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Let X be an n-dimensional projective submanifold of an a-dimensional

Abelian variety A. Since the holomorphic cotangent bundle, T: , of A is
trivial the surjection:
* * .
T > TX -0 :

AlX

induces a classifying map:

I's X+ Gr(n,a)

where Gr(n,a) denotes the Grassmannian of n dimensional quotients of ¢,
This mapping T is called the Gauss mapping. In this paper we bound the degree

of T under the assumption that the normal bundle, Nx » of X in A is ample
in the sense of Grothendieck [Hzl This condition is satisfied by a result of

Hartshorne [HI] if dim X =1 and X generates A as a group or if A 1is simple.

(1.3.2) Theorem. Let X Aand A be as abové then

degr<.]£.£&]-

cod X

where e(X) is the topological Euler characteristic of X.

This theorem is stated and proved for immersed manifolds,

/7;[/1/:0 P3-7%



Examples (1.4.1), (1.4.2), (1.4.3) show the theorem is sharp and that it

is false without the ampleness hypothesis.

- The proof is based on a simple consequence, Theorem (0.1), of the result [G + 1

of Gaffney and Lazarsfeld on ramification loci of branched coverings.

We follow the now sﬁandard practice of not distinguishing between vector

bundles and their locally free sheaves of germs of holomorphic sections.
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§0. A Result on Branched Covers of IP,

'fhe following consequence of the result of Gaffney and Lazarsfeld [G + L]

on ramification loci is the key step in the proof of our theorem.

(0.1) Theorem. Let £ : W+ P® be a holomorphic finite to one surjection from
] —

an irreducible normal variety W onto ]Pn . Assume that the degree of f is

k< n -1. There is no surjective holomorphic map from W onto a positive dimen-

sional variety of dimension < a - k.

Proof. Assume there was such a surjective map g : W> Y where dim Y < n - k,
Then dim f(g—l(y)) for any y € Y is at least k dimensional. The set R 1

of points of W where all sheets come together is of dimension at least n - k + 1

by [G + L, Theorem 1]. Therefore

dim £(g7 (y)) 0 £ER_) > 1.

Let C be a connected positive dimensional component of the intersection,

Associated to f : W P° we have the usual holomorphic map:

£, P® - y(®

which for a general point y of " assigns the unordered set {f-l(y)} in

the k~th symmetric product of X with itself. (It is easy to see that t'k is

everywhere well defined by using local charts on W(k) and the Riemann extensiom

theorem for maps into bounded domains,) We have by the last paragraph that fk(C)

is a point. This implies that fk(IPn) is a point since there are no holomorphic



maps with positive dimensional fibres from P*  to any analytic space. This
implies that f is the constant map which is absurd since it was assumed to be

surjective,

§1. The

Degree of the Gauss Mapping

(1.0) Let ¢ : X+ A be a holomorphic immersion of an n-dimensicnal projective

manifold X into an a-dimensional Abelian variety A. We have the natural map:

1.a,1) ¢*Tz - T§<+ 0

Since TZ is trivial this defines the classifying map, called the Gauss map

' : X~ Gr(n,a)

where Gr(n,a) is the Grassmannian of n dimensional quotients of .

(1.1) Theorem. deg I' is a factor of all Chern numbers of X,

Proof, Since T is the classifying map for (1.0.1) we conclude that TI*Q = T;

where Q is the universal quotient bundle on Gr(n,a). Therefore any Chern

number of T; is deg I' times the corresponding Chern number of Q.

¢

¢; if ¢ is an embedding it is the usual conormal bundle of X in A. The

(1.2) The cokernel of (1.0,1) is denoted N* and called the conormal bundle of

dual N¢ of N; is the normal bundle of ¢,



By 1P(N¢) we mean (Nj; - X)/C*, There is a tautological line bundle

£ on ]P(N¢) such that direct image, w,(§), is isomorphic to N

®

T _IP(N¢) + X 1is the projection induced from the projection of N¢ onto X.

where

We will be interested in maps, ¢ , such that N¢ is ample, By defini-

tion [HZ) this means that there is an embedding ¢ : P(N,) - IPC and some k > 0

$

such that \b*OIP 1) = Ek' A basic theorem of Hartshorne [Hll gives a condition
[ 4

for ampleness of normal bundles of submanifolds of Abelian varieties. It still

holds with no changes of proof for immersions.

(1.2,1) Theorem. (Hartshorne: [H.l}). Let ¢ : X+ A be a holomorphic immersion

as in (1.0). N¢ is ample if either:

a) A 1is a simple Abelian variety, i.e. A has no proper Abelian submanifold,

b) dimX =1 and ¢(X) generates A aé'anroug.

(1.3) Associated to the image of the a~dimensional vector space I‘(TA) into

P(N¢) under:

*) 0+TX+¢*TA+N¢+O

we have a holomorphic mapping

£: PO > p3l

Here we identify sections of Nq> ‘;lith sections of &£ to get our mép.



It is not hard to see [cf. H + M] that we can identify lPa_l with

(P(TX) - 0)/¢* in such a way that

-1
€2

T : £ + X

£y

maps f-l(y) biholomorphically onto:
xex| y) = 0}
It follows from the definition of T that given a point x ¢ X and a

for n e I§,

*%) n(x) = 0 if and only if n is zero on (P‘I(F(x)) = 0,

Assume from here on that N¢ is ample. This is equivalent to the map £

above being finite to one. TFrom **) we trivially see that I is finite to onme.
We refer the reader to the pretty, recent result of Z. Ran [R1 for a proof of the

finite to oneness of T whenever X is not fibred by tori.

Let Z denote the normalization of TI'(X) and let T' : X - Z denote the

map induced by T. Let

1.
X

® : P(N,) + P

® z

be the map given by (f,m o ")

The fibre degree of T and TI' is the same. Denote it by deg T.
The fibre degree of f 1is Ie(X)I, the absolute value of the topological Euler

characteristic e(X) of X. This follows from the usual identification of

e (N[X] = <‘1)n°n(T§) [X1 with e(X) and the fact that f 4is finite to one.



By **) and T being finite to one we see that A = <I>(]P(N¢)) maps finite to

one onto P! under the map f induced by the projection of 2*! x z onto

a-1

Pl Let f£': A" > Y

denote the map f induced from the normalization

A' of- A onto ]Pa_l . Its degree by the last paragraph is

le(®) ]

deg T .

Let g denote the map from A' onto Z induced by the projection

]Pa‘l x Z onto Z. Since ' 1is finite to one we see that dim Z = dim X =n

and therefore that the fibres of g have dimension a - n.
The following is now an immediate consequence of (0.1) with W = A',

(1.3.1) Theorem. Let ¢ : X+ A be a holomorphic immersion of a connected

projective manifold X into an Abelian variety A. Assume that the normal

bundle N¢ of ¢ is ample, e.g. assume that A is simple or that X is a curve

and ¢(X) generates A. Then the degree of the Gauss mapping associated to

$ + X+ A is bounded by:

I-e(X) l
cod $(X) °

(1.4) Let us give some examples showing that the above is sharp.

(1.4.1) Let C be a smooth curve of genus g > 1. Let ¢ : C -+ Jac(C) be
the Albanese embedding of C into its Jacobian. Since ¢(C) generates Jac(C),

NC is ample. Our theorem predicts that the degree of the Gauss mapping is < 2,

The Gauss mapping is easily checked to be the canonical mapping of C to ]Pg-1



given by P(KC). This is an embedding unless C is hyperelliptic in which case

i

it is 2 to one. For small codimension the result is also sharp. In codimension
2 it predicts degree < g - 1; in [N + S] will be found curves C of various

genera immersed in complex 3-tori and having Gauss map of degree precisely g - l.

(1.4.2) Let X be a smooth ample divisor on a connected Abelian variety, A.

Since N, = [Al, our theorem applies and predicts that the degree is at most
|e(X)| to one. It is exactly this since ]P(NX) =X and themap f : IP(NX) 3

is then the Gauss mapping.

r
(1.4.3) Let X= 1 Xi where Xi is a smooth comnected ample divisor on a
i=1

connected Abelian variety A, for each i =1, ... ,r. Then X is a submanifold

i

T
it Ai under the diagonal embedding. The Gauss mapping of X is easily seen
i=1

to have degree dl’ . ,dr where di is the degree of the Gauss mapping of

X, in Ay for 1i=1, ....,r. By (1.4.2) we see this degree is |e(X)].

Therefore some condition such as ampleness is needed to bound the degree of the

Guass mapping.

One weak but curious consequence of the same sort of reasoning is the

following.

a.s Corollary. Let E be ample on a projective manifold X. Assﬁme that

E 1is spanned by global sections. Then the inverse of the total Chern class of

E evaluated on X is > rk E,




Proof. Let f : P(E) > Pde+rkE—1 be the map from IP(E) to projective space

by a minimal spanning set of sections of E. The ampleness of E implies f is
a finite to one surjection. As in the proof of our theorem, the inverse of the

total Chern class of E evaluated on X is the degree of f. Use Theorem (0.1).

0
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