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Summary: Hofer and Salamon [H-5] proved the Arnold conjecture in the
case that the symplectic manifold is monotone (due to Floer), or Cl = 0,
or the minimal Chern number N is at least half of the dimension of M.
In this note, we shall prove the conjecture in the case of weakly monotone
symplectic manifolds, the notion of which was introduced. by McDuff under
the name of "semi-positiven

• Floer and Hofer [F-H] considered "relative"
Floer homology groups. We define the modified. Floer homology group by the
direct limit of the inverse limit of relative Floer homology groups H F.,(iJ).

To compute this group, we compare the relative complex C.,(i,;) with the
relative Floer complex of f(i,j) . /, which is independent of the choice of
f( i, j) sufficiently smalI. Chain homomorphisms between them are obtained
as in [H·S] and compatible with natural homomorphisms among relative Floer
homology groups.

1 Introduction.

A diffeomorphism 4J on a symplectic manifold (M, w) is called an exact sym­
plectomorphism, if tP is the time 1 map of a time-dependent Hamiltonian
vector field. A fixed point p is said to be non-degenerate, if 1 is not an eigen·
value of the differential d4J : TpM -+ TpM. From now on, we assume that M
is compact. Arnold conjectured that the number of fixed points of an exact
symplectomorphism is estimated below by the SUfi of the Betti numbers of
M, if all the fixed points are non-degenerate. It is well-known that there is a
one-to-one correspondence between fixed points of tP and l·periodic solutions
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of a certain Hamiltonian system ([C-Z]). The periodic Hamiltonian equation
is the Euler-Lagrange equation of the action functional on (a certain covering
space of) the loop space of M (see §2). Floer developed an analogue of Morse
theory for the action functinal, which is now called Floer homology theory.

A symplectic structure w determines an almost cornplex structure unique
up to homotopy and we denote by Ct = Ct(M) the first Chern dass of TM.
(M,w) is called monotone, if there exists .-\ > 0 such that Ct(A) = .-\w(A)
for any 2-homology dass represented by a continuous mapping from the
2-sphere. Floer [F] proved he Arnold conjecture for monotone symplectic
manifolds. Hofer and Salamon [H-S] r~fined the argument and proved the
Arnold conjecture in the following ca.ses:
(i) (M, w) is monotone.
(ii) Cl = O.
(iii) The minimal Chern number is at least 1/2 . dirn M.
Here the minimal Chern number is the least non-negative integer among
cI(A) for A E Im{1r~(M) -+ H~(M; Z)}. (M,w) is called weakly monotone
(or semi-positive [MD]), if w(A) :$ 0 for any A E 1l'"~(M) with 3-n ::; Cl (A) :$
O. Actually Hofer and Salamon defined Floer homology groups for periodic
Hamiltonian systems on weakly monotone symplectic manifolds. However
it is necessary for computation of Floer homology groups that all the con­
necting orbits of relative index less than 2 should be handled simultaneously.
The weak-compactness argument requires the upper bound of the energy
functional and they avoid this difficulty by assuming one of the conditions
above.

In this note, we introduce a filtration on the Floer complex and modify
the Floer homology group such that we have the upper bound of the energy
functional for each stage, which yields the following

Theorem 1.1 Let (M,w) be a weakly monotone symplectic mani/old, and <P

an exact symplectomorphism. 11 all the fixed points ol<p are non-degenerate,
the number 0/ fixed points 0/ <p is bounded below by L bp(M; Z/2), where
bp(Mj Z/2) denotes the p-th Betti number 0/ M with Z/2-coeJficient.

If dirn M ::; 6, (M, w) ia automatically weakly monotone and the Arnold
conjecture holds. We shall show this result by estimating the number of
contractible periodic solutions of a periodic Ha.miltonian system whose time
1 map is <p.

2



2 Preliminaries.

We recall known facts on Floer homology of periodic Hamiltonian systems.
Details are found in [F],[H-S],[S·Z].

Let (M, w) be a closed symplectic manifold and H : M X SI --+ R a
smooth function, called a periodic Hamiltonian function. P(H) denotes the
set of all contractible loops satisfying

(2.1) x(t) +XH(t, x(t)) = °
where XH is the Hamiltonian vector field of H. If 7l'"~(M) = 0, the equation
(2.1) is the Euler·Lagrange equation of the action functional aH : .c(M) --+ R
on the space of contractible loops in M defined as fo11ows:

(2.2)

where u is the bounding disk of x, i.e. Ul8D1 = X. Ir 7l'"~(M) i: 0, the first term
of the right-hand-side of (2.2) is not well-defined. However it is well-defined
over the covering space l(M) of ['(M) corresponding to the homomorphism
tP,., : 1r2(M) --+ R. After [H-S], we introouce the space !(M) as follows:

l(M) = {(x, u)lx E .c(M), u : D~ --+ M such that x = U18D1} / "-J

{

x=y
(x,u) "-J (y,v) <=> fD1u·w = fD1 v·w

fD1 U·CI = fD1V·CI

The covering transformation group of l(M) --+ .c(M) is

r = 1r~(M)
ker tPCl n ker tP,.,

Geometrically, 1r~(M) acts on !(M) by connected sum of 2·spheres with tbe
bounding disko Aw denotes the completion of tbe group ring of r over a field
Z/2 with respect to the weight homomorphism tPlIJ : 7l'"~(M) --+ R, Le. tbe set
of a11 formal sums :LA ..\A • 0A satisfying that

{A E rj..\A f:. 0, tPlIJ(A) < C} is finite for any cER.
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We introduce the grading of 6A as 2ct(A). Fix an almost complex structure
J calibrated by w and consider the space M([x-, u-], [x+, u+]) of the tra­
jectories of the "(minus) gradient flow" of aH from [x-, u-] to [x+, u+], i.e.
solutions of the following:

(2.3)

(2.4)

(2.5)

ou ou
:Fu = os + J(u) &t +VH(t,u) = 0

This equation ia invariant under translations in s-variable and R acts on
M([x-, u-], [x+, u+]) freely unless [x-, u-] = [x+, u+]. The linearized opera­
tor of :F at u is

(2.6)
ou

Fu~ = V.~ + J(u)Vte +VeJ(u) öt +VeVH(t, u).

I.

P(H) denotes tbe inverse image of 1'(H) by the projection l(M) -+ r.(M),
then there is the Conley-Zender index JJ : P(H) -+ Z (see: [H-S],[S·Z]), which
satisfies index Fu = p([x-, u-]) - p([x+, u+]) for [x±, u±] E 1'(H). The
Sard-Smale theorem [Sm] yields that M([x-, u-], [x+, u+]) ia a manifold of
dimension JJ([x-, u-n - p([x+, u+]) for a generic pair (J, H). The energy of
a solution u of (2.3),(2.4), (2.5) ia defined as followa:

1 00 t I0 I~ I0 1

2

(2.7) E(u) = 2L>o l (a: + ;: +XH(t, u) )dtds.

For u E M(i, y), we have

An 2n-dimensional symplectic manifold (M, w) is called weakly monotone
if it satisfies w(A) ~ 0 for any A E '1r2(M) with 3 - n ~ c)(A) < 0 [H-S].
This condition yields the non-existence of J -holomorphic spheres of negative
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(2.10)

ehern number for a generic almost complex structure J. Ck denotes the Z/2­
vector space consisting of E~(z)=k e(x) . X where the coefficients e(x) satisfy
the following finiteness condition.

{x 1 ~(x) f; 0, and aH(x) > c} is a finite set for any cER.

The boundary operator is defined as follows:

8i: = E n2(x, y) . y,
~(~)=~(i)-l

where n2(x, y) is the modulo 2-reduction of the cardinality of M(x, y)jR.
(C., 8) is called the Floer chain complex associated to (H, J). Hofer and Sala­
mon showed 82 = 0 for weakly monotone symplectic manifolds [H-S,Theorem
5.1]. C. = ffikCk is a graded module over a graded algebra Aw and 8 is
Aw-linear. Hence the homology group HF.(H, J) of (C., 8) is a graded Aw ­

module. Moreover they proved the following

Theorem 2.8 ([H-S,Theorem 5.2)) For generic pairs (Ha, Ja), (HP, JP)}
there exists a natural Aw-module homomorphism

which preserves the grading by the Conley-Zehnder index. If (H'Y, J'Y) is any
other such pair then

HyrP 0 HFßa = Hyra , H Faa = id.

In particular} H FßCt is a Aw-module isomorphism.

For the proof of this theorem, they considered s-depending analogue of the
equation (2.3). For generic pairs (HCt, JCt) and (HP, JP), we choose a path
{(H., J.)ls E R} which satisfies

(2.9) (Hlo Ja) = (HCt , Ja) for s < -R, (H., J.) = (HP, Jß) for s > +R

for same positive real number R. Let z= (z, u-) E P(HCt) aod W = (w, u+) E
P(Hß). M(z, Wj {Ha}) denotes the space of solutions of the following

8u Ou
88 + J.(u) 8t + V Ha(t, u) = 0
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(2.11 )

(2.12)

lim u(s, t) = z(t), lim u(s, t) = w(t)
a--oo .-+00

We define the energy of u : R x SI -t M satisfying the asymptotic condition
(2.11) as follows:

(2.13)
~ 211+00 [I au 8u

E{H,}(U) = '2 -00 Jo (as + 8t +XH,(t, u) )dtds

If u ie a solution of (2.10), the energy of u is finite if and only if u satisfies the
asymptotic condition (2.11) for same z and W. We also have the following
estimate of the energy.

(2.14) IE{H,}(U) - {aHo(z) - aHJ'(w)}1 ~ 1+00

max laa H.(t,X)!dS
-00 zEM,tES1 s

Remark that the condition (2.9) assures that the last term in the right hand
eide of (2.14) is finite. The argument for (2.3) yields that M(z, Wj {H.}) is
a manifold of dimension JlHo(Z) - JlHJ'(W) for a generic path {H.}. Since
we have a uniform bound of the energy, the weak compa.ctness holds. In
particular, M(z,Wj {Ha}) is a finite set if JlHo(Z) = JlHJ'(W). We define a
A",·module homomorphism ql3a : C.(Ha, Ja) -t C.(Hß, Jß) by

rjla(Z) = E m~(z, W) . tU,
JJHO (i)=JJ HJ' (tD)

where m~(z,w) is tbe modulo 2-reduction of tbe cardinality of M(z, w; {H.}).
Investigation on the end of I-dimensional components of M (z, w; {Ha} ) yields
that qlia is a A",-linear chain homomorphism. The induced homornorphism
H Fßa between homology groups does not depend on the choice of generic
paths satisfying (2.9), since we have a uniform bound of the energy, hence
the weak-compactness of solutions of (2.10) ooee we fix a homotopy, betweeo
two given generic paths, through paths satisfying (2.9) for sorne fixed R.

Let (H!I), J!I)) aod (H!~), J!~)) be paths satisfying

(H~I), J!I)) = (Ha, Ja) for s < -R, (H!I), J!I)) = (Hß, Jß) for s > +R
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(H!'l) , J1'l») = (HP, JP) for s < -R, (H!'l) , J!2») = (H'Y, J'Y) for s > +R

for some R. To show H yro = H yrß 0 H FfJo, we have to consider the
following family of paths.

s <-.-\
-.-\ ~s ~.-\

s>.-\

For the above family of paths, it is easy to see tbat tbe last term of (2.14)
is uniformly bounded with respect to .-\ > O. Tbe gluing argument relates
M( {H!l)}), M({H!'l)}) and M({H.,A}) for a sufficiently large.-\, which yields
HyrfJ 0 HFfJo = HF"Y°.

Hofer and Salamon computed the Floer homology for a generic pair (H, J)
under certain conditions.

Theorem 2.15 ([H-S,Theorem 6.1]) Assume either that (M,w) is mono­
tone or Cl C71''l(M)) = 0 or the minimal Chern number is N ~ n. Then for a
generic pair (HO, JO), there exists a natural homomorphism

If (Hß, Jß) is any other such pair, then H Fß 0 H Fßo = H Fa.

3 Filtered Floer complex.

In this section, we assume that the symplectic form w has integral periods,
i.e. [w] E Im{H2(M; Z) -4 H'l(M; R)}. For a fixed Hamiltonian H, we can
choose a sequence of real numbers {rj : j E Z} satisfying
(i) Tj -t ±oo aB j -t ±oo,
(ii) {Tj} does not contain critical values of aH.

C.,j:= {Le(X)' x E C. I{(x) = 0 if aH(x) > Tj} is a subcomplex of the
Floer complex C•. We define the "relative homology" of the pair (C.,j, C.,i)
(i < j), i.e. the homology group of C.,(i';) = C.,j/C.,i:

H F.,(i';) = H.(C.,j/C.,i, 8).

We have the following commutative diagram:
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! ! !
~ H F.,(k-l,l-l) ~ H F.,(Je,I-l) ~ H F.,(k+l,l-l) -+

! ! !
(3.1) -+ H F.,(k-l,l) -+ H F.,(k,l)

~~')
H F.,(k+l,l) --+

! ! '1(11,,) !
--+ H F.,(k-l,l+l) -+ H F.,(Je,I+l) --+ H F.,(k+l,l+l) --+

! ! !

We define the modified Floer homology group as follows:

fiF.:= l~ ~ HF.,(k,l).
1-+00 k_-oo

It is easy to see

Lemma 3.2 For a generic pair (H, J)J fiF.(H, J) does not depend on the
choice 0/ {rj}.

As a module, Aw is the completion of the group ring Z/2[f] with respect
to the following filtration:

Z/2[f](iJ) := {L: AA . DA E Z/2[f] I AA = 0 for <Pw(A) > -i or <Pw(A) < -j}
Aer

Aw = li!!t lim z/2[r](i,;).
;-+00 i--oo

For a generic Hamiltonian function H, P(H) is a finite set. Since [w] is an
integral class, we can choose the set {rj} = {~ +f Ij E Z} for some positive
integer q and some f ;:: O. The r -action on (C.(H, J), 8) satisfies the following

which induces Aw - action on fiF.(H, J). Thus we get

Lemma 3.3 fiF.(H, J) has a natural Aw·module structure.

The following theorem is an analogue of Theorem (2.8).
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Theorem 3.4 For generic pairs (Ha, Ja) and (HP, JP), there exists a Aw ­

module isomorphism

H FPa : iiF.(Ha, Ja) -+ iiF.(Hß, JP)

presering the Conley-Zehnder index. I/ (H"'f, J"'f) is any other such pair then

H yvP 0 H FPa = Hyva , H Faa = id.

Proof. Let {(H(u), J(u» lu E [0, In be a path connecting (Ha, Ja) and
(HP, Jß). Subdivide [0,1] into [SI., Sk+1] such that there exists {r;k)} and
f > 0 satisfying

(i) r;k> -+ ±oo as j -+ ±oo.

(ii) f-neighborhood of {r}k)} contains 00 critical values of aH, for 8 =
81.,81.+1'

1..11:+1 I8 I(iii) max -8H.(t, x) ds < f.
." zEM,tES l 8

This is passible, since [w] is an integral dass and 'P(H(u» is finite far u E
[0,1] (see Lemma (3.5) below). Let {(H., J.) I 8 E R} be a generic path
satisfying (2.9) with (Ha,Ja) = .(H.",J.,,) and (HP,JP) = (H."+l,JII"+l)'
We shall consider the equation (2.10) with aHa (z), aH"(W) E [r!k), rY>]. Let
{Ul} be a sequence of solutions. Since we have a uniform upper bound for
the energy functional (2.14), {Ul} contains a subsequence which converges
to a solution of (2.10) with i' E P(HOt) and tlJ' E 'P(Hß), and possibly
solutions of (2.3) with H = Ha, E', E" E 1'(Ha) or H = HP, ÜJ', ÜJ" E

1'(HP). The condition (iii) implies that aHo(E'), aHa(Z"), aH"(ÜJ'), aH"(ÜJ") E
[r~k), rY>]. Hence the proof of Theorem (2.8) yields that tjJ3a induces a chain
mapping C.,(iJ)(Ha, JOt) -+ C.,(iJ)(HP, Jß). In a similar way, we can show
that q,tJOt does not depend on the choice of {BII , JII } and that tjJ30t induces an
isomorphism between "relative" Floer homology groups. It is also easy to see
that homomorphisms ~(i,j), \lf{i,j) in the diagram (3.1) are compatible with
the isomorphism obtaioed above. Moreover, the actioos of Aw are preserved
under the induced isomorphism between modified Floer homology groups
- - P PHF.(Ha,Ja) and HF.(H ,J ). 0
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Lemma 3.5 For a generic Hamiltonian functions Ha and HP, there is a
path {H (s)} connecting them such that P (H (s )) is finite for all s.

Proof. Let 1l be the Banach spare of periodic Hamiltonian functions (see
[H-S]) and {H,,} a generic path in 1i connecting Ha and Hß. The implicit
function theorem and the Sard·Smale theorem [Sm] yield that X( {H.}) =
{(x,s) E l.(M) X [0, 1] I x E P(H.)} is aI-dimensional manifold with bound­
ary P(Ho) x {o} U P(Hd x {I}.

More precisely, let e denotes the Banach space bundle over Wl ,2-com­

pletion of l.(M), which we shall also denote by l.(M) with fiber &::: ­
L 2f(x·TM). We define a Fredholm mapping F : l.(M) X R --. E by

F(x, s) = x+XH.(t, x(t)).

Then the linearization DF of F is

DF(e, (7) = V i e+ VeXH.(t, x(t)) +UX-t-H,(t, x(t))

for (e, (7) E T(r,,,)(.c(M) x R). For a generic path {H.}, DF is surjective,
this fact and the index computation imply that X( {B,}) is al-dimensional
manifold.

Let p : X --. [0,1] be the projection to the second factor. To prove Lemma
(3.5), it suffices to show that dp : T X --. T([O, 1]) is transversal to the zero
section of T([O, I)) outside of the zero section of T X. Namely we have to get
the transversality on I-jets. We define :F : l.(M) X R x 1i --. E by

:F(x, s, H) = :i; +XH.+H(t, x(t)).

Restricting the linearization of :F to T(l.(M) x R) x 11, we get
:F' : T(l.(M) x R) x 1i --. TE as folIows:

:F'(x, s, e, 17, H) = (:F(l) (x, s, e, 17, H), :F(2)(X, s, e, u, H)),

where
:F(l)(X, s, e, 17, H) = x+ XH.+H(t, x(t)),

:F(2){X, s, e, 17, H) = V i;e +VeXH.+H(t, x(t)) +UX-I;H. (t, x{t))

for (e, (7) E T(r,,,)(l.(M) X R), H E 1-l. The linearization D:F' of :F' is given
by

D:F'(a, b, c, T, h) = (D:F(l)(a, b, c, T, h), D:F(2){a, b, c, T, h))
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where

and

D:F('J)(a, b, c, T, h) = v tC +VcXH.+H(t, X(t)) +T XI;H,(t, x(t))

+VeXh(t, X(t)) + bVeX-I;H.(t, x(t))

+buX~HJt,x(t)) +VaVeXH.+H(t, X(t))

+UVaX~H (t, X(t)).
8, •

P4 : T(r.(M) X R) X 11. -+ R denotes the projection to the fourth fa.ctor. For
H sufficiently elose to 0, (a, b) 1-+ V i;a +VaXH,+H(t, x(t)) +bXi;H,(t, x(t))
is surjective. Because of the term VeX,,(t, x(t)) and the unique continuation
theorem, (c,h) 1-+ Vi;c + VcXH,+H(t,X(t)) + VeXh(t,x(t)) is surjective.
Hence, :F' X P" is transversal to the zero section at points (x, s, e, 0, H) E
T(r.(M) xR) x1i satisfying e-1= o. By the Sard-Smale theorem, {(x, s, e, 0) E
T(r.(M) x R) I x E P(H. + H), e E T(x .•)X({Ha + H}), e -1= O} ia a 1­
dimensional manifold for a generic H. In particular, C = {(x, s) E r.(M) xR I
x E P(H. +H),p".(e) = 0 for an eE T(x.•)X({Ha +H})} is a O-dimensional
submanifold of X(H. + H). By the assumption on HOt and HP, C does
not intersect the boundary of X( {Ha + H}) for H sufficiently elose to o.
Moreover, there is a path , : [0, 1] -+ ?-l such that ,(s) = 0 near s = 0,
,(8) = H near s = 1, X({,+Hoor ß}) = {(x,s) IxE P(,(s)+Hoor ß)} is
a manifold, and the projection to the second factor X( I + Ho or ß)} -+ [0,1]
is a submersion. Then we define H(s) = HO + ,(f-1 . s) for 0 :5 s :5 f,

H(s) = H(l-'Jt:)-l(.-t:) +H for f :5 s ~ 1- f, and H(s) = HP +,(f-1(1 - s))
for 1 - f :5 s ~ 1. This satisfies the property of Lemma (3.5). 0

4 Computation of the modified Floer homol­
ogy group.

In [F],[H-S], they compare the Floer complex of a generic pair (H, J) with
the Morse complex of a Morse function. An almost complex structure J
calibrated by w determines a Riemannian metric on M. For a Morse function
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1 : M -+ R whose gradient flow is of Morse-Smale type, C.(/) denotes the
Morse eomplex associated to 1 [Sa].

Under the assumption that (M,w) is monotone or cl(M)(1I":l(M)) = 0, or
the minimal Chern number N ~ n, they proved that HF.(/, J) is isomorphie
to H.+n(C.(/)) @ Aw ~ H.+n(Mj Z/2) @ A~ as graded A~ ·modules. Here
H.(Mj Z/2) 18l Aw is the tensor produet of graded modules. This result and
Theorem(2.8) yield Theorem(2.l5).

In this section, we compute the modified Floer homology group of (H, J)
without the assumption coneerning the minimal Chern number.

First of all, we show the following

Lemma 4.1 For a fixed C > 0, there exists a positive integer jo(C) such
that lor x, Y E 1'(/) satislying aJ(x) - aJ(Y) < C, J-lJ(x) - IlJ(Y) ~ 1, all
solutions 0/ the lollowing equation with f = 1/j are independent 01 t-variable
tor j > jo(C) and a generic almost complex structure J.

(4.2)

(4.3)

au auas +J (u) Bt + f • (V f) (u) = 0

!im u(s, t) = x(t), lim u(s, t) = y(t)_--00 _-+00

l.

Proo/. First of all, we show that Cl (u) < O. Suppose that Cl (u) ~ O. Let
indJ(x) denote the index of the Hessian of 1 at a eritical point x. Then we
have IlJ(x) - JJJ(Y) = indJ(x) - indJ(y) + 2CI(U). If u is somewhere injeetive,
M(x, y) ia a manifold of dimension J.lJ(x) - J-lJ(Y) around u for a generie
almost eomplex structure J. On the other hand, there ia a 2-parameter family
of solutions uO',p(s, t) = u(s + (7, t + p) in M(x, y). Henee IlJ(x) - J.lJ(Y) =
dimM(x, y) ~ 2. If u is not somewhere injective but depending on t-variable,
there exist a positive interger n and a solution v of the equation (4.2), (4.3)
replacing Eby E/n such that u(s, t) = v(ns, nt). The above argument shows
that indJ(x) - indJ(y) + 2Cl(V) ~ 2. Since CI(U) = n . Cl(V) and CI(U) ~ 0,
J.lJ(x)-J.lJ(Y) = indJ (x)-indJ (y)+ 2cl(U) ~ 2. It eontradicts the assumption
that IlJ(x) - IlJ(Y) ~ 1.

From now on, we assume that Cl (u) < O. If the statement is false, we ean
ehoose a sequence of integers j, diverging to +00 and a sequenee of solutions
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u, of (4.2), (4.3) with f = I/i,. Since the energy of u, is uniformly bounded
by C, u, converges, up to J -holomorphic bubbles, to a solution U(X) of (4.2)
with f = 0, i.e. J-holomorphic mapping and U(X) extends to a J-holomorphic
mapping from the Riemann sphere to M. U OO may be a constant mapping.
If f =f 0, only constant solutions of (4.2) are constant mappings to critical
points of /. On the other hand, every constant mapping is a solution of
(4.2) with t = 0. For real numbers C1" VJ' denotes the reparametrization
(s, t) -+ (s + 0'" t) of the infinite cylinder R x SI. The above argument
yields that u, 0 VJ' converges to a J-holomorphic sphere up to J-holomorphic
bubbles. Let {Sj} be tbe set of all possible J.holomorphic spheres appearing
as a. limit of u, 0 ,p, or bubbles.

Claim 1. {Sj} is not an empty set.

Pro%/ Claim 1. Let Dbe the injectivity radius of M and v : R X SI -+ M
a smooth mapping satisfying the following asymptotic condition.

lim v{s, t) = x, lim v(s, t) = y.
• --00 6-+00

We also denote by v the extension of v to S2 -+ M. If v satisfies Iv.{s, t){~)1 ~

8 for all (s, t) E R x SI, v is homologous to zero. Since Cl{Uj) < 0,
there exist (Sj, t j ) such that IUj.(sj, tj)(:t)1 > 8. We reparametrize Uj by
uj(s, t) = Uj(s + Sj, t + tj), then uj is still a solution of (4.2) with f = I/i,
and satisfies

(4.4)

Since we have a uniform energy bound, uj converges to a J-holomorphic
sphere possibly with J-holomorphic bubbles, which are also J-holomorphic
spheres. The condition (4.4) assures that at least one of the J-holomorphic
spheres above is not a constant mapping.

Claim 2. {Sj} is a finite set.

Pro%/ Claim f. Let {Ti} be J-holomorphic spheres obtained aB limits
of solutions of (4.2) with t = 1/j except finitely many points in R X SI
and {Ti" 1 1 ~ 1 ~ d(i)} J-holomorphic bubbles attached to Ti. For any
c > 0, we can take i large enough such that there exist real numbers ~,Li

(i = 1,'" ,k) such that [~, Li] (i = 1,'" ,k) are mutually disjoint and
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Uj([~, Li] X S·) ia dose to Ti and possibly some bubbles Ti" enough to
satisfy

_1 /,Li fa. 8u·:2 8u . 1:2 d(i)
_J + t;uJ + -}" .X J dtds 2: E(Ti) +E E(Ti,,) - e.

2 Ri 0 8s ur. '=1

Hence
k d(i)

E(uj) 2: E{E(Ti) + EE(Ti ,,)} - ke,
i=1 1=.

if {Ti} contains at least k J-holomorphic spheres. On tbe other hand, we
have E(uj) ~ C and E(S) = Jsw 2: 1, because [w] is an integral dass. Since
e is arbitrary, the cardinality of {Si} = {Ti, Ti,,} is bounded by C.

Remark. Hofer and Salamon showed the estimate E(S) > n for some
positive constant 1i without assuming [w] ia an integral dass.

Claim 3. c.(u,) = Lj c.(Sj)'

Pro%/ Claim 9. Let U be a regular neighborhood of U{Ti U (UTi ,,)}. For
a fixed c > 0, there exists j and sequence of real numbers -00 = Lo < R l <
LI < R'J < L'J < ... < Rk < L k < Rk+l = +00, such that

Im Uj([Rt, Ld x S·) c U,

and

(4.5) %t Uj(s, t) < e if s < [L" RoH] for Borne i = 0,' .. k.

We choose e < 6, then UjIRi' UjlLi bound disks Di, Dt in 6·balls, which
are unique up to bomotopy. It is easy to see that Ci = Di U Uj([R., Li] x
S·) U Dt is homologous to Ti U (UTi ,,). Tbe condition (4.5) assures that
Dt-l U Uj([Li-t,~] x SI) U Di is homologous to zero. Therefore we get

Since Cl(Ut) < 0, one of the J-bolomorphic spheres Sj has negative ehern
number. However the weak monotonicity excludes tbis possibility for a
generic almost complex structure J. This is a contradiction. 0
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We choose a C2-small Morse funetion 1 satisfying -1/8 < I(x) < 1/8
and {rj} = {j + 1/21j E Z}. Let {(H., J.)IO :5 s < I} be a generie path
from (I, J) to a generie pair (H}, JI ), whieh is suffieiently smaIl in Cl-sense.
More precisely, the set of eritieal values of aH. is disjoint from {j + 1/2 +6 1

j E Z, -1/16 < 6 < 1/16} and

l:sH.(t,X)I< 116

for an x E M and s E [0,1]. We prove the following

Theorem 4.6 iiF.(H}, J.) ~ H.+n(M; Z/2) @ Aw'

Proof. Let X, Y E 1'(/) satisfy k + 1/2 < aj(x), aj(j}) < 1+ 1/2 and
I1j(x) - JJj(Y) :5 1. By Lemma (4.1), there exists a positive integer jo(k, I)
such that all solutions of the equation (4.2) with € = 1/j are independent
of t-variable if j > jo(k, I). In particular, the equation (4.2) has no nou­
trivial solutions if fJj(x) = fJj(Y), and the ehain eomplex C.,(k,I)(1/j. I,J)
is isomorphie to C.+n(f) 0 Z/2[f](k,I). The argument in the proof of The­
orem (3.4) yields a chain mapping tP(k,l) : C.,(k,I)(H, J) -+ C.+n ,(k,I)(1/i .
/, J) ~ C.+n(f) ~ Z/2[f](k,I), which induces an isomorphism between homol­
ogy groups. Moreover the argument in the proof of Lemma (4.1) yields that
there exists an integer j.(k, I) ~ io(k, I) such that all the solutions of the
equation below

au 8u
ßs +J(u) 8t + 1,0(s)(Vf)(u) =°

lim u(s, t) = x E P(f), lim u(s, t) = Y E P(f).--00 .-00
(y, u-~u) ~ (y, u+)

are t-independent, if fJ(x) = JJ(ij), where x = (x, u-), y = (y, u+), and a
function 1,0(s) on R satisfies

1
11,0(s) 1:5 . (k I)'JI ,

and
1 1

1,0(s) = -:- for s < - R, 1,0(s) = -:- for s > R,
J. 12
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for some R > O. t-independent solutions of the above equation are reparametrized
paths of the gradient trajectory of f. Since we assume that the gradient
fiow ia of Morse-Smale type, gradient trajectories are constant patha at crit­
ical points of f, if the Morse indices at end points coincide. This obser­
vation implies that the induced homomorphiem <P(k,l). between homology
groups does not depend on the choice of j > it(k, I). Therefore homo­
morphisms {<p(k,I).} commute with homomorphisms ~(k,l), \I1(k,l) in the di-

agram (3.1). Thus {<p(,=,l).} induces a homomorphism <P : iiF.(H, J) -+

H.+n(Mj Z/2) ~ Aw • Since {<P(k,l).} are isomorphisms, <P is an isomorphism.
By the construction, it is easy to see that <P is Ac,.,-linear. 0

Theorem (3.4) and Theorem (4.6) yield

Theorem 4.7 Let (M, w) be a weakly monotone symplectic mani/old such
that [w] E Im(H'l(Mj Z) -+ H'l(M, R)). Then tor a generic pair (H, J),

iiF.(H, J) ~ H.+n(M; Z/2) ~ Ac,.,.

Theorem (1.1) ie equivalent to the following

Corollary 4.8 Let (M,w) be a weakly monotone symplectic mani/old and
H a Hamiltonian /unction such that all periodic solutions 0/ (B.l) are non­
degenerate. The number 0/ periodic solutions 0/ (2.1) is at least L p bp(M; Z/2),
where bp(Mj Z/2) is the p-th Z/2-Betti number 0/ M.

Proof. If [w] is an integral dass, the conclusion is a direct consequence of
Theorem (4.7). The same conclusion holde if [w] is in H'l(M; Q). We shall
show that the general case is reduced to this case. Let {Xi} be a11 periodic
solutions of (2.1), Ni ( f) an f-neighborhood of the orbit of Xi, and <Pi a cut off
function, i.e. <Pi = 1 on Ni (f/2) and <Pi = 0 outside of Ni(3€/4). fJt,'" ,TJq
denote closed 2-forms on M representing generators of H 1 (Mj R). For a
sufficiently smaIl f, Ni(f) has the same homotopy type as the orbit of Xi,

hence H'l(Ni(f); R) = O. Thus fJj INi(()= dgj,i for sorne function gj,i on Ni(f).
TJj = TJj - d(Li <Pi' gj,i) is cohomologous to TJj, with support in M - UiNi( f/2).
It is easy to see that there exists u > 0, such that the equation (2.1) has
exactly same nurnber of solutions for syrnplectic forms w' = w +L ak • TJk if
lakl < u. Since H'l(Mj Q) is dense in H'l(Mj R), there exist real numbers
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0k such that w' E H'J(M; Q) and lakl < u. Moreover, there are no J­
holomorphic spheres for a generic J calibrated by w' and tamed by w. This
condition is the only one we use in the proof of Theorem (4.7). Therefore we
get tbe desired estimate. 0

Since tbe weak monotonicity is automatic in dimension 2, 4 and 6, we get

Corollary 4.9 Let (M,w) be a closed symplectic mani/old 0/ dimension 2,4
or 6. lf all periodic solutions 0/ (~.1) are non-degenerate, the number 0/
periodic solutions is at least E bp(M; Z/2).
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