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ARITHMETIC DENSITY

MAURICIO GARAY

Abstract. We define arithmetic classes as a subset of Rn consist-
ing of vectors which are not better approximated by the integer
lattice than a given sequence. We give measure estimates for such
sets.

1. Introduction

In the study of dynamical systems, one frequently consider deforma-
tions over completely discontinuous subsets. For instance, the KAM
theorem asserts the existence of invariant tori parametrised by dio-
phantine frequencies in hamiltonian systems. Such sets are usually
themselves countable union of closed subsets [1, 9, 13]. Taken indepen-
dently, some of these might have locally zero measure and even contain
isolated points. The purpose of this note is to give density estimates in
order to overcome this difficulty.

Our starting point is the observation that the Dani-Kleinbock-Margulis
relating diophantine approximation to flows of discrete subgroups – via
the Schmidt correspondance – can be adapted to this situation. In some
respects, the case we consider is simpler and more explicit than that
encountered originally by these authors [4, 5, 8, 12, 14]. For instance, it
is sufficient to consider one parameter families for flows and the norm
of the corresponding subgroups can be explicitly computed (Lemma 3
below).

2. Statement of the theorem

Let us now define the subsets of Rn that we wish to consider. Denote
by (·, ·) the euclidean scalar product in Rn. For any vector α ∈ Rn, we
define the sequence σ(α) by :

σ(α)k := min{|(α, i)| : i ∈ Zn \ {0}, ‖i‖ ≤ 2k}.

Definition 1. The arithmetical class in Rn associated to a real decreas-
ing sequence a = (ak) is the set

C(a) := {α ∈ Rn : σ(α)k ≥ ak}.

Arithmetical classes are closed in Rn. By Dirichlet’s theorem, for any
C > 0, τ ≤ n, the arithmetical class in Rn associated to the sequence
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2 MAURICIO GARAY

(C2−τn) is empty [11] (see also [3]). On the other extreme, for τ > n, the
union of arithmetical classes associated to the sequence (C2−τn) over
different values of C defines a set of full measure. Similar dichotomy
holds for submanifolds of Rn [7].

If instead of a countable union, we fix one arithmetical class then
it is a closed subset. Therefore it cannot be of full measure unless
it is equal to Rn itself. Our theorem states that it is nevertheless of
positive measure near some points and that this property is preserved
by mappings which are not flat at the given point.

For α ∈ Rn, we denote by B(α, r) the ball centred at α with radius r.
Recall that the density of a measurable subset K ⊂ Rn at a point α is
the limit (if it exists) :

lim
r−→0

Vol(K ∩B(α, r))

Vol(B(α, r))
.

The density of a measurable subset is equal to 1 at almost all of its
point [10]. For instance, sets of zero Lebesgue measure have density
equal to one at almost all points and, in fact, equal to zero at all points.

If u = (uk) and v = (vk) are two real sequences, we denote by uv
their product (uv)k = ukvk.

Theorem 1. Let a = (ak), ρ = (ρk), ρk < 1 be two real positive se-
quences and

f = (f1, . . . , fn) : Rd −→ Rn, f(0) 6= 0

a C l-mapping. If the l-th order Taylor expansion of f is not constant
and if ∑

k≥0

(2(k+1)n+1√ρk) < +∞

then the density of the set f−1(C(ρa)) is equal to 1 at each point of
f−1(C(a)).

3. Functions of class (C, τ).

For a subset K ⊂ Rd and a function

f : K −→ R

we define
‖f‖K := sup

x∈K
|f(x)|

(which might be infinite) and use the convention 1/0 = +∞. In the
sequel, we denote by U ⊂ Rd an open neighbourhood of the origin.



ARITHMETIC DENSITY 3

Definition 2 ([8]). A map f : U −→ R is of (C, τ)-class if for any
open ball B ⊂ U and any ε > 0, the following estimate holds :

Vol({x ∈ B : |f(x)| ≤ ε}) ≤ C

(
ε

‖f‖B

)τ
Vol(B).

Functions of class (C, τ) define a cone : if f is of (C, τ)-class then so
is λ f for any λ ∈ R.

Lets us denote by x1, x2, . . . , xd the coordinates in Rd. We shall use
multi-index notations

∂β := ∂β1x1∂
β2
x2
. . . ∂βdxd

and put |β| = β1 + β2 + · · ·+ βd.
A compact K ⊂ Rd will be called a hypercube if it is of the type

K := [a1, a1 + δ]× [an, an + δ]× · · · × [ad, ad + δ].

for some real numbers a1, a2, . . . , ad, δ with δ positive. The volume of
such a subset is δd.

Lemma 1 ([8]). Let f : U −→ R be a C l function. Assume that there
exists M,m > 0 such that for any multi-index β with |β| ≤ l, we have :

i) infx∈U ‖∂lxif(x)‖ > m for i = 1, . . . , d ;
ii) supx∈U ‖∂βf(x)‖ < M .

For any hypercube K contained in U , we have

Vol({x ∈ K : |f(x)| ≤ ε}) ≤ C

(
ε

‖f‖K

)1/dl

Vol(K)

with

C := dl(l + 1)

(
M

m
(l + 1)(2ll + 1)

)1/l

.

Corollary 1. Let f : U −→ R be a C l function. Assume that the l-th
order Taylor expansion of f at the origin is not constant. Then there
exist a neighbourhood of the origin and constants C, τ such that the
restriction of f to this neighbourhood is of (C, τ)-class.

Indeed, up to a rotation, we may assume that the Taylor expansion
of f at the origin is of the type

f(x) =
∑
|i|=k

aix
i + o(|x|k), k ≤ l

with ∂ki f(0) 6= 0 for all i = 1, . . . , d.
Choose r sufficiently small so that there exists m,M with

‖∂ki f(x)‖ ≥ m, ∀x ∈ B(0, r),∀i = 1, . . . , d.
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Now, any ball with radius ρ lying inside B(0, r/
√
d) is contained in a

circunscribed hypercube whose sides have length 2ρ, itself contained
inside the ball B(0, r). Thus, the estimate of the previous lemma gives
constants C, τ for which the restriction of f to B(0, r/

√
d) is of (C, τ)

class.

4. The Kleinbock-Margulis theorem

Denote by e1, e2, . . . , en+1 the standard basis of the vector space Rn+1.
For i = (i1, i2, . . . , ik), ij < ij+1, we put

ei := ei1 ∧ ei2 ∧ . . . ∧ eik
and endow the exterior algebra Λ•Rn of a scalar product as follows.
First define the Hodge operator

∗ : ΛpRn −→ Λn−pRn

by the condition
∗u ∧ u = e1 ∧ e2 ∧ . . . ∧ en

and the scalar product in Λ•Rn by

∗u ∧ v = (u, v)e1 ∧ e2 ∧ . . . ∧ en.
This endows the exterior algebra of an euclidean structure for which
the ei’s define an orthonormal basis.

The map
Λ•Rn −→ Λ•Rn, v 7→ −v

defines an action of the group Z/2Z on the exterior algebra Λ•Rn. There
is a well-defined injective map

Γ 7→ u1 ∧ u2 ∧ · · · ∧ ur
which sends a discrete subgroup Γ generated by u1, u2, . . . , ur to the
class u1 ∧ u2 ∧ · · · ∧ ur in the quotient space Λ•Rn/(Z/2Z).

We say that the vector u1 ∧ u2 ∧ · · · ∧ ur represents the discrete
subgroup Γ ⊂ Rn and we define

‖Γ‖ := ‖u1 ∧ u2 ∧ · · · ∧ ur‖

A discrete subgroup is called primitive if it is not a proper subgroup of
a discrete subgroup with the same rank. We denote by Lr the primitive
subgroups of Zr and by L0(Rr,Rn+1) the vector space of rank r linear
mappings from Rr to Rn.

Theorem 2. Let h : Rd ⊃ B(0, 3R) −→ L0(Rr,Rn+1) be such that for
any Γ ∈ Lr the mapping

ψΓ : B(0, 3rR) −→ R, x 7→ ‖h(x)Γ‖
is of (C, τ) class. Choose ρ ≤ 1 such that the inequality

‖ψΓ‖B(0,R) ≥ ρ
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holds for any Γ ∈ Lr. There exists a constant C ′ which depends only
on C, d, r such that

Vol({x ∈ B(0, R) : δ(h(x)Zr) ≤ ε}) ≤ C ′
(
ε

ρ

)τ
Rd

for any ε ≤ ρ.

The value of C ′ is given in the paper of Kleinbock and Margulis who
proved the theorem for the case r = n+ 1 [8, Theorem 5.2]. Theorem 2
is given by Kleinbock and the proof is essentially the same as for
r = n+ 1 [6, Theorem 2.6]. There also exists a more general statement
due to Bernick, Kleinbock and Margulis [2, Theorem 6.2].

5. Discrete subgroups and arithmetic classes

To the vector α ∈ Rn, we associate the discrete subgroup [α] in Rn+1

of rank n defined by

[α] := {(i, (α, i)) ∈ Rn+1 : i ∈ Zn}
where (·, ·) denotes the euclidean scalar product.

Consider the linear map

gt : Rn+1 −→ Rn+1

whose matrix in the standard basis is diagonal with coefficients :

(e−t, e−t, . . . , e−t, et).

Given a discrete subgroup Γ ⊂ Rn+1, we use the notation

δ(Γ) := inf
γ∈Γ
‖γ‖

where ‖ · ‖ denotes the euclidean norm.

Lemma 2. Let i ∈ Zn be such that |(α, i)| ≤ a then

δ(gt[α]) ≤ ε

where ε, t are defined by {
ε =

√
a‖i‖ ;

t = 1
2

log ‖i‖
a

Proof. For any x ∈ Rn and any y ∈ R, we have :

‖(x, y)‖ ≤
√

2 max (‖x‖, |y|) .
Consequently, the estimates |(α, i)| ≤ a gives :

|gt(i, (α, i)| ≤
√

2 max
(
e−t‖i‖, eta

)
= ε

�
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Consider the map

h : Rd −→ L0(Rn,Rn+1), x 7→ [u 7→ e−tu+ et(u, f(x))en+1].

In particular, if Γ is the lattice represented by e1 ∧ e2 ∧ . . . ∧ en, then
h(x)Γ is the discrete group associated to f(x) :

h(x)Γ = [f(x)].

Lemma 3. We have the equality

‖h(x)Γ‖ =
√
e−2rt + ‖f(x)‖2 ‖Γ‖.

Proof. Let u1, . . . , ur be a basis of a primitive subgroup Γ ⊂ Zn. The
subgroup h(x)Γ is represented by the vector

e−rtu1∧u2∧. . .∧ur+
r∑
i=1

(−1)i(ui, f(x))u1∧. . .∧ui−1∧ûi∧ui+1 . . .∧ur∧en+1.

Choose orthonormal vectors b1, . . . , br of Rn which span the r-dimensional
vector space containing Γ and which define the same orientation as
u1, . . . , ur, that is :

u1 ∧ u2 ∧ . . . ∧ ur = ‖Γ‖ b1 ∧ b2 ∧ . . . ∧ br
I assert that

v(x) :=
r∑
i=1

(−1)i(ui, f(x))u1 ∧ . . . ∧ ui−1 ∧ ûi ∧ ui+1 . . . ∧ ur

and

v′(x) := ‖Γ‖
r∑
i=1

(−1)ifi(x)b1 ∧ . . . ∧ bi−1 ∧ b̂i ∧ bi+1 . . . ∧ br

are equal. Indeed for any i = 1, . . . , r, we have

ui ∧ v = (−1)i(ui, f)‖Γ‖ b1 ∧ . . . ∧ br = ui ∧ v′.
This proves the assertion. As the vectors b1, . . . , br are orthonormal, we
have

‖v′(x)‖ = ‖Γ‖ ‖f(x)‖.
This concludes the proof of the lemma. �

Assume that the Taylor series of f at the origin is not constant. In
such a case, Corollary 1 implies that there exist C, τ such that the
restriction of the function

x 7→ 1

‖Γ‖
‖h(x)Γ‖ =

√
e−2rt + ‖f(x)‖2

to an appropriate neighbourhood of the origin is of class (C, τ). As the
(C, τ)-class functions define a cone, the maps

x 7→ ‖h(x)Γ‖
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are also of class (C, τ) for any discrete subgroup Γ. As f(0) 6= 0 and
‖Γ‖ ≥ 1, in a sufficiently small neighbourhood of the origin, these
functions are bounded from below independently on the value of t.
Thus, the lemma shows that the assumptions of the Kleinbock-Margulis
are satisfied, consequently :

Proposition 1. Let

f = (f1, . . . , fn) : B(0, R) −→ Rn, f(0) 6= 0

be a C l-map having a non-constant l-th order Taylor expansion at the
origin. There exist constants C ′, ρ > 0 and such that

Vol({x ∈ B(0, r) : δ([gtf(x)]) ≤ ε}) ≤ C ′
(
ε

ρ

)τ
rd

for r ≤ R and any ε ≤ ρ.

6. Proof of Theorem 1

Denote by [·] the integer value and consider the map

ϕ : Zn −→ N, i 7→ [log2‖i‖] + 1.

For i ∈ Zn, ϕ(i) is the smallest natural number such that i is contained
in the ball of radius 2ϕ(i) centred at origin.

Fix i ∈ Zn and put k := ϕ(i). The set

Mi := {β ∈ Rn : |(β, i)| < ρkak}

is a band of width 2ρkak/‖i‖ and the union over the i’s of the subsets
Mi is the complement of the arithmetic class C(ρa) :

Rn \ C(ρa) =
⋃
i∈Zn

Mi.

0

i

i

a
k

i

a
kk

ρ

r

δ

δ

α

Mi



8 MAURICIO GARAY

Let α be a vector in C(a). Denote by δi the distance from α to the
hyperplane orthogonal to the vector i ∈ Zn. The intersection of the set
Mi with the ball B(α, r) can possibly be non-empty only if

r > δi −
ρkak
‖i‖

.

As α ∈ C(a), we have
|(α, i)| ≥ ak

thus
δi ≥

ak
‖i‖
≥ ak

2k

and therefore
(1− ρk)ak

2k
< r.

As the sequence ρ is summable, there exists an integer N such that

ρk <
1

2
, ∀k ≥ N.

Choose

r < inf

{
(1− ρk)ak

2k
: k ≤ N

}
then

ϕ(i) < N =⇒ Mi ∩B(α, r) = ∅.

This shows that if Mi intersects the ball B(α, r) then the vector
i ∈ Zn belongs to the set

Ir := {i ∈ Zn :
ak

2k+1
< r, k = ϕ(i)}.

Put 
εk :=

√
2k+1akρk ;

tk :=
1

2
log
‖i‖
ak
.

Lemma 2 implies that

f(x) ∈Mi =⇒ δ(gtk [f(x)]) ≤ εk.

Consequently, according to Proposition 1, there exists some constants
C, γ > 0 such that

Vol(B(0, r) ∩ f−1(Mi)) ≤ CεγkV ol(B(0, r)).

As the map
f : Rd −→ Rn

is differentiable, by the mean-value theorem, there exists a constant κ
such that for any sufficiently small r

f(B(0, r)) ⊂ B(α, κr), f(0) = α.
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In particular
f−1(Mi) ∩B(0, r) 6= ∅ =⇒ i ∈ Iκr,

for any sufficiently small r.
This shows that the measure of the complement to f−1(C(ρa)) in

B(0, r) is bounded from above by

C Vol(B(0, r))

(∑
i∈Iκr

√
2ϕ(i)+1aϕ(i)ρϕ(i)

)γ

.

By definition of Iκr, we have :∑
i∈Iκr

√
2ϕ(i)+1aϕ(i)ρϕ(i) < 2

√
r
∑
i∈Iκr

2ϕ(i)√ρϕ(i)

and ∑
i∈Zn

2ϕ(i)√ρϕ(i) =
∑
k≥0

∑
ϕ(i)=k

2ϕ(i)√ρϕ(i).

We have

#{ϕ(i) = k} = #{ϕ(i) ≤ k} −#{ϕ(i) ≤ k − 1} ≤ 2(k+1)n

where the symbol #− stands for the cardinal. This shows that∑
i∈Zn

2ϕ(i)√ρϕ(i) ≤
∑
k≥0

2(k+1)n+k√ρk.

By assumption, the series is in the right hand side is convergent
therefore the sums ∑

i∈Iκr

√
2ϕ(i)+1aϕ(i)ρϕ(i)

goes to 0 as r becomes smaller. This concludes the proof of the theorem.
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