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TWO TALKS ON MATHEMATICS AND PHYSICS

Yu. I. Manin

Max-Planck-Institut für Mathematik, Bonn

The following two texts are based upon the talks given at the conferences on the
Materials to the History of MatheInatics of XXth Century (Nice, January 1996)
and Truth in Mathematics (Mussomeli, Sicily, September 1995.)

1



2

INTERRELATIONS BETWEEN MATHEMATICS AND PHYSICS

I. Foreword

I would like to start with an explicit description of the conceptual framework of
this study.

To render it concisely, it is useful to look at thc case of cOluparativc linguistics.
The history of a language is not a history of all, or cven of "thc most important,"
utterances (oral or written) in this language. Rather, it is a history of evolution 0/
the language as a system.

Hence we need a preliminary description of the systern(s) whose genesis we are
studying.

An application of this Saussurian scheme to the history of Inathematics (which,
incidentally, I da not consider to be a mere languagc) was probably particularly
appealing to Jean Dieudonne who, a.s an active 111elnber of thc Bourbaki group,
participated in the creation of a systematic picture of luodern mathelnatics. 1 In
this talk I follow his exaluple, on allluch humbler scaie. Needless to say that
restrictions of time, space, and competence, force me to choose a thin cllain of
connected idcas and present theIn in a highly selective way.

Thus I refuse (solnewhat reluctantly) to discuss the history with R.ankean insis
tence on wie es eigentlich gewesen ist. One reMOil for this refusal is that the history
of contelnporary mathematics tends to degenerate into credit and priority assign
ments, lacking pathetically the clramatic appeal with which the history of struggles
for real power is charged. A more personal and cOlnpelling motive is succintly put
by Joseph Brodsky in his autobiographical essay "Less Than Oue": "The little I
relnember becolnes even Inore dinünished by being recollected in English."

A last word of warning and apology is due. Any system is, of course, a theoretical
construct. As such, it is at best relative and culture dependellt, at worst subjec
tive. It is precisely in this function that it can serve as rnaterial for the history of
lllathematics of the XXth century.

II. Mathematical Physics as a System

a) Physics. Physics dcscribcs the external worlcl, and in its dOlnain of compe
tence, does this in two cOll1plementary Inodes: classical and qualitum.

In the classical mode, events occur to the lnatter and fields which reside and
evolve in the space-time. Physical laws directly constrain observables. They are
basically deterministic and exprcssed by the differential equations which (some
times demonstrably, sometiInes hypothctically) satisfy appropriate uniqueness and
existence theorems.

1Jean Dieudonne, a.s I remember him, had a strong voice, strong hands, and strong opinions.
In particular, he insisted on using tensor products anel commutative diagrams instead of c1assical
subscripts and Buperscripts in calculations involving tensors. I used to belicve his jugdement that
this was a chalk-saving device, until one day I had to calculate with tensors myself. Then I found
out that subscripts were much more economical.
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A statistical SUbnl0de of the classical mode of description deals with probabilities
and averages which (sonletimes demonstrably, sOlnetimes presumably) can be de
duced from an ideal detenninistic description. The need for a statistical treatment
arises from two basic prenüses: too Inany degrees of frcedolIl and/or instability.
(Metaphorically speaking, instability Ineans that each conseeutive deeimal digit is
a new degree of freedom.)

A fundamental physical abstraction is that of an isolated system which evolvcs
in oblivion of the rest of the world, anel of interaction bctween potentially isolated
systems, or one isolated systenl and the rest of the worlel.

In one of the most relnarkable flights of fancy of classical physies, space-time
itseIf appears as such an isolated systeln govcrned by Einstein's equations of general
relativity (perhaps, with an energy-momentum tensor summarily responsible for
everything which is not pure spaee-tilne.)

In the quantum mode of theoretical description, the observable world is inhcrently
probabilistie.

Moreover, and more significantly, thc basic laws - which are in a sense determin
istic - govern an unobservable entity, the probability amplitude, which is a cornplex
valued function on a quantum path space. Roughly speaking, the arnplitude of a
composite event is the produet of thc amplitudes of its constituents, whercas the
alnplitude of an event whieh is a sum of alternatives is the sum of the amplitudes
of these alternatives.

The probability of an cvent is the Inodulus squared of its alnplitude. Physical
observables are the appropriate averages, even if one speaks about an elenlentary
act of scattering of an individual particle. The observable wave behavior of, say,
light is only an imperfect rcflection of the inherent wave behavior of thc amplitudes
(wave functions) of an incleternünate number of photons described by thc Fock
spaee of the quantized electromabrnetic field.

Partly as a result of historical clevelopment, many quantum lllodels contain as an
intermediate stage a classical model which is then quantizcd. The word "quantiza
tion" rather ineliscrirninately refers to a widc varicty of procedures of which two of
the most important are operator, or Hamiltonian, quantization, anel path integral
quantization. The first is rnore algebraic anel usually has a finner rnathelnatical
background. The second possesses an enormous hcuristic and acsthetie potential.
I haven chosen the latter for my Inore detailcd subsequent discllssion.

If I had included the first one, the picture of the divergence of Mathematics and
Physies in thc first half of this century sketched below in Sec. IV would appear less
pronouneed. Nevertheless, the nlain results of my analysis would survive.

One nl0re subject matter deserving aseparate historieal anel structural stuely
is the duality between these two approaches. It started with c1assieal meehanics,
Lagrange, anel Hamilton, and eontinued via Hcisenberg-Sehrödinger wave mechan
ies to thc path integral/seattering matrix controversy, On the fringes of physies it
eontains such recent nlathematical gems as Virasoro algebra representations on the
moduli spaees of curves.

b) Mathematics. If therc is ouc most important notion of rnathematieal
physics, it is that of action functional. It eneolnpasses the classical idcas of energy
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and work, its density in a domain of space-time is the Lagrangian, and multiplied
by Rand exponentiated, it furnishes the basic probability alnplitude. Action
is measured in absolute Planck units, and therefore can be thought of as areal
numbcr.

More precisely, we will consider the following schenle of description central for
both Inodes of physical description referred to above.

The modeling of a physical system starts with the specification of its kinernatics.
This includes aspace P of virtual classical paths of the systcnl and an action
functional 8 : P -t R. For examplc, P may consist of paramctrizecl curves in a
classical phase space of a mechanical system, or of Riemannian Illetrics on a given
smooth manifold (space-time), or of tripIes (a connection on a given vector bundle,
a metne on it, a section 0/ it) etc. The value of the action functional at a point
pEP is usually given in the form I

p
L, that is a volume fonn integrated over one

of the spaces figuring in the description of p.

Classical equations of motion specify a subspace Pe! C P. This snbset consists
of the solutions of the variational equations 8(8) = 0, i. e. of the stationary points
of the action functional.

If the classical description is the statistical one, then exp( -8) is thc probability
density.

In the quantuln description, we choose physically 11lotivatcd subsets B C P, typ
ically determined by boundary conditions, and define thc average of an observable
o in B by a path integral of the type

(1)

These are our main actors. In the following, I present SOIlle Illusings about the
history of this picture as seen through the eyes of physicists anel Inathenlaticians.

I will be Inost interested in the idea of the integral anel its final incarnation, in
the form of the path integral.

IIL The Integral

The notion of an integral is one of the central anel recurring themcs in thc his
tory of mathematics for the last two millennia. The ardent problern solving is
periodically followed by the anxious definition seeking, only to be replaced by new
non-rigorous but alnazingly efficient heuristics leaving a logically-minclecl funda
nlentalist in each of us baffled.

Richard Feynman who created the hierograln (1) (still lacking a precise Inathe
nlatical Ineaning exactly in those cases when it is most needed by physicists2 ) used
to boast that (1) allowed the calculation of the anomalous Inagnctic mOlnentum of
the electron, which coincided with its experimental value up to ten digits ([F2], p.
118): "As of 1983, the thcoretical nUluber was 1.00115965246, with an llncertainty

2For a more positive view, see [GJ], a remark.:1.ble book which inftucnced the structure of this
essay. On p. 313 however the authors say: "... it is a theoretical puzzle whether a theory of
electrodynamics exists in the sense of a mathematical framework ... "



5

of about 20 in the last two digits; the experimental nunlber was 1.00115965221,
with an uncertainty of about 4 in the last digit. This accuracy is equivalent to
Ineasuring the distance fronl Los Angeles to New York, a distance of over 3000
miles, to within the width of a human hair."

This feat was recently matched by physical caIculations (even called "prcdic
tions", cf. [COGP]) of various interesting numbers in algebraic geometry, such as
the number Nd of rational curves of degrce d on a gencric thrce-dirnensional quintic
(e. g. 70428 81649 78454 68611 34882 49750 for d = 10, a theoretical(?) nmnber
still unchecked in an experiment(?) involving a nlathematical definition of Nd and
a computer.) Thc ideology of path integration played an essential role in these cal
culatiollS, leading to an interpretation of an instance of (1) a.s a sum over instantons
in a sigma-nlodel, which in this particulaI' case are rational curves on a quintic.

Thc intuitive physical picture of an integral is the quantity 01 something in a
domain. If the first calculations of this "something" are later intcrprcted as, say,
the vohune of a pyramid, oue can hardly doubt that they were used for estimat
ing the actual quantity of stone (and slaves' labor) needed for the building of an
Egyptian pharaoh's tornb. Kepler's Stereometria Doliorum mcntions wine casks in
its title. The domain in question acquired a temporal diIncnsion when the length
of a path was calculated as an integral of velocity, and the notion of energy was
gradually replaced by that of action. In the twentieth eentury, topology becaIne Olle

of the substances the quantity of which could be Illeasured by integration of closeel
differential forms (De Rham theory of periods anticipateel by Poincarc). Probabil
ity turned out to be another such substance, and Wiener's treatment of Brownian
motion as a lueasure in aspace of continuous paths paved the way both for Kol
Inogorov's axiomatic treatment of probability and our present reluctant acceptance
of Feynman's integral. (This is at least partially sllpported by the Sllceesses of
constructive field theory and stochastic integration. However, the randoIll surfaces
inherent in string path integrals present considerable difficulties.)

Mathematically, any calculation (01' definition) of an integral is based upon two
physically intuitive principles: additivity with respect to clomains and intcgrands,
and a form of limiting procedure. There are at least two archetypal fornls of passing
to a limit.

One is represented by Cavalieri 's indivisibles, Ricmann sums etc. It is connected
with the topological structure of the elomain of integration, specifically with the
idea of bOllndary anel thin layers of (d + 1)-dimensional objects surrounding a d
dimensionalobject. The Stokes formula in all its Inoclifications belongs to this circle
of ideas, while the De Rhaln conlplex is its linear dual fonn.

Another form of lilniting procedure is Ineasure-theoretical rather than topo
logical one. There are basic dOlnains filled with weIl rneasured quantities of the
substance of interest (volume, action, probability ... ) We try to approximate other
distributions by using mosaic portraits of them and allowing the size of loeal dis
crepancies to tend to zero. However, locality is not topological anymore, and thc
image of boundary becolnes useless 01' irrelevant. Instead, wc have to deal with
rneasurable sets which mnst only fornl an algebra with respcct to intersections and
unions. Infinite-dimensional constructions are llsually of this type. The weIl known
effect "volume in high dilnensions tends to concentrate near the bOllndary" prevents
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using the image of indivisibles effectively. Even in finite dilnensions, thc boundary
cau fail to serve the role of Cavalieri's indivisible if it is very rough (fraetai). The
subtle measure theoretic studies of thc bcginning of this ccntury had Illuch to say
about it.

There are two integrals in (1), of quite different nature. The action 8 = fp L
is usually a classical entity, L being a local Lagrangian. A bcantifnl recent idea
due to a collaboration of physicists and rnathcmaticians (E. Wittcn [W] and M.
F. Atiyah [Al playing leading roles, A. S. Schwarz having supplied a cfucial first
example) consisted in considering those path integrals in which the action is a
topological invariant of p. Locally this Illeans that classical equations of lnotion
8(8) = 0 are identically satisfied. An cxample of such an action fllnctional is the
Chern-Simons invariant defined on thc space of connections on a vector bundle over
a three-dimensional lllanifold. The quantum observables (whose choice and nalne
was motivated by thc theory of strong interactions) are Wilson loops: averaged
traces of monodromy representations along closed curvcs in the base.

In this context, thc algebraic properties of the path integral reflectcd in thc addi
tivity of f

p
Land resulting "llluitiplicativity" of thc whole of (1) beconle so strong

that they can be used to define a sufficiently rigid lnathematical structure of "Topo
logical Quantum Field Thcory" which can then be studicd by prccise mathelnatical
lneans. This was done by G. Segal and M. F. Atiyah. See [RT] and [BHMV] for
some recent mathematical developments in this area.

Thc history of thc integral seen from our vantage point can be conccived in
terms of a Toynbcean challcngejrcsponsc scheIne. Challenges COllIe frolll physics
broadly construed, ineluding geolnetry. It can be convincingly argued that even
Euclidean geometry is in fact just the kinelnatics of rigid bodies in the absence of a
gravitational field (curved the space-tilne), and both thc invention and the dcvelop
ment of the first non-Euclidean geomctries (of constant curvature) was inextricably
connected with physics. Gauss wanted to know what was the actual gcolnctry of
interstellar space. Hilbert's return to axioIllatics was a mathelnatical response to
the challenge of the discovery of multiple possible geometries of the physical world.

IV. The Schism

In this section of my talk I arguc that the lnain event in the relationship between
mathematics and physics in thc first half of this ccntury was their estrangenlent,
after several centuries of elose alliance.

The divergence started in the last two decades of thc last century and was con
nected with the deepening understanding of two microworlds: a mathcmatical one
elnbodied in the idea of the elassical continuum of real numbers, and a physical one
open to experiment.

Roughly speaking, around the turn of the century Peano, Jordan, Cantor, Borel,
Stiltjes, and Lebesgue discovered and displaycd with great subtlety thc new prop
erties of continuum, continuity and lneasurability. They have given aseries of
definitions of integration of increasing generality, and invented constructions and
existence proofs for many strange Inathematical objects which did not belong to the
worlcl of elassical geolnetry and analysis but had to bc accepted as a consequence
of classical ways of mathelnatical reasoning stretched, as it seenled, to their limit.
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The growing reaction against many counterintuitive discoveries led mathemati
cians to self-analysis centered around several basic problenls: What is a mathe
Inatical proof? What meaning can be given to a statenlCnt about existence of a
Illathematical object? What is the status of mathelllatical infinity?

The outcome of this is wen known. Fifty years of introspection were quite fl'uit
ful from the mathematical viewpoint: they produced Illatul'e nlathelllatical logic,
ineluding theory of proof, theory of computability, and a elear pieture of the hier
archy of expanding languages and aXi0I11 systems that nlathelllaticians have had to
adopt consecutively in theil' quest for mathematical truth.

In the meantime, physicists wel'e engaged in a totally different quest. Planck's
discovery of a quantuIll of action announced on Deccmber 14, 1900, initiated the
quantum age. Physics needed sophisticated mathelllatics to fonllulatc newly dis
covered non-classieal laws, but new mathclnatics was of no help. Whatever was
needed was hastily invented or reinventcd: rnatrix algebra, spinars, Fock space, the
delta function, the representation theory of Lol'entz group. None of the pioneers
(Bohr, Einstein, Panli, Schrödinger, Dirac) needed the Lebesgue integral, 01' was
interested in the cardinality of continuuln. Logie interested them even less.

This cloes not mean that physicists had no philosophieal preoccupationsj in fact
they had. But if mathematicians discussed the relationships betwcen language and
thought, physicists were troubled by the relation of language to reality. The basic
problem confronted by thc critics of classical I11atheInatics was the inexpressibil
ity of infinity, related to the inhcrcntly finitary syntactic structure of language.
The basic problenl confronted in the Bohr-Einstein controversy was the inexpress
ibility of quantum indcterminacy, rclatcd to the inhcl'ently classieal semantics of
language. Philosophy of mathelnatics and philosophy of physics ahnost cOIllpletely
lost contact with each other. Such arclent critics of the alleged inadequacies of
contelnpol'ary research as Bl'ouwer in mathclnatics and Pauli in physics shal'ed not
a single common idea. Mathelnatical criticism tended to become deeply autistic,
while physical criticism strived to find bettel' ways to express cOlnplex reality.3

A gap formed in traditional professional interactions as weIl. From thc first suc
cesses of the quantum electrodynanücs in the thirties until thc renewed interaction
in the sixties, mathematicians contributed almost nothing to the rnain physics re
search progralll of this century: Quantlull Field Theory. SiInilarly, physicists payed
no attention not only to mathelnaticallogic (understandably) 01' analytical number
theory (traditionally), but also to the cInel'ging algebraic topology. Thirty years
later, topology was to become the ncw COlnrnon ground for the two cornnlunities.
Somewhat paradoxically, lnathematics gained from this renewed interaction nlore
than physics: new invariants of three- and four-diInensional Inanifolds, quantum
groups, quantum cohomology wel'e its fruits.

The foIlowing weH known empirical observation fits weIl into thc picture we
have sketched. Whenever a fresh nlatheInatical tool for understanding physics is
needed, physieists are very quick at inventing new 01' transfonning already existing
algebraic formalism to deal with it. We have already Illcntioned Heisenberg algebra,

3rt is characteristic that G. H. Hardyls Rouse Ball Lecture [H] on "Mathematical Prooel
delivered in 1928 does not even mention existence of quantum physics.
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spinors and Dirae delta funetion. One ean add the Schwinger-Dyson equation (for
an otherwise undefined path integral), thc Berezin integral on supermanifolds and
Witten's topological invariants expressed as path integrals of a Topological QFT.
All this constitutes only a small sampie of inventions which are by now thoroughly
absorbed and transformed into honest mathematics.

It is "only" when one has to deal with infinitary construetions, that is, limits
of various kinds, that mathenlaticians do their job unassisted. According to Bour
baki's Chapters on Integration [B], lnathematicians contributed to the theory of
integral in the last century exclusively eareful analysis of limits.

After the ereation of the modern notion of a topological space and the cliscovery
of limiting procedures basic to measure theory, the next major paekage of startlingly
new infinitary constructions was introduced by Alexander Grothendieek with his
treatlnent of HOlnological Algebra, derived categories and functors, Topoi and Sites.
But this is another story.

v. Discussion

Direct contact between mathenlatical and physicalnlodes of thought more often
than not creates a tension. The basic values are different, the accepted types of
social behavior elash, time scales for a probleIn to keep attention of the public tend
to be incomnlensurable. 4 In a relnarkable piece of introspection, F. Dyson [D] has
shown how iInpenetrable the walls between mathematics and physics can be in one
and the same mind. We would be much lnore tolerant to each other if we could
discern in ourselves the two personalities so convincingly displaycd by Dyson. A
recent discussion (cf. [JQ] and [RD shows the vulncrability of our cOlnnlunity, when
in aperiod of renewed fruitful interaction we try to harmonize our attitudes to what
is and what is not a proof, what may and what lnay not be published, and who
should be credited for what.

All of this is fortunately restrictcd to our social life. It seems that deep in
sights survive however we mess them up, and it is precisely the conlplenlentarity of
rnathematical and physical thinking that Inakes their interaction creative.

The crucial distinction between thc ways we present our ideas in thc last half of
this century lies not so much in our attitudes towards a rigorous proof a.s towards
exact definitions.

Mathelnaticians have developed a very precise comInon language for saying what
ever they want to say. This precision is elnbodied first of all in the definitions of thc
objects they work with, stated usually in the framework of a more or less axiomatic
set (or category) theory, and in the skillful usc of metalanguage (which our natural
languages provide) to qualify thc statements. All the other vehiclcs of mathernati
cal rigor are secondary, even that of rigorous proof. In fact, barring direct nüstakes,
the most crucial difficulty with checking a proof lies usually in the insufficieney of

4The relevant psychological difficulties are not often expressed in print. For an interesting
reeent reaction see S. MaeLane's eontribution in [R] of whieh we cite only one sentenee: llThus,
when I attended a eonfcrenee to llnderstand thc use of a small result of mine, I heard lectures
about 'topologieal quantum field theory', without a slightest whiff of a definition; I was told that
the nation had eropped up at some prior eonferenee, RO that 'Everybody knew it.' "
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definitions (01' lack thereof.) In plain words, we are 1110re deeply trollbled when
we wonder what the author wants to say than when we do not quite see whether
what he 01' she is saying is correct. The flaws in the argument in a strictly dc
fined environnlent are quite detectable. Good mathematics might weIl be written
down at a stage when proofs arc incomplcte 01' missing, but inforuled guesses can
already form a fascinating systmn: outstanding instances are A. Weil's conjecturcs
and Langlands's progranl, but there are Inauy exaluplcs on a lesser scale.

Thc etymology of the term de-fin-itio shows that its primary function is to set
strict limits. In the course of a given study, we agrce to consider only locaIly COill

pact topological spaees satisfying the countability conditioll, only finitc-dimensional
Lie algebras, only coarsc moduli spaces of stable algebraic curvcs and so on. If we
fail to mention a relevant restrietion in the course of presenting a professional seln
inar, we will be politely renündcd about it. If wc dahn to having done anything
serious, our work will be carefully scrutinized for all the nccessary caveats.

Of course, our definitions are far fronl being arbitrary. One function of a gooel
definition is to be a carrier of analogies between various situations, and to this end
the eage of a definition lUllst be of optimal sizc. For exaluplc, one can convincingly
argue that by far the I1l0st important result of the group theory is exactly thc defi
nition of an abstract group and its action on a set, because it dcscribes a structurc
reappearing again and again in geometry, number theory, probability, the theory of
space-timc, theory of elementary particles, and so on. Thc whole ideology of Bour
baki's treatise consists in rcpresentation of luathclnatics as a building supportcd
by a strict system of good definitions (axiolns of basic structures). And since a
good definition is sometimes the work of generations of gooel mathematicians, the
temptation to believe that we already know theIn a11 can bc grcat.

To the contrary, an inexperienced reader of thc TI10St intcresting physical papers
is often left in a vacuunl about the precise Ineaning of thc most common terms.
Physicists are undoubtedly constraincd by thcir own rules, but these rules are not
ours. What is a current algebra? a supersymluetry transfonnation? a Topological
Field Theory? a path integral, finally? They are very open concepts, and it is
precisely their openness that makes theIn so interesting.

Here is what the history of our two Inetiers teaches: we cannot livc without each
other. At least for some of us, life beCOI1leS du11 if it goes on for too long without
contacts with good physics.

It is the interaction with a wildly differing set of values that counts most.

As a perceptive study by Hardy Grant [G] shows, in tenns of cultural history
of Isaiah Berlin's variety, mathematics is a vcry classical endeavour. In fact, it is
based upon a commonly accepted idea of truth and ways to achieve it, forming
a stable system. The Romantic Revolution of a century and a half aga did not
really influcnce Inathematics mainly bccause thcre was little placc in it for personal
whims.

In this century romantics comes fronl physics: the vast expanses of the Universc,
the wondcrfully erratic behavior of the microworld, the observer's subjectivisrn and
the power of the unobservable, the Big Bang, the Anthropic Principle, our in turn
humble and megalolnaniacal attempts to cope with irrcverent NatufC.
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Mathematics supplies hygienic habits and headachcs.
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TRUTH, RIGOR, AND COMMON SENSE

§o. Preface

The rnain difficulty of discussing thc nature of lnathernatical truth in 1995 as I
see it is that no new insights into it were gained since the epoch of deep discoveries
crowned by Gödel's results of the late thirties.

To avoid repetition and to enliven the discourse one can try to put thc rnatter
into a broader context and add a personal note. Both solutions tcnel to divert thc
reaeler's attention to vaguely related topics, anel I offer my apology for choosing
these dubious tactics.

This talk is divideel into three parts: a) rnusings on the history of mathelllatics
perceived as a genre of sYlubolic (01' scnüotic) games; b) a discussion of truth anel
proof in the context of contelnporary research (centcring on a rccent controversy
prompted by a letter by A. Jaffe and F. Quinn [JQ)); c) materials for threc case
studies (it being understood that thc study itself will be carried out hy the interestccl
reader).

We adopt for this talk lnost naive philosophical background.

Naively, a truthful statement is a statement that could be submitted to verifi
cation, anel woulel then pass this test. Verification is a procedure involving some
cOlnparison of thc statement with reality, i.c., invoking an idea of meaning. (This
applies equally well to "evident" statements whosc verification is skipped.) The
rcality in question can be any kind of lnental construct, from freely falling bodies
to transfinite cardinals. We will pass over in silence the problern of how to ver
ify stateluents about transfinite cardinals which surely will be addrcsseel by other
speakers.

The stateluent itself is a linguistic construct. As such, it lllUSt be granlIuatically
correct in the first place, anel Ineaningful in the seconel, before it can be subluitteel
to a verification procedure.

Logic teaches us that certain formal constructions produce truthful statelnents
when applieel to truthful statements (syllogisms were the earlicst examples). Mathe
matics uses such constructions recursivcly. All comparison with reality is relegated
to comparatively scarse encounters with applications and, possibly, foundational
studies. The Inain body of IuatheIllatical knowlcdge looks like a vast Iuental game
with strict rules.

We might also contCInplate the notion of truth applied not to isolatcd statenlents
hut to entities like a novel, a scientific theory, 01' a thcological cloctrinc. Thc ideas of
gramnlatical correctncss, Illeaning, reality, and vcrification procedllres acquire new
dimensions, but seemingly do not lose their heuristic value. A new phenomenon is
what can be called their non-locality: ncither lueaningfulness nor truthfulness of a
theory resides entirely in its constituent statements, but rather in the whole body
of the doctrine.

All the COffiluon sense notions nlentioned abovc were subnlitted to fine theoretical
analysis in lllany philosophical wodes. All of thenl, including the idea of reality, werc
also thoroughly criticised, to the extent of completc annihilation. One pcrtinent
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example is that of the idea of verification of a theory: it was argued that a theory
can never be verified, but only falsified.

In what follows I will try to be comlnonscnsical and to avoid extremist views.
Some truth creeps even into the wildest deconstructions of this notion, but weak
nesses of such attacks usually becolne apparent as soon as we start judging theIn
by their own standards.

§1. Mathematical truth in history

The modern notion of Inathelnatieal truth goes back to ancient Greece; as Bour
bald succintly puts it, "Depuis les Grecs, qui dit Mathelnatiques, clit deUlonstration."

It is the demonstration that counts, which is understood as a chain of well
organized consecutive standard steps, not as a physical act of showing, contrary to
what the etymology of the word "demonstration" suggests.

Among other things, this lneans that lnodern lnathelllatics is an essentially lin
guistie activity relying upon language, notation, symbolic lnanipulation as a means
of convincing even when dealing with geometrie, physical et al. realities. Consis
teucy of argumentation free of contradictions and avoiding llideous gaps plays a
Inajor role in establishing that a given utterance provcs what it purports to prove.
The status of thc postulates P upon which the demonstrationjproof of the state
rnent S is buHt strictly speaking need not be discussed in Inathelnatics, which is
responsible mainly for thc structure of thc dcduction.

This idealized image had a long pre-history, and we will try to briefty review
sonle archaie modes of protomathematical behaviour.

The econolnic and military life of early lnunan collectives was correlated with ac
counting and kecping track of food resources, size of thc tribe, seasons etc. Elelnen
tary arithmetic as we know it only gradually emerged as a subdialect of language
supporting such activities.

Whereas the main (and for millenia thc only) fonn of existence of natural lan
guages was oral speech, the oral and then written language of elemcntary arith
Inetics must have slowly cristallized froln nlany archaic fonns including counting
by fingers and other body parts, collecting stones anel sticks, tying knots etc. (This
process is now reversed as we observc how electronic arithnletics takes over the
writtcn one.)

If a nlathernatician is inc1ined to stress the "isomorphism" of all these rcaliza
tions describing the universe of natural numbers and operations on them, he lnust
understand that this is an appalling lllodernization.

In ternlS of the c1assical Saussurean dichotomy Langue (as system) vs Parole (as
activity), we observe a slow and difficult emergence of "language" from "speech,"
the latter involving direct manipulation of things and body parts as symbols of
something else. Whatever notion of truth can bc read into such activity, it lnust
be in the final account a function of thc efficiency of social behaviour Sllpporteel
by it. Exchange and traelc furnish obvious examples. Correct counting means just
exchange and profitable traelc, pure and simple.

This is not however the whole story. It is illlportant to realize that not only ma
terially profitable, but virtually any fonn of organizecl behaviour can have a special
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meaning for a hurnan being or a human collective. This puts archaic arithrnetic
on a par with rites, musie and dance, and all sorts of magie. The traees of this
undifferentiated perception of mathematies as a fonn of magie are registered quite
late in the history. A person who efficiently predicts an eclipse, or an outcolne of
an uncertain situation, is not neccssarily a sage, but rIlore appropriately a trickster
who makes things happen by manipulating their symbolic rcpresentations.

Many philosophers tried to demythologize the irnage of mathClnatics as pre
dominantly intellectual activity. A. Schopenhauer for one, already in the days of
modern institutionalized matheruatics, wrote: "Rechnungen haben bloß Werth für
die Praxis, nicht für die Theorie. Sogar kann rnan sagen: wo das Rechnen anHingt,
hört das Verstehen auf."

Citing this , S. Hildebrandt ([Hi), p. 13) continues: "Die Anbetroffenen lesen es
staunend und denken sich, daß Schopenhauer schwerlich einen Blick in die Arbeiten
von Euler, Lagrange oder Gauß getan haben kann."

However, taken literally, Schopcnhauer is right. Not only does CODlputation tem
porarily interrupt thinking, but an ultimate justification of the act of cornputation
is that it replaces the act of thinking (or a stage of it) by a virtually mechanical
interlude, in order to support a ruuch higher level of eorupetence for the next aet. If
thought is an interiorized and tentative action, then cOluputation is an exteriorized
thought, and thc degree of possible exteriorization achieved by rllodcrn computers
is stunning.

In the same vein, dnring the previous era of biological evolution, emergcnce of
conscious thinking servcd to stop instinctive action and to replace it by planned
behavior. An animal brain calculates in order to keep the aninlal body alive and
kicking, running, flying, seeing, hearing. A human brain does the same, and this
activity is the main content of the (non-Freudian) individual subconscious whieh
must not allow any intervention of consciousncss in order not to break the coruplex
arcrntecture of the relevant computations. Otherwise correct (biologically optirual)
results cannot be seeured.

The arrival of language and consciousness in a sense allowed the hluuan brain
to elevate this unconscious computation to thc level of COffirllonsense thinking and
later to the level of theoretical thinking. Aprice paid was a loss of spontancity of
action and cmergence of less and less biological patterns of individual and collective
behaviour. In short, civilization was tnade possible.

This coruplerllentarity of action/thought/computation tends to reproduce on var
ions levels.

The new alienation of thought in cOluputerized systerlls of infonnation proccssing
is a grotesqne materialization of the (non-Jungian) collectivc unconscious. Its run
ning out of control is a recurring nightmarc of our society, as weH as the condition
of its efficient functioning.

Thc abstract nature of ruodern ruathCluatics understood not as its cpistcmo
logical feature but as a psychological fact, supports our metaphor. Thc gaping
abyss between the habits of our everyday thinking and the nonns of rllathematical
reflection lUllSt remain intact if we want lnathematics to fulfill its functions.
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The heated battles about thc foundations of mathernatics which continued for
several decades of this century did not resolve any of the epistelnological problems
under discussion. Let Ine relnind you that at the center of attention and criticism
was Cantor's theory of infinity.

Cantor's tremendous cOlltributioll to XXth century mathematics was twofold.
First and foremost, he introduced an extremely economical anel universallanguage
of sets which subsequently proved capable to accomodatc the senlantics of all actual
and potential nlathematical constructions. This was understood only graclually,
and full realization calne only somewhere in the mid-century. What I Inean is a
kind of Bourbaki picture: every single mathematical 01' evcn Inetalnathelnatical
notion, be it probability, Frobenius morphism, 01' a deduction rule, is an instance
of a structure which is a construct recursively produced froln initial sets with the
help of a handful of primitive operations.The fonnal language of mathenlatics itsclf
is such a structure. (Somctimcs, as in catcgorical constructions, classes instead
of sets are allowed, but froln the vicwpoint I aln advocating here this is a minor
distinction) .

I believe that Hilbert when he spoke with prescience about "Cantor's Paradise"
had this grandiose picture in mind.

But second, Cantor produced sOlne deep and unconventionallnatheluatical rea
sonings about orders of infinity, thus spurring a long and heated controversy. As
we now see it, he discovered probably the simplest imaginable anel natural unde
cidable problem, the Continuum Hypothesis (CH). (For a penetrating discussion of
the Ineaning of undecidability in this context cf. [Cl, p. 162.)

The austere and barren world of unstructurcd infinite sets of various oreIers of
magnitude undoubtedly has a Illagic charnl of its own, and reficctions about this
world in turn attracted and repelled philosophically-nündcd mathcmaticians and
Inathematically-minded philosophers for several decadcs. Cohcn's famous proof
of the consistency of thc negation of CH, completing Gödel's earlier proof of the
consistency of CH itself, caIlle already when the fascination with mysteries of infinity
was waning, prccisely because by that time the language of sets had becolne the
language of virtually every mathematical discourse.

Rethinking these old arguments, recalling the birth of intuitionism and con
structivism, I am struck by the utterly classicallnindset of SOlne of Cantor's critics.
A considerable part of the discussion concentrated on thc principles of thinking
about infinite sets. The Axiom of Choice was considered basically as a wild ex
tension of mundane expericnce of picking randolnly individual objccts from heaps
of them. Both the constructivist anel intuitionist view of this picture revealed a
deep emotional revulsion towards such an action involving infinite choice (in a later
Essenin-Volpin decaelent ultraintuitionistic worlel eVCll iInagining finite and rathcr
small collections of things became an unbearable strain.)

Of course, the idea of a collection of distinguishable and iInmutable objects
belongs to layman's physics. Many actors of the great Foundation Dralua seeluingly
were convinced that the axiomatics of Set Theory must be understood as a dircct
extension of this naive physics.

The fact that even sluall sets of quantum objects behave quite differcntly was
never taken in consideration. (It probably should not be.) Thc fact that working
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infinities of working mathematicians (real numbers, cOIllplex nurnbers, spectra of
operators ... ) were efficiently used for understanding of the real world was deemed
irrelevant for foundations. (It probably is.)

In any case, thc uncasiness about Cantor's arguments led Hilbert to start a deep
formal study of the syntax of matheInaticallanguage (as opposed to the seInantics of
this language), thus preparing the ground for Tarski, Church, Gödel (and prolnptiug
philosophical platitudcs like Carnap's vicw of matheInatics as "systeIns of auxiliary
statements without objects and without content", cf. [G], p. 335).

What these studies taught us was a highly tcchnical picture of the relationships
between the structurc of formal dcductions, their naive (or formal) set-theoretical
models, and degrees of (un)solvability and (un)expressibility of thc relevant pre
cisely defined versions of rnatheInatical truth. Popularizations ("vulgarizations")
of Gödel's work rarely manage to convey thc complexity of this picture, because
they cannot convey the richness of its nlathematical (as opposed to epistemologieal)
context.

It is this richness that fasciIlates us Inost.

§2. Truth für a working mathematician

The Bourbaki aphorism cited at thc beginning of the previous section does not
iInply two millenia of comrnon agreement on what constitutes a proof. Moreover,
the followin,g quotation from A. Weil's talk at the 1954 International MatheInatical
Congress in Amsterdam leaves an impression that the notion of "rigorous" proof
is quite recent, perhaps even due to thc efforts of Bourbaki hiInself. "lligor has
ceased to be thought of as a cumbersome style of fonnal dress that one has to wear
on state occasions and discards with a sigh of relief as soon as oue COIues horne. We
do not ask any more whether a theorern has been rigorollsly provcd hut whether it
has been proved." ([W], p. 180).

Alas, this seems to be only wishful thinking. In the individual psychological
development of a Inathematician and in the social history of Inathematics both the
understanding of what constitutes a proof and the perccption of its role gI'catly
vary.

Below I collected a sampie ( A-F) of quite recent opinions of actively working
Iuathematicians, taken frorn [JQ], [T] and [R]. The reader is urged to read the whole
discussionj it is quite instructive. It was sparked by thc letter of A. Jaffe and F.
Quinn "Theoretical Mathe1natics": towards a cultural synthesis of mathematics and
theoretical physics ([JQ]). The authors were worried by the local situation in the
vcry active dOIuain of mathematics bordering with mathcmatical physics. It secmed
to them that the standards of physical reasoning (which are considerably lower
than those in mathematics) tended to unfavorably influence standards of today's
mathematical research. At the saUle tinle they fully recognized the value of cross
fcrtilization, and suggested some rules of conduct that should be irnposed upon all
players, in particular the rules of credit assigning. (Thc word "theorctical" in thc
title in the present context is a neologisIn, and not a very lucky one, becausc thc
authors have in mind a mixture of cducated spcculations, examples, and computer
outputs, as opposed to theoreIns with proud quantifiers).
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A. "When I started as a graduate student at Berkcley, I had trouble imagining
how I could 'prove' a new and interesting mathematical theorenl. I didn't really
understand what a 'proof' was.

"By going to seminars, reading papers, and talking to other graduate studcnts,
I gradually began to catch on. Within auy field, there are ccrtain theorellls and
certain techniques that are generally known and gcnerally acceptcd. Whcn you
write a paper, you refer to these without proof. You look at other papers in the
ficld, and you see what facts they quote without proof, anel what they cite in
their bibliography. You learn from other people some idea of their proofs. Then
you're free to quote the same theorem and cite the salne citations. You don't
necessarily have to read thc fnll papers or books that are in your bibliography.
Many of the things that are generally known are things for which thcre lnay be
no known written source. As long as pcople in the ficld are comfortable that an
idea works, it doesn't need to have a formal writtcn sonrce." (W. Thurston, Fields
Medal 1983, [Tl, p. 168. Thurston eloquently argues that the principal goal of the
proof is llnderstanding and comluunicatioll, and that it is IUOSt efficiently achieved
via personal contacts. His opponents in particular noticc that transgenerational
contacts cau be achieved only via written texts of sufficient level of precisioll, and
that the fate of Italian algebraic geoluetry should servc as a warning.)

B. "Wc must carefully distinguish between modern papers containing luathe
Inatical speculations, and papers published a hundred years ago which we, today,
consider defective in rigor, but which were perfectly rigorous according to thc stan
dards of the tilne. Poincare in his work on Analysis Situs was being as rigorous as
he could, anel certainly was not consciously speculative. I have seen no evidence
that contemporary mathenlaticians considered it "rcckless" or "excessively theo
retical" (in the JQ sense. Ylt. M.). Whcn young Heegard in his 1898 dissertation
brashly called the Inaster's attention to subtle mistakcs, Poincare in 1899, calling
Heegard's paper "tres remarquable" 1 respectfully admittecl his errors and rcpaired
them. In contrast, in his 1912 paper on the Annulus Twist theorem (later proved by
Birkhoff), Poincare apologized for publishing a conjecture, citing agc as his excusc."
(M.W. Hirsch, in [Rl, p. 187.)

C. "Intuition is glorious, but the heaven of mathelnatics rcquires luuch more
[ ] In theological terms, we are not saved by faith alone but by faith and works
[ ] Physics has provided Inathematics with many fine suggestions and new ini-
tiatives, but mathelnatics does not need to copy the style of experilnental physics.
Mathematics rests on proof - and proof is eternal" (S. Mac Lane, in [R], 190-193).

D. "Philip Anderson describes luathelnatical rigor as 'irrelevant and iIupossible.'
I would soften the blow by calling it besieles the point anel llsually distracting, even
when possible." (B. Mandelbrot, in [R], p. 194. Mandelbrot's contribution is a
vehenlent attack not only on the abstract nation of rigorous proof, but also on a
considerablc part of thc Alnerican mathelnatical comlnunity, "Charles lllathcmati
cians," who allegedly are totalitariau, concentrate on credit assigning, anel strive to
isolate open-nünded researchers).

E. "Before 1958 I lived in a lnathelnaticallniliell involving essentially BOllrbakist
pcoplc, anel even if I was not particlllarly rigorolls, these pcople - H. Cartan, J .-P.
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Serre, and H. Whitney (a would-be Bourbakist) - helpcd lue to nlaintain a fairly
acceptable level of rigor. It was only after thc Fields medal (1958) that I gave way
to my natural tendencies, with the (eventually disastrous) results which followed.
Moreover, a few years after that, I became a colleague of Alexander Grothendieck
at the IHES, a fact which encouraged me to consider rigor as a very llnnecessary
quality in luathematical thinking." (R. Thom, in (R], p. 203. ThoIU'S irony requires
a slow reading. In what sense did following his natural tendcncies have eventually
disastrous results? How exactly did becolning a colleague of Grothendieck's in
fluence Thom's thinking? An outsider may remain puzzled whether Grothendieck
hinlself sharecl Thom's convictions, or whether it was thc othcr way around. Later
in the same contribution Thom invokes rigor mortis as an appropriate connotation
to thc idea of matheluatical rigor.)

F. "I find it difficult to convince students - who are often attracted into lllath
ematics for the same abstract beauty and ccrtainty that brought me here - of the
value of thc messy, concrete, and specific point of view of possibility and exalnple.
In my opinion, more lllathCIuaticians stifte for lack of breadth than are Illortally
stabbed by the opposing sword of rigor." (K. Uhlenbeck, in (R], p. 202).

I would like now to sumnlarize, contributing my own share to the general con
fusion.

First, individually, producing acceptable proofs is an activity that takes arduous
training and evokes strong enl0tional response. A person feels aversion if required
to do something contradicting his or her nature. Innate 01' acquircd preference
of geoluetric reasoning or algebraic calculations can inforrn our career. When we
philosophize, we unavoidably rationalize and generalize these basic instincts, anel
thc whole spectrum of our attitudes can be traced back to the feelings of bliss or
frustration that overwhehn us during confrontations with intellectual challenges of
our metier.

Second, socially, we have to rcly upon our contCIuporaries and forebears cven
when devising a very rigorous proof. Authority in lnathematics plays a two-fold
role: we acquire frolll our fathers and peers a value systeIll (what questions are
worth asking, what domains are worth developing, what probleIl1S are worth solv
ing), and we rely upon the authority of published and accepted proofs and reasoll
ings. Nothing is absolute here, hut nothing is less inlportant because of thc lack of
absoluteness.

Third, epistcmologically, all of us who have bothered to think about it, know
what a rigorous proof iso It has an ideal representation which was worked out by
mathelnaticallogicians in this century, but is only 1110re cxplicit and not fundaluen
tally different frorn the notion Euclides had. (In this respect, Bourbaki was quite
right.) This ideal rcpresentation is an imaginary text which step by step deduces
our theorenl from axiOIUS, both axioms and dcduction rules being nlade explicit
beforehand, say in aversion ofaxiomatic set theory.

If this image arouses in your heart a. strong aversion, or at least if you want to be
realistic, you may (and should) object that this ideal is utterly unreachablc becausc
of the fantastic length of even the siInplcst formal deductions, and because the eIoser
an exposition is to a formal proof, the more difficult is to check it. Moreover, since
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formal deduction strivcs to be freed of any rcnmant of Ineaning (otherwise it is not
formal enough), it ends by losing meaning itself.

On the contrary, if this image arouses your enthusiasill, or Ollce again if YOll
want to be realistic, you will agTee that the essence of mathelnatics requires daily
maintenance of the current standards of proof. Whcther we are engaged in the
mathematical support of a vast technological project like l11oon-Ianding, or simply
nurture a natural desire to know what assertions have a chance to be true and what
do not, we have to resort to the ideal of mathematical proof as an ultiluate judge
of our efforts.

Even the use of Inathematics "for narrative purposes" as is nicely put by Hirsch
is not an exception, because such a narration is built of blocks of solid mathelnatics
to a non-mathematical blue-print.

"An author with a story to tell feels it can be expressed most clearly in Inathe
maticallanguage. In order to tell it coherently without the possibly infinite delay
rigor Inight require, the author introduces ccrtain assumptions, speculations and
leaps of faith, c.g.: 'In order to proceed further we assume thc series converges 
the randolll variables are independent - thc equilibrium is stable - the deterllli
nant is non-zero -.' In such cases it is often irrelevant whether the mathematics
can be rigorized, because the author's goal is to persuade the reader of the plausi
bility or relevance of a certain view about how SOlne real world systel11 behavcs. The
mathematics is a language filled with subtle and useful metaphors. Thc validation
is to came froln experiment - very possibly on a COl1lputer. The goal in fact may
be to suggest a particular experiment. Thc result of the narrative will be not new
mathematics, but a new description of reality (real reality!)." (M. IJirsch, in [R], p.
186~187).

A beautiful recent example of such a narrative use of Inathenlatics is furnished by
D. Mlunford's talk at thc first Europcan Congress of Mathematicians [Mn]. About
mathematical metaphors see also [Ma].

§3. Materials for three case studies

In this section, I present three cases relevant to our discussion: Gödel's proof
of the existence of God (1970), the tale of the faulty PentiU111 chip (1994), and
G. Chaitin's claim (1992 and earlier) that a perfectly weIl and unifonnly defined
sequence of mathematical questions can have a "collipietely randoru" sequence of
answers. For all their differences, these arguments represcnt hwnan atterupts to
gyapple with infinity by finitary linguistic rueans, be it infinity of God, real nurnbers ,
or mathematics itself.

Whatever morallessons (if any) can be drawn frolll these lllaterials, the reader
is free to decide.

Gödel 's Ontological Proof

The third volume of K. Gödcl's Collected Works recently published by Oxford
University Press contains a note dated 1970. It presents a forrnal argument pur
porting to prove existence of God as an ernbodinlent of all positive propertics.
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An introductory accollnt by R.M. Adams ([G], p. 388-402) puts this proof
into a historical perspective cOIllparing it in particular to Leibniz's a1'gllInent and
discussing its possible place in theo1'ctical theology.

The proof itself is a page of fOrInulas in the language of Inodal logic (using
Necessity and Possibility quantifiers in addition to thc usual stuff). It is subdivided
into five Axioms and two Theorems. A photocopy of the published version of this
page (p. 403) nlay help the reader.

What Does a Computer Compute, or Truth in Advertising

In the Jan. 1995 issue of SIAM News the front page article "A Tale of Two
Numbers" started with the following Hnes:

"This is the tale of two numbers, and how they found their way over the Internet
to the front pages of the world 's newspapers on Thanksgiving Day, embarassing the
world's prenlier chip Inanufacturer."

Bricfly, it was found that thc Intel Corporation's newly launched Pentitlln chip
(the Central Processing Unit in Pentium machines) contains a bug in its Floating
Point-Divide instruction so that e.g. calculating

r = 4195835 - (4195835/3145727) (3145727)

it produces r = 256 instead of thc corrcct value r = O.

Now, this is not something vcry unusual. In fact, in all computers the so called
real number arithmetics is prograrnmed in such a way that it systernatically produces
incorrect answers (round-off errors). In this particular case a (slightly il1flated)
publie outrage was il1cited by thc fact that in sorne cases the error was larger thal1
promised (simple-precisiol1 when double-precision was advcrtised).

COlnpletely precise ealculations with rational nlllnbers of arbitrary size can be
programmed in principle (and are progranuned for special purposes). This requircs
a lot of resources and might need also specializcd input~output deviees. The ideal
Turing maehinc is highly impraetical to ilnplenlent, and real computers are not
designed to facilitate this task.

It is not diffieult to imagine a cOlnputcrized system of deeision-ulaking whieh
is unstable W.r.t. small ealculational errors. Stoek-l11arket 01' military applieations
are sensitive to such problCllls. Here is one l110re exanlple.

Arecent study of sexuality in USA purportedly designed to support epidemi(}
logical models of the spread of AIDS did not include 3 percents of Alnerieans who
do not live in households, i.e. who live in prisons, in homcless shelte1's, 01' on the
street. A eritie of this study (R. C. Lewontiu, thc New York Review of Books, April
20, 1995) reasonably remarks: "Thc authors do not discuss it, and they luay not
even realize it, but Inatheluatical and cOlnputer Inodels of the spread of epidemies
that take into aecount real complexities of thc problem often turn out, in their
predictions, to be extremely sensitive to thc quantitative valucs of thc variables.
Vcry small differenees in variables can be the c1'itical determinant of whcther an
epidemie dies out or spreads catastrophically, so thc use of inaecurate study in
planning counter-measures can do more hannt han does total ignorance."
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The problem of understanding what is conlputcd by a conlputer beCOlnes also
more and TIlOre relevant with thc spread of computer assisted proofs of Inathematieal
theorems. I quote M. Hirsch onee again ([R], p. 188): "Oscar Lanforcl pointed out
that in order to justify a computer ealculation as apart of proof (as he did in the
first proof of the Feigenbaum cascade conjecture), you rnust not only prove that
the progranl is correct (and how often this is done?) but you lUllst unclerstand how
the computer rounds numbers, and how the operating system functiol1S, including
how thc time-sharing system works".

Randomness of Mathematical Truth

Following A. N. Kolmogorov's, R. Solomonoff's and G. Chaitin's [Ch] discovcry of
the notion of complexity and a new definition of randolnness based upon it, Chaitin
eonstructed an exalnple of an exponential Diophatine equation F(t; Xl, ... , Xn) = 0
with the following property. Put E(to) = 0 (resp. 1), if this equation has, for
t = to, only finitely (rcsp. infinitely) rnany solutions in positive integers Xi. Then
the sequence E(1), E(2), €(3), ... is random. (Chaitin in fact has writtcn a prograrn
producing F. The output is a 200-page long equation with about 17000 unknowns).

This is a really subtIe matheluatical construction, using arl10ng other tools
the Davis-Putnam-Robinson-Matiyasevich presentation of recursively enumcrable
sets. The epistemologically important point is the discovery that randomness can
be defined without any recourse to physical reality (the definition is then justified
by checking that all the standard propertics of "physical" randomness are present)
in such a way that thc necessity to Inake an infinite scarch to solve a pararllctric
series of problenIs leads to the technically random answers.

Same people find it difficult to iInagine that a rigidly detennined discipline likc
elernentary arithmetic rllay producc such phcnomcna. Notice that what is callecl
II chaos" Mandelbrot-style is a considerably less sophisticated rnodel of randonl
behavior.
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Ontological proof

( *1970)

Feb. 10. 1970
P( r;; ) rp is positive tor r.; e P).

Aziom 1. P(c;.).P(1jJ) ~ P(rp.1jJ).l

A:tiom 2. P(ip:) V P( ....c;).2

Definition 1. G(z) == (i.P)[P(Ip) :> ~(z)J (God)

Definition 2. lp &S. z == (1/J)[ltI(z) :> N(y)[cp(U) :> 1/J(y)lJ. (Essence of z)3

p :>.v q = N(p:> q). Necessity

Aziom 3. P(cp) ~ NP(cp)
-P(cp) ~~N-P(cp)

because it follows from the nature of the propeny.

Theorem. G(z):> GEss.z.

Definition.. E(z) E! (cp) (cp Ess z :J N(3z) cp(z)J. (DecesB8lY Exiatence)

Aziom 4. P(E).

Theorem. G(z) ~ N(=v)G(lI),
hence (3%)G(z) :> N(3y)G(lJ);
hence M(3z)G(z):> M N(3t!)G(lI). (M = poaibility)

M(3z)G(z) :J N(3y)G(y).

M(3%)G(%) meaua the system of all positive properties is compatible. 2

This ja true becauae of:
Aziom 5. P(cp).CP:J.v 1p ::> P(1/J), which implies

. {z = % is positive
z :;. z is DegMive.

1And ror &DY number 0; .nmmencl•.

2Exc.iuaiWl or.
J ."ny two taI:I:lCe oi % ..,.~ equivolcnt.

-Gödel aumbentd two diHeNft\ axioms with the numeral "'2-. Thl. double nu.mbe:rinl'
wal maiDtaU1ed in the pri.nted venlon (ouad in Sobtd 1987. We bave reuu.mbe:nd. bere
in onift tO simplify relerence to the axioms.
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