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1 Introduction

In [10] (1879) Markoff proved a celebrated theorem about Diophantine ap
proximation. For areal number 0 and (rational) integers p, q let

V( 8) = inf{c : je - piql < clq2 for infinitely many q}.

Then there exists a discrete set of values Vi, the so-called A1arkoff speetrU1Tl"
decreasing to 1/3, with 1/3 as unique cluster point, such that jf v(e) > 1/3
then v(e) equals one of the Vi'

The Markoff spectrum is related to the positive infimum of indefinite
quadra-tic fonns. Namely, let

f(X, Y) = aX2 +bXY + cy2, D(f) = b2 - 4ac > 0,

and let
fL(f) = inf{lf(m, n)1 : (rn, n) E Z x Z \ (0, O)}.

If fL(f)1 JD(f) > 1/3, then p(/)IJD(f) is in the ?\1arkoff spectrum. In this
case f is equivalent to a form with integer coefficients and such a form is
called a Markoff form.

In [11] (1880) Markoff also showed that the nU111bers Vi can be calculated
by the integer solutions of the Diophantine equation



A positive integer z appearing in a solution is called a Alurkaff number and
z/J9z2 - 4 is in the Markoff speetrum.

Markoff proved these results using the theory of continued fraetions, see
also Dickson [6] (1930). Frobenius [7] (1913) opened the way for a proof in
the context of indefinite quadratic forms which was conlpleted later, see in
particular Cassels [2] (1959).

The theory of the Markoff spectrUlTI got a new impetus with its interpre
tation in the context of hyperbolie ge0111etry, see Cohn [3] (1955), [4] (1971),
Lehner/Sheingorn [9] (1984), Haas [8] (1986) anel in partieular the surveys
[13] (1993) anel Cusick/Flahive [5] (1989). See also SehInidt/Sheingorn [14]
for a reeent contribution.

In this eontext, Riemann surfaces of constant negative eurvature -1 anel
their c10sed geodesics are considered. To be ITIOrC precise I introduce same
notation. Let H be the hyperbolic plane (the upper half plane). Let r(N) be
the principal congruence subgroup of the modular group of level N. Then
we have the following theorem of Lehner/Sheingorn [9]. Let 'lL be a simple
(without self interseetion) closed geodesic of the Riemann surface H/r(3).
Then there exists a Nlarkoff number z such that

3z = 2cosh(L(u)/4)

where L(u) denotes the length of u. Conversely, if z is a Markoff number
then there exists a simple closed geodesic u on H/r(3) such that

3z = 2cosh(L(u)/4).

One proof of this result uses the fact that sinlple closed geodesics in H/r(3)
are in a large distance from the cusps where the distance has to be defined
in an appropriate way.

In this paper I give some new geometrie interpretations in the theory of
the Markoff spectrum. A measure for thc distancc of a closecl geodesie of a
Riemann surface 1\1 to the nearest eusp of lVf is introduced which corresponds
exaetly to the Markoff forms giving thus a geometrie interpretation of these
forms. This measure can be used for all closed geodesics. But of particular
interest is its application to the systoles (the shortest closed geodesie) of the
surfaces H/r(N). In [15] I gave a method for calculating the number of sys
toles of H/r(N). Thereby, systoles are classified with respcct to the measure
introduced above. In [15] this measure was called the degree of a systole. lt
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turns out that the systoles in H/f(iV) with a. high degree with rcspect to
N (which means that they are far away [rom all cusps) correspond exactly
to (integer) multiples of the simple closecl geodesics of H/f(3). So, instead
of simple closed geodesics of H/r(3) in the thcorenl abovc, one can consider
systoles of H/f(N), N = 3,4,5, .... This shows that the Markoff spectrum
is not only related to r(3), hut to all principaJ congruence suhgroups f( N).
Actually, there is a relation to even lllore subgroups of the modular group
since the definition of the degree of a systole can be extended to them.

Conversely, the theory of the Markoff spectruln gives ncw results concern
ing the number of systoles of H/f(N). I shall classify all systoles ef degree
~ in H/r(N), N = 3,4, ... , with ~/N 2:: 1/3.

The paper is organized as fellows. In sectien 2 thc measure for the systoles
in H/f(N) is explained. In section 3 the results in the context of the theory
of the Markoff spectrum are given. I also noticc thc relation to the so-called
uniqueness conjecture and give some new results in this context. In section
4 some generalizations are treated.

2 Systoles on H/r(N)
Definition (i) A sur/ace M is aRiemann surface of constant negative curva
ture -1. If M has non-empty houndary, then this sholIld consist of a finite
number of disjoint components which are simple closed geodesics. They are
called boundary geodesics.
(ii) In order to silnplify to notation I shall sonletitnes say that the cusps
of a surface Mare closed geodesics of length zero. Consequently, they are
also treated as components of the boundary cf M anel thcy are also called
bounelary geodesics.
(iii) H denotes thc upper half plane.
(iv) A Fuchsian g1'OUp is a discrete snbgroup of

SL(2, R) ~ {[ ~ ~] Ia, b, c, dER, ad - bc = 1} .

(v) Let / E SL(2, R). Then tr(,) is the trace of /.

The following result is weH known.
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Theorem 1 (i) A sur/ace M can be written as Ai} = H/r /01' a Fuchsian

group r.
(ii) Let, E [', Itr(,)1 > 2. Then At contains a corresponding closed geodesic
u such thai /01' an integer n

Itr(,)1 = 2eosh(nL(u)/2)

where L(u) is the lengih of u. 0

Definition (i) A closed geodesie U of a surfaee fliJ = H/r is in this paper
eonsidered as having no orientation anel as prilnitive (we only go around it
onee; equivalently, the eorresponding , E r is not apower of another element
in r).
(ii) I denote by tr(u) the quantity 2 eosh( L(u) 12).
(iii) To u eorresponels thc union of the conjugaey classes of an element I E r
and of its inverse (sjnee our dosed geodesies have no orientation). I shall say
that an element of this extended eonjugacy dass corresponds to u.
(iv) A systole of a surface M is a shortest closed inner geodesic of M where
"inner" lneans that it is not a boundary geodesic.

Remark 1 Let u be a closed inner geoclcsic in a surface M. Assume that u
is not simple. [n this case, if we take u as a point set, then u has a subset Vi

whieh is homotopic to a closed geodesie v =J 11. V is shorter than Vi and henee
shorter than u. lf M is not a pair of pants (see the following definition),
then v' can be chosen such that v is an inner gcodesic of A1. It follows that
a systole of M is always simple jf M is not a pair of pants.

Definition A pair of pants is a surfaee 111 of genus 0 with three boundary
eonlponents which are simple closed geodesics 01' cusps (a sphere with three
holes, 01' two holes and one puncture, or one hole and two puntures, 01' three
puncures; hereby the holes are simple closed geodesics in the hyperbolic
metrie).

For a proof of the following two results see for example Buser {I].

Proposition 1 Let M be a pair of panis with boundary geodesics a, b, c.
Then ihe fundamental g1'OUp 0/ M is a free group of two gene1'ators. The
generators A and B can be chosen such thaI- they correspond to a and bJ

respectively, and such that AB corresponrl to c. 0
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Lemnla 1 Let 1Vf be a pai7' 0/ pants with boundary geodesics a, b, c. Then
ihere exists a unique common orthogonal t between a and b. I/ the length 0/
a and bare fixed and the length 0/ c varies rand is finite), then L(e) grows if
and only if L(t) grows. 0

Remark 2 Let j\;f be a pair of pants with boundary geodesics a, b, e and let
t be the cotnmon orthogonal between a and b. If L(a) and L(b) are fixed
and L(c) varies (and is finite), then Lemma 1 indicates that the distance
between a and b cau qualitatively be Ineasureel by the length of c. This is
of particular interest if a is a cusp since then the length of t is infinite anel
gives 110 information while the length of c remains a free parameter.

Definition Let N > 2 be an integer. Let

where

S L(2, Z) = {[ ~ ~] Ia, b, c, dEZ, ad - bc = 1} .

Iremark that f(N) has no elliptic elelnents and that H/r'(JV) is a surface
with cusps. If, E f(N), then tr(,) _ ±2 mod (N 2

) as it is easy to see. The
following result is an immediate consequence.

Lemma 2 The systoles 0/ Hjf(1V) have trace 1V2
- 2. Every non-trivial

element, E C(N) with tr(,) = 2 COr1'csponds to a cusp and eve7'y, E r(N),
wilh ltr(,) I= l\T2 - 2 to a systole. 0

Lemnla 3 Let lt be a systole in Hjf(N) and let U E r(lV) corrcspond to u.
Let V E f(N) c07Tespond to a cusp v l:n Hjf(N). Let

u = [ 1 +aN bN ]
eN 1 +dN

d \1 _ [ 1 + a' N b' N ]
an - c'N 1 - a'N .

Then
tl'(UV) = 2 + N 2 [(2a + N)a' + eb' + be' - 1].
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Proof. By Lemma 2 we have d = -a- P·l. The lelnn1a follows by a calculation.
o

Definition (i) Let U cor1'espond to a systole and V to a. cusp in H/r(N).
Let

U = [ 1 +af\l bN ] I V = [ 1 +a'N b' N ]
cN 1 - aN - N 2 alle c'N 1 - a' N .

Then I shall write U = U(a, b, c) anel V = V(([', b', c').
(ii) For U and V as above define

6.(U, V) = 1(2a + N)a' + ch' + bcl

(iii) For a systole 1l in HI r(N) define

.6.(u) = Inin{~(U, V) : U corresponds to u, V cor1'esponds to a cusp} .

.6.(u) is called the degree of u.

Len1n1a 4 F01' the calculation 0/ the degree oJ a systole u in H/r(N) it is
sufficient to conside1' elements V = V (a', b', c') corresponding to a cusp such
that a', b', c' have no common factor bigger than 1.

Proof. If v is a COlnmon factor of a', b', c', then l,V = W( (L' IV, 6'Iv', c' Iv) also
corresponds to a cusp in H/r(N). The Ienlma now follows by the definition
of .6.(u). 0

Proposition 2 Let u be a systole in HI r( N) and let U = U(a, b, c) C01,e

spond to u. Then

.6.(u) = min{lcm2
- (2a + N)mn - bn2

1 ; (111., n) E Z x Z \ (0, O)}.

Proof. Let S correspond to u and T correspond to a cusp in HIr(N) such
that .6.(S, T) = .6.(u). Then the1'e exists an elenlent WESL(2, Z) such that
U = WSW- 1 01' U = WS- 1W- 1• Since by definition .6.(S, T) = .6.(S-I, T)
we can asslune that U = WSW-1

• Let V = l'VTW- 1
. Then V corresponds

to a cusp in H/r(N) (by Lemma 2) and .6.(U, \I) = .6.(S, T) = ~(1l) which
shows that for thc calculation of the degree of 1l it is sufficient to consider U.
By Lelnma 4 i t is sufficient to consieler V = V(a' , b', c') co1'responding to a
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cusp such that a' , 6', c' have no common factar. Since thc detcrminant of V
is 1, we have

a'2 = -b'e'

which implies that Ib'l and le'l are squares. Thcrefore, wc can set

b' = ß2,e' = -'"'?,a' = -ß,

where ß and f are integers. I notice that the signs can be choosen in this
way since /),(5, T) = /),(5, T- 1

).

Conversely, take integers sand -t, not both zero. V' = V'( -st, S2, -t2 )

then corresponds to a cusp in H/r(lV) by Lemlna 2. The proposition follows.
o

Renlark 3 The degree of a systole corresponds to the distance to the nearest
cusp if this distance is measured as indicated in Ren1ark 2. This is so since by
Proposition 1 the element U corresponding to a systole 11, anel the element V
corresponding to a cusp in H/r(N) gencratc thc fundalnental group of a pair
of pants where the third boundary geodesic has trace 2 + N 2(b.(U, V) - 1).

3 Markoff forms and systoles

Definition (i) A Markoff number is a positive integer z which appears in an
integer solution of the Diophantine equation

x2 + y2 + Z2 = 3xyz. (1)

A solution of (1) in integers (x, y, z) with 0 < x ~ y ~ z is called a Markoff
lr·ip/e.
(iii) Let f(X, Y) = aX2 +bXY + cy2 bc a quadratic fonn with discrimant
D(f) = b2

- 4ae > O. Let

J-1.(f) = inf{lf(m, n)1 : (112, n) E Z x Z \ (0, O)}.

lf /1(/)/JD(f) > 1/3 anel if the coefficients a, b, C of f are integers with no
non-trivial COIllffion factar, then f is called a Markoff fonn.
(iv) Two quatratic forms f(X, Y) = aX2 +bXY+cy2 anel g(X, Y) = a'X2 +
b'XY + c'y2 are equiva/ent if there exists a matrix

Z = [~ ~], sv - tu = ±l
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such that g(sX +tY, uX +vY) = f(X, Y).

Remark 4 Let (x, y, z) be a Markoff tripie. Then x, y, z are mutually
co-prime, therefore there exists an integer q, 0 ::; q ::; z/2 such that qx 
y mod (z) or -qx == y mod (z). Moreover, by (1) there exists an integer r

such that q2 + 1 = rz.

Theorem 2 Let f(X, Y) = aX2 + bXY + cy2 be a quadratic form with

discrimant D(f) > 0 and J-l(f) /JD(f) > 1/3. Then f is equivalent to a
multiple 0/ a MarkoiJ form. Moreove1'J there exists a Markoff tripie (x, y, z)
wilh q, r defined as in Remark 4 such that j(X, Y) is a muUiple of the form

g(X, Y) = zx2 - (3z - 2q)XY - (3q - 1,)y2

andJ--l(g)=z.

Proof. See for exalnple Cassels [2]. 0

Theorem 3 Let u be a simple closed geodesic of H/f(3). Then there exists
a /\1arkoff nU1nbe'r z such that

3z = 2cosh{L(u)/4)

where L(u) denotes the length of u. Convel'selYJ if z is a Markoff number
then there exisls a simple closed geodesic'u in H/r(3) such that

3z = 2cosh(L(u)j4).

MoreoverJ if

is a rnatrix corresponding to a closed geodesie u in H/r(3) J I,hen 'lL is sirnple
ij and only ij

,X2 - (0: - 8)XY - ßy2

is a multiple of a Markoff form.

Proof. See Lehner/Sheingorn [9]. 0

Now we can fornllliate the corresponding results in thc context of systoles.
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3z(3q - r) ]
.1. +3qz - 9z2

Theorem 4 Let (x, y, z) be a Markoff tripIe. Let q and r be defined as in
Re1nark 4. Let N = 3z, a = -q, b = 3q - r, C = z. Then

[1+aN bf\l ] [1 - 3qz
U = U(a,b,c) = cN 1- aN - ly2 = 3z2

cor1'esponds to a systole in Hjr(3z) oJ degree z.

Proof. The determinant of U(a,b,c) is

1 - N 2 (a 2 +aN +bc + 1) = 1 - N 2
(q2 - 3qz + (3k - r)z +1) = 1

since q2 + 1 = 1'Z. It follows by Lemma 2 that U corresponds to a systole u
in Hjr(3z). By Proposition 2 the degree of1.l is

ß(u) = min{lc1n2
- (2a + N)mn - bn2

J : (111., n) E Z x Z \ (0, O)}.

This is the same as

6(u) = min{lzm2
- (3z - 2q)nl,n - (3q - 1')n2

1 : (1n, n) E Z x Z \ (0, O)}.

By Theorem 2 this is a multiple of a ~1arkoff forn1 and 6(u) = z. 0

Corollary 1 Let 1.l be onc 01 the sysLoles described in Theorem 4. Then
tkere exists a si'mple closed geodesie u' in Hjr(3) 01 t.he same length as u.
Mo'reover, u' is lohe i1nage 01 u under a covering map and the same 1natrices
correspond to holh u and u'.

Proof. By Theorem 4, u lies in Hjr(lY) with N = 3z für a Markoff number
z. Since f(3z) is anormal subgroup of r(3), it follows that Hjf(N) is a
cover of Hjf(3). By Theorem 3 the image u' of u under this covering map is
simple. 0

Renlark 5 Let u' be a simple closed geodesie in Hjf(3). As remarked in
thc introduction, u' is characterized by the fact that it is far away from the
cusps, a property which is of course shared by its cover, the systole U of the
sanle length in some Hjf(3z). We said that in this paper cIosed geodesics are
always primitive. But let as drop this restriction for a InomeIlt and consider
multiples of the closed geodesie u'. Thcy share of course thc same property
as u' since they are as far away [rom the cusps as u'. They also have loeal
covers of the saIne length whieh are systoles in SOlDe Hjr(N) as we shall see
in thc next theorem. In fact, all systoles in Hjf( lV) of a high degree with
respect to N are obtained in this way.
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Theoren1 5 Let Syst( f( N), N ~ 3) be lhe set oJ aU length8 oJ systoles u in
a H/f(N) with ö'(u)/N ~ 1/3. LetS(r(3)) x Z+ be the set ofaillengths of
the si7nple dosed geodesies of H/r(3) 7nultiplicd by a positive integer. Then
Syst(r(iV), N ~ 3) and S(f(3)) x Z+ (l1'e isomorphie and the isomorphism
is given by identijieation of eorresponding matriccs.

Proof. (i) Remark that
ö,(u) ö,(u)

----;:=::::::::::::::::=>--
VN2 - 4 !'l

and that
n 1

< -, n E Z+,
v(3n+1)2-4 3

so it is DO restriction if we rcplace thc condition ö'(u)/VN2 - 4 > 1/3 by
the condition ö,(u) / N 2: 1/3, and vice versa.

(ii) For every Markoff tri pIe (x, y, z) define q and 7' as in Remark 4 and
let U z be the simple closed geodesie in H/r(3) with 3z = 2cosh(L(uz)/4) as
it is possible by Theorem 3. Let

U
z

= [ 1 - 3qz 3z(3q - r) ] = [a z bz ]

3z2 1 +3qz - gz2 Cz dz

be a corresponding matrix as in Theoreln 4. Then an n-fold multiple of thc
closed geodesic U z (compare Remark 5) corresponels to U;. We have to show
that U: corresponds to a systole u(n) in an appropriate H/r(N) anel that
b.(u(n))/N ~ 1/3.

Uz is conjugate in S L(2, R) to a matrix

[
exp(sz) 0 ]

o exp( -sz)

and 2 cash Sz = t1'(Uz ) = gz2 - 2. Therefore 2 cosh(sz/2) = 3z. Then

t1'(U:) = 2cosh(nsz ) = (2cosh(nsz/2))2 - 2.

lt follows that Nz (n) = 2 cosh(nsz /2) is an integer anel U: corresponds to a
systole u(n) in H/r(Nz(n)).

Let
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Then it is easy to see that there exists an integer t( 11.) such that t(n)bz = bz ( n),
t(n)cz = cz(n), and t(n)(az - dz) = az(n) - dz(n) which implies that the
quadratic form

is a Inultiple of the form

which iInplies by Theorem 4 that it is a Illultiple of a Markoff form and hence
!J.(u(n))/Nz(n) 2: 1/3.

(iii) Conversely, let u be a systole in H/r(JV) with !J.(u)/N 2: 1/3. Let
U = U(a, b, c) correspond to u. Then

f(X, Y) = cX2
- (2a + f\l)XY - by2

is a multiple of a fonn g(X, Y) by Theorem 4 whcre

g(X, Y) = zX2
- (3z - 2q)XY - (3q - r»y2

.

Here z is a Markoff number and q anel rare defined as in Remark 4. We
therefore have

Hence (N, c) is a solution of Pell's equation

2 9z2
- 4 2

P - 2 q = 4.
z

(2)

The sInallest solution in positive integers of (2) is (3z, z) as it is easy to see.
Tnstead of 3z we can writc 2 cosh(sz/2) a.s we have seen in (ii). All other
positive integer solutions of (2) have thc fOrIn (Pn, Qn), n a positive integer,
with

Pn = 2 cosh(nsz/2)

and
T _ 2z sinh(nsz /2)

n - -v----;::::9z=2=-=4::---'
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see for example [12], pg. 93, for this fact. This in1plies that N equals one
of the Nz(n) in (ii) and u is the corresponding u(n) in (ii). This proves the
theoreln. 0

Remark 6 Let (x, y, z) be a Markoff tripIe. The so-called uniqueness con
jecture says that a Markoff tripIe is already detennined by z. I shall give an
equivalent formulation in the context of systoles.

Definition Let u be a closed geodesie in Hjr'(N). The extended isometry
class of u contains a closed geodesie v of Hjf(N) if this surfaee has a (possibly
orientation reversing) automorphism </> with </>( u) = v.

Relnark that systoles in the same extended iSOlnetry dass have the same
degree since the degree is a geometrie Ineasure, eompare Remark 3.

Theorem 6 The uniqueness conjeetu'1'e is equivalent to the conjecture that
for no N, the surface Hjf(N) has more than one extended isometry class of
fvfarkoiJ systoles where a MarkoiJ systole u is charaeterized by tJ.(u)jN 2::
1j3.

Proof. By Theorem 5, we already have a complete list of N such that Hjf(N)
contains a Markoff systole. Moreover, we can restrict to thc Markoff systoles
of "minimal" length, appearing in Theorem 4, which have the same length as
the simple dosed geodesics in Hjf(3). I further relnark that it follows by an
appropriate proof of Theorem 3 that the uniqueness conjecture is equivalent
to the conjecture that if two simple dosed geodesics in H/r(3) have the same
length, then they are in the same extended isolnetry dass. Since the surfaces
Hjf(3z), z a Markoff number, are covers of Hjf(3) (eompare Corollary 1),
the theorem follows. 0

I also notice the following results whieh I did not find in thc literature.

Lelnma 5 Let (x, y, z) and (x', y', z') be two A1aTkojJ t7'iples and let q and q'
be defined as in Re'mark 4. 1f z = z' and q = q', then x = x' and y = y'.

PTOOf. By Theorem 4, (x, y, z) and q define a Inatrix U = U( a, b, c) cor
responding to a systole in Hjf(3z) with a = -q and c = z. So, for both
tripies, this matrix is the same which i01plies that the corresponding systoles
are (trivialy) in the same extended iSOInetry dass. Hence Theorem 6 implies
the lemma. 0
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Theorem 7 Lel (x, y, z) be a Markoff tripIe. Lel

3z - ";5z2 - 4
(=----

2

and let
Q(z) = {n E Z: (~n ~ z/2,n2

- -1 mod (z)}.

I/ Q( z) has only one element, then (x, y, z) is det.e'rmined by z.

Proof. Let

U = [ 1 - 3qz 3z(3q - r) ]
3z2 1 +3qz - 9z2

be defined as in Theorem 4. Then det(U) = 1 implies that

q2 _ 3qz + 1 + (3q - 1')Z = 0

Let

(3)

f(X, Y) = zX2 - (-2q + 3z)XY - (3q - r)y2.

Then 3q-r 2: z since 1/(0,1)] 2: z. It follows by (3) that q2-3qz+1+z2 ~ 0
which implies q 2: ( and therefore q E Q(z). The theoreln now follows by
Lemlna 5. 0

Remark 7 However there cxist integcrs m such that Q(1n) has more than
one element, for exalnple Q(1130) = {437, 467}, (( = 431.6), or Q(2005) =
{782, 822}, (( = 765.8).

Corollary 2 A Ma1'koff tripie (x, y, z) is detennined by z i/ z is apower 0/
a przme.

Proof. For p = 2 the claim is obvious since no Markoff nnmber is a multiple
of 4, so assume that z = pn, p #- 2 a prill1e, such that Q(z) has two different
elements a and b. Then a2

- b2 0 fTIod (z) by definition and hence a +
b = 0 fiod (p) and a - b == 0 mod (p) which givcs a = 0 lTIod (p) which is
impossible. 0
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4 Generalizations

The definition of the degree of a systole can be easily generalized to other
closed geodesics of H/ r(N) as follows. Let 1l be a closed geodesic and U a
corresponding matrix. Then

u _ [ 1 +aN bN ]
- cN 1 - aN - kN2

for a non-zero integer k. We can thus write U = Uk(a, b, c). Then the degree
of u is defined as (compare Proposition 2)

~(u) = rnin{cm2
- (2a + kN)1nn - bn2

: (rn, n) E Z X Z \ (0, O)}.

So, instead of systoles we could work with closed geodesics with a fixed k
(which detennines the length of the geodesic). In the case of systoles however,
the situation is particular nice.

The definition of the degree of a systole (and of other closcd geodesics) can
be applied for other subgroups of S L(2, Z) than r( lV).

Definition For N a positive integer let r 1(N) and r 2( N) be the subgroups
of S L(2, Z) containing the rnatrices of the form

[
1 +caN bN ]

1 + dA'

and

[
1 +2aN 2bN ]

2c 1 +2dN '

respectively, where a, b, c, d are integers.

Relnark that this notation is slightly different from thc notation in [15}.

Relnark 8 We have seen in Theorem 3 that the Mal'koff nlllnbel's are closely
related to the simple closed geodesics of Hjr'(3). 'I'here is another weIl known
surface with the same relation, namely the modular one punctured torus.
This surface M has genus 1 anel Olle puncture anel it has three different
systoles (this determines the surface). M can be written as H/r' where r' is
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Let

a subgroup of SL(2, Z). 1'he lengths of the sin1plc closed gcodesics of Mare
just half of the lengths of the simple closed geodcsics of Hjr(3).

Concerning the systoles we have a silnilar situation. Instead of a systole
U of degree z in Hjr(3z), z a Markoff ntunber, we can use a systole v which
has half of the length of u in another congruence suhgroup of S L(2, Z), hut
which has the same degree. Moreover, u has a corresponding matrix which
is the square of a (certain) corresponding matrix of v.

Theorem 8 Let z be a Markoff numbe1'. Let Pol = 3z +2. Then there exists
a systole of dcgree z in Hjr I (N) if z is odd and in Hjr2 (lVj4) if z is even.
Moreove1' tr(u) = z.

Proof. Let (x, y, z) be a Markoff tripIe anel let q and r be defined as in
Rernark 4. Assume that z is odd. 1'hel1 z and 3z + 2 are coprime, so that
there exists an integer t with

q + tz == 0 mod (3z + 2).

Let b = -1' - 2qt - 3q - t2 z - 3tz. Let

V = [ -q - :z - 3z q :tz ].
Then 'I E r I (3z + 2) anel Itr(\i) I = 3z. I t is easy to see that the systoles in
H/f I (N) have trace N - 2, so U corresponds to a systole v.

Let

Then

xnwx-n= [a+n, * ]., [) -n,
u = [ 1 - 3qz 3z(3q - 1') ] E r (3 z )

3z2 1 +3qz - 9z2

as in Theorem 4. Then XnUX-n also corresponds to a systole U of degree z

in H/r(3z). Set n = -t - 3. Then a calculation gives

15



which proves that the degree of the systole v cquals the degree of 1t and
2L(v) = L(u).

Ir z is even, then the proof is similar and is lcft to the reader (one has to
use the fact that z =2 mod 8 which is easy to see.) 0
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