelle

zeta-function of the geodesie flow of a compact Riemannian surface

X = r\H2 of negative Euler characteristic X(X). Consider X as a

Riemannian manifold with the metric inherited from the hyperbolic

metric

( 2)

of constant curvature -Ion the upper half plane H2 . Then the

product (1) defines a holomorphic function in the half-plane

Re(s»l. Moreover, ZR(s) satisfies the functional equation

(3) ZR(s)ZR(-S) = ((1-eXp(2nis))(1-exP(-2nis))2-2g .

In particular, for the mUltiplicity roo of its singularity in s = 0

we have

(4) mo = 2-2g = X(X).

The functional equation (3) is a consequence of the functional

equation
5-1/2

Zs(l-sl = Zs(sl eXP(2(2-29lJ(ntltan(ntldtl,

o

for the classical Selberg zeta-function

(5) = n n (l-exp(-(s+N)l )), Re(s»l, s E ~,c
c ~o
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(see [S]) and the obvious relation ZR(s) = ZS(S+l)/ZS(S).

The Ruelle zeta-function ZR always satisfies a functional

equation similar to (3) relating ZR(s) to ZR(-s). However, the

general theory of the functional equation for ZR will not be

discusssed here. Instead we shall only discuss certain formulas for

the mUltiplicity mo of the singularity of ZR in s = 0 generalizing

formula (4).

To formulate the main result we shall use group-theoretical

descriptions of the geodesic flow and its hyperbolic structure

(AnOSOV property).

Let go and k o be the respective Lie algebras of G and K and let

go = k o e Po be the Cartan decomposition of go being orthogonal

with respect to the Killing form. Identify Po with the tangent

space TeK(Y). Let a o c Po be a one-dimensional abelian subspace and

let M c K be the centralizer of a o in K.

Now consider the action

defined by

(6 )
-1

(a,rgM) ~ ~a(rgM) = rga M, a e A.

the

the

the

which

on

of the flow ~A

+a o in BO ' called
attention only to

amounts to fixing an (open) Weyl-chamber

positive chamber, and we shall restriet

action of A+ = exP(a~) c A.

Now in terms of the abstract geodesic flow ~A

hyperbolic structure can be described as follows.

The definition of the action §A is independent of the choice of

ametrie on X and we shall denote this action in the following as

the abstract geodesic flew.

Once and for all we fix an orientation

+ - +Let no and no be the subspaces of go on which ad(X) for X e B
O

acts by positive and negative eigenvalues o(X) (0 e ~(go,ao))'
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+

respectively. The nilpotent Lie algebras n~ are real MA-modules

with respect te the adjoint action.
+

Let ~- be the locally homogeneous vector bundles

(7 )

obtained by integrating

resp. stable, foliation

bundle T(r\G/M) admits a

regarded as subbundles of the tangent bundle T(r\G/M). The real
+

vector bundles ~- are integrable and the feliation ef
+ - .

~ , resp. 7 , lS the lA-invariant unstable,

of r\GfM. More precisely, the tangent

d(~A)-equivariantdecomposition

(8 )

into the the direct sum of the stable subbundle ~-, the central

subbundle TO(r\GfM) and the unstable subbundle ~+. Tangent vectors

in ~-, resp. 7+, are contracted, resp. expanded, exponentially by

the differential d(~ ),a e A+.a
Note that the stable and the unstable leaves of r\G/M are

smoothly embedded smooth submanifolds.

Now we shall associate to both foliations of r\G/M canonical

differential forms

We begin with the construction of a left G-invariant and

valued 2-forms

...... +
where ~- denotes the G-homogeneous vector bundle

+
GXMA(n~) ...... G/MA.
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By G-invariance it suffices to define w
R
± in ~ = eMA.

+ .
We choose a (real) basis {Zj} of the space n~. Let {zJ} be the

dual basis of (n~)*. The linear forms zj e_(n~)*
+regarded as linear forms on g annihilating n , m

000
of M) and B

O
• Set

will

(= Lie

also be

algebra

(9)
+ + k +

(wR)e = ( (wR)~(o,o)j )j,k' j,k = 1, ... ,dim(n~) = d-1,

where

(10)

an

the

to

G-invariant

down

+End(:P-)-valued

2-form drops
+

wR·

+ - '"for X,Y e no $ no ' and X = d (n)(X) (n: G ~ G/MA being
e e . + +

canonical projection). Regard the matrix (wR)e as an End(n~)-valued

alternating 2-form on T (G/MA).
+ ~ "'+

Nowextend (wR)e to:a G-invariant and End(?-)-valued 2-form

on G/MA.
+

Next lift wH via GfM ~ G/MA to an

differential 2-form on G/M. The latter
+

End(?-)-valued 2-form on r\G/M also denoted by

Now define

(11)

forms

the

and

Then the forms ~(~±) E Coo
(A

2d- 2T*(r\G/M» are closed basic

with respect to the foliation of r\G/M by the orbits of
+

abstract geodesie flow §A' i.e., ~(~-) is mA-invariant

ix(~(~±» = 0 for all sections X cf T (r\G/M).

Let the dimension of X be even. Then it follows that

mA-invariant

and the uniquely determined real
+ ±

End(~-)-valued 2-form wR on r\G/M is a

eigenvalue

well-defined

~ 0 cf the
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2-form

on r\G/M. since ~~ is an exact 2-form it follows that there exists

a (uniquely determined) left G-invariant and right fA-invariant
+ + · iI-form aR on G/M such that aR drops down to a wA-lnvar ant l-form

+ 00 *aR e C (T (r\G/M»

which satisfies

(12)
+

d ­
~

+
= (i/211") ~R.

Note that the main reason to formulate these constructions by

using the abstract geodesie flow ~A instead of the geodesie flow wt
is the obvious fact that the mUltiplicity mo is independent of the

choice of any scaling of the negative curvature metric on X.

Now let ~ : SeX) -. r\G/M be the diffeomorphism obtained by

composing the canonical isomorphism of SeX) and r\s(y) with the

G-equivariant map S(Y) ~ g(eK,X) ~ gM e G/M, X E a+ of S(Y) onto
o

G/M. The stable and unstable foliations of r\GjM then obviously

correspond to the stable and'unstable foliations cf SeX) associated

to the geodesic flow on SeX).

Theorem 1. Let the dimension of X be even. Then the mUltiplicity mo
of the singularity of ZR in s = 0 is given by the formula

(13) roo = J~*(~(?+)~;) = J~*(nR(?-)~)·

SeX) SeX)

Morecver, by using the functional equation of ZR

here) it can be proved that all singularities cf ZR

critical strip Re(s) E [-h,h] have mUltiplicity 2m .
o

(not given

outside the

. . * + + * --The dlfferentlal forms ~ (~(~ )~R) and ~ (~(~ )~) should be

regarded as representing a (top-degree) secondary characteristic
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class of the normal bundle of the weak-stable and weak-unstable

foliation of SeX), respectively.

+
There is an equivalent definition of ~(~-) which emphasizes the

+ . .
analogy of the forms ~(~-) wlth the Pfafflan of the curvature of

the Levi-Civita connection of a Riemannian manifold.

In fact, consider the involution J on the tangent bundle T(G/MA)
"+ "+

defined by JI~- = ± idl~- and set B(X,Y) = O(X,JY) for a

G-invariant symplectic form n on G/MA such that the leaves of the

stable and unstable foliations (of G/MA) are Lagrangian

submanifolds (one can construct n by reduction of the canonical

symplectic form on T(G/K)\O). Then B is an invariant pseudo­

Riemannian metric of signature (d-l,d-l). The curvature 2-form Wo
of the corresponding torsion-free pseudo-Riemannian connection 0

(also considered in [K]) splits as

(14)

according

the lift

coincides

"+to the G-invariant decomposition T(GfMA) = ~

(via G/M ~ G/MA) of the determinant of
. +

wlth the form ~(~-).

"-
$ ~. Then

+
(i/2ft) Wo

+ +
The differential forms ~(~-)~R are the top-degree cornponents

of A-equivariantly closed forms (of mixed degree) on r\G/M.

Therefore theorem 1 can be regarded as a regularized analog of a

localization formula in equivariant cohomology (see [BGV]). In

particular, it is natural to regard the multiplicity formula (13)

as an analog of the Poincar~-Hopf formula for the sum of the

indices of a (non-degenerate) vectqr field.

In the case of a compact Riemannian surface X = r\H2 we have

SeX) (~r\G/M) ~ r\pSL(2,~) and equation (4) follows from theorem 1

by an elementary calculation. In fact, in terms of the basis

{y+, Y , Y }
- 0
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Y = (0 1) Y (0 0) y (1 0)
+ ° 0' - = 1 0' 0 = 0-1

of sl(2,~) and the dual basis {y+,y-,yo } of Sl(2,~)* we have on

G/M = PSL(2,~)

The A-invariant I-form a; pairs with the tangent vector Yo in

e E PSL(2,~) to give the value iln and by an easy calculation

(using Cayley transformation and partial integration) we obtain by

Gauss-Bonnet

J ~*(OR(~+)~) =

SeX)

-1-(2n) 2-2g = X(X).

From the point of view of secondary characteristic classes the

differential form

represents the Godbillon-Vey class of the weak-stable foliation of

the geodesie flow on the sphere bundle SeX) of the surface X. Thus

theorem 1 can be iriterpreted as the assertion that the

Godbillon-vey invariant of the weak-stable foliation can be

calculated from the closed orbits of the geodesie flow. In

foliation theory the relation between the Godbillon-Vey invariant

of the weak-stable foliation of SeX) and the Euler characteristic

of the surface X is a very well-known result due to Roussarie (see

[HK]).

By the method of symbolic dynamics it follows that m coincideso
with the alternating sum of the (finite) dimensions of the

generalized eigenspaces of the transfer operators L*(O) for the

eigenvalue 1. Recall that the operators L*(O) do not depend on

return times (see [F1])! Therefore theorem 1 also can be regarded
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as a formula for the integer associated to the flow by forming this

analytical index. Although the definition of the latter index

strongly depends on the choice of a Markov-family of loeal sections

it is, in fact, independent of the ambiguities involved in the

eonstruetion of the loeal sections. Moreover, theorem 1 implies

that the analytical index coineides with the integer defined by

integrating a secondary charaeteristic cohomology class that only

depends on the hyperbolic structure of the flow.

Theorem 1 is but a special case of more general formulas

relating the multiplicities of the singularities of generalized

Selberg zeta-functions at special points to integrals cf

eanonically associated secondary eharacteristic classes.

dNext we combine theorem 1 with proportionality theory. Let Y be

the compact dual symmetrie space of Y. yd is a rank one spaee and

all geodesics are closed and have the same length. Let y~eo be the

space cf all (oriented) geodesics in yd (see [B]).

Theorem 2. Let X be as in theorem 1. Then

(15) mo

where X always denotes Euler characteristic.

In fact, sinee (go/mo)~ ~ (g~/mo)~ the G-invariant differential

forms ~(~±)AQ~ on G/M canonically correspond to Gd-invariant

volume forms on Gd/M ~ S(yd ). By the Gauss-Bonnet-Chern formula the

integral of the latter forms eoincide with i
d X(Y~eo)' d = dim(X).

Now by theorem 1 we obtain

roo = i
d X(Y~eo) vol (r\G/M)/vol (Gd/M) =

= (_I)d/2 x(yd ) vol(r\G/K)/VOl(Gd/K),
geo

where the volumes are defined with respeet to coropatible measures.
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Then elliptic proportionality theory implies formula (15).

The calculation of the Euler characteristics of the compact

homogeneous spaces in (15) yields

corollary. Let X be as in theorem 2. Then

(16) rno = (dirn(X)/2) x(X).

Note that, in contrast to the even-dimensional

odd-dimensional real hyperbolic space we have

formula.

case, for an

the following

2n+lTheorem 3. Let X = l\H be a compact.real hyperbolic space of

dimension 2n+l. Then the multiplicity of the singularity of ZR in

s = 0 is given by

(17) n+l 2n+l
2«-1) bn+1(X)+ ... +(-1) (n+l)b2n+1 (X»

where bp(X) is the p-th Betti-number of X.

On the proofs.

Our proof of theorem 1 is, unfortunately, much more complicated

than the result itself suggests. Thus we only can give here rough

hints how the assertion can be proved. More details can be found in

[J].

The proof rests on a cohomological trace formula which can be

regarded as a common (non-commutative) generalization of the

Poisson summation formula and the Lefschetz fixed-point formula. It

implies that the zeta-function ZR is closely relat~d to the

alternating product of infinite-dimensional (regularized)

characteristic determinants of global Frobenius-operators

(canonically determined by the action of the geodesie flow) on the

cohomology groups of sorne differential complexes associated to the

invariant foliations of SeX). More precisely, it yields a

cohomological formula for the mUltiplicity roo in terms of the
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+

Lie-algebra-cohomology of n- with values in the Harish-Chandra

modules of the irreducible representations of G in L2 (r\G).

Now if dim(X) is even then G has a cornpact Cartan subgroup H.

The cohomological formula for m turns out to be connected with an
o +

analogous cohomological formula obtained by replacing n--cohomology

by Lie-algebra-cohomology with respect to the nilradicals of the

(complex) Borel algebras containing the complexified Lie algebra of

H. This can be proved by using Osborne's eharacter-formula (see

[HS]) and suitable patching conditions for characters on

neighbouring Cartan subgroups. But the latter number eoincides with

the analytical index of the (elliptie) deRbam complex on the spaee

r\G/H. By working backwards with the corresponding index-form

(given by Gauss-Bonnet) one finally ends up with the formula (13).

If the dimension of X is odd then one can explicate the

cohomologieal formula for mo direetly by using results from [C].

Also it should be possible, of course, to give more ~raditional

proofs by applying suitable explicit selberg trace formulas. In

fact, a proof of theorem 3 along these lines can be found in [F2].

However, by using the same method in the even-dimensional ease, the

relation of m to the hyperbolic strueture in terms of the integralo
of the canonical curvature-form given in (13) would remain

mysterious.
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