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Abstract

We address the question of when cluster-tilted algebras of Dynkin type E are derived equivalent

and as main result obtain a complete derived equivalence classification. It turns out that two cluster-

tilted algebras of typeE are derived equivalent if and only if their Cartan matrices represent equivalent

bilinear forms over the integers which in turn happens if and only if the two algebras are connected

by a sequence of “good” mutations. For type E6 all details are given in the paper, for types E7 and

E8 we present the results in a concise form from which our findings should easily be verifiable.

1 Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky around 2000 and have enjoyed a remark-
able success story in recent years. They attractively link various areas of mathematics, like combinatorics,
algebraic Lie theory, representation theory, algebraic geometry and integrable systems and have applica-
tions to mathematical physics. In an attempt to ’categorify’ cluster algebras (without coefficients), cluster
categories have been introduced by Buan, Marsh, Reiten, Reineke, Todorov [5]. More precisely, these are
orbit categories of the form CQ = Db(KQ)/τ−1[1] where Q is a quiver without oriented cycles, Db(KQ)
is the bounded derived category of the path algebra KQ (over an algebraically closed field K) and τ and
[1] are the Auslander-Reiten translation and shift functor on Db(KQ), respectively. Remarkably, these
cluster categories are again triangulated categories by a result of Keller [12].

Quivers of Dynkin typesADE play a special role in the theory of cluster algebras since they parametrize
cluster-finite cluster algebras, by a seminal result of Fomin and Zelevinsky [9]. The corresponding cluster
categories CQ where Q is a Dynkin quiver are triangulated categories with finitely many indecomposable
objects and their structure is well understood by work of Amiot [1].

Important objects in cluster categories are the cluster-tilting objects. A cluster-tilted algebra of type
Q is by definition the endomorphism algebra of a cluster-tilting object in the cluster category CQ. The
corresponding cluster-tilted algebras of Dynkin types A, D and E are of finite representation type and
they can be constructed explicitly by quivers and relations. Namely, the quivers of the cluster-tilted
algebras of Dynkin type Q are precisely the ones obtained from Q by performing finitely many quiver
mutations. Moreover, in this case the quiver of a cluster-tilted algebra uniquely determines the relations
[7]; we shall review the corresponding algorithm in Section 2 below.

In this paper we address the question of when two cluster-tilted algebras of Dynkin type E6, E7 or
E8 have equivalent derived categories. The analogous question has been settled for cluster-tilted algebras
of type An by Buan and Vatne [8] (see also work of Murphy on the more general case of m-cluster tilted
algebras of type An [17]) and by the first author [3] for type Ã. Note that the cluster-tilted algebras in
these cases are gentle algebras [2]. It turns out that two cluster-tilted algebras of type An are derived
equivalent if and only if their quivers have the same number of 3-cycles. For distinguishing such algebras
up to derived equivalence one uses the determinants of the Cartan matrices; these have been determined
explicitly for arbitrary gentle algebras by the second author in [11].

1This work has been carried out in the framework of the priority program SPP 1388 Darstellungstheorie of the Deutsche
Forschungsgemeinschaft (DFG). We gratefully acknowledge financial support through the grant HO 1880/4-1.
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A derived equivalence classification of cluster-tilted algebras of other Dynkin types D and E has been
open. In this paper we settle this question for type E, i.e. we obtain a complete derived equivalence
classification for cluster-tilted algebras of types E6, E7 and E8.

There are two natural approaches to address derived equivalence classification problems of a given
collection of algebras arising from some combinatorial data. The top-to-bottom approach is to divide
these algebras into equivalence classes according to some invariants of derived equivalence, so that algebras
belonging to different classes are not derived equivalent. The bottom-to-top approach is to systematically
construct, based on the combinatorial data, tilting complexes yielding derived equivalences between pairs
of these algebras and then to arrange these algebras into groups where any two algebras are related by a
sequence of such derived equivalences. To obtain a complete derived equivalence classification one has to
combine these approaches and hope that the two resulting partitions of the entire collection of algebras
coincide.

The invariant of derived equivalence we use in this paper is the integer equivalence class of the bilinear
form represented by the Cartan matrix of an algebra A. As this invariant is sometimes arithmetically
subtle to compute directly, we instead compute the determinant of the Cartan matrix CA and the char-
acteristic polynomial of its asymmetry matrix SA = CAC

−T
A , defined whenever CA is invertible over Q,

and encode them conveniently in a single polynomial that we call the polynomial associated with CA.
This quantity is generally a weaker invariant of derived equivalence, but in our case it will turn out to
be enough for the classification. Note that unlike as in type A, the determinant itself is not sufficient for
distinguishing the algebras up to derived equivalence.

We stress that the asymmetry matrix and its characteristic polynomial are well defined whenever the
Cartan matrix is invertible over Q, even without having any categorical meaning, as follows from [16,
Section 3.3]. In the special case when A has finite global dimension, the asymmetry matrix SA, or better
minus its transpose −C−1

A CT
A , is related to the Coxeter transformation which does carry categorical

meaning, and its characteristic polynomial is known as the Coxeter polynomial of the algebra.
The tilting complexes we use are inspired by quiver mutations in the following sense. For a vertex,

we consider all the incoming arrows and build, based on this combinatorial data, a two-term complex of
projective modules, see also similar constructions in [15], [19]. We call a mutation at a vertex “good” if
the corresponding complex is a tilting complex and moreover its endomorphism algebra is the cluster-
tilted algebra of the mutated quiver. In other words, a “good” mutation produces a derived equivalence
between the corresponding cluster-tilted algebras. Of course, there are also “bad” mutations, for two
reasons: the complex might not be a tilting complex or even if it is, its endomorphism algebra might not
be a cluster-tilted algebra.

It turns out that for cluster-tilted algebras of type E the two approaches can be successfully combined
to give a complete derived equivalence classification. More precisely, our main result is the following.

Theorem 1.1. The following conditions are equivalent for two cluster-tilted algebras A and A′ of Dynkin
type E:

(a) A and A′ have the same associated polynomial;

(b) The Cartan matrices of A and A′ represent equivalent bilinear forms over Z;

(c) A and A′ are derived equivalent;

(d) A and A′ are connected via a sequence of “good” mutations.

In addition to the above general statement we make the derived equivalence classification explicit by
providing complete lists of the algebras contained in each derived equivalence class (up to sink/source
equivalence).

Note that the implication (c) ⇒ (b) holds in general for any two (finite-dimensional) algebras A and
A′, and that the implication (b) ⇒ (a) holds whenever the associated polynomials are defined, i.e. when
the Cartan matrices are invertible over Q. Moreover, for cluster-tilted algebras the implication (d) ⇒ (c)
is evident from the definition.

We also note that since the cluster-tilted algebras we consider involve only zero- and commutativity-
relations, they can in fact be defined over any commutative ring K. The combinatorial nature of our
construction of tilting complexes via “good” mutations will then imply that such algebras corresponding
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to quivers in the same class will be derived equivalent for any K. Therefore one may view the derived
equivalences arising from “good” mutations as “universal”, being independent on the auxiliary algebraic
data (specified by K).

Let us briefly describe the above main result in some more detail. For precise definitions of the cluster-
tilted algebras involved we refer to Sections 3 (type E6), A/B (type E7), and C/D (type E8) below. In
the following tables we list the associated polynomials of the cluster-tilted algebras, and also the total
number of algebras in each derived equivalence class.

For type E6 the mutation class consists of 67 quivers. The corresponding cluster-tilted algebras turn
out to fall into six derived equivalence classes as follows.

Derived equivalence classes for type E6

Associated polynomial # Associated polynomial #

x6 − x5 + x3 − x+ 1 20 3(x6 + x3 + 1) 19

2(x6 − x4 + 2x3 − x2 + 1) 16 4(x6 + x4 + x2 + 1) 7

2(x6 − 2x4 + 4x3 − 2x2 + 1) 3 4(x6 + x5 − x4 + 2x3 − x2 + x+ 1) 2

For type E7 the mutation class consists of 416 quivers. The derived equivalence classes of the cor-
responding cluster-tilted algebras are again characterized by the associated polynomials; there are 14
classes in total, given as follows.

Derived equivalence classes for type E7

Associated polynomial # Associated polynomial #

x7 − x6 + x4 − x3 + x− 1 64 4(x7 + x6 − 2x5 + 2x4 − 2x3 + 2x2 − x− 1) 2

2(x7 − x5 + 2x4 − 2x3 + x2 − 1) 32 4(x7 + x5 − x4 + x3 − x2 − 1) 56

2(x7 − x5 + x4 − x3 + x2 − 1) 72 4(x7 + x5 − 2x4 + 2x3 − x2 − 1) 8

2(x7 − 2x5 + 4x4 − 4x3 + 2x2 − 1) 8 5(x7 + x5 − x4 + x3 − x2 − 1) 17

3(x7 − 1) 124 6(x7 + x6 − x4 + x3 − x− 1) 11

4(x7 + x6 − x5 + x4 − x3 + x2 − x− 1) 16 6(x7 + x5 − x2 − 1) 1

4(x7 + x6 − x5 − x4 + x3 + x2 − x− 1) 4 8(x7 + x6 + x5 − x4 + x3 − x2 − x− 1) 1

For type E8 the mutation class consists of 1574 quivers. The corresponding cluster-tilted algebras
turn out to fall into 15 different derived equivalence classes which are characterized as follows.

Derived equivalence classes for type E8

Associated polynomial # Associated polynomial #

x8 − x7 + x5 − x4 + x3 − x+ 1 128 4(x8 + x6 − x5 + 2x4 − x3 + x2 + 1) 221

2(x8 − x6 + 2x5 − 2x4 + 2x3 − x2 + 1) 64 4(x8 + x6 − 2x5 + 4x4 − 2x3 + x2 + 1) 22

2(x8 − x6 + x5 + x3 − x2 + 1) 256 5(x8 + x6 + x4 + x2 + 1) 167

2(x8 − 2x6 + 4x5 − 4x4 + 4x3 − 2x2 + 1) 16 6(x8 + x6 + x5 + x3 + x2 + 1) 38

3(x8 + x4 + 1) 384 6(x8 + x7 + 2x4 + x+ 1) 118

4(x8 + x7 − x6 + x5 + x3 − x2 + x+ 1) 72 8(x8 + 2x7 + 2x4 + 2x+ 1) 4

4(x8 + x7 − x6 + 2x4 − x2 + x+ 1) 48 8(x8 + x7 + x6 + 2x4 + x2 + x+ 1) 24

4(x8 + x7 − 2x6 + 2x5 + 2x3 − 2x2 + x+ 1) 12

The paper is organized as follows. In Section 2 we collect some background material; in particular
we recall the notion of quiver mutation, describe the results of Buan, Marsh and Reiten on cluster-tilted
algebras of finite representation type, review the fundamental results on derived equivalences and then
discuss invariants of derived equivalence such as the equivalence class of the Euler form, in particular
leading to the determinant of the Cartan matrix and the characteristic polynomial of its asymmetry
matrix as derived invariants.

In Section 3 we discuss derived equivalences for cluster-tilted algebras of Dynkin type E6 in detail.
The quivers of these algebras are given by those in the mutation class of type E6; this mutation class
can easily be reproduced by the reader using Keller’s software [13]. We first give in Section 3 a list of
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the derived equivalence classes, sorted by the associated polynomial which is the crucial invariant for our
purposes. We also give the Cartan matrix of one representative in each class which we shall need later
in our computations.

As main result of this section we prove the main Theorem 1.1 for type E6. To this end we have to
find explicit tilting complexes for the cluster-tilted algebras of type E6 and we have to determine their
endomorphism rings. The necessary calculations are carried out in detail in Sections 3.2 - 3.4. The
tilting complexes we use are closely related to quiver mutations at a single vertex, and we explain this
construction in Section 3.1.

For types E7 and E8 we have followed a different strategy of presentation since the number of algebras
involved becomes very large. We first list the algebras but without drawing the quivers; again, the quivers
can be found using Keller’s software. We then present the results on derived equivalences for cluster-
tilted algebras of types E7 and E8 in a very concise form which is explained at the beginning of the
respective sections. For each group of algebras with the same associated polynomial we then provide
tilting complexes and list their endomorphism rings, but without giving any details on the calculations.
However, we hope that we have provided enough information so that interested readers should easily be
able to check our findings.

Acknowledgement

The first two authors are grateful to Bernhard Keller for suggesting to contact the third author on
questions left open in a first version of this paper which could then be completely settled in the present
joint version.

2 Preliminaries

2.1 Quiver mutations

A quiver is a finite directed graph Q, consisting of a finite set of vertices Q0 and a finite set of arrows
Q1 between them. A fundamental concept in the theory of Fomin and Zelevinsky’s cluster algebras is
mutation; for quivers this takes the following shape.

Definition 2.1. Let Q be a quiver without loops and oriented 2-cycles. For vertices i, j, let aij denote
the number of arrows from i to j, where aij < 0 means that there are −aij arrows from j to i.

The mutation of Q at the vertex k yields a new quiver µk(Q) obtained from Q by the following
procedure:

1. Add a new vertex k∗.

2. For all vertices i 6= j, different from k, such that aij ≥ 0, set the number of arrows a′ij from i to j
in µk(Q) as follows:

if aik ≥ 0 and akj ≥ 0, then a′ij := aij + aikakj ;

if aik ≤ 0 and akj ≤ 0, then a′ij := aij − aikakj .

3. For any vertex i, replace all arrows from i to k with arrows from k∗ to i, and replace all arrows
from k to i with arrows from i to k∗.

4. Remove the vertex k.

Two quivers are called mutation equivalent if one can be obtained from the other by a finite sequence
of mutations. The mutation class of a quiver Q is the class of all quivers mutation equivalent to Q. It is
known from the seminal results of Fomin and Zelevinsky [9] that the mutation class of a Dynkin quiver
Q is finite.
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2.2 Cluster-tilted algebras of finite representation type

Cluster-tilted algebras arise as endomorphism algebras of cluster-tilting objects in a cluster category,
see [6]. For the special case of Dynkin quivers the cluster-tilted algebras are known to be of finite
representation type. Moreover, by a result of Buan, Marsh and Reiten [7] they can be described as
quivers with relations by a simple combinatorial recipe to be recalled below. As a consequence, a cluster-
tilted algebra of Dynkin type is uniquely determined by its quiver.

Let Q be a quiver and throughout this paper let K be an algebraically closed field. We can form the
path algebra KQ, where the basis of KQ is given by all paths in Q, including trivial paths ei of length
zero at each vertex i of Q. Multiplication in KQ is defined by concatenation of paths. Our convention is
to compose paths from right to left. For any path α in Q let s(α) denote its start vertex and t(α) its end
vertex. Then the product of two paths α and β is defined to be the concatenated path αβ if s(α) = t(β).
The unit element of KQ is the sum of all trivial paths, i.e., 1KQ =

∑

i∈Q0

ei.

We recall some background from [7]. An oriented cycle in a quiver is called full if it does not contain
any repeated vertices and if the subquiver generated by the cycle contains no other arrows. If there is
an arrow i→ j in a quiver Q then a path from j to i is called shortest path if the induced subquiver is a
full cycle.

We now describe cluster-tilted algebras of Dynkin type by a quiver with relations, i.e. in the form
KQ/I where Q is a finite quiver and I is some admissible ideal in the path algebra KQ. Recall that the
quivers associated with cluster-tilted algebras of Dynkin type are precisely the quivers in the mutation
class of the corresponding Dynkin quiver.

Relations are linear combinations k1ω1 + · · ·+ kmωm of paths ωi in Q, all starting in the same vertex
and ending in the same vertex, and with each ki non-zero in K. If m = 1, we call the relation a zero-
relation. If m = 2 and k1 = 1, k2 = −1, and we call it a commutativity-relation (and say that the
paths ω1 and ω2 commute). It will turn out that for cluster-tilted algebras of Dynkin type the ideal I
can be generated by only using zero-relations and commutativity-relations. Finally, a relation ρ is called
minimal if whenever ρ =

∑

i βi ◦ ρi ◦ γi, where ρi is a relation for every i, then there is an index j such
that both βj and γj are scalars.

Proposition 2.2 (Buan, Marsh and Reiten [7]). A cluster-tilted algebra A of finite representation type
is of the form A = KQ/I, where Q is mutation equivalent to a Dynkin quiver and where the ideal I can
be described as follows. Let i and j be vertices in Q.

1. The ideal I is generated by minimal zero-relations and minimal commutativity-relations.

2. Assume there is an arrow i→ j. Then there are at most two shortest paths from j to i.

i) If there is exactly one, then this is a minimal zero-relation.

ii) If there are two, ω and µ, then ω and µ are not zero in A and there is a minimal relation
ω − µ.

3. Up to multiplication by non-zero elements of K there are no other minimal zero-relations or
commutativity-relations than the ones coming from 2.

Example 2.3. We consider the following quiver Q of type E6

1 2 3 4 5

6

If we mutate at vertex 2, we get the following quiver Q′ := µ2(Q)
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1 3 4 5

62

α1 α4 α5

α6

α3 α2

The corresponding cluster-tilted algebra is of the form A = KQ′/I where I is generated by the zero-
relations α1α3, α2α1 and α3α2 (and there are no commutativity-relations).

Mutating the latter quiver at the vertex 3 leads to the quiver Q′′ := µ3(Q
′)

4 5

2

31

α3

α2 α6

α5 α7

α4

α1

6

Here, the ideal of relations of the corresponding cluster-tilted algebra is generated by the zero-relations
α2α4, α5α4, α4α3 and α4α6 and the commutativity-relation α3α2 = α6α5.

2.3 Tilting complexes and derived equivalences

In this section we briefly review the fundamental results on derived equivalences. All algebras are assumed
to be finite-dimensional K-algebras.

For a K-algebra A the bounded derived category of A-modules is denoted by Db(A). Recall that two
algebras A,B are called derived equivalent if Db(A) and Db(B) are equivalent as triangulated categories.
By a famous theorem of Rickard [18] derived equivalences can be found using the concept of tilting
complexes.

Definition 2.4. A tilting complex T over A is a bounded complex of finitely generated projective A-
modules satisfying the following conditions:

i) HomDb(A)(T, T [i]) = 0 for all i 6= 0, where [1] denotes the shift functor in Db(A);

ii) the category add(T ) (i.e. the full subcategory consisting of direct summands of direct sums of T )
generates the homotopy category Kb(PA) of projective A-modules as a triangulated category.

We can now formulate Rickard’s seminal result.

Theorem 2.5 (Rickard [18]). Two algebras A and B are derived equivalent if and only if there exists a
tilting complex T for A such that the endomorphism algebra EndDb(A)(T ) ∼= B.

2.4 The equivalence class of the Euler form as derived invariant

Let A be a finite-dimensional algebra over a field K and let P1, . . . , Pn be a complete collection of non-
isomorphic indecomposable projective A-modules (finite-dimensional over K). The Cartan matrix of A
is then the n× n matrix CA defined by (CA)ij = dimK Hom(Pj , Pi).

Denote by perA the triangulated category of perfect complexes of A-modules inside the derived
category of A, that is, complexes (quasi-isomorphic) to finite complexes of finitely generated projective
A-modules. The Grothendieck group K0(perA) is a free abelian group on the generators [P1], . . . , [Pn],
and the expression

〈X,Y 〉 =
∑

r∈Z

(−1)r dimK HomperA(X,Y [r])

is well defined for any X,Y ∈ perA and induces a bilinear form on K0(perA), known as the Euler form,
whose matrix with respect to the basis of projectives is CT

A .
The following proposition is well known. For the convenience of the reader, we give the short proof,

see also the proof of Proposition 1.5 in [4].
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Proposition 2.6. Let A and B be two finite-dimensional, derived equivalent algebras. Let n denote by
number of their non-isomorphic indecomposable projectives. Then the matrices CA and CB represent
equivalent bilinear forms over Z, that is, there exists P ∈ GLn(Z) such that PCAP

T = CB.

Proof. Indeed, by [18], if A and B are derived equivalent, then perA and perB are equivalent as triangu-
lated categories. Now any triangulated functor F : perA → perB induces a linear map from K0(perA)
to K0(perB). When F is also an equivalence, this map is an isomorphism of the Grothendieck groups
preserving the Euler forms. Thus, if [F ] denotes the matrix of this map with respect to the bases of
indecomposable projectives, then [F ]TCB [F ] = CA.

In general, to decide whether two integral bilinear forms are equivalent is a very subtle arithmetical
problem. Therefore, it is useful to introduce somewhat weaker invariants that are computationally easier
to handle. In order to do this, assume further that CA is invertible over Q. In this case one can consider
the rational matrix SA = CAC

−T
A (here C−T

A denotes the inverse of the transpose of CA), known in the
theory of non-symmetric bilinear forms as the asymmetry of CA.

Proposition 2.7. Let A and B be two finite-dimensional, derived equivalent algebras with invertible
(over Q) Cartan matrices. Then we have the following assertions, each implied by the preceding one:

1. There exists P ∈ GLn(Z) such that PCAP
T = CB .

2. There exists P ∈ GLn(Z) such that PSAP
−1 = SB.

3. There exists P ∈ GLn(Q) such that PSAP
−1 = SB.

4. The matrices SA and SB have the same characteristic polynomial.

For proofs and discussion, see for example [16, Section 3.3]. Since the determinant of an integral
bilinear form is invariant under equivalence, we can combine it with the characteristic polynomial pSA

(x)
of the asymmetry matrix SA to obtain a discrete invariant of derived equivalence, namely (detCA)·pSA

(x).
We call this invariant the polynomial associated with CA.

Remark 2.8. The matrix SA = CAC
−T
A (or better, minus its transpose −C−1

A CT
A) is related to the

Coxeter transformation which has been widely studied in the case when A has finite global dimension
(so that CA is invertible over Z). It is the K-theoretic shadow of the Serre functor and the related
Auslander-Reiten translation in the derived category. The characteristic polynomial is then known as the
Coxeter polynomial of the algebra.

Remark 2.9. In general, SA might have non-integral entries. However, when the algebraA isGorenstein,
the matrix SA is integral, which is an incarnation of the fact that the injective modules have finite
projective resolutions. By a result of Keller and Reiten [14], this is the case for the cluster-tilted algebras
in question.

2.5 Computations of Cartan matrices

Let A = KQ/I be an algebra given by a quiver Q = (Q0, Q1) with relations. Since
∑

i∈Q0
ei is the unit

element in A we get a decomposition A = A · 1 =
⊕

i∈Q0
Aei, hence the (left) A-modules Pi := Aei are

the indecomposable projective A-modules, and the Cartan matrix CA = (cij) of A is the n-by-n matrix
whose entries are cij = dimK HomA(Pj , Pi), where n = |Q0|. Any homomorphism ϕ : Aej → Aei of left
A-modules is uniquely determined by ϕ(ej) ∈ ejAei, the K-vector space generated by all paths in Q from
vertex i to vertex j that are non-zero in A. In particular, we have cij = dimK ejAei, i.e., computing
entries of the Cartan matrix for A reduces to counting paths in Q.

For cluster-tilted algebras of Dynkin type the entries of the Cartan matrix can only be 0 or 1, as the
following result shows.

Proposition 2.10 (Buan, Marsh, Reiten [7]). Let A be a cluster-tilted algebra of finite representation
type. Then dimK HomA(Pj , Pi) ≤ 1 for any two indecomposable projective A-modules Pi and Pj .
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Example 2.11. We have a look at the quivers in Example 2.3 again, and compute the Cartan matrices
of the corresponding cluster-tilted algebras.

For the Dynkin quiver Q of type E6 with the above orientation we get the following Cartan matrix














1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 0 1 0 0 1















since there are no zero- or commutativity-relations.

For the quiver Q′ obtained by mutation from Q at vertex 2, the corresponding Cartan matrix C ′ has

the form C ′ =















1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 0 0 1















for KQ/I since the paths from vertex 1 to 2, from 2 to 3 and from

3 to 1 are zero.
Finally, for the quiver Q′′ obtained from Q′ by mutating at vertex 3, the cluster-tilted algebra has

Cartan matrix C ′′ =















1 0 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 1
0 1 0 1 0 0
0 1 0 1 1 0
0 1 0 0 0 1















. Note that the two paths from vertex 3 to vertex 2 (over 4

or 6) are the same since we have the commutativity-relation α3α2 = α6α5.

For calculating the endomorphism ring EndDb(A)(T ) of a tilting complex T over the algebra A, we
can use the following statement which explicitly gives the Cartan matrix of the endomorphism ring in
terms of the tilting complex and the Cartan matrix of A.

Proposition 2.12. Let T be a tilting complex over A with endomorphism algebra B = EndDb(A)(T ), and
let T1, . . . , Tn be the indecomposable direct summands of T . Then the Cartan matrix CB of B is given by
CB = PCAP

T , where P = (pij)
n
i,j=1 is the matrix defined by

[Ti] =

n
∑

j=1

pij [Pj ]

(that is, its i-th row is the class of the summand Ti in K0(perA) written in the basis [P1], . . . , [Pn]).

Example 2.13. Continuing Example 2.11, let T = T1 ⊕ · · · ⊕ T6 be the complex over the cluster-tilted
algebra corresponding to Q′ defined by

Ti =

{

Pi if i 6= 3

P3 → P1 ⊕ P4 ⊕ P6 if i = 3,

where the Pi are in degree 0 for i 6= 3 and P3 is in degree −1.
Then T is a tilting complex and the corresponding matrix P is given by

P =















1 0 0 0 0 0
0 1 0 0 0 0
1 0 −1 1 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1















,

so that C ′′ = PC ′P T . In fact, EndT is isomorphic to the cluster-tilted algebra corresponding to Q′′, see
Section 3.2.1.

It is sometimes convenient to use the following alternating sum formula, arising from the fact that for
a bounded complex X = (Xr) of projective modules, we have [X ] =

∑

(−1)r[Xr] in K0(perA).

Proposition 2.14 (Happel [10]). For an algebra A let X = (Xr)r∈Z and Y = (Y s)s∈Z be bounded
complexes of projective A-modules. Then

∑

i

(−1)i dimHomDb(A)(X,Y [i]) =
∑

r,s

(−1)r−s dimHomA(X
r, Y s).
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In particular, if X and Y are direct summands of the same tilting complex, then

dimHomDb(A)(X,Y ) =
∑

r,s

(−1)r−s dimHomA(X
r, Y s).

3 Derived equivalences of cluster-tilted algebras of type E6

For the mutation class of E6 we start with the following quiver

6

1 2 3 4 5

and determine all quivers which can be obtained from it by a finite number of mutations. For this, one
can use the software of B. Keller [13]. The mutation class of E6 consists of 67 quivers. For the purpose of
derived equivalence classifications of the corresponding cluster-tilted algebras it suffices to consider the
quivers up to sink/source equivalence, and there are 21 quivers up to sink/source equivalence. We can
divide the corresponding cluster-tilted algebras into six groups by computing the polynomials associated
with their Cartan matrices. Recall from the introduction that these associated polynomials are obtained
by multiplying the determinant of the Cartan matrix by the characteristic polynomial of its asymmetry
matrix. It will turn out that these six groups form the six derived equivalence classes of the cluster-tilted
algebras of type E6.

We list in the table below all quivers in the mutation class of type E6. For each group of sink/source
equivalent quivers we give only one picture where certain arrows are replaced by undirected lines; this
has to be read that these lines can take any orientation. We also give the Cartan matrix of the corre-
sponding cluster-tilted algebra of one particular representative in each group of sink/source equivalent
quivers. From this Cartan matrices one can easily read off to which orientation of the undirected lines it
corresponds; in fact, for a line between vertices i and j the arrow is going from i to j if the (i, j) entry in
the Cartan matrix is non-zero, and from j to i otherwise. We sort the 21 classes of cluster-tilted algebras
of type E6 (up to sink/source equivalence) according to their associated polynomials, and number them
according to the output of B. Keller’s software [13], i.e. the cluster-tilted algebras are denoted by Anumber.

x
6
− x

5 + x
3
− x + 1

no. quiver Q Cartan matrix

1

6

1 2 3 4 5















1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1















2(x6
− 2x4 + 4x3

− 2x2 + 1)
no. quiver Q Cartan matrix

11

2

3 5

1 4

6















1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 1 1 1 1 1
0 0 1 0 1 1
0 0 0 0 0 1















9



2(x6
− x

4 + 2x3
− x

2 + 1)
no. quiver Q Cartan matrix

2

1 2 3 4

56 













1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 1 1















7

6

1 2 3 4

5 













1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 1















12

25 3 6

1 4 













1 1 1 1 1 1
0 1 1 0 1 1
1 0 1 0 0 1
0 0 1 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1















3(x6 + x
3 + 1)

no. quiver Q Cartan matrix

3

3

42

1

5 6















1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 0 0
0 1 0 1 1 0
0 0 0 1 1 1
0 1 0 1 0 1















4

4 5 6

1 2 3 













1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 0
1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1















6

6 5

1

2 4

3















1 1 1 1 0 1
0 1 1 1 0 1
0 0 1 1 1 0
0 1 0 1 1 1
0 0 0 0 1 1
0 0 0 1 0 1















10

6

1

5 4

2 3















1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 0 0 0 1















10



no. quiver Q Cartan matrix

14

1 2

5 6

4 3















1 1 1 1 0 1
0 1 1 1 0 1
0 0 1 0 0 0
0 0 1 1 1 1
0 1 1 1 1 0
0 1 0 0 1 1















16

6

1 2

43

5















1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1
0 1 1 0 1 0
0 0 1 0 0 1















19

6

1 2 3

45















1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 1 0 1 1 0
0 1 1 1 1 1
0 0 0 1 0 1















20

1

2 4

3

5 6















1 1 1 1 0 1
0 1 1 1 0 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 1 1















21

1

2

3 4

5

6















1 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 0 0 1 1 1
0 1 1 0 1 1
0 1 0 0 0 1















4(x6 + x
4 + x

2 + 1)
no. quiver Q Cartan matrix

5

4 5 6

1 2 3 













1 1 1 0 0 1
0 1 1 1 1 1
0 0 1 0 1 1
1 1 1 1 1 0
0 1 1 0 1 0
0 1 0 0 1 1















9

4 5 6

1 2 3 













1 1 0 0 0 1
0 1 0 1 1 1
0 1 1 1 0 0
1 1 0 1 1 0
0 1 0 0 1 0
0 1 1 0 1 1















11



no. quiver Q Cartan matrix

13

4 5 6

1 2 3














1 1 0 0 1 1
0 1 0 1 1 1
0 1 1 1 1 0
1 1 0 1 0 0
1 1 1 1 1 1
0 1 1 0 0 1















15

2

5

1 3

6

4















1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1















17

6

2 3 5

1 4















1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 1 1 1
1 0 1 1 0 1
0 0 0 0 1 1
0 1 1 0 0 1















18

4 5 6

1 2 3 













1 1 1 0 1 1
0 1 1 1 1 1
0 0 1 0 0 1
1 1 1 1 0 0
1 1 0 1 1 1
0 1 0 0 0 1















4(x6 + x
5
− x

4 + 2x3
− x

2 + x + 1)
no. quiver Q Cartan matrix

8

4 1 6

3 2 5















1 1 1 0 1 0
0 1 1 0 1 0
0 0 1 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 1















The rest of this section is devoted to proving Theorem 1.1 for type E6. To this end we shall explicitly
construct suitable tilting complexes and determine their endomorphism algebras. Note that the class of
cluster-tilted algebras is not closed under derived equivalences, so one carefully has to choose suitable
tilting complexes in order to get another cluster-tilted algebra as endomorphism algebra.

3.1 From vertices to complexes

Since we deal with left modules and read paths from right to left, a non-zero path from vertex i to j gives
a homomorphism Pj → Pi by right multiplication. Thus, two arrows α : i→ j and β : j → k give a path
βα from i to k and a homomorphism αβ : Pk → Pi.

Let A be a cluster-tilted algebra corresponding to a quiver Q, and let k be a vertex of Q. Consider

all the arrows j → k ending at k, and define a complex T (k) of projective A-modules by T (k) =
⊕

i T
(k)
i

(the sum runs over all the vertices i), with

T
(k)
i =

{

Pi if i 6= k

Pk →
⊕

j→k Pj if i = k

where the Pi are in degree 0 for i 6= k, while Pk is in degree −1.
We call the mutation at the vertex k good if T (k) is a tilting complex and moreover, EndDb(A)(T

(k)) is
the cluster-tilted algebra corresponding to the quiver µk(Q) obtained from Q by mutating at the vertex

12



k. Thus, a good mutation yields a derived equivalence between the corresponding cluster-tilted algebras.
Note that “bad” mutations can occur for two reasons: the complex T (k) might not be a tilting complex
or even if it is, its endomorphism algebra might not be a cluster-tilted algebra.

Since Pk[1] is isomorphic in the homotopy category Kb(PA) to the cone of
⊕

j→k T
(k)
j → T

(k)
i , we see

that all the indecomposable projectives lie in the triangulated subcategory generated by the summands
of T (k). Thus, condition ii) of Definition 2.4 of a tilting complex is satisfied for the complex T (k). For
checking condition i) of Definition 2.4 it is sufficient to prove that HomDb(A)(T

(k), T (k)[1]) = 0 and

HomDb(A)(T
(k), T (k)[−1]) = 0 since the complex T (k) is concentrated in only two consecutive degrees.

3.2 Derived equivalences for polynomial 2(x6 − x
4 + 2x3 − x

2 + 1)

In this section we prove that all cluster-tilted algebras of type E6 with associated polynomial as given
in the title are indeed connected by a sequence of good mutations, and hence in particular are derived
equivalent. The proof is divided into several subsections where in each subsection for two cluster-tilted
algebras a suitable tilting complex for a good mutation is constructed, and the endomorphism algebra is
determined.

For the convenience of the reader we provide the following figure which displays what is proven in
each subsection and from which it should be convenient to check that indeed all cluster-tilted algebras
with the relevant associated polynomials are covered.

A2

3.2.1

||
||

||
|| 3.2.2

CC
CC

CC
CC

A7 A12

3.2.1 A7 is derived equivalent to A2

Let A7 be the cluster-tilted algebra corresponding to the quiver

6

1 2 3 4

5

α1 α2 α3

α6

α4

α5

Let T =
⊕6

i=1 Ti be the complex of projective A7-modules corresponding to the vertex 3, as defined
in Section 3.1. Explicitly, Ti : 0 → Pi → 0 for i ∈ {1, 2, 4, 5, 6} are complexes concentrated in degree zero

and T3 : 0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0 in degrees −1 and 0.
Now we want to show that T is a tilting complex and we begin with possible maps T3 → T3[1] and

T3 → T3[−1],

0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0
↓ ψ

0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0
↓ 0

0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0

where ψ ∈ Hom(P3, P2 ⊕ P5 ⊕ P6) and (α2, 0, 0), (0, α5, 0), (0, 0, α6) is a basis of this three-dimensional
space of homomorphisms. The homomorphism ψ is homotopic to zero and in the second case there is no
non-zero homomorphism P2 ⊕ P5 ⊕ P6 → P3.

13



Now consider possible maps T3 → Tj [−1], j 6= 3. These maps are given by a map of complexes as
follows

0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0
↓

0 → Q → 0

where Q could be either P1, P2, P5, P6 or direct sums of these. Note that there is no non-zero homomor-
phism P3 → P4 since this is a zero-relation in the quiver of A7. There exist non-zero homomorphisms
of complexes, but they are all homotopic to zero since every homomorphism from P3 to P1, P2, P5 or P6

starts with α2, α5 or α6, up to scalars. Thus, every homomorphism P3 → Q can be factored through the
map (α2, α5, α6) : P3 → P2 ⊕ P5 ⊕ P6. Directly from the definition we see that Hom(T, Tj [−1]) = 0 for
j ∈ {1, 2, 4, 5, 6} and thus we have shown that Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T3[1] for j 6= 3. But these are given as follows

0 → P4 → 0
↓ α3

0 → P3
(α2,α5,α6)

−→ P2 ⊕ P5 ⊕ P6 → 0

since Hom(Pj , P3) = 0 for j = 1, 2, 5 and j = 6. But the concatenation of (α2, α5, α6) and α3 is not zero
since α2α3 6= 0 and α6α3 6= 0. So the only homomorphism of complexes Tj → T3[1], j 6= 3, is the zero
map.

It follows that T is a tilting complex for A7, and by Rickard’s theorem, E := EndDb(A7)(T ) is derived
equivalent to A7. We want to show that E is isomorphic to one possible orientation of the class of algebras
A2. Using the alternating sum formula of Proposition 2.14 we can compute the Cartan matrix of E to

be















1 1 0 1 0 0
0 1 0 1 0 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 0 1 0
0 0 0 1 0 1















.

Now we define homomorphisms of complexes between the summands of T which correspond to the
arrows of the following quiver

6

β α α1

α6α3

4

5 3 2 1

α2α3γ
δ

Note that this is a quiver from the class denoted A2 (up to renumbering of vertices). First we have
the embeddings α := (id, 0, 0) : T2 → T3, β := (0, id, 0) : T5 → T3 and γ := (0, 0, id) : T6 → T3 (in
degree zero). Then we define δ : T3 → T4 by the map (0, α4, 0) : P2 ⊕ P5 ⊕ P6 → P4 in degree 0.
This is a homomorphism of complexes since α4α5 = 0 in A7. Moreover, we have the homomorphisms
α2α3 : T4 → T2 and α6α3 : T4 → T6. Finally, we also have the homomorphism α1 as before. Note that
the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms (0, α6α3α4, 0) and
(0, α2α3α4, 0) are zero since they were zero in A7. As we can see, the paths from vertex 4 to vertex 2
and to vertex 6 are zero. There is one commutativity-relation between vertex 3 and vertex 4 left. This
is given by the two homomorphisms from T4 to the first and third summand of T3. These are indeed the
same paths since (0, 0, α6α3) is homotopic to (α2α3, 0, 0).

P2 ⊕ P5 ⊕ P6

P4

(α2, α5, α6)
P3

0 0

00

α6α3α2α3

α3
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From this we can conclude that E ∼= A2 and thus, A7 and A2 are derived equivalent.

3.2.2 A2 is derived equivalent to A12

Now we consider a cluster-tilted algebra A2 with the following quiver

1 2 3 4

56

α6 α4α5

α1 α2 α3

α7

Let T =
⊕6

i=1 Ti be the complex from Section 3.1 corresponding to the vertex 2. Explicitly, the
complexes Ti : 0 → Pi → 0 for i ∈ {1, 3, 4, 5, 6} are concentrated in degree zero and the complex

T2 : 0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0 in degrees −1 and 0.

To show that T is a tilting complex we begin with possible maps T2 → T2[1] and T2 → T2[−1]

0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0

↓ ψ

0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0

↓ ϕ

0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0

Here ψ ∈ Hom(P2, P1 ⊕ P5) and (α1, 0), (0, α5) is a basis of this two-dimensional space. But then ψ
is homotopic to zero (as we can easily see). In the second case (0, α6α7) = (0, α2α4) is a basis of the
space of homomorphisms between P1 ⊕ P5 and P2. Hence, ϕ is not a homomorphism of complexes since
α1α6α7 = α1α2α4 6= 0.

Now consider possible maps T2 → Tj [−1], j 6= 2. These are given by maps of complexes as follows

0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0

↓
0 → Q → 0

where Q could be either P1, P5 or direct sums of these. Note that there are no non-zero homomorphisms
P2 → P3, P2 → P4 and P2 → P6 since these are zero-relations in the quiver of A2. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P2 to
P1 or P5 starts with a scalar multiple of α1 or α5. Thus, every homomorphism P2 → Q can be factored
through the map (α1, α5) : P2 → P1 ⊕ P5. Hence, Hom(T, Tj [−1]) = 0 for j ∈ {1, 3, 4, 5, 6} and thus
Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T2[1] for j 6= 2. These are given as follows

0 → Q → 0
↓

0 → P2
(α1,α5)
−→ P1 ⊕ P5 → 0

where Q can be either P3, P4, P5, P6 or direct sums of these since Hom(P1, P2) = 0. But no non-zero map
can be zero when composed with both α1 and α5 since the paths α2α1 and α6α1 are not zero. So the
only homomorphism of complexes Tj → T2[1], j 6= 2, is the zero map.

It follows that T is a tilting complex for A2, and by Rickard’s theorem, E := EndDb(A2)(T ) is
derived equivalent to A2. We show that E is isomorphic to A12. Using the alternating sum formula

of Proposition 2.14 we compute the Cartan matrix of E to be















1 1 1 1 1 1
1 1 0 0 1 0
0 1 1 1 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 1 1















which coincides

with the Cartan matrix of A12 (up to permutation).
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Now we have to define homomorphisms of complexes between the summands of T which correspond
to the arrows of the quiver in the class A12 of the form

α3

4 3 2

6

5

1

(0, α4) β

α (0, α7)α1α2

α1α6

First we have the embeddings α := (id, 0) : T1 → T2 and β := (0, id) : T5 → T2 (in degree zero).
Moreover, we have the homomorphisms α1α2 : T3 → T1, α1α6 : T6 → T1, (0, α4) : T2 → T3 and
(0, α7) : T2 → T6. Finally, we also have the homomorphism α3 as before. Note that the homomorphisms
correspond to the reversed arrows.

Now we have to show that these homomorphisms satisfy the defining relations of A12, up to homotopy.
Clearly, the concatenation of (0, α4) and α and the concatenation of (0, α7) and α are zero-relations. It
is easy to see, that the two paths from vertex 1 to vertex 2 are the same since α1α6α7 = α1α2α4. The
two paths from vertex 2 to vertex 3 and from vertex 2 to vertex 6 are zero since (α1α2, 0) and (α1α6, 0)
are homotopic to zero. Thus, we defined homomorphisms between the summands of T corresponding to
the reversed arrows of the quiver of A12. From this we can conclude that E ∼= A12 and thus, A2 and A12

are derived equivalent.
Hence, we get derived equivalences between A2, A7 and A12.

3.3 Derived equivalences for polynomial 3(x6 + x
3 + 1)

We again provide the following figure which displays what is proven in each subsection.

A16
3.3.5

A6
3.3.4

A3
3.3.1

3.3.2

A20
3.3.1

3.3.3

A10
3.3.4

A21
3.3.5

A19

A4 A14

3.3.1 A3 and A10 are derived equivalent to A20

Now we consider the cluster-tilted algebra A3 with the following quiver

3

42

1

5 6

α1

α6

α4

α7α5

α3α2

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 5. Namely, Ti : 0 → Pi → 0 for

i ∈ {1, 2, 3, 4, 6} are complexes concentrated in degree zero and T5 : 0 → P5
α5−→ P2 → 0 is a complex

concentrated in degrees −1 and 0.
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Now we want to show that T is a tilting complex. We begin with possible maps T5 → T5[1] and
T5 → T5[−1],

0 → P5
α5−→ P2 → 0

↓ α5

0 → P5
α5−→ P2 → 0

↓ 0

0 → P5
α5−→ P2 → 0

where α5 is a basis of the space of homomorphisms between P5 and P2. The homomorphism α5 is
homotopic to zero and in the second case there is no non-zero homomorphism P2 → P5 (as we can see in
the Cartan matrix of A3).

Now consider possible maps T5 → Tj [−1], j 6= 5. These are given by maps of complexes as follows

0 → P5
α5−→ P2 → 0

↓
0 → Q → 0

where Q could be either P1, P2, P4 or direct sums of these. Note that there are no non-zero homomor-
phisms P5 → P3 and P5 → P6 since these are zero-relations in the quiver of A3. There exist non-zero
homomorphisms of complexes. But they are all homotopic to zero since every homomorphism from P5

to P1, P2 or P4 starts with a scalar multiple of α5. Thus, every homomorphism P5 → Q can be fac-
tored through the map α5 : P5 → P2. Directly from the definition we see that Hom(T, Tj [−1]) = 0 for
j ∈ {1, 2, 3, 4, 6} and thus we have shown that Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T5[1] for j 6= 5. These are given as follows

0 → Q → 0
↓

0 → P5
α5−→ P2 → 0

where Q can be either P4, P6 or direct sums of these since Hom(Pj , P5) = 0 for j = 1, 2 and j = 3. But
no non-zero map can be zero when composed with α5 since the path α7α6α5 = α3α2 6= 0. So the only
homomorphism of complexes Tj → T5[1], j 6= 5, is the zero map.

It follows that T is a tilting complex for A3, and by Rickard’s theorem, E := EndDb(A3)(T ) is
derived equivalent to A3. We show that E is isomorphic to A20. Using the alternating sum formula

of Proposition 2.14 we can compute the Cartan matrix of E to be















1 1 1 1 0 1
0 1 1 1 0 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 1 1















.

Now we have to define homomorphisms of complexes between the summands of T which correspond
to the arrows of the quiver in the class of A20 and show that these homomorphisms satisfy the defining
relations of A20, up to homotopy.

1

2 4

3

5 6

α1

α7α4

α7id α5α6

α4

α3α2

First we have the embedding id : T2 → T5 (in degree zero). Moreover, we have the homomorphisms
α5α6 : T6 → T2 and α7α4 : T5 → T6. Finally, we also have homomorphisms α1, α2, α3, α4 and α7 as
before.
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Nowwe have to check the relations, up to homotopy. Clearly, the homomorphisms α3α4, α4α2, α4α5α6

and α5α6α7α4 are zero since they were zero in A3. As we can see, the two paths from vertex 6 to vertex
2 are the same, i.e., we here have the right commutativity-relation. There is also another commutativity-
relation α2α3 = α5α6α7 between vertex 2 and 4 since these are the same paths in A3. The concatenation
of id and α5α6 yields to a zero-relation since the homomorphism α5α6 is homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A20. We have shown that they satisfy the defining relations of A20 and that the Cartan
matrices of E and A20 coincide. From this we can conclude that E ∼= A20 and thus, A3 and A20 are derived
equivalent. Since A20 is sink/source equivalent to its opposite algebra, A20 is also derived equivalent to
Aop

3 = A10. Hence, we get derived equivalences between A3, A10 and A20.

3.3.2 A3 is derived equivalent to A4

The second complex for A3 is the one corresponding to the vertex 2. Namely, T =
⊕6

i=1 Ti with

Ti : 0 → Pi → 0 for i ∈ {1, 3, 4, 5, 6} (in degree zero) and T2 : 0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0 in degrees −1

and 0.
For showing that T is a tilting complex, we begin with possible maps T2 → T2[1] and T2 → T2[−1],

0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0

↓ ψ

0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0

↓ ϕ

0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0

Here ψ ∈ Hom(P2, P1 ⊕ P4) and (α1, 0), (0, α4) is a basis of this two-dimensional space. But then ψ is
homotopic to zero (as we can easily see). In the second case (0, α2α3) = (0, α5α6α7) is a basis of the
space of homomorphisms between P1 ⊕ P4 and P2. Hence, ϕ is not a homomorphism of complexes since
α1α2α3 = α1α5α6α7 6= 0.

Now consider possible maps T2 → Tj [−1], j 6= 2. These are given by maps of complexes as follows

0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0

↓
0 → Q → 0

where Q could be either P1, P4, P6 or direct sums of these. Note that there are no non-zero homomor-
phisms P2 → P3 and P2 → P5 since these are zero-relations in the quiver of A3. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P2

to P1, P4 or P6 starts with a scalar multiple of α1 or α4. Thus, every homomorphism P2 → Q can be
factored through the map (α1, α4) : P2 → P1 ⊕ P4. Hence, Hom(T, Tj [−1]) = 0 for j ∈ {1, 3, 4, 5, 6} and
thus Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T2[1] for j 6= 2. These are given as follows

0 → Q → 0
↓

0 → P2
(α1,α4)
−→ P1 ⊕ P4 → 0

where Q can be either P3, P4, P5, P6 or direct sums of these since Hom(P1, P2) = 0. But no non-zero map
can be zero when composed with both α1 and α4 since the paths α2α1 and α5α1 are not zero. So the
only homomorphism of complexes Tj → T2[1], j 6= 2, is the zero map.

It follows that T is a tilting complex for A3, and by Rickard’s theorem, E := EndDb(A3)(T ) is derived
equivalent to A3. We want to show that E is isomorphic to A4 and use the alternating sum formula
of Proposition 2.14 for computing the Cartan matrix of E. This Cartan matrix is given as follows














1 1 1 1 1 1
1 1 0 1 1 0
0 1 1 1 0 0
0 0 0 1 1 0
0 1 0 1 1 1
0 0 0 1 0 1















and it is the Cartan matrix of A4 up to permutation.
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Now we have to define homomorphisms of complexes between the summands of T which correspond
to the arrows of the quiver in the class of A4 of the form

5 6

2

α1α5 α6

δ β
3 4

1

α7α4α5α1α2 γα

First α := (id, 0) : T1 → T2 and β := (0, id) : T4 → T2 are the embeddings, γ : T2 → T5 is defined
by the map (0, α6α7) : P1 ⊕ P4 → P5 and δ : T2 → T3 is defined by (0, α3) : P1 ⊕ P4 → P3 (in degree
0). These are a homomorphisms of complexes since α6α7α4 = 0 and α3α4 = 0 in A3. Moreover, we
have the homomorphisms α1α2 : T3 → T1, α1α5 : T5 → T1 and α4α5 : T5 → T4. Finally, we also have
homomorphisms α6 and α7 as before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms α4α5α6, α7α4α5

and (0, α4α5α6α7) are zero since they were zero in A3. As we can see, the two paths from vertex 5
to vertex 4 are the same, i.e., we here have the right commutativity-relation. There are also two other
commutativity-relations left. First (0, α1α2α3) = (0, α1α5α6α7) between vertex 1 and 2 is one of them
since these are the same paths in A3. Secondly, the two paths from vertex 2 to vertex 5 are the same
since (α1α5, 0) is homotopic to (0, α4α5). It is easy to see that the concatenation of γ and α and the
concatenation of δ and α are zero-relations. Finally, the path from vertex 2 to vertex 3 is zero since
(α1α2, 0) is homotopic to zero.

Thus, we can conclude that E ∼= A4 and thus, A3 and A4 are derived equivalent. Since A4 = Aop
4 ,

A4 is also derived equivalent to Aop
3 = A10. Hence, we get derived equivalences between A3, A4, A10 and

A20.

3.3.3 A20 is derived equivalent to A14

Consider A20 with the following quiver

1

2 4

3

5 6

α4

α3α2

α7

α8 α6
α5

α1

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 4. Explicitly, Ti : 0 → Pi → 0 for

i ∈ {1, 2, 3, 5, 6} are concentrated in degree zero and T4 : 0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0 is concentrated in

degrees −1 and 0.
To show that T is a tilting complex we begin with possible maps T4 → T4[1] and T4 → T4[−1]:

0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0

↓ ψ

0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0

↓ 0

0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0

where ψ ∈ Hom(P4, P3 ⊕ P6) and (α3, 0), (0, α6) is a basis of this two-dimensional space. The first
homomorphism is homotopic to zero (as we can easily see). In the second case there is no non-zero
homomorphism P3 ⊕ P6 → P4 (as we can see in the Cartan matrix of A20).
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Now we consider possible maps T4 → Tj [−1] and Tj → T4[1], j 6= 4. These are given by maps of
complexes as follows

0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0

↓
0 → Q → 0

where Q could be either P1, P2, P3, P6 or direct sums of these and

0 → R → 0
↓

0 → P4
(α3,α6)
−→ P3 ⊕ P6 → 0

where R can be P2 since Hom(Pj , P4) = 0 for j = 1, 3, 5 and j = 6. In the first case, there exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P4

to P1, P2, P3 or P6 starts with a scalar multiple of α3 or α6. Thus, every homomorphism P4 → Q can
be factored through the map (α3, α6) : P4 → P3 ⊕ P6. In the second case, the only homomorphism of
complexes T2 → T4[1] is the zero map since α6α4 6= 0.

It follows that T is a tilting complex for A20, and by Rickard’s theorem, E := EndDb(A20)(T ) is
derived equivalent to A20. We claim that E is isomorphic to A14. Using the alternating sum formula of

Proposition 2.14 we can compute the Cartan matrix of E to be















1 1 1 1 0 1
0 1 1 1 0 1
0 0 1 0 0 0
0 0 1 1 1 1
0 1 1 1 1 0
0 1 0 0 1 1















.

Now we define homomorphisms of complexes between the summands of T which correspond to the
arrows of the quiver of A14.

1 2

5 6

4 3
α1 α

βα8

α7

(α2, α5)

First we have the embeddings α := (id, 0) : T3 → T4 and β := (0, id) : T6 → T4 (in degree zero).
Moreover, we have the homomorphism (α2, α5) : T4 → T2. Finally, we also have the homomorphisms
α1, α7 and α8 as before.

Now we have to show that these homomorphisms satisfy the defining relations of A14, up to homotopy.
Clearly, the homomorphisms (α7α8α2, α7α8α5), (0, α8α5) and (0, α5α7) in the 4−cycle are zero since they
were zero in A20. The concatenation of β, α7 and α8 yields to a zero-relation since the homomorphism
(0, α7α8) is homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A14. From this we can conclude that E ∼= A14 and thus, A20 and A14 are derived
equivalent. Hence, we get derived equivalences between A3, A4, A10, A14 and A20.

3.3.4 A6 is derived equivalent to A3

Consider A6 with the following quiver
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6 5

1

2 4

3

α1

α6

α4

α5α7
α8

α3α2

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 5. That is, Ti : 0 → Pi → 0 for

i ∈ {1, 2, 3, 4, 6} are complexes concentrated in degree zero and T5 : 0 → P5
α5−→ P4 → 0 in degrees −1

and 0.
For showing that T is a tilting complex we begin with possible maps T5 → T5[1] and T5 → T5[−1],

0 → P5
α5−→ P4 → 0

↓ α5

0 → P5
α5−→ P4 → 0

↓ 0

0 → P5
α5−→ P4 → 0

Here α5 is a basis of the space of homomorphisms between P5 and P4. Then α5 is homotopic to zero (as
we can easily see). In the second case there is no non-zero homomorphism P4 → P5.

Now consider possible maps T5 → Tj [−1], j 6= 5. These are given by maps of complexes as follows

0 → P5
α5−→ P2 → 0

↓
0 → Q → 0

where Q could be either P3, P4 or direct sums of these. Note that there are no non-zero homomorphisms
P5 → P1, P5 → P2 and P5 → P6 since these are zero-relations in the quiver of A6. There exist non-zero
homomorphisms of complexes between P5 and P3 or P4, but they are all homotopic to zero since every
homomorphism starts with a scalar multiple of α5. Thus, every homomorphism P5 → Q can be factored
through the map α5 : P5 → P4. We see that Hom(T, Tj [−1]) = 0 for j ∈ {1, 2, 3, 4, 6} and thus we have
shown that Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T5[1] for j 6= 5. These are given as follows

0 → P6 → 0
↓ α6

0 → P5
α5−→ P2 → 0

since Hom(Pj , P5) = 0 for j = 1, 2, 3 and j = 4. But the composition α5α6 6= 0. So the only homomor-
phism of complexes Tj → T5[1], j 6= 5, is the zero map.

It follows that T is a tilting complex for A6, and by Rickard’s theorem, E := EndDb(A6)(T ) is derived
equivalent to A6. We want to show that E is isomorphic to A3. Using the alternating sum formula of

Proposition 2.14 we can compute the Cartan matrix of E to be















1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 0 0 1 1 1















which coincides

with the Cartan matrix of A3 (up to permutation).
Now we have to define homomorphisms of complexes between the summands of T which correspond

to the arrows of the quiver of A3.
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3

42

1

6 5

α1

α7

id

α4

α8

α2 α3

First we have the embedding id : T4 → T5 (in degree zero). Moreover, we have the homomorphisms
α1, α2, α3, α4, α7 and α8 as before. Since all the relations are the same as in A6 we have shown that
they satisfy the defining relations of A3. From this we can conclude that E ∼= A3 and thus, A3 and
A6 are derived equivalent. Since Aop

6 is sink/source equivalent to A21, A21 is also derived equivalent to
Aop

3 = A10. Hence, we get derived equivalences between A3, A4, A6, A10, A14, A20 and A21.

3.3.5 A16 is derived equivalent to A6

Consider A16 with the following quiver

6

1 2

43

5
α1 α5

α3

α4

α6α7

α2

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 5, namely Ti : 0 → Pi → 0 for

i ∈ {1, 2, 3, 4, 6} are concentrated in degree zero and T5 : 0 → P5
α4−→ P4 → 0 is concentrated in degrees

−1 and 0.
Now we want to show that T is a tilting complex and we begin with possible maps T5 → T5[1] and

T5 → T5[−1],

0 → P5
α4−→ P4 → 0

↓ α4

0 → P5
α4−→ P4 → 0

↓ 0

0 → P5
α4−→ P4 → 0

Here α4 is a basis of the space of homomorphisms between P5 and P4. The homomorphism α4 is homotopic
to zero and in the second case there is no non-zero homomorphism P4 → P5 (as we can see in the Cartan
matrix of A16).

Now consider possible maps T5 → Tj [−1], j 6= 5. These are given by maps of complexes as follows

0 → P5
α4−→ P4 → 0

↓
0 → Q → 0

where Q could be either P3, P4 or direct sums of these. Note that there are no non-zero homomorphisms
P5 → P1, P5 → P2 and P5 → P6 since these are zero-relations in the quiver of A16. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P5

to P3 or P4 starts with a scalar multiple of α4. Thus, every homomorphism P5 → Q can be factored
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through the map α4 : P5 → P4. Hence, Hom(T, Tj [−1]) = 0 for j ∈ {1, 2, 3, 4, 6} and thus we have shown
that Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T5[1] for j 6= 5. These are given as follows

0 → Q → 0
↓

0 → P5
α5−→ P2 → 0

where Q can be either P2, P3 or direct sums of these since Hom(Pj , P5) = 0 for j = 1, 4 and j = 6. But
no non-zero map can be zero when composed with α4 since the path α2α5α4 = α7α6 6= 0. So the only
homomorphism of complexes Tj → T5[1], j 6= 5, is the zero map.

It follows that T is a tilting complex for A16, and by Rickard’s theorem, E := EndDb(A16)(T ) is derived
equivalent to A16. Since we want to show that E is isomorphic to A6, we use the alternating sum formula

of Proposition 2.14 and compute the Cartan matrix of E to be















1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 1 1 1 0 1
0 0 0 1 1 1
0 0 1 0 0 1















which is the Cartan

matrix of A6 up to permutation.
Now we have to define homomorphisms of complexes between the summands of T which correspond

to the arrows of the quiver of A6.

1

2 4

3 6

5

α1

α7

α4α5

α6

idα2α3

α2
α3

First we have the embedding id : T4 → T5 (in degree zero). Moreover, we have the homomorphisms
α2α3 : T5 → T2 and α4α5 : T2 → T4. Finally, we also have homomorphisms α1, α2, α3, α6 and α7 as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms α7α3, α3α6,
α3α4α5 and α4α5α2α3 are zero since they were zero in A16. As we can see, the two paths from vertex
2 to vertex 4 are the same, i.e., we here have the correct commutativity-relation. There is also another
commutativity-relation α6α7 = α4α5α2 between vertex 4 and 3 since these are the same paths in A16.
The path from vertex 5 to vertex 2 is the last zero-relation since the homomorphism α4α5 is homotopic
to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A6. From this we can conclude that E ∼= A6 and thus, A6 and A16 are derived equiva-
lent. Since Aop

16 is sink/source equivalent to A19, A19 is also derived equivalent to Aop
6 which in turn is

sink/source equivalent to A21.
Hence, we get derived equivalences between all cluster-tilted algebras with associated polynomial

3(x6 + x3 + 1).

3.4 Derived equivalences for polynomial 4(x6 + x
4 + x

2 + 1)

We provide the following figure which displays what is proven in each subsection.

A9
3.4.1

A5
3.4.2

3.4.3

A15
3.4.2

A18
3.4.1

A17

A13
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3.4.1 A5 is derived equivalent to A9

We consider A5 with the following quiver

4 5 6

1 2 3
α1 α2

α8 α4

α7 α3α5α6

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 3, namely Ti : 0 → Pi → 0 for

i ∈ {1, 2, 4, 5, 6} are complexes concentrated in degree zero and T3 : 0 → P3
α2−→ P2 → 0 is a complex in

degrees −1 and 0.
Now we want to show that T is a tilting complex. We begin with possible maps T3 → T3[1] and

T3 → T3[−1],

0 → P3
α2−→ P2 → 0

↓ α2

0 → P3
α2−→ P2 → 0

↓ 0

0 → P3
α2−→ P2 → 0

Here α2 is a basis of the space of homomorphisms between P3 and P2. But the homomorphism α2 is
homotopic to zero and in the second case there is no non-zero homomorphism P2 → P3 (as we can see in
the Cartan matrix of A5).

Now consider possible maps T3 → Tj [−1], j 6= 3. These maps are given by a map of complexes as
follows

0 → P3
α2−→ P2 → 0

↓
0 → Q → 0

where Q could be either P1, P2, P4, P5 or direct sums of these. Note that there is no non-zero homomor-
phism P3 → P6 since this is a zero-relation in the quiver of A5. There exist non-zero homomorphisms
of complexes, but they are all homotopic to zero since every path from vertex i ∈ {1, 2, 4, 5} to vertex
3 ends with α2. Hence, every homomorphism from P3 to P1, P2, P4 or P5 starts with α2, up to scalars
and thus, every homomorphism P3 → Q can be factored through the map α2 : P3 → P2. Directly
from the definition we see that Hom(T, Tj [−1]) = 0 for j ∈ {1, 2, 4, 5, 6} and thus we have shown that
Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T3[1] for j 6= 3. These are given as follows

0 → Q → 0
↓

0 → P3
α2−→ P2 → 0

where Q can be either P5, P6 or direct sums of these. Note that Hom(Pj , P3) = 0 for j = 1, 2 and j = 4.
But no non-zero map can be zero when composed with α2 since the path α4α3α2 = α8α6 6= 0. So the
only homomorphism of complexes Tj → T3[1], j 6= 3 is the zero map.

It follows that T is a tilting complex for A5, and by Rickard’s theorem, E := EndDb(A5)(T ) is derived
equivalent to A5. We want to show that E is isomorphic to A9. Using the alternating sum formula of

Proposition 2.14 we can compute the Cartan matrix of E to be















1 1 0 0 0 1
0 1 0 1 1 1
0 1 1 1 0 0
1 1 0 1 1 0
0 1 0 0 1 0
0 1 1 0 1 1















.

Now we have to define homomorphisms of complexes between the summands of T which correspond
to the reversed arrows of the quiver of A9 depicted below and show that these homomorphisms satisfy
the defining relations of A9, up to homotopy.
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4 5 6

1 2 3

α8 α4

α1

α7 α4α5
α6 α2α3

α5

id

First we have the embedding id : T2 → T3 (in degree zero). Moreover, we have the homomorphisms
α2α3 : T6 → T2 and α4α5 : T3 → T6. Finally, we also have homomorphisms α1, α4, α5, α6, α7 and α8 as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms α1α6, α6α7, α5α6,
α5α2α3 and α2α3α4α5 are zero since they were zero in A5. As we can see, the two paths from vertex 4 to
vertex 2 and the two paths from vertex 2 to vertex 5 are the same, since we have the same commutativity-
relations in A5. It is easy to see that the two paths from vertex 6 to vertex 2 are also the same. The last
zero-relation α2α3 between vertex 6 and 3 is given by the homomorphism from T3 to T2 in degree zero.
This is indeed a zero-relation since the homomorphism α2α3 is homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A9. We have shown that they satisfy the defining relations of A9 and that the Cartan
matrices of E and A9 coincide. From this we can conclude that E ∼= A9 and thus, A9 and A5 are derived
equivalent. Since A17 is the opposite algebra of A9, A17 is derived equivalent to Aop

5 = A18.

3.4.2 A15 is derived equivalent to A5 and A18

We consider A15 with the following quiver

2

5

1 3

6

4

α1 α2

α3

α4

α5

α6

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 2, that is Ti : 0 → Pi → 0 for

i ∈ {1, 3, 4, 5, 6} are complexes concentrated in degree zero and T2 : 0 → P2
(α1,α6)
−→ P1⊕P6 → 0 in degrees

−1 and 0.
Now we want to show that T is a tilting complex. We begin with possible maps T2 → T2[1] and

T2 → T2[−1],

0 → P2
(α1,α6)
−→ P1 ⊕ P6 → 0

↓ ψ

0 → P2
(α1,α6)
−→ P1 ⊕ P6 → 0

↓ 0

0 → P2
(α1,α6)
−→ P1 ⊕ P6 → 0

where ψ ∈ Hom(P2, P1 ⊕ P6) and (α1, 0), (0, α6) is a basis of this two-dimensional space. The first
homomorphism is homotopic to zero (as we can easily see). In the second case there is no non-zero
homomorphism P1 ⊕ P6 → P2 (as we can see in the Cartan matrix of A15).

Now consider possible maps T2 → Tj [−1], j 6= 2. These maps are given by a map of complexes as
follows

0 → P2
(α1,α6)
−→ P1 ⊕ P6 → 0

↓
0 → Q → 0

where Q could be either P1, P4, P5, P6 or direct sums of these. Note that there is no non-zero homomor-
phism P2 → P3 since this is a zero-relation in the quiver of A15. There exist non-zero homomorphisms

25



of complexes, but they are all homotopic to zero since every path from vertex i ∈ {1, 4, 5, 6} to vertex 2
ends with α1 or α6. Thus, every homomorphism from P2 to P1, P4, P5 or P6 starts with α1 or α6, up to
scalars. Hence, every homomorphism P2 → Q can be factored through the map (α1, α6) : P2 → P1 ⊕ P6.
Directly from the definition we see that Hom(T, Tj [−1]) = 0 for j ∈ {1, 3, 4, 5, 6} and thus we have shown
that Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T2[1] for j 6= 2. These are given as follows

0 → Q → 0
↓

0 → P2
(α1,α6)
−→ P1 ⊕ P6 → 0

where Q can be either P3, P4, P5 or direct sums of these. Note that Hom(Pj , P2) = 0 for j = 1 and j = 6.
But no non-zero map can be zero when composed with both α1 and α6 since the path α2α1 is not a
zero-relation. So the only homomorphism of complexes Tj → T2[1], j 6= 2, is the zero map.

It follows that T is a tilting complex for A15, and by Rickard’s theorem, E := EndDb(A15)(T ) is
derived equivalent to A15. We want to show that E is isomorphic to A5. Using the alternating sum

formula of Proposition 2.14 we can compute the Cartan matrix of E to be















1 0 1 1 1 0
1 1 1 1 0 1
0 1 1 1 1 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1















which

is the Cartan matrix of A5 up to permutation.
Now we have to define homomorphisms of complexes between the summands of T which correspond

to the arrows of the quiver of A5 depicted below and show that these homomorphisms satisfy the defining
relations of A5, up to homotopy.

1

2 6 5

3 4
α3

β

α4α
γ

α5

α1α2

α6α2

First we have the embeddings α := (id, 0) : T1 → T2 and β := (0, id) : T6 → T2 (in degree zero). Then
we define γ : T2 → T3 by the map (0, α3α4α5) : P1 ⊕ P6 → P3 in degree 0. This is a homomorphism
of complexes since α2α3α4α5 = 0 in A15. Moreover, we have the homomorphisms α1α2 : T3 → T1 and
α6α2 : T3 → T6. Finally, we also have homomorphisms α3, α4 and α5 as before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms α6α2α3α4,
α4α5α6α2 and α5α6α2α3 in the 4-cycle are zero since they were zero in A15. As we can see, the two
paths from vertex 3 to vertex 6 are the same, i.e., we here have the right commutativity-relation. There
is also another commutativity-relation αα1α2 = βα6α2 between vertex 2 and 3 which is given by the two
homomorphisms from T3 to the first and second summand of T2. These are indeed the same paths since
the homomorphism (α2α1, 0) is homotopic to (0, α2α6). Because α2α3α4α5 = 0 the paths from vertex 6
to vertex 2 and from vertex 1 to 2 are zero in E. The last zero-relation is given by the concatenation of
α and γ.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A5. We have shown that they satisfy the defining relations of A5 and that the Cartan
matrices of E and A5 coincide. From this we can conclude that E ∼= A5 and thus, A15 and A5 are derived
equivalent. Since A18 is the opposite algebra of A5, A18 is derived equivalent to Aop

15 and since A15 is
sink/source equivalent to Aop

15 we get derived equivalences between A5, A15 and A18. With the above
result, we have derived equivalences between A5, A9, A15, A17 and A18.

3.4.3 A13 is derived equivalent to A5

Consider the algebra A13 with the following quiver
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4 5 6

1 2 3

α3 α5

α1 α7

α6α2α4

Let T =
⊕6

i=1 Ti be the complex corresponding to the vertex 4. Explicitly, Ti : 0 → Pi → 0 for

i ∈ {1, 2, 3, 5, 6} are complexes concentrated in degree zero and T4 : 0 → P4
α3−→ P5 → 0 in degrees −1

and 0.
Now we want to show that T is a tilting complex. We begin with possible maps T4 → T4[1] and

T4 → T4[−1],

0 → P4
α3−→ P5 → 0

↓ α3

0 → P4
α3−→ P5 → 0

↓ 0

0 → P4
α3−→ P5 → 0

Here α3 is a basis of the space of homomorphisms between P4 and P5. The first homomorphism is
homotopic to zero (as we can easily see). In the second case there is no non-zero homomorphism P5 → P4

(as we can see in Cartan matrix of A13).
Now consider possible maps T4 → Tj [−1], j 6= 4. These maps are given by a map of complexes as

follows
0 → P4

α3−→ P5 → 0
↓

0 → Q → 0

where Q could be either P2, P3, P5 or direct sums of these. Note that there is no non-zero homomor-
phism P4 → P1 and P4 → P6 since these are zero-relation in the quiver of A13. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P4 to
P2, P3 or P5 starts with α3, up to scalars. Thus, every homomorphism P4 → Q can be factored through
the map α3 : P4 → P5. Hence, Hom(T, Tj [−1]) = 0 for j ∈ {1, 2, 3, 5, 6} and thus we have shown that
Hom(T, T [−1]) = 0.

Finally, we have to consider maps Tj → T4[1] for j 6= 4. These are given as follows

0 → Q → 0
↓

0 → P4
α3−→ P5 → 0

where Q can be either P1, P2 or direct sums of these since Hom(Pj , P4) = 0 for j = 3, 5 and j = 6. But
no non-zero map can be zero when composed with α3 since the path α1α4α3 = α7α6α5 6= 0. So the only
homomorphism of complexes Tj → T4[1], j 6= 4, is the zero map.

It follows that T is a tilting complex for A13, and by Rickard’s theorem, E := EndDb(A13)(T ) is
derived equivalent to A13. We claim that E is isomorphic to A5 and we use the alternating sum formula

of Proposition 2.14 for computing the Cartan matrix of E which is given as follows















1 1 0 1 1 1
0 1 0 0 1 1
1 1 1 0 1 0
0 0 1 1 1 1
1 1 1 0 1 1
0 1 1 0 0 1















and which is the Cartan matrix of A5 up to permutation.
Now we define homomorphisms of complexes between the summands of T which correspond to the

arrows of the quiver of A5, depicted below.
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1 2 3

4 5 6
id α5

α1 α7

α6α2α3α4α1α2

First we have the embedding id : T5 → T4 (in degree zero). Moreover, we have the homomorphisms
α1α2 : T4 → T1 and α3α4 : T1 → T5. Finally, we also have homomorphisms α1, α2, α5, α6 and α7 as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms α6α7α2, α7α2α5,
α2α5α6, α2α3α4, α3α4α1 and thus α3α4α1α2 are zero since they were zero in A13. As we can see, the two
paths α5α6α7 and α3α4α1 from vertex 5 to vertex 2 are the same since we have the same commutativity-
relation in A13. It is easy to see that the two path from vertex 1 to vertex 5 are also the same. The last
zero-relation α3α4 between vertex 4 and 1 is given by the homomorphism from T1 to T4 in degree zero.
This is indeed a zero-relation since the homomorphism α3α4 is homotopic to zero.

Thus, we defined homomorphisms between the summands of T corresponding to the reversed arrows
of the quiver of A5. We have shown that they satisfy the defining relations of A5 and that the Cartan
matrices of E and A5 coincide. From this we can conclude that E ∼= A5 and thus, A13 and A5 are derived
equivalent. Hence, we get derived equivalences between A5, A9, A13, A15, A17 and A18.

Therefore, we have shown that all cluster-tilted algebras with associated polynomial 4(x6+x4+x2+1)
are derived equivalent.

A Cluster-tilted algebras of type E7

First we list all quivers of the cluster-tilted algebras of type E7. Algebras with the same polynomial
associated with their Cartan matrix are grouped in one table. According to Theorem 1.1, these groups
turn out to be the derived equivalence classes.

Note that a tuple (a, b) stands for an arrow a → b and that the numbering of the algebras in the
tables results from the numbering of the whole list.

x
7
− x

6 + x
4
− x

3 + x − 1
algebra KQ/I quiver Q

A1 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), (5, 6)

2(x7
− x

5 + 2x4
− 2x3 + x

2
− 1)

algebra KQ/I quiver Q
A2 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), (5, 6), (6, 4)
A13 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), (5, 3), (5, 6), (6, 4)
A20 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3), (5, 6), (5, 7), (6, 4)

2(x7
− x

5 + x
4
− x

3 + x
2
− 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A3 (2, 1), (3, 2), (3, 4), A4 (2, 1), (3, 2), (3, 4),

(5, 3), (5, 6), (6, 7), (7, 5) (3, 5), (5, 6), (6, 3), (7, 6)
A5 (2, 1), (3, 2), (3, 4), A12 (2, 1), (2, 3), (3, 4), (4, 2),

(3, 7), (4, 5), (5, 3), (6, 4) (4, 5), (5, 3), (6, 4), (7, 6)
A16 (1, 2), (2, 5), (3, 2), (3, 6), A25 (1, 2), (2, 3), (3, 5), (4, 3),

(4, 2), (5, 3), (5, 4), (7, 5) (5, 4), (5, 6), (6, 3), (6, 7)

2(x7
− 2x5 + 4x4

− 4x3 + 2x2
− 1)

algebra KQ/I quiver Q
A18 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3), (5, 6), (6, 4), (6, 7)

3(x7
− 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A6 (1, 2), (2, 3), (3, 4), A7 (1, 2), (2, 3), (3, 4),

(4, 5), (4, 7), (5, 6), (6, 3) (4, 5), (5, 6), (6, 3), (6, 7)
A8 (1, 2), (2, 3), (3, 4), A17 (1, 2), (2, 3), (3, 4), (3, 7)

(3, 7), (4, 5), (5, 2), (6, 4) (4, 5), (5, 6), (6, 3), (7, 6)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A19 (1, 2), (2, 3), (3, 4), (4, 5), A21 (1, 2), (2, 3), (3, 4), (3, 7),

(5, 6), (6, 3), (6, 7), (7, 5) (4, 2), (4, 5), (5, 6), (6, 3)
A23 (1, 2), (2, 3), (3, 4), (4, 5), A26 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 6), (5, 7), (6, 3), (7, 4) (4, 7), (5, 3), (6, 4), (7, 2)
A27 (1, 2), (2, 3), (3, 4), (4, 2), A28 (1, 2), (2, 4), (3, 2), (4, 3),

(4, 5), (5, 6), (6, 3), (6, 7) (4, 6), (5, 2), (6, 5), (7, 6)
A29 (2, 1), (2, 3), (3, 4), (4, 5) A36 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 2), (5, 6), (6, 4), (7, 6) (4, 7), (5, 6), (6, 3), (7, 3)
A37 (2, 1), (2, 3), (3, 4), (3, 5), A39 (1, 2), (2, 3), (3, 4), (4, 2),

(4, 2), (5, 6), (6, 2), (7, 3) (4, 5), (4, 7), (5, 6), (6, 3)
A44 (1, 2), (2, 3), (3, 4), (3, 7), A47 (2, 1), (2, 3), (3, 4), (3, 5)

(4, 5), (5, 3), (5, 6), (6, 7), (7, 5) (4, 2), (5, 2), (5, 6), (6, 3), (7, 4)
A51 (2, 1), (2, 3), (2, 5), (3, 4), A52 (1, 2), (2, 3), (3, 4), (3, 6)

(4, 2), (5, 4), (5, 6), (6, 2), (7, 6) (4, 5), (5, 3), (6, 5), (6, 7), (7, 3)
A54 (1, 2), (2, 3), (3, 4), (4, 2), A56 (1, 2), (2, 3), (3, 5), (4, 3),

(4, 5), (5, 3), (5, 6), (5, 7), (6, 4) (5, 4), (5, 6), (6, 3), (6, 7), (7, 5)
A59 (2, 1), (2, 3), (3, 4), (3, 5), A60 (1, 2), (2, 3), (2, 7), (3, 1),

(4, 2), (5, 2), (5, 6), (6, 3), (6, 7) (3, 4), (4, 5), (5, 2), (5, 6), (6, 4)
A66 (1, 2), (2, 3), (3, 4), (4, 2), A67 (1, 2), (2, 3), (2, 6), (3, 4),

(4, 5), (4, 7), (5, 3), (5, 6), (6, 4) (4, 2), (4, 5), (5, 3), (6, 4), (7, 4)
A72 (2, 1), (2, 3), (2, 6), (3, 4) A73 (2, 1), (2, 3), (2, 7), (3, 4),

(3, 7), (4, 2), (4, 5), (5, 6), (6, 4) (4, 5), (4, 6), (5, 3), (6, 2), (7, 6)
A75 (1, 2), (2, 3), (2, 5), (3, 4), A86 (1, 2), (2, 3), (2, 7), (3, 4), (3, 6),

(4, 2), (5, 4), (5, 6), (6, 2), (7, 4) (4, 5), (5, 3), (6, 2), (6, 5), (7, 6)
A87 (1, 2), (2, 3), (3, 4), (3, 5), (4, 6) A89 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 2), (5, 6), (6, 3), (6, 7), (7, 4) (5, 3), (5, 6), (6, 4), (6, 7), (7, 5)
A97 (1, 2), (2, 5), (3, 2), (3, 6), (4, 2),

(5, 3), (5, 4), (6, 5), (6, 7), (7, 3)

4(x7 + x
6
− x

5 + x
4
− x

3 + x
2
− x − 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A14 (2, 1), (2, 3), (3, 4), (4, 2), A15 (2, 1), (2, 3), (2, 5), (3, 4),

(5, 2), (5, 6), (6, 7), (7, 5) (4, 2), (5, 6), (6, 2), (7, 6)
A22 (1, 2), (2, 3), (3, 4), (4, 2), A31 (2, 1), (2, 3), (2, 5), (3, 4),

(4, 5), (4, 7), (5, 6), (6, 4) (4, 2), (5, 6), (6, 7), (7, 5)
A46 (2, 1), (2, 3), (3, 4), (3, 5), A57 (2, 1), (2, 3), (2, 5), (3, 4),

(4, 2), (5, 2), (5, 6), (6, 7), (7, 5) (4, 2), (5, 4), (5, 6), (6, 7), (7, 5)

4(x7 + x
6
− x

5
− x

4 + x
3 + x

2
− x − 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A45 (1, 2), (2, 3), (3, 4), (4, 2), A50 (2, 1), (2, 3), (3, 4), (3, 6),

(4, 5), (4, 6), (5, 3), (6, 7), (7, 4) (4, 2), (4, 5), (5, 3), (6, 7), (7, 3)

4(x7 + x
6
− 2x5 + 2x4

− 2x3 + 2x2
− x − 1)

algebra KQ/I quiver Q
A53 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), (5, 3), (5, 6), (6, 7), (7, 5)

4(x7 + x
5
− x

4 + x
3
− x

2
− 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A9 (1, 2), (2, 3), (3, 4), A10 (1, 2), (2, 3), (3, 4),

(4, 5), (5, 6), (6, 7), (7, 3) (4, 5), (5, 6), (6, 2), (7, 4)
A30 (2, 1), (2, 4), (3, 2), (4, 3), A33 (2, 1), (2, 3), (3, 4), (4, 5),

(4, 5), (5, 6), (6, 7), (7, 2) (5, 2), (5, 6), (6, 7), (7, 4)
A34 (1, 2), (2, 3), (3, 4), (4, 5), A40 (2, 1), (2, 3), (3, 4), (4, 5),

(4, 6), (5, 2), (6, 7), (7, 3) (5, 6), (5, 7), (6, 2), (7, 4)
A43 (2, 1), (2, 3), (2, 7), (3, 4), A48 (1, 2), (2, 3), (2, 7), (3, 4),

(4, 5), (5, 6), (6, 2), (7, 6) (4, 2), (4, 5), (5, 6), (6, 7), (7, 4)
A58 (2, 1), (2, 3), (3, 4), (3, 5), A61 (1, 2), (2, 3), (3, 4), (4, 2),

(4, 2), (5, 6), (5, 7), (6, 2), (7, 3) (4, 5), (5, 3), (5, 6), (6, 7), (7, 4)
A63 (1, 2), (2, 3), (3, 4), (4, 5), A64 (1, 2), (2, 3), (3, 4), (4, 5),

(4, 6), (5, 2), (6, 3), (6, 7), (7, 4) (4, 7), (5, 2), (5, 6), (6, 4), (7, 6)
A68 (1, 2), (2, 3), (2, 6), (2, 7), A69 (1, 2), (2, 3), (3, 4), (3, 6),

(3, 1), (3, 4), (4, 5), (5, 2), (6, 5) (4, 2), (4, 5), (5, 3), (6, 7), (7, 5)
A70 (1, 2), (2, 3), (3, 4), (3, 7), A76 (2, 1), (2, 3), (2, 4), (3, 6),

(4, 5), (4, 6), (5, 2), (6, 3), (7, 6) (4, 5), (5, 6), (6, 2), (6, 7), (7, 5)
A77 (1, 2), (1, 4), (2, 6), (3, 2), A78 (1, 2), (2, 5), (3, 2), (3, 7),

(4, 5), (5, 1), (6, 5), (6, 7), (7, 3) (4, 3), (5, 6), (6.3), (7, 4), (7, 6)
A80 (1, 2), (2, 6), (3, 2), (3, 4), A85 (1, 2), (2, 3), (2, 4), (3, 5), (4, 5),

(4, 5), (5, 6), (6, 3), (6, 7), (7, 2) (5, 2), (5, 6), (6, 4), (6, 7), (7, 5)
A88 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A91 (1, 2), (2, 3), (3, 4), (3, 6), (4, 2)

(4, 7), (5, 3), (5, 6), (6, 4), (7, 6) (4, 5), (5, 3), (6, 5), (6, 7), (7, 3)
A92 (1, 2), (2, 5), (3, 2), (3, 7), (4, 3), A99 (2, 1), (2, 5), (3, 2), (3, 4), (4, 5),

(5, 1), (5, 6), (6, 3), (7, 4), (7, 6) (5, 3), (5, 6), (5, 7), (6, 4), (7, 2)
A100 (1, 5), (2, 1), (2, 6), (3, 2), (3, 4), A101 (1, 2), (2, 3), (2, 5), (3, 6), (4, 1),

(4, 7), (5, 2), (6, 5), (6, 7), (7, 3) (5, 4), (5, 6), (6, 2), (6, 7), (7, 3)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A103 (1, 2), (2, 6), (3, 2), (3, 7), (4, 3), A109 (1, 2), (1, 4), (2, 3), (2, 5), (3, 6),

(5, 1), (6, 3), (6, 5), (7, 4), (7, 6) (4, 5), (5, 1), (5, 6), (6, 2), (6, 7), (7, 3)
A110 (1, 4), (2, 1), (2, 3), (2, 5), (3, 6), A111 (1, 2), (2, 3), (2, 4), (3, 5), (4, 1),

(4, 2), (5, 4), (5, 6), (6, 2), (6, 7), (7, 3) (4, 5), (5, 2), (5, 6), (6, 3), (6, 7), (7, 5)

4(x7 + x
5
− 2x4 + 2x3

− x
2
− 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A38 (2, 1), (2, 3), (3, 4), (4, 5), A41 (2, 1), (2, 3), (3, 4), (4, 5),

(4, 7), (5, 6), (6, 2), (7, 3) (5, 6), (6, 2), (6, 7), (7, 5)
A71 (2, 1), (2, 3), (3, 4), (4, 5), A95 (1, 6), (2, 1), (3, 2), (3, 7), (4, 3),

(4, 6), (5, 3), (6, 2), (6, 7), (7, 4) (5, 1), (6, 3), (6, 5), (7, 4), (7, 6)
A98 (1, 2), (2, 3), (2, 5), (3, 7), (4, 3),

(5, 1), (5, 6), (6, 7), (7, 2), (7, 4)

5(x7 + x
5
− x

4 + x
3
− x

2
− 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A11 (2, 1), (2, 3), (3, 4), A42 (1, 2), (2, 3), (3, 4), (4, 1)

(4, 5), (5, 6), (6, 7), (7, 2) (4, 5), (5, 6), (6, 7), (7, 3)
A65 (1, 2), (1, 7), (2, 3), (3, 1), A79 (1, 2), (2, 3), (3, 4), (4, 1)

(3, 4), (4, 5), (5, 6), (6, 7), (7, 3) (4, 5), (5, 6), (5, 7), (6, 3), (7, 4)
A81 (1, 2), (2, 3), (3, 4), (3, 7), A82 (1, 2), (2, 3), (3, 4), (3, 7),

(4, 1), (4, 5), (5, 3), (6, 5), (7, 6) (4, 1), (4, 5), (5, 6), (6, 3), (7, 6)
A83 (1, 2), (2, 3), (3, 4), (3, 7), A90 (1, 2), (2, 5), (3, 2), (3, 6), (4, 1),

(4, 5), (4, 6), (5, 1), (6, 3), (7, 6) (4, 7), (5, 3), (5, 4), (6, 5), (7, 5)
A94 (2, 1), (2, 3), (2, 6), (3, 4), (4, 2), A102 (1, 5), (2, 1), (2, 3), (3, 6), (4, 3),

(4, 5), (5, 6), (6, 4), (6, 7), (7, 2) (4, 7), (5, 6), (6, 2), (6, 4), (7, 6)
A105 (1, 3), (2, 1), (2, 4), (2, 7), (3, 2) A106 (1, 2), (2, 3), (3, 1), (3, 4), (3, 5),

(4, 5), (5, 2), (6, 5), (7, 3), (7, 6) (4, 7), (5, 2), (5, 6), (6, 3), (7, 6)
A107 (1, 3), (2, 1), (2, 6), (3, 2), (3, 7) A108 (1, 7), (2, 1), (2, 3), (2, 6), (3, 4),

(4, 3), (5, 2), (6, 3), (6, 5), (7, 4), (7, 6) (4, 2), (4, 5), (5, 6), (6, 4), (6, 7), (7, 2)
A112 (1, 2), (1, 6), (2, 3), (3, 1), (3, 4),

(3, 5), (4, 2), (5, 6), (5, 7), (6, 3), (7, 3)

6(x7 + x
6
− x

4 + x
3
− x − 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A24 (2, 1), (2, 3), (3, 4), (4, 5), A32 (2, 1), (2, 3), (3, 4), (3, 6),

(5, 2), (5, 6), (6, 7), (7, 5) (4, 5), (5, 2), (6, 7), (7, 3)
A49 (1, 2), (2, 3), (3, 1), (3, 4), A55 (1, 2), (2, 3), (3, 1), (3, 4),

(3, 6), (4, 5), (5, 2), (6, 7), (7, 3) (4, 5), (5, 6), (6, 3), (6, 7), (7, 5)
A62 (1, 2), (2, 3), (3, 1), (3, 4), A74 (1, 2), (2, 3), (2, 4), (3, 1),

(4, 5), (5, 6), (5, 7), (6, 3), (7, 4) (4, 5), (4, 6), (5, 2), (6, 7), (7, 2)
A84 (1, 2), (2, 3), (3, 1), (3, 4), (3, 6), A93 (1, 5), (2, 1), (2, 3), (3, 5), (4, 1),

(4, 5), (5, 3), (5, 7), (6, 5), (7, 6) (5, 2), (5, 4), (5, 7), (6, 5), (7, 6)
A96 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5),

(4, 6), (5, 3), (6, 3), (6, 7), (7, 4)

6(x7 + x
5
− x

2
− 1)

algebra KQ/I quiver Q
A104 (1, 2), (2, 3), (2, 5), (3, 6), (4, 1), (5, 4), (5, 6), (6, 2), (6, 7), (7, 5)

8(x7 + x
6 + x

5
− x

4 + x
3
− x

2
− x − 1)

algebra KQ/I quiver Q
A35 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (6, 7), (7, 3)

B Derived equivalences for cluster-tilted algebras of type E7

First we list the opposite algebra for each cluster-tilted algebra. By a result of Rickard [18, Prop. 9.1], if
A is derived equivalent to B, also Aop is derived equivalent to Bop.

After this, we list the cluster-tilted algebra, the corresponding tilting complex, the derived equivalent
cluster-tilted algebra with permutation of the vertices (up to sink/source equivalence) and the resulting
equivalence for the opposite algebras (if necessary).

The tilting complexes are all of the form introduced in Section 3.1, arising from vertices and resulting
in good mutations. If we have a tilting complex T =

⊕7
i=1 Ti with Ti : 0 → Pi → 0, i ∈ {1, 3, 4, 5, 6, 7}

(in degree zero) and T2 : 0 → P2 → P1 ⊕ P5 → 0 in degrees −1 and 0 we write (2; 1, 5) for T2 and know
that the other summands are just the stalk complexes.

We write the permutation as a product of disjoint cycles. If we have a permutation (135)(67) the
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labeling of the vertices changes as follows: 1 → 3, 3 → 5, 5 → 1, 6 → 7, 7 → 6 and the labeling of the
other vertices is left unchanged.

B.1 Polynomial 2(x7 − x
5 + 2x4 − 2x3 + x

2 − 1)

Aop
2

∼

s/s A2, A
op
13

∼

s/s A20

A13(∗) (4; 3, 6, 7) ∼

der A2 (567) ⇒ A20
∼

der A2

(∗) the direction of some arrow(s) is changed in a sink or source

B.2 Polynomial 2(x7 − x
5 + x

4 − x
3 + x

2 − 1)

Aop
3

∼

s/s A3, A
op
4

∼

s/s A5, A
op
12

∼

s/s A25, A
op
16

∼

s/s A16

A5 (4; 3, 6) ∼

der A3 (457) ⇒ A4
∼

der A3

A16 (2; 1, 3, 4) ∼

der A4 (156)(23) ⇒ A16
∼

der A5

A25 (3; 2, 4, 6) ∼

der A5 (16247) ⇒ A12
∼

der A4

B.3 Polynomial 3(x7 − 1)

Aop
6

∼

s/s A7, A
op
8

∼

s/s A8, A
op
17

∼

s/s A36, A
op
19

∼

s/s A23, A
op
21

∼

s/s A39, A
op
26

∼

s/s A28, A
op
27

∼

s/s A29, A
op
37 = A37, A

op
44

∼

s/s

A56, A
op
47

∼

s/s A72, A
op
51

∼

s/s A66, A
op
52

∼

s/s A52, A
op
54

∼

s/s A59, A
op
60

∼

s/s A73, A
op
67

∼

s/s A75, A
op
86

∼

s/s A97, A
op
87

∼

s/s A89

A6 (3; 2, 6) ∼

der A51 (17)(264)(35) ⇒ A7
∼

der A66

A6(∗) (4; 3, 7) ∼

der A56 (46) ⇒ A7
∼

der A44

A8 (4; 3, 6) ∼

der A47 (17)(2354) ⇒ A8
∼

der A72

A8 (2; 1, 5) ∼

der A66 (16)(2435) ⇒ A8
∼

der A51

A8(∗) (3; 2, 7) ∼

der A75 (167)(24)(35) ⇒ A8
∼

der A67

A17 (3; 2, 6) ∼

der A86 (3456) ⇒ A36
∼

der A97

A17 (4; 3) ∼

der A52 (47)(56) ⇒ A36
∼

der A52

A19 (3; 2, 6) ∼

der A87 (345) ⇒ A23
∼

der A89

A23 (6; 5) ∼

der A44 (467) ⇒ A19
∼

der A56

A44 (6; 5) ∼

der A17 (47)(56) ⇒ A56
∼

der A36

A51 (3; 2) ∼

der A21 (17)(236)(45) ⇒ A66
∼

der A39

A54 (2; 1, 4) ∼

der A73 (176425) ⇒ A59
∼

der A60

A66 (2; 1, 4) ∼

der A60 (16)(2534) ⇒ A51
∼

der A73

A67 (5; 4) ∼

der A37 (17)(23564) ⇒ A75
∼

der A37

A75 (3; 2) ∼

der A28 (3546) ⇒ A67
∼

der A26

A87 (4; 3, 7) ∼

der A27 (456) ⇒ A89
∼

der A29

(∗) the direction of some arrow(s) is changed in a sink or source

B.4 Polynomial 4(x7 + x
6 − x

5 + x
4 − x

3 + x
2 − x− 1)

Aop
14

∼

s/s A31, A
op
15

∼

s/s A22, A
op
46

∼

s/s A57

A15 (6; 5, 7) ∼

der A22 (1735)(246)
A31 (5; 2, 7) ∼

der A15 (56) ⇒ A14
∼

der A22

A46(∗) (2; 1, 4, 5) ∼

der A31 (134) ⇒ A57
∼

der A14

(∗) the direction of some arrow(s) is changed in a sink or source
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B.5 Polynomial 4(x7 + x
6 − x

5 − x
4 + x

3 + x
2 − x− 1)

Aop
45 = A50

A50 (3; 2, 5, 7) ∼

der A45 (3476)

B.6 Polynomial 4(x7 + x
5 − x

4 + x
3 − x

2 − 1)

Aop
9

∼

s/s A9, A
op
10

∼

s/s A10, A
op
30

∼

s/s A43, A
op
33 = A34, A

op
40

∼

s/s A40, A
op
48

∼

s/s A80, A
op
58

∼

s/s A76, A
op
61

∼

s/s A69,
Aop

63
∼

s/s A64, A
op
68

∼

s/s A68, A
op
70

∼

s/s A78, A
op
77 = A77, A

op
85 = A99, A

op
88

∼

s/s A91, A
op
92 = A100, A

op
101 = A103,

Aop
109 = A109, A

op
110 = A111

A9 (3; 2, 7) ∼

der A69 (34)(576) ⇒ A9
∼

der A61

A10 (2; 1, 6) ∼

der A78 (1724) ⇒ A10
∼

der A70

A10 (4; 3, 7) ∼

der A63 (456) ⇒ A10
∼

der A64

A30(∗) (2; 1, 3, 7) ∼

der A48 (13) ⇒ A43
∼

der A80

A30 (5; 4) ∼

der A58 (34)(567) ⇒ A43
∼

der A76

A33(∗) (2; 1, 5) ∼

der A103 (1724)(56) ⇒ A34
∼

der A101

A33 (4; 3, 7) ∼

der A88 (45)(67) ⇒ A34
∼

der A91

A33 (6; 5) ∼

der A78 (35)(46) ⇒ A34
∼

der A70

A34 (3; 2, 7) ∼

der A99 (475) ⇒ A33
∼

der A85

A34 (5; 4) ∼

der A48 (3567) ⇒ A33
∼

der A80

A40(∗) (2; 1, 6) ∼

der A92 (1724) ⇒ A40
∼

der A100

A68 (6; 2) ∼

der A30 (176543) ⇒ A68
∼

der A43

A77 (2; 1, 3) ∼

der A110 (1743526) ⇒ A77
∼

der A111

A78 (2; 1, 3) ∼

der A111 (247635) ⇒ A70
∼

der A110

A88 (7; 4) ∼

der A61 (1) ⇒ A91
∼

der A69

A103 (2; 1, 3) ∼

der A100 (15)(26)(37) ⇒ A101
∼

der A92

A109 (3; 2, 7) ∼

der A63 (17456)(23) ⇒ A109
∼

der A64

(∗) the direction of some arrow(s) is changed in a sink or source

B.7 Polynomial 4(x7 + x
5 − 2x4 + 2x3 − x

2 − 1)

Aop
38

∼

s/s A41, A
op
71

∼

s/s A71, A
op
95 = A98

A38 (5; 4) ∼

der A71 (57) ⇒ A41
∼

der A71

A41(∗) (2; 1, 6) ∼

der A95 (15724) ⇒ A38
∼

der A98

(∗) the direction of some arrow(s) is changed in a sink or source

B.8 Polynomial 5(x7 + x
5 − x

4 + x
3 − x

2 − 1)

Aop
11

∼

s/s A11, A
op
42 = A42, A

op
65 = A83, A

op
79 = A82, A

op
81 = A81, A

op
90 = A105, A

op
94

∼

s/s A94, A
op
102 = A106,

Aop
107 = A108, A

op
112 = A112

A11(∗) (2; 1, 7) ∼

der A65 (12) ⇒ A11
∼

der A83

A79 (3; 2, 6) ∼

der A112 (143) ⇒ A82
∼

der A112

A83 (7; 3) ∼

der A42 (16)(27) ⇒ A65
∼

der A42

A94(∗) (2; 1, 4, 7) ∼

der A106 (175)(23) ⇒ A94
∼

der A102

A106 (1; 3) ∼

der A81 (12)(4567) ⇒ A102
∼

der A81

A106 (4; 3) ∼

der A112 (1574) ⇒ A102
∼

der A112

A105 (1; 2) ∼

der A82 (123)(47)(56) ⇒ A90
∼

der A79

A105 (4; 2) ∼

der A83 (1742365) ⇒ A90
∼

der A65
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A108 (5; 4) ∼

der A105 (37654) ⇒ A107
∼

der A90

(∗) the direction of some arrow(s) is changed in a sink or source

B.9 Polynomial 6(x7 + x
6 − x

4 + x
3 − x− 1)

Aop
24

∼

s/s A32, A
op
49 = A74, A

op
55 = A62, A

op
84 = A96, A

op
93 = A93

A24(∗) (2; 1, 5) ∼

der A96 (1726)(345) ⇒ A32
∼

der A84

A32(∗) (2; 1, 5) ∼

der A93 (135)(67) ⇒ A24
∼

der A93

A49 (4; 3) ∼

der A93 (14352)(67) ⇒ A74
∼

der A93

A96 (5; 4) ∼

der A55 (45) ⇒ A84
∼

der A62

(∗) the direction of some arrow(s) is changed in a sink or source

C Cluster-tilted algebras of type E8

x
8
− x

7 + x
5
− x

4 + x
3
− x + 1

algebra KQ/I quiver Q
A1 (1, 2), (2, 3), (4, 3), (5, 4), (6, 5), (7, 6), (8, 3)

2(x8
− x

6 + 2x5
− 2x4 + 2x3

− x
2 + 1)

algebra KQ/I quiver Q
A2 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 5), (8, 5)
A19 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 4), (6, 7), (6, 8), (7, 5)
A28 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (5, 8), (6, 4), (6, 7), (7, 5)

2(x8
− x

6 + x
5 + x

3
− x

2 + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q

A3 (1, 2), (2, 3), (3, 4), (4, 5), A4 (1, 2), (2, 3), (4, 3), (5, 3),
(5, 3), (6, 4), (7, 4), (8, 7) (5, 6), (6, 7), (7, 5), (8, 7)

A5 (1, 2), (2, 3), (4, 3), (5, 3), A6 (1, 2), (2, 3), (3, 5), (4, 3),
(6, 5), (6, 7), (7, 8), (8, 6) (5, 6), (5, 8), (6, 3), (7, 6)

A7 (1, 2), (2, 3), (4, 3), (5, 3), A10 (1, 2), (2, 3), (3, 5), (4, 3),
(5, 6), (6, 7), (6, 8), (7, 5) (5, 6), (5, 7), (6, 3), (7, 8)

A23 (1, 2), (2, 3), (4, 3), (4, 5), A31 (1, 2), (3, 2), (3, 4), (3, 6),
(4, 7), (5, 6), (6, 4), (7, 6), (8, 7) (4, 5), (5, 3), (5, 8), (6, 5), (7, 4)

A35 (1, 2), (2, 3), (3, 4), (4, 5), A46 (2, 1), (3, 2), (3, 4), (4, 5),
(5, 6), (5, 7), (6, 4), (7, 4), (7, 8) (4, 6), (4, 8), (5, 3), (6, 3), (7, 5)

2(x8
− 2x6 + 4x5

− 4x4 + 4x3
− 2x2 + 1)

algebra KQ/I quiver Q
A25 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 4), (6, 7), (7, 5), (8, 7)

3(x8 + x
4 + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A8 (1, 2), (2, 3), (3, 4), (4, 5), A9 (1, 2), (2, 3), (4, 3), (4, 5),

(5, 6), (6, 7), (7, 4), (7, 8) (5, 6), (6, 7), (7, 4), (8, 5)
A12 (1, 2), (3, 2), (3, 4), (4, 5), A14 (2, 1), (3, 2), (3, 4), (4, 5),

(5, 6), (5, 8), (6, 3), (7, 4) (5, 6), (5, 8), (6, 3), (7, 6)
A17 (2, 1), (2, 3), (3, 4), (4, 5), A26 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 2), (5, 6), (7, 3), (8, 4) (5, 3), (5, 6), (6, 7), (6, 8), (7, 4)
A30 (1, 2), (2, 3), (4, 3), (4, 5), A33 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 6), (6, 7), (7, 4), (7, 8), (8, 6) (5, 6), (6, 7), (6, 8), (7, 4), (8, 5)
A34 (1, 2), (2, 3), (3, 4), (4, 5), A43 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 3), (5, 6), (6, 7), (7, 4), (8, 7) (4, 7), (5, 6), (6, 4), (7, 8), (8, 6)
A44 (1, 2), (2, 3), (3, 4), (4, 5), A47 (1, 2), (3, 2), (3, 4), (4, 5),

(4, 8), (5, 3), (5, 6), (6, 7), (7, 4) (5, 6), (5, 8), (6, 3), (6, 7), (7, 5)
A53 (1, 2), (2, 3), (3, 4), (3, 7), A60 (1, 2), (2, 3), (4, 3), (4, 5),

(4, 5), (5, 6), (6, 3), (7, 6), (8, 5) (5, 6), (5, 8), (6, 7), (7, 4), (8, 4)
A61 (2, 1), (3, 2), (3, 4), (4, 5), A66 (1, 2), (2, 3), (3, 4), (4, 5),

(4, 6), (5, 3), (6, 7), (6, 8), (7, 3) (5, 3), (5, 6), (5, 8), (6, 7), (7, 4)
A67 (1, 2), (2, 3), (3, 4), (4, 5), A76 (2, 1), (2, 3), (3, 4), (3, 6),

(5, 6), (5, 7), (6, 3), (7, 4), (8, 5) (4, 5), (5, 2), (6, 2), (7, 3), (8, 7)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A80 (1, 2), (2, 3), (3, 4), (4, 5), A84 (1, 2), (2, 3), (3, 4), (3, 8),

(4, 7), (5, 6), (6, 3), (7, 3), (8, 4) (4, 2), (4, 5), (5, 6), (6, 3), (7, 4)
A92 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8), A94 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3),

(5, 6), (6, 4), (6, 7), (7, 5), (8, 6) (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)
A100 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8), A102 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7),

(5, 3), (5, 6), (6, 4), (6, 7), (8, 6) (5, 3), (5, 6), (6, 4), (6, 8), (8, 5)
A109 (1, 2), (2, 3), (4, 3), (4, 5), (5, 6), A110 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 7), (6, 4), (7, 4), (7, 8), (8, 5) (5, 3), (5, 6), (6, 4), (6, 7), (8, 5)
A111 (1, 2), (2, 3), (2, 5), (3, 4), (4, 2), A123 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7),

(5, 6), (6, 4), (6, 7), (7, 5), (8, 7) (5, 6), (6, 4), (7, 6), (7, 8), (8, 4)
A131 (1, 2), (2, 3), (3, 4), (3, 5), (5, 2), A132 (1, 2), (2, 3), (3, 4), (3, 5), (5, 2),

(5, 6), (6, 3), (6, 7), (7, 5), (7, 8) (5, 6), (6, 7), (7, 3), (7, 8), (8, 6)
A144 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A148 (2, 1), (3, 2), (3, 4), (4, 5), (4, 7),

(4, 8), (6, 3), (6, 7), (7, 4), (8, 7) (5, 3), (5, 6), (6, 4), (7, 6), (8, 5)
A149 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), A154 (1, 2), (3, 2), (3, 4), (4, 5), (4, 6),

(5, 6), (6, 3), (6, 7), (7, 5), (8, 4) (4, 8), (5, 3), (6, 3), (6, 7), (7, 4)
A163 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A169 (1, 2), (2, 3), (3, 4), (3, 7), (4, 5),

(5, 3), (5, 6), (5, 7), (7, 8), (8, 5) (4, 6), (5, 3), (6, 3), (7, 6), (8, 4)
A171 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), A173 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7),

(5, 6), (5, 8), (6, 3), (6, 7), (7, 5) (5, 2), (5, 6), (6, 3), (7, 6), (8, 7)
A187 (1, 2), (3, 2), (3, 4), (4, 5), (5, 3), A196 (2, 1), (2, 3), (3, 4), (3, 6), (3, 7),

(5, 6), (5, 7), (7, 4), (7, 8), (8, 5) (4, 2), (4, 5), (5, 3), (6, 2), (7, 8)
A206 (2, 1), (2, 3), (2, 5), (3, 4), (4, 2), A218 (2, 1), (2, 3), (3, 4), (3, 8), (4, 2),

(5, 4), (5, 6), (6, 2), (7, 5), (8, 6) (4, 5), (4, 6), (6, 3), (6, 7), (7, 4)
A221 (1, 2), (2, 3), (2, 4), (4, 1), (4, 5), A222 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5),

(5, 6), (6, 2), (6, 7), (7, 5), (8, 5) (5, 2), (5, 6), (5, 7), (7, 4), (8, 3)
A232 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3), A242 (1, 2), (3, 2), (3, 4), (4, 5), (4, 8),

(5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6) (5, 3), (5, 6), (6, 4), (6, 7), (7, 8), (8, 6)
A247 (1, 2), (2, 3), (3, 4), (3, 7), (4, 5), A272 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 3), (5, 6), (6, 7), (7, 5), (7, 8), (8, 6) (5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)
A275 (2, 1), (2, 3), (3, 4), (3, 7), (4, 2), A277 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6),

(4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (7, 8) (5, 3), (6, 3), (6, 7), (7, 4), (7, 8), (8, 6)
A305 (2, 1), (2, 3), (2, 6), (3, 4), (4, 2),

(4, 5), (5, 6), (6, 4), (6, 7), (7, 5), (8, 5)

4(x8 + x
7
− x

6 + x
5 + x

3
− x

2 + x + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q

A20 (1, 2), (2, 3), (3, 4), (4, 5), A21 (1, 2), (2, 3), (3, 1), (4, 2),
(4, 7), (5, 3), (6, 4), (7, 8), (8, 4) (5, 2), (5, 6), (6, 7), (7, 5), (8, 7)

A22 (1, 2), (2, 3), (3, 1), (4, 2), A27 (2, 1), (2, 3), (3, 4), (4, 2),
(5, 2), (6, 5), (6, 7), (7, 8), (8, 6) (4, 6), (5, 4), (6, 7), (7, 4), (8, 3)

A29 (2, 1), (2, 3), (3, 4), (4, 2), A36 (1, 2), (2, 3), (3, 4), (4, 2),
(4, 5), (5, 7), (6, 5), (7, 8), (8, 5) (5, 3), (5, 6), (5, 7), (7, 8), (8, 5)

A37 (1, 2), (2, 3), (2, 4), (2, 5), A41 (2, 1), (3, 2), (3, 4), (4, 5),
(3, 1), (6, 5), (6, 7), (7, 8), (8, 6) (5, 3), (5, 7), (6, 5), (7, 8), (8, 5)

A49 (1, 2), (2, 3), (2, 4), (2, 5), A52 (1, 2), (2, 3), (3, 1), (4, 2),
(3, 1), (5, 6), (6, 7), (6, 8), (7, 5) (5, 4), (5, 7), (6, 5), (7, 8), (8, 5)

A89 (2, 1), (2, 3), (2, 5), (3, 4), (4, 2), A90 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),
(5, 4), (6, 5), (6, 7), (7, 8), (8, 6) (5, 6), (6, 3), (6, 7), (6, 8), (7, 5)

A98 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A105 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5),
(5, 6), (6, 4), (6, 7), (6, 8), (7, 5) (5, 6), (5, 8), (6, 4), (6, 7), (7, 5)

A106 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2), A122 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),
(5, 2), (5, 6), (6, 7), (7, 5), (8, 7) (5, 2), (5, 6), (6, 7), (7, 8), (8, 6)

A124 (2, 1), (2, 3), (2, 5), (3, 4), (4, 2), A142 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),
(5, 4), (5, 6), (6, 7), (7, 8), (8, 6) (5, 6), (5, 7), (7, 4), (7, 8), (8, 5)

4(x8 + x
7
− x

6 + 2x4
− x

2 + x + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q

A24 (1, 2), (2, 3), (3, 5), (4, 3), A32 (1, 2), (2, 3), (3, 5), (4, 3),
(5, 6), (6, 3), (6, 7), (7, 8), (8, 6) (5, 6), (5, 7), (6, 3), (7, 8), (8, 5)

A93 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A107 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),
(4, 6), (5, 3), (6, 7), (7, 8), (8, 6) (4, 6), (5, 3), (6, 7), (7, 4), (7, 8)

A113 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A120 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),
(4, 6), (4, 7), (5, 3), (6, 3), (8, 6) (5, 6), (5, 7), (6, 3), (7, 3), (7, 8)

A121 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A137 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5),
(5, 6), (5, 7), (6, 4), (7, 4), (7, 8) (5, 3), (6, 4), (6, 7), (7, 8), (8, 6)

A146 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A152 (1, 2), (2, 3), (3, 1), (3, 4), (3, 7),
(4, 6), (5, 3), (6, 7), (6, 8), (7, 4) (4, 5), (5, 3), (5, 6), (7, 5), (8, 4)

A153 (1, 2), (2, 3), (3, 4), (3, 6), (4, 2), A155 (1, 2), (2, 3), (3, 4), (3, 6), (4, 2),
(4, 5), (5, 3), (6, 7), (6, 8), (8, 3) (4, 5), (5, 3), (6, 7), (7, 8), (8, 6)

4(x8 + x
7
− 2x6 + 2x5 + 2x3

− 2x2 + x + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q

A95 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A96 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),
(5, 6), (6, 4), (6, 7), (7, 5), (8, 7) (5, 6), (6, 3), (6, 7), (7, 5), (8, 7)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A116 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A119 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 6), (6, 4), (6, 7), (7, 5), (8, 7) (5, 3), (5, 6), (6, 7), (7, 8), (8, 6)

4(x8 + x
6
− x

5 + 2x4
− x

3 + x
2 + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A11 (1, 2), (2, 3), (3, 4), (4, 5), A13 (1, 2), (2, 3), (3, 4), (4, 5),

(5, 6), (6, 7), (7, 8), (8, 4) (5, 6), (6, 7), (7, 3), (8, 5)
A16 (1, 2), (2, 3), (3, 4), (4, 5), A40 (2, 1), (2, 3), (3, 4), (4, 5),

(5, 6), (6, 7), (6, 8), (7, 3) (5, 6), (5, 7), (6, 2), (7, 4), (8, 7)
A42 (1, 2), (2, 3), (3, 4), (4, 5), A54 (2, 1), (2, 3), (3, 4), (4, 5),

(5, 6), (6, 3), (6, 7), (7, 8), (8, 5) (4, 6), (5, 2), (6, 7), (7, 3), (8, 6)
A55 (1, 2), (2, 3), (3, 4), (4, 5), A58 (1, 2), (2, 3), (3, 4), (3, 8),

(5, 6), (5, 7), (6, 3), (7, 8), (8, 4) (4, 2), (4, 5), (5, 6), (6, 7), (7, 3)
A72 (1, 2), (2, 3), (3, 4), (4, 2), A85 (1, 2), (2, 3), (3, 4), (4, 5),

(4, 5), (4, 6), (6, 7), (7, 8), (8, 3) (5, 6), (5, 8), (6, 2), (6, 7), (7, 5)
A87 (1, 2), (2, 3), (2, 7), (3, 4), A99 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 5), (5, 6), (5, 8), (6, 2), (7, 6) (5, 6), (5, 7), (5, 8), (6, 3), (7, 4)
A103 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3), A104 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5),

(5, 6), (6, 4), (6, 7), (7, 8), (8, 5) (5, 3), (5, 6), (6, 7), (7, 4), (8, 5)
A112 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), A126 (1, 2), (2, 3), (3, 4), (3, 8), (4, 2),

(5, 7), (6, 3), (7, 4), (7, 8), (8, 5) (4, 5), (4, 6), (6, 7), (7, 3), (8, 7)
A127 (2, 1), (2, 3), (2, 8), (3, 4), (4, 5), A128 (1, 2), (2, 3), (3, 4), (3, 6), (4, 5),

(5, 6), (5, 7), (6, 2), (7, 4), (8, 6) (5, 3), (5, 8), (6, 2), (6, 7), (7, 5)
A129 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), A133 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 8), (6, 3), (6, 7), (7, 5), (8, 7) (5, 3), (5, 6), (6, 7), (6, 8), (7, 4)
A134 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A135 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6),

(5, 6), (6, 3), (6, 7), (7, 8), (8, 5) (6, 3), (6, 7), (7, 5), (7, 8), (8, 6)
A136 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A143 (1, 2), (2, 3), (3, 4), (3, 5), (5, 2),

(5, 3), (6, 3), (6, 7), (7, 8), (8, 4) (5, 6), (6, 7), (6, 8), (7, 3), (8, 5)
A150 (2, 1), (2, 3), (3, 4), (3, 6), (4, 2), A151 (1, 2), (2, 3), (2, 5), (3, 4), (4, 2),

(4, 5), (5, 3), (6, 7), (7, 5), (8, 7) (5, 6), (6, 7), (6, 8), (7, 4), (8, 5)
A162 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A170 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6),

(5, 3), (5, 6), (6, 4), (7, 8), (8, 6) (5, 2), (6, 7), (7, 3), (7, 8), (8, 6)
A172 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2), A175 (2, 1), (2, 3), (3, 4), (4, 5), (5, 2),

(5, 6), (6, 7), (7, 2), (7, 8), (8, 6) (5, 6), (6, 7), (7, 4), (7, 8), (8, 6)
A176 (1, 2), (2, 3), (3, 4), (4, 5), (5, 2), A177 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),

(5, 6), (6, 4), (6, 7), (6, 8), (7, 5) (5, 2), (5, 6), (6, 7), (7, 3), (7, 8)
A182 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A185 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2),

(5, 6), (6, 4), (7, 6), (7, 8), (8, 3) (5, 6), (6, 7), (6, 8), (7, 2), (8, 5)
A186 (1, 2), (2, 3), (3, 4), (3, 7), (3, 8), A192 (1, 2), (2, 3), (3, 4), (3, 6), (4, 2),

(4, 2), (4, 5), (5, 6), (6, 3), (7, 6) (4, 5), (5, 3), (6, 7), (7, 5), (8, 6)
A193 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A207 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 6), (6, 7), (6, 8), (7, 4), (8, 3) (5, 3), (5, 6), (6, 7), (7, 4), (8, 7)
A208 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A224 (1, 2), (2, 3), (3, 4), (4, 5), (5, 3),

(5, 3), (6, 2), (6, 7), (7, 4), (8, 4) (5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 7)
A225 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A226 (2, 1), (2, 3), (3, 4), (3, 5), (3, 7),

(5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 5) (4, 2), (5, 2), (5, 6), (6, 3), (7, 6), (8, 7)
A227 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A231 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7),

(5, 6), (5, 8), (6, 3), (6, 7), (7, 5), (8, 7) (5, 3), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4)
A237 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2), A238 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2),

(4, 5), (5, 3), (5, 6), (6, 4), (6, 7), (8, 4) (4, 5), (5, 6), (6, 3), (6, 7), (7, 5), (8, 4)
A239 (2, 1), (3, 2), (3, 4), (4, 5), (4, 7), A240 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2),

(4, 8), (5, 3), (5, 6), (6, 4), (7, 6), (8, 3) (5, 2), (5, 6), (6, 7), (7, 3), (7, 8), (8, 6)
A243 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5), A258 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 7) (5, 6), (6, 3), (6, 7), (7, 5), (7, 8), (8, 6)
A273 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8), A276 (2, 1), (2, 3), (3, 4), (4, 5), (4, 8),

(5, 2), (5, 6), (6, 4), (6, 7), (7, 8), (8, 6) (5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 2)
A282 (1, 2), (2, 3), (2, 7), (3, 4), (4, 2), A286 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 5), (5, 6), (6, 7), (7, 4), (7, 8), (8, 6) (5, 3), (5, 6), (6, 4), (6, 7), (7, 8), (8, 5)
A304 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2), A311 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2),

(5, 2), (5, 6), (6, 7), (6, 8), (7, 5), (8, 3) (4, 5), (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)
A324 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2), A333 (1, 2), (2, 3), (3, 4), (3, 6), (4, 2), (4, 5),

(5, 6), (5, 7), (6, 2), (7, 3), (7, 8), (8, 5) (5, 3), (6, 5), (6, 7), (7, 3), (7, 8), (8, 6)
A337 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), (5, 3), A338 (1, 2), (2, 3), (3, 4), (3, 7), (4, 2), (4, 5),

(5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6) (5, 3), (5, 6), (6, 7), (7, 5), (7, 8), (8, 6)
A342 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), (5, 3), A343 (1, 2), (2, 3), (2, 5), (3, 1), (3, 4), (4, 2),

(5, 6), (5, 8), (6, 7), (7, 5), (8, 4), (8, 7) (5, 1), (5, 6), (6, 2), (6, 7), (7, 5), (8, 7)
A352 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 2), A361 (1, 2), (2, 3), (3, 4), (3, 7), (3, 8), (4, 2),

(5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6) (4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (8, 2)
A363 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5), A366 (2, 1), (2, 3), (2, 8), (3, 4), (4, 2), (4, 5),

(4, 8), (5, 6), (5, 7), (7, 4), (8, 3), (8, 7) (5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 4)
A370 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 8), A388 (1, 2), (2, 3), (2, 4), (3, 1), (4, 1), (4, 5),

(5, 2), (5, 6), (6, 4), (6, 7), (7, 8), (8, 6) (5, 2), (5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6)

4(x8 + x
6
− 2x5 + 4x4

− 2x3 + x
2 + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A48 (1, 2), (2, 3), (3, 4), (4, 5), A70 (1, 2), (2, 3), (3, 4), (4, 2),
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algebra KQ/I quiver Q algebra KQ/I quiver Q
(4, 7), (5, 6), (6, 2), (7, 3), (8, 7) (4, 5), (5, 6), (5, 8), (6, 7), (7, 3)

A118 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A160 (1, 2), (2, 3), (3, 4), (3, 7), (4, 2),
(5, 2), (5, 6), (6, 4), (7, 3), (8, 7) (4, 5), (5, 6), (6, 3), (7, 6), (8, 5)

A161 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A278 (1, 2), (2, 3), (2, 8), (3, 4), (3, 7),
(5, 6), (6, 2), (6, 7), (7, 5), (8, 4) (4, 1), (4, 5), (5, 3), (5, 6), (7, 2), (8, 7)

A302 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),
(5, 6), (5, 7), (6, 3), (7, 4), (7, 8), (8, 5)

5(x8 + x
6 + x

4 + x
2 + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A18 (1, 2), (2, 3), (3, 4), (4, 5), A51 (2, 1), (2, 3), (3, 4), (4, 5),

(5, 6), (5, 8), (6, 7), (7, 2) (5, 6), (5, 8), (6, 7), (7, 2), (8, 4)
A65 (1, 2), (2, 3), (3, 4), (4, 5), A69 (2, 1), (2, 3), (3, 4), (4, 5),

(4, 8), (5, 6), (6, 7), (7, 2), (8, 3) (5, 6), (6, 7), (6, 8), (7, 2), (8, 5)
A71 (2, 1), (2, 3), (3, 4), (4, 5), A74 (1, 2), (2, 3), (3, 4), (3, 7),

(5, 6), (6, 7), (7, 2), (7, 8), (8, 6) (3, 8), (4, 5), (5, 6), (6, 1), (7, 2)
A77 (1, 2), (2, 3), (3, 4), (4, 5), A78 (1, 2), (2, 3), (2, 8), (3, 4),

(4, 6), (5, 2), (6, 7), (7, 8), (8, 3) (3, 7), (4, 5), (5, 6), (6, 1), (7, 2)
A83 (1, 2), (2, 3), (3, 4), (4, 5), A86 (2, 1), (2, 3), (3, 4), (4, 5),

(5, 6), (5, 7), (6, 2), (7, 8), (8, 4) (5, 2), (5, 6), (6, 7), (7, 8), (8, 4)
A125 (2, 1), (2, 3), (3, 4), (4, 5), (5, 6), A140 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2),

(5, 7), (6, 2), (6, 8), (7, 4), (8, 5) (4, 5), (5, 6), (6, 7), (7, 8), (8, 4)
A159 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A165 (2, 1), (2, 3), (2, 7), (3, 4), (4, 2),

(5, 6), (5, 8), (6, 2), (7, 3), (8, 4) (4, 5), (5, 6), (6, 4), (7, 8), (8, 6)
A166 (2, 1), (2, 3), (3, 4), (3, 7), (4, 5), A174 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2),

(4, 8), (5, 6), (6, 2), (7, 2), (8, 3) (5, 2), (5, 6), (6, 7), (7, 8), (8, 3)
A178 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A181 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6),

(5, 6), (6, 2), (6, 7), (7, 8), (8, 5) (5, 2), (6, 7), (6, 8), (7, 4), (8, 3)
A183 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A199 (1, 2), (2, 3), (3, 4), (3, 7), (4, 5),

(5, 2), (5, 6), (6, 4), (7, 8), (8, 6) (5, 6), (6, 3), (7, 2), (7, 8), (8, 6)
A200 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A201 (1, 2), (2, 3), (2, 4), (2, 8), (4, 1),

(5, 2), (6, 3), (6, 7), (7, 8), (8, 4) (4, 5), (5, 6), (6, 7), (7, 2), (8, 7)
A202 (2, 1), (2, 3), (3, 4), (4, 5), (4, 8), A203 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(5, 2), (5, 6), (6, 7), (7, 4), (8, 7) (5, 6), (5, 7), (6, 3), (7, 8), (8, 4)
A204 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A212 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2),

(5, 6), (5, 7), (6, 2), (7, 8), (8, 4) (4, 5), (5, 6), (6, 7), (7, 4), (8, 7)
A213 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A214 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8),

(4, 6), (5, 2), (6, 7), (7, 3), (8, 7) (5, 6), (5, 7), (6, 2), (7, 4), (8, 7)
A216 (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), A219 (1, 2), (2, 3), (3, 4), (4, 5), (5, 2),

(5, 7), (6, 2), (7, 4), (7, 8), (8, 5) (5, 6), (6, 7), (6, 8), (7, 4), (8, 5)
A220 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2), A223 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5),

(5, 6), (5, 8), (6, 7), (7, 3), (8, 2) (5, 6), (6, 3), (6, 7), (7, 8), (8, 5)
A234 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A241 (1, 2), (1, 4), (2, 3), (3, 1), (4, 5),

(5, 3), (5, 6), (5, 7), (7, 8), (8, 2), (8, 5) (5, 6), (5, 8), (6, 3), (6, 7), (7, 5), (8, 7)
A246 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2), A249 (1, 2), (2, 3), (2, 7), (3, 1), (3, 4),

(4, 5), (5, 6), (5, 7), (6, 3), (7, 4), (8, 4) (4, 5), (5, 2), (5, 6), (6, 4), (7, 5), (8, 3)
A252 (1, 2), (2, 3), (3, 4), (3, 7), (4, 2), A260 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2),

(4, 5), (5, 6), (6, 3), (7, 6), (7, 8), (8, 3) (5, 6), (5, 7), (6, 3), (7, 2), (7, 8), (8, 5)
A261 (1, 2), (2, 3), (3, 4), (3, 8), (4, 2), A262 (1, 2), (2, 3), (2, 4), (2, 5), (3, 1),

(4, 5), (4, 6), (6, 3), (6, 7), (7, 4), (8, 6) (5, 6), (5, 7), (6, 2), (7, 1), (7, 8), (8, 5)
A263 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A265 (2, 1), (2, 3), (3, 4), (3, 5), (3, 8),

(5, 2), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4) (4, 2), (5, 2), (5, 6), (6, 7), (7, 3), (8, 7)
A266 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A267 (1, 2), (1, 4), (2, 3), (3, 1), (4, 5),

(4, 8), (5, 6), (5, 7), (6, 3), (7, 4), (8, 7) (4, 8), (5, 6), (5, 7), (6, 3), (7, 4), (8, 7)
A274 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A279 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5),

(5, 6), (5, 7), (6, 2), (7, 4), (7, 8), (8, 5) (5, 3), (5, 6), (6, 7), (6, 8), (7, 4), (8, 5)
A281 (1, 2), (1, 8), (2, 3), (3, 1), (3, 4), A283 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1),

(4, 5), (5, 6), (5, 7), (6, 4), (7, 8), (8, 3) (4, 5), (5, 3), (6, 5), (6, 7), (7, 3), (8, 7)
A285 (2, 1), (2, 3), (2, 6), (3, 4), (4, 2), A293 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6),

(4, 5), (5, 6), (6, 4), (6, 7), (7, 2), (8, 7) (4, 8), (5, 2), (6, 7), (7, 4), (8, 3), (8, 7)
A295 (1, 2), (2, 3), (2, 7), (2, 8), (3, 1), A296 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(3, 4), (4, 5), (5, 2), (5, 6), (6, 4), (8, 5) (4, 7), (5, 3), (5, 6), (6, 4), (7, 8), (8, 6)
A297 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5), A303 (1, 2), (2, 3), (3, 4), (3, 8), (4, 1),

(5, 3), (5, 6), (6, 7), (7, 4), (7, 8), (8, 6) (4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (8, 7)
A306 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A307 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5),

(4, 7), (5, 1), (5, 6), (6, 4), (7, 3), (8, 7) (4, 7), (5, 6), (6, 1), (7, 2), (7, 8), (8, 4)
A310 (1, 2), (1, 5), (2, 3), (3, 4), (3, 6), A312 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7),

(4, 1), (5, 4), (6, 2), (6, 7), (7, 8), (8, 3) (4, 2), (5, 2), (5, 6), (6, 3), (7, 8), (8, 6)
A314 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1), A315 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2),

(4, 5), (5, 3), (6, 5), (6, 7), (7, 3), (8, 6) (4, 5), (5, 3), (5, 6), (6, 7), (7, 8), (8, 4)
A318 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A321 (2, 1), (2, 3), (2, 7), (3, 4), (4, 2),

(5, 1), (6, 3), (6, 7), (7, 4), (7, 8), (8, 6) (4, 5), (5, 6), (5, 8), (6, 4), (7, 6), (8, 4)
A322 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5), A326 (1, 2), (2, 3), (3, 4), (3, 8), (4, 1),

(5, 6), (6, 3), (6, 7), (7, 5), (7, 8), (8, 6) (4, 5), (5, 3), (5, 6), (6, 7), (7, 8), (8, 5)
A327 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7), A328 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2),

(4, 2), (5, 6), (6, 3), (7, 6), (7, 8), (8, 2) (4, 5), (5, 6), (6, 3), (6, 7), (7, 8), (8, 5)
A335 (1, 2), (1, 4), (2, 3), (3, 1), (3, 6), (4, 3), A340 (1, 2), (2, 3), (3, 1), (3, 4), (3, 8), (4, 2),

(4, 5), (5, 6), (6, 4), (6, 7), (7, 3), (8, 7) (4, 5), (5, 3), (5, 6), (6, 4), (6, 7), (8, 5)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A345 (1, 2), (2, 3), (2, 6), (3, 4), (4, 2), (4, 5), A346 (1, 2), (2, 3), (2, 7), (3, 1), (3, 4), (4, 2),

(5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 4) (4, 5), (5, 6), (5, 8), (6, 7), (7, 4), (8, 4)
A348 (1, 2), (2, 3), (3, 4), (3, 8), (4, 2), (4, 5), A349 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 7),

(5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 5) (5, 2), (5, 6), (6, 4), (7, 3), (7, 8), (8, 4)
A350 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 8), A351 (1, 2), (2, 3), (2, 8), (3, 4), (4, 2), (4, 5),

(5, 2), (5, 6), (6, 4), (6, 7), (7, 5), (8, 3) (4, 7), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4)
A353 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7), (4, 2), A354 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5),

(5, 2), (5, 6), (6, 3), (7, 6), (7, 8), (8, 3) (5, 3), (5, 6), (6, 7), (6, 8), (7, 4), (8, 5)
A355 (2, 1), (2, 3), (3, 4), (3, 5), (3, 8), (4, 2), A356 (1, 2), (2, 3), (2, 6), (3, 1), (3, 4), (4, 2),

(5, 2), (5, 6), (6, 3), (6, 7), (7, 5), (8, 6) (4, 5), (4, 7), (5, 6), (6, 4), (7, 3), (8, 7)
A357 (1, 2), (2, 3), (2, 8), (3, 1), (3, 4), (4, 5), A360 (1, 2), (2, 3), (3, 1), (3, 4), (3, 8), (4, 5),

(4, 7), (5, 2), (5, 6), (6, 4), (7, 6), (8, 5) (5, 3), (6, 2), (6, 7), (7, 8), (8, 5), (8, 6)
A362 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 7), A364 (1, 2), (2, 3), (3, 4), (3, 7), (3, 8), (4, 1),

(5, 2), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4) (4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (8, 2)
A365 (1, 2), (2, 3), (3, 1), (3, 4), (3, 6), (4, 2), A367 (1, 2), (2, 3), (2, 5), (3, 1), (3, 4), (4, 2),

(4, 5), (5, 3), (6, 7), (7, 5), (7, 8), (8, 6) (5, 4), (5, 6), (6, 7), (6, 8), (7, 2), (8, 5)
A368 (1, 2), (2, 3), (3, 4), (3, 6), (3, 8), (4, 2), A369 (1, 2), (1, 8), (2, 3), (3, 1), (3, 4), (4, 5),

(4, 5), (5, 3), (6, 5), (6, 7), (7, 3), (8, 7) (4, 8), (5, 6), (6, 7), (7, 4), (8, 3), (8, 7)
A371 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 6), A372 (1, 2), (2, 3), (2, 5), (2, 7), (3, 1), (3, 4),

(5, 2), (6, 3), (6, 7), (7, 4), (7, 8), (8, 6) (4, 2), (5, 1), (5, 6), (6, 2), (7, 6), (7, 8)
A373 (1, 2), (2, 3), (2, 4), (3, 1), (4, 1), (4, 5), A374 (1, 2), (2, 3), (3, 4), (3, 7), (4, 1), (4, 5),

(5, 6), (6, 2), (6, 7), (7, 5), (7, 8), (8, 6) (5, 3), (5, 6), (6, 7), (6, 8), (7, 5), (8, 5)
A375 (1, 2), (2, 3), (3, 1), (3, 4), (3, 8), (4, 2), A378 (1, 2), (2, 3), (3, 4), (3, 7), (4, 1), (4, 5),

(4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (8, 7) (5, 3), (5, 6), (6, 7), (7, 5), (7, 8), (8, 6)
A379 (2, 1), (2, 3), (2, 6), (3, 4), (4, 2), (4, 5), A380 (1, 2), (2, 3), (2, 7), (3, 4), (4, 2), (4, 5),

(5, 6), (6, 4), (6, 7), (6, 8), (7, 5), (8, 2) (5, 6), (5, 7), (6, 4), (7, 4), (7, 8), (8, 2)
A381 (1, 2), (2, 3), (3, 1), (3, 4), (3, 8), (4, 2), A382 (1, 2), (2, 3), (2, 5), (3, 1), (3, 4), (4, 2),

(4, 5), (5, 3), (5, 6), (6, 7), (7, 8), (8, 5) (5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6)
A383 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5), A386 (1, 2), (2, 3), (2, 6), (3, 1), (3, 4), (4, 2),

(5, 6), (5, 8), (6, 3), (6, 7), (7, 5), (8, 7) (4, 5), (5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6)
A389 (1, 2), (2, 3), (3, 1), (3, 4), (3, 7), (4, 2), A390 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5),

(4, 5), (5, 3), (5, 6), (6, 7), (6, 8), (7, 5), (8, 5) (5, 3), (5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 7)

6(x8 + x
6 + x

5 + x
3 + x

2 + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q

A15 (2, 1), (2, 3), (3, 4), (4, 5), A88 (1, 2), (2, 3), (3, 4), (3, 5),
(5, 6), (6, 7), (7, 8), (8, 2) (4, 1), (5, 6), (6, 7), (7, 8), (8, 2)

A179 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), A184 (1, 2), (2, 3), (2, 8), (3, 4), (4, 5),
(4, 5), (5, 6), (6, 7), (7, 8), (8, 3) (5, 6), (6, 7), (7, 2), (8, 1), (8, 7)

A205 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8), A209 (1, 2), (2, 3), (3, 4), (3, 5), (4, 1),
(5, 1), (5, 6), (6, 7), (7, 4), (8, 3) (5, 2), (5, 6), (6, 7), (7, 8), (8, 3)

A211 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A215 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1),
(5, 1), (5, 6), (6, 4), (7, 8), (8, 3) (4, 5), (5, 3), (6, 7), (7, 8), (8, 5)

A268 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A270 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7),
(4, 6), (5, 3), (6, 2), (6, 7), (7, 8), (8, 4) (4, 8), (5, 1), (5, 6), (6, 4), (7, 6), (8, 3)

A280 (1, 2), (1, 7), (2, 3), (3, 1), (3, 4), A290 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1),
(4, 5), (4, 8), (5, 6), (6, 7), (7, 3), (8, 3) (4, 5), (5, 3), (5, 7), (6, 5), (7, 4), (8, 7)

A299 (1, 2), (2, 3), (2, 7), (3, 1), (3, 4), A300 (1, 2), (2, 3), (3, 4), (3, 6), (3, 8),
(4, 5), (4, 6), (5, 2), (6, 3), (7, 8), (8, 5) (4, 1), (4, 5), (5, 3), (6, 7), (7, 5), (8, 2)

A308 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1), A309 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5),
(4, 5), (5, 3), (6, 7), (6, 8), (7, 5), (8, 3) (4, 6), (5, 2), (6, 3), (6, 7), (7, 4), (8, 6)

A313 (1, 2), (2, 3), (3, 4), (4, 5), (4, 7), A317 (1, 2), (2, 3), (3, 4), (4, 5), (4, 8),
(5, 1), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4) (5, 2), (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)

A319 (1, 2), (2, 3), (3, 4), (3, 8), (4, 5), A320 (1, 2), (2, 3), (2, 8), (3, 4), (4, 5),
(5, 3), (5, 6), (6, 7), (7, 8), (8, 2), (8, 5) (5, 2), (5, 6), (6, 7), (7, 5), (8, 1), (8, 7)

A323 (1, 2), (2, 3), (3, 1), (3, 4), (3, 6), A325 (1, 2), (2, 3), (2, 7), (3, 4), (4, 2),
(4, 2), (4, 5), (5, 3), (6, 7), (7, 8), (8, 5) (4, 5), (5, 6), (6, 7), (7, 4), (7, 8), (8, 2)

A331 (1, 2), (2, 3), (2, 4), (2, 8), (3, 1), (4, 1), A339 (1, 2), (1, 6), (2, 3), (3, 1), (3, 4), (4, 5),
(4, 5), (5, 6), (6, 2), (6, 7), (7, 5), (8, 6) (4, 8), (5, 6), (5, 7), (6, 3), (7, 4), (8, 3)

A341 (1, 2), (2, 3), (2, 8), (3, 1), (3, 4), (4, 2), A358 (1, 2), (2, 3), (3, 4), (3, 7), (4, 1), (4, 5),
(4, 5), (4, 6), (5, 3), (6, 7), (7, 8), (8, 4) (5, 3), (5, 6), (6, 7), (7, 5), (7, 8), (8, 3)

A376 (1, 2), (2, 3), (3, 4), (3, 5), (3, 8), (4, 2), A377 (1, 2), (2, 3), (2, 6), (2, 8), (3, 1), (3, 4),
(5, 6), (5, 7), (6, 3), (7, 3), (8, 1), (8, 7) (4, 5), (5, 2), (6, 5), (6, 7), (7, 2), (8, 7)

A384 (1, 2), (2, 3), (2, 6), (3, 1), (3, 4), (4, 2), A385 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5),
(4, 5), (5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 4) (4, 8), (5, 3), (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)

A387 (1, 2), (2, 3), (2, 7), (3, 1), (3, 4), (4, 2), A391 (1, 2), (2, 3), (2, 8), (3, 1), (3, 4), (4, 2),
(4, 5), (4, 6), (5, 3), (6, 7), (6, 8), (7, 4), (8, 4) (4, 5), (4, 7), (5, 3), (5, 6), (6, 4), (7, 6), (8, 4)

6(x8 + x
7 + 2x4 + x + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A38 (1, 2), (2, 3), (3, 1), (3, 4), A39 (1, 2), (2, 3), (3, 4), (3, 5),

(4, 5), (5, 6), (6, 7), (7, 4), (7, 8) (4, 2), (5, 6), (6, 7), (7, 3), (7, 8)
A45 (1, 2), (2, 3), (3, 4), (4, 5), A50 (2, 1), (2, 3), (3, 4), (3, 6),

(5, 2), (5, 6), (6, 7), (7, 8), (8, 6) (4, 5), (5, 2), (6, 7), (7, 3), (8, 6)
A56 (2, 1), (2, 3), (3, 4), (4, 5), A57 (1, 2), (2, 3), (3, 4), (3, 5),

(5, 2), (6, 5), (6, 7), (7, 8), (8, 6) (4, 2), (5, 6), (5, 8), (6, 7), (7, 3)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A62 (1, 2), (2, 3), (3, 4), (3, 7), A68 (2, 1), (2, 3), (3, 4), (3, 6),

(4, 5), (5, 2), (5, 6), (7, 8), (8, 3) (4, 5), (5, 2), (6, 7), (7, 8), (8, 6)
A73 (2, 1), (2, 3), (3, 4), (4, 5), A75 (2, 1), (2, 3), (3, 4), (4, 5),

(5, 2), (5, 6), (6, 7), (7, 5), (8, 6) (5, 2), (5, 6), (6, 7), (7, 5), (8, 3)
A97 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A108 (1, 2), (2, 3), (3, 1), (4, 2), (4, 5),

(5, 2), (5, 6), (6, 7), (6, 8), (7, 4) (5, 6), (6, 7), (7, 4), (7, 8), (8, 6)
A114 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A115 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5),

(5, 6), (6, 7), (6, 8), (7, 5), (8, 4) (5, 3), (5, 6), (6, 7), (7, 4), (8, 7)
A117 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2), A138 (1, 2), (2, 3), (2, 5), (3, 4), (4, 1),

(5, 6), (6, 7), (6, 8), (7, 3), (8, 5) (5, 1), (6, 2), (6, 7), (7, 8), (8, 6)
A139 (1, 2), (2, 3), (3, 4), (3, 5), (3, 8), A141 (1, 2), (2, 3), (2, 4), (4, 5), (4, 6),

(4, 2), (5, 6), (6, 7), (7, 3), (8, 7) (5, 1), (6, 2), (6, 7), (7, 8), (8, 6)
A145 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2), A147 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5),

(5, 1), (5, 6), (6, 7), (7, 5), (7, 8) (4, 6), (5, 3), (6, 7), (7, 8), (8, 6)
A156 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A157 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5),

(4, 6), (5, 2), (6, 7), (6, 8), (7, 2) (5, 6), (6, 7), (7, 4), (7, 8), (8, 6)
A158 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A164 (1, 2), (2, 3), (3, 4), (3, 5), (3, 6),

(5, 6), (6, 7), (6, 8), (7, 4), (8, 5) (4, 1), (6, 2), (6, 7), (7, 8), (8, 6)
A167 (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), A180 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 8), (5, 2), (6, 7), (7, 4), (8, 3) (4, 8), (5, 6), (6, 7), (7, 4), (8, 7)
A188 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), A189 (1, 2), (2, 3), (3, 1), (4, 3), (4, 5),

(5, 6), (6, 7), (7, 4), (7, 8), (8, 6) (5, 6), (5, 7), (6, 4), (7, 8), (8, 4)
A190 (1, 2), (2, 3), (3, 1), (4, 3), (4, 5), A191 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5),

(5, 6), (6, 7), (6, 8), (7, 4), (8, 5) (5, 6), (6, 2), (6, 7), (7, 5), (8, 5)
A194 (2, 1), (2, 3), (2, 6), (3, 4), (4, 5), A195 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 7), (5, 2), (6, 5), (7, 8), (8, 4) (5, 6), (5, 8), (6, 7), (7, 4), (8, 4)
A197 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2), A198 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5),

(5, 6), (5, 8), (6, 7), (7, 3), (8, 3) (5, 6), (5, 8), (6, 7), (7, 4), (8, 4)
A210 (2, 1), (2, 3), (3, 4), (3, 5), (3, 7), A217 (1, 2), (2, 3), (2, 8), (3, 4), (4, 5),

(4, 2), (5, 6), (6, 2), (7, 8), (8, 3) (5, 2), (5, 6), (6, 7), (7, 5), (8, 5)
A228 (1, 2), (2, 3), (2, 4), (3, 1), (4, 1), A229 (1, 2), (2, 3), (3, 4), (3, 5), (3, 8),

(4, 5), (5, 2), (6, 4), (6, 7), (7, 8), (8, 6) (4, 2), (5, 6), (6, 3), (6, 7), (7, 5), (8, 6)
A230 (1, 2), (2, 3), (2, 6), (3, 4), (4, 2), A233 (2, 1), (2, 3), (3, 4), (3, 5), (4, 2),

(4, 5), (5, 6), (5, 7), (6, 4), (7, 8), (8, 5) (5, 2), (5, 6), (6, 3), (6, 7), (7, 8), (8, 6)
A235 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A245 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 6), (6, 3), (6, 7), (7, 4), (7, 8), (8, 6) (4, 8), (5, 6), (6, 4), (6, 7), (7, 5), (8, 6)
A248 (1, 2), (2, 3), (3, 1), (4, 2), (4, 5), A251 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2),

(5, 6), (5, 7), (6, 4), (7, 4), (7, 8), (8, 5) (4, 5), (5, 3), (5, 6), (6, 7), (7, 5), (8, 4)
A253 (1, 2), (2, 3), (2, 4), (3, 1), (4, 1), A254 (1, 2), (2, 3), (3, 4), (3, 5), (4, 2),

(4, 5), (4, 6), (5, 2), (6, 7), (7, 8), (8, 6) (5, 6), (5, 7), (6, 3), (7, 3), (7, 8), (8, 5)
A255 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A257 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7),

(5, 6), (5, 8), (6, 4), (6, 7), (7, 5), (8, 4) (4, 8), (5, 6), (5, 7), (6, 4), (7, 4), (8, 7)
A257 (1, 2), (2, 3), (3, 4), (3, 5), (3, 7), A264 (2, 1), (2, 3), (3, 4), (4, 2), (4, 5),

(4, 2), (5, 6), (6, 3), (7, 6), (7, 8), (8, 3) (5, 6), (5, 7), (6, 4), (7, 4), (7, 8), (8, 5)
A284 (2, 1), (2, 3), (2, 5), (3, 4), (4, 2), A287 (1, 2), (2, 3), (3, 1), (4, 3), (4, 5),

(5, 4), (5, 6), (6, 2), (6, 7), (7, 8), (8, 6) (4, 7), (5, 6), (5, 8), (6, 4), (7, 8), (8, 4)
A289 (2, 1), (2, 3), (3, 4), (3, 6), (3, 8), A291 (1, 2), (2, 3), (3, 1), (3, 4), (3, 5),

(4, 2), (4, 5), (5, 3), (6, 7), (7, 3), (8, 2) (5, 2), (5, 6), (5, 7), (6, 3), (7, 8), (8, 5)
A292 (1, 2), (2, 3), (3, 4), (4, 2), (4, 5), A294 (1, 2), (2, 3), (2, 5), (2, 6), (3, 1),

(4, 7), (5, 6), (6, 4), (7, 6), (7, 8), (8, 4) (3, 4), (4, 2), (6, 4), (6, 7), (7, 8), (8, 6)
A298 (1, 2), (2, 3), (2, 6), (3, 4), (4, 2), A316 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5),

(4, 5), (4, 7), (5, 6), (6, 4), (7, 8), (8, 4) (4, 6), (5, 3), (6, 3), (6, 7), (7, 4), (8, 4)
A336 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (5, 3), A344 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5),

(5, 6), (6, 4), (6, 7), (7, 5), (7, 8), (8, 6) (5, 3), (5, 6), (5, 7), (6, 4), (7, 8), (8, 5)
A347 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 8), A359 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), (4, 6),

(5, 3), (5, 6), (6, 4), (6, 7), (7, 8), (8, 6) (5, 3), (6, 3), (6, 7), (7, 4), (7, 8), (8, 6)

8(x8 + 2x7 + 2x4 + 2x + 1)
algebra KQ/I quiver Q

A91 (1, 2), (2, 3), (2, 5), (3, 1), (4, 2), (5, 6), (6, 2), (6, 7), (7, 8), (8, 6)
A101 (1, 2), (2, 3), (2, 5), (3, 1), (4, 2), (5, 6), (5, 7), (6, 2), (7, 8), (8, 5)

8(x8 + x
7 + x

6 + 2x4 + x
2 + x + 1)

algebra KQ/I quiver Q algebra KQ/I quiver Q
A59 (1, 2), (2, 3), (3, 4), (3, 6), A63 (1, 2), (2, 3), (2, 4), (3, 1),

(4, 5), (5, 1), (6, 7), (7, 8), (8, 6) (4, 5), (5, 6), (6, 7), (7, 8), (8, 4)
A64 (1, 2), (2, 3), (3, 4), (3, 5), A79 (1, 2), (2, 3), (3, 4), (4, 5),

(4, 2), (5, 6), (6, 7), (7, 8), (8, 3) (5, 6), (5, 7), (6, 2), (7, 8), (8, 5)
A81 (2, 1), (2, 3), (3, 4), (4, 5), A82 (1, 2), (2, 3), (3, 4), (4, 2),

(4, 7), (5, 6), (6, 2), (7, 8), (8, 4) (4, 5), (5, 6), (6, 7), (7, 8), (8, 4)
A130 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A168 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5),

(5, 6), (6, 3), (6, 7), (7, 8), (8, 5) (5, 6), (6, 3), (6, 7), (7, 8), (8, 6)
A236 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5), A244 (1, 2), (2, 3), (3, 4), (4, 1), (4, 5),

(5, 2), (5, 6), (6, 4), (6, 7), (7, 8), (8, 5) (5, 3), (5, 6), (5, 7), (6, 4), (7, 8), (8, 5)
A250 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A259 (1, 2), (2, 3), (2, 4), (3, 1), (4, 5),

(5, 6), (5, 7), (6, 3), (7, 4), (7, 8), (8, 5) (5, 6), (5, 8), (6, 2), (6, 7), (7, 5), (8, 7)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
A269 (1, 2), (1, 6), (2, 3), (3, 1), (3, 4), A271 (1, 2), (2, 3), (3, 4), (3, 6), (4, 1),

(4, 5), (4, 7), (5, 6), (6, 3), (7, 8), (8, 4) (4, 5), (5, 3), (5, 7), (6, 5), (7, 8), (8, 5)
A288 (1, 2), (2, 3), (3, 1), (3, 4), (4, 5), A301 (1, 2), (2, 3), (3, 1), (3, 4), (4, 2),

(4, 7), (5, 3), (5, 6), (6, 4), (7, 8), (8, 6) (4, 5), (5, 6), (6, 3), (6, 7), (7, 8), (8, 6)
A329 (1, 2), (2, 3), (3, 1), (3, 4), (3, 6), (4, 2), A330 (1, 2), (2, 3), (3, 1), (3, 4), (3, 6), (4, 5),

(4, 5), (5, 3), (6, 5), (6, 7), (7, 8), (8, 6) (5, 3), (5, 7), (6, 5), (7, 6), (7, 8), (8, 5)
A332 (1, 2), (2, 3), (2, 4), (2, 8), (3, 1), (4, 1), A334 (1, 2), (2, 3), (2, 5), (3, 1), (3, 4), (4, 2),

(4, 5), (5, 2), (5, 6), (6, 7), (7, 5), (8, 5) (5, 1), (5, 6), (6, 2), (6, 7), (7, 8), (8, 6)

D Derived equivalences for cluster-tilted algebras of type E8

D.1 Polynomial 2(x8 − x
6 + 2x5 − 2x4 + 2x3 − x

2 + 1)

Aop
2

∼

s/s A2, A
op
19

∼

s/s A28

A2 (5; 4, 7, 8) ∼

der A19 (56)(78) ⇒ A2
∼

der A28

D.2 Polynomial 2(x8 − x
6 + x

5 + x
3 − x

2 + 1)

Aop
3

∼

s/s A10, A
op
4

∼

s/s A7, A
op
5

∼

s/s A5, A
op
6

∼

s/s A6, A
op
23

∼

s/s A35, A
op
25

∼

s/s A25, A
op
31

∼

s/s A46

A3 (3; 2, 5) ∼

der A6 (17264358) ⇒ A10
∼

der A6

A3 (4; 3, 6, 7) ∼

der A23 (56) ⇒ A10
∼

der A35

Aop
5 (6; 5, 7) ∼

der A4 (678) ⇒ A5
∼

der A4

A6 (3; 2, 4, 6) ∼

der A31 (17)(246) ⇒ A6
∼

der A46

Aop
7 (5; 3, 6) ∼

der A3 (18)(27)(3465) ⇒ A7
∼

der A10

D.3 Polynomial 3(x8 + x
4 + 1)

Aop
8

∼

s/s A9, A
op
12

∼

s/s A14, A
op
17 = A17, A

op
26

∼

s/s A34, A
op
30

∼

s/s A33, A
op
43

∼

s/s A60, A
op
44

∼

s/s A66, A
op
47

∼

s/s A67,
Aop

53 = A61, A
op
76

∼

s/s A80, A
op
84

∼

s/s A84, A
op
92

∼

s/s A109, A
op
94

∼

s/s A100, A
op
102 = A148, A

op
110 = A131, A

op
111 = A171,

Aop
123

∼

s/s A123, A
op
132 = A149, A

op
144

∼

s/s A187, A
op
154

∼

s/s A163, A
op
169 = A196, A

op
173

∼

s/s A173, A
op
206

∼

s/s A218,
Aop

221 = A222, A
op
232

∼

s/s A242, A
op
247

∼

s/s A277, A
op
272 = A275, A

op
305 = A305

A8 (4; 3, 7) ∼

der A100 (45)(678) ⇒ A9
∼

der A94

A9 (5; 4, 8) ∼

der A109 (576) ⇒ A8
∼

der A92

A12 (4; 3, 7) ∼

der A154 (465) ⇒ A14
∼

der A163

A14 (6; 5, 7) ∼

der A196 (18)(275)(46) ⇒ A12
∼

der A169

A17 (3; 2, 7) ∼

der A218 (185236) ⇒ A17
∼

der A206

A44(∗) (4; 3, 7, 8) ∼

der A92 (567) ⇒ A66
∼

der A109

A92 (7; 6) ∼

der A43 (578) ⇒ A109
∼

der A60

A100 (8; 4) ∼

der A26 (78) ⇒ A94
∼

der A34

A102(∗) (4; 3, 6, 7) ∼

der A43 (567) ⇒ A148
∼

der A60

A102 (3; 2, 5) ∼

der A132 (35674) ⇒ A148
∼

der A149

A109 (6; 5) ∼

der A30 (56) ⇒ A92
∼

der A33

A123 (4; 3, 6, 8) ∼

der A163 (4587) ⇒ A123
∼

der A154

A131(∗) (3; 2, 4, 6) ∼

der A53 (4756) ⇒ A110
∼

der A61

A132(∗) (3; 2, 4, 7) ∼

der A247 (1) ⇒ A149
∼

der A277

A154 (5; 4) ∼

der A47 (45) ⇒ A163
∼

der A67

A154(∗) (3; 2, 5, 6) ∼

der A84 (34)(576) ⇒ A163
∼

der A84

A173(∗) (3; 2, 4, 6) ∼

der A218 (34657) ⇒ A173
∼

der A206

A187(∗) (5; 4, 6, 8) ∼

der A154 (485) ⇒ A144
∼

der A163

A196 (6; 3) ∼

der A61 (18)(267) ⇒ A169
∼

der A53

A196(∗) (2; 1, 5, 7) ∼

der A80 (178)(243)(56) ⇒ A169
∼

der A76

A218(∗) (4; 3, 5, 7) ∼

der A196 (37654) ⇒ A206
∼

der A169
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A232 (5; 4, 7) ∼

der A44 (48675) ⇒ A242
∼

der A66

A247 (6; 5, 8) ∼

der A53 (47)(56) ⇒ A277
∼

der A61

A272 (4; 3, 6) ∼

der A84 (387564) ⇒ A275
∼

der A84

A275(∗) (7; 3, 6, 8) ∼

der A111 (183546)(27) ⇒ A272
∼

der A171

A305 (5; 4, 7, 8) ∼

der A222 (1876423) ⇒ A305
∼

der A221

A305 (6; 2, 5) ∼

der A80 (18)(24635) ⇒ A305
∼

der A76

(∗) the direction of some arrow(s) is changed in a sink or source

D.4 Polynomial 4(x8 + x
7 − x

6 + x
5 + x

3 − x
2 + x+ 1)

Aop
20

∼

s/s A41, A
op
21 = A49, A

op
22

∼

s/s A52, A
op
27

∼

s/s A27, A
op
29 = A36, A

op
37

∼

s/s A37, A
op
89 = A122, A

op
90

∼

s/s A142, A
op
98

∼

s/s A106, A
op
105

∼

s/s A124

A20 (3; 2, 5) ∼

der A27 (18765)(23) ⇒ A41
∼

der A27

A21 (2; 1, 4, 5) ∼

der A90 (18)(2647)(35) ⇒ A49
∼

der A142

A22 (2; 1, 4, 5) ∼

der A89 (34) ⇒ A52
∼

der A122

A36 (3; 2, 5) ∼

der A20 (45) ⇒ A29
∼

der A41

Aop
37 (6; 5, 7) ∼

der A21 (23)(678) ⇒ A37
∼

der A49

Aop
37 (2; 3, 4, 5) ∼

der A124 (143)(78) ⇒ A37
∼

der A105

A49 (5; 2, 7) ∼

der A27 (178)(24536) ⇒ A21
∼

der A27

A52 (2; 1, 4) ∼

der A36 (34) ⇒ A22
∼

der A29

A122 (6; 5, 8) ∼

der A106 (67) ⇒ A89
∼

der A98

D.5 Polynomial 4(x8 + x
7 − x

6 + 2x4 − x
2 + x+ 1)

Aop
24

∼

s/s A32, A
op
93 = A121, A

op
107

∼

s/s A153, A
op
113

∼

s/s A152, A
op
120 = A146, A

op
137 = A155

A32 (5; 3, 8) ∼

der A24 (5687)
A32 (3; 2, 4, 6) ∼

der A113 (18267)(345) ⇒ A24
∼

der A152

A93 (6; 4, 8) ∼

der A107 (67) ⇒ A121
∼

der A153

A113 (3; 2, 5, 6) ∼

der A107 (13478)(26) ⇒ A152
∼

der A153

A120 (2; 1, 4) ∼

der A153 (18)(26547) ⇒ A146
∼

der A107

A155 (6; 3, 8) ∼

der A120 (18)(27456) ⇒ A137
∼

der A146

D.6 Polynomial 4(x8 + x
7 − 2x6 + 2x5 + 2x3 − 2x2 + x+ 1)

Aop
95 = A119, A

op
96

∼

s/s A116

A96 (2; 1, 4) ∼

der A116 (134)
A119 (6; 5, 8) ∼

der A96 (18)(2746)(35) ⇒ A95
∼

der A116

D.7 Polynomial 4(x8 + x
6 − x

5 + 2x4 − x
3 + x

2 + 1)

Aop
11

∼

s/s A11, A
op
13

∼

s/s A16, A
op
40

∼

s/s A40, A
op
42

∼

s/s A55, A
op
54 = A54, A

op
58

∼

s/s A72, A
op
85 = A87, A

op
99

∼

s/s A128,
Aop

103
∼

s/s A162, A
op
104

∼

s/s A136, A
op
112

∼

s/s A129, A
op
126

∼

s/s A143, A
op
127

∼

s/s A185, A
op
133 = A150, A

op
134

∼

s/s A134, A
op
135

∼

s/s A182, A
op
151 = A172, A

op
170 = A175, A

op
176 = A177, A

op
186

∼

s/s A193, A
op
192

∼

s/s A207, A
op
208

∼

s/s A208, A
op
224

∼

s/s

A231, A
op
225 = A239, A

op
226 = A237, A

op
227

∼

s/s A258, A
op
238 = A240, A

op
243

∼

s/s A286, A
op
273 = A276, A

op
282 = A304,

Aop
311 = A324, A

op
333 = A363, A

op
337

∼

s/s A338, A
op
342

∼

s/s A343, A
op
352 = A370, A

op
361 = A366, A

op
388 = A388

A11 (4; 3, 8) ∼

der A162 (45)(678) ⇒ A11
∼

der A103

A13 (3; 2, 7) ∼

der A192 (34)(567) ⇒ A16
∼

der A207

A13 (5; 4, 8) ∼

der A112 (576) ⇒ A16
∼

der A129

Aop
40 (2; 1, 3) ∼

der A258 (18)(27)(35) ⇒ A40
∼

der A227
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A42 (3; 2, 6) ∼

der A243 (1827)(3645) ⇒ A55
∼

der A286

A42 (5; 4, 8) ∼

der A224 (56)(78) ⇒ A55
∼

der A231

Aop
42 (6; 3, 7) ∼

der A239 (48765) ⇒ A42
∼

der A225

A54 (6; 4, 8) ∼

der A276 (587) ⇒ A54
∼

der A273

A54 (3; 2, 7) ∼

der A226 (354)(67) ⇒ A54
∼

der A237

A58(∗) (3; 2, 7, 8) ∼

der A104 (4567) ⇒ A72
∼

der A136

A58 (5; 4) ∼

der A143 (458) ⇒ A72
∼

der A126

A85(∗) (5; 4, 7, 8) ∼

der A176 (56)(78) ⇒ A87
∼

der A177

A87 (3; 2) ∼

der A208 (18)(246375) ⇒ A85
∼

der A208

Aop
99 (5; 6, 7, 8) ∼

der A237 (17)(2635) ⇒ A99
∼

der A226

A104 (4; 3, 7) ∼

der A129 (468) ⇒ A136
∼

der A112

A112 (6; 5) ∼

der A225 (687) ⇒ A129
∼

der A239

A112 (3; 2, 6) ∼

der A333 (34)(56) ⇒ A129
∼

der A363

A127 (6; 5, 8) ∼

der A126 (15362478) ⇒ A185
∼

der A143

Aop
127 (2; 1, 3, 8) ∼

der A238 (18)(46) ⇒ A127
∼

der A240

A134 (5; 4, 8) ∼

der A342 (5876) ⇒ A134
∼

der A343

A135 (5; 4, 7) ∼

der A103 (56) ⇒ A182
∼

der A162

A135 (3, 2, 6) ∼

der A343 (1845)(2736) ⇒ A182
∼

der A342

A162 (7; 4) ∼

der A231 (78) ⇒ A103
∼

der A224

A170 (3; 2, 7) ∼

der A361 (34)(5867) ⇒ A175
∼

der A366

A170 (6; 4, 8) ∼

der A150 (18)(274356) ⇒ A175
∼

der A133

A172(∗) (2; 1, 4, 7) ∼

der A282 (134) ⇒ A151
∼

der A304

A176 (4; 3, 6) ∼

der A133 (45) ⇒ A177
∼

der A150

A186(∗) (3; 2, 6, 8) ∼

der A363 (1625)(34) ⇒ A193
∼

der A333

A208 (4; 3, 7, 8) ∼

der A342 (4576) ⇒ A208
∼

der A343

A226 (7; 3, 8) ∼

der A240 (1) ⇒ A237
∼

der A238

A258 (3; 2, 6) ∼

der A231 (456) ⇒ A227
∼

der A224

A282 (7; 2, 6) ∼

der A311 (38)(4657) ⇒ A304
∼

der A324

A324(∗) (2; 1, 4, 6) ∼

der A366 (134)(687) ⇒ A311
∼

der A361

A337 (2; 1, 4) ∼

der A352 (23) ⇒ A338
∼

der A370

A352 (2; 1, 5) ∼

der A333 (345) ⇒ A370
∼

der A363

A388 (2; 1, 5) ∼

der A324 (3465) ⇒ A388
∼

der A311

(∗) the direction of some arrow(s) is changed in a sink or source

D.8 Polynomial 4(x8 + x
6 − 2x5 + 4x4 − 2x3 + x

2 + 1)

Aop
48

∼

s/s A70, A
op
118

∼

s/s A160, A
op
161

∼

s/s A161, A
op
278 = A302

A48 (5; 4) ∼

der A118 (56) ⇒ A70
∼

der A160

A70(∗) (5; 4, 8) ∼

der A302 (576) ⇒ A48
∼

der A278

A161 (2; 1, 6) ∼

der A160 (3456) ⇒ A161
∼

der A118

(∗) the direction of some arrow(s) is changed in a sink or source

D.9 Polynomial 5(x8 + x
6 + x

4 + x
2 + 1)

Aop
18 = A18, A

op
51

∼

s/s A69, A
op
65 = A71, A

op
74

∼

s/s A78, A
op
77 = A86, A

op
83

∼

s/s A83, A
op
125 = A159, A

op
140 = A174,

Aop
165

∼

s/s A166, A
op
178 = A204, A

op
181 = A202, A

op
183

∼

s/s A200, A
op
199

∼

s/s A203, A
op
201

∼

s/s A201, A
op
212

∼

s/s A220,
Aop

213
∼

s/s A219, A
op
214

∼

s/s A216, A
op
223 = A223, A

op
234

∼

s/s A234, A
op
241 = A274, A

op
246 = A265, A

op
249 = A260,

Aop
252

∼

s/s A266, A
op
261

∼

s/s A285, A
op
262

∼

s/s A295, A
op
263

∼

s/s A293, A
op
267 = A281, A

op
279 = A303, A

op
283

∼

s/s A296,
Aop

297 = A310, A
op
306 = A307, A

op
312

∼

s/s A314, A
op
315 = A318, A

op
321 = A327, A

op
322 = A328, A

op
326 = A326, A

op
335

∼

s/s

A356, A
op
340 = A348, A

op
345 = A355, A

op
346 = A364, A

op
349 = A360, A

op
350 = A357, A

op
351

∼

s/s A353, A
op
354 = A371,

Aop
362 = A365, A

op
367 = A375, A

op
368 = A372, A

op
369 = A378, A

op
373 = A373, A

op
374 = A381, A

op
379 = A380,
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Aop
382 = A383, A

op
386 = A390, A

op
389 = A389

A18 (2; 1, 7) ∼

der A216 (18)(274635) ⇒ A18
∼

der A240

A51(∗) (2; 1, 7) ∼

der A281 (12)(678) ⇒ A69
∼

der A267

A51 (6; 5) ∼

der A125 (687) ⇒ A69
∼

der A159

A74(∗) (3; 2, 8) ∼

der A318 (1236)(78) ⇒ A78
∼

der A315

A74 (4; 3) ∼

der A201 (1654)(2783) ⇒ A78
∼

der A201

A77 (6; 4) ∼

der A181 (67) ⇒ A86
∼

der A202

A77 (5; 4) ∼

der A140 (38765) ⇒ A86
∼

der A174

A78(∗) (2; 1, 7, 8) ∼

der A140 (1834567) ⇒ A74
∼

der A174

A78 (4; 3) ∼

der A166 (16548) ⇒ A74
∼

der A165

A83 (2; 1, 6) ∼

der A322 (1827)(3654) ⇒ A83
∼

der A328

A83 (6; 5) ∼

der A212 (386)(475) ⇒ A83
∼

der A220

A83 (7; 5) ∼

der A216 (78) ⇒ A83
∼

der A214

A83 (4; 3, 8) ∼

der A293 (48765) ⇒ A83
∼

der A263

A125 (7; 5) ∼

der A71 (567) ⇒ A159
∼

der A65

A125(∗) (2; 1, 6) ∼

der A350 (17)(264)(35) ⇒ A159
∼

der A357

A140 (8; 2, 7) ∼

der A183 (5768) ⇒ A174
∼

der A200

A165(∗) (2; 1, 4) ∼

der A371 (174385)(26) ⇒ A166
∼

der A354

A165 (7; 2) ∼

der A295 (17)(38)(456) ⇒ A166
∼

der A262

A166 (7; 3) ∼

der A51 (34567) ⇒ A165
∼

der A69

A166(∗) (2; 1, 6, 7) ∼

der A246 (187)(3456) ⇒ A165
∼

der A265

A178 (2; 1, 6) ∼

der A199 (374856) ⇒ A204
∼

der A203

A178 (5; 4, 8) ∼

der A365 (182637)(45) ⇒ A204
∼

der A362

A178 (7; 6) ∼

der A281 (16358)(247) ⇒ A204
∼

der A367

A213 (3; 2, 7) ∼

der A379 (346758) ⇒ A219
∼

der A380

A213 (8; 3) ∼

der A77 (1) ⇒ A219
∼

der A86

A216 (6; 5) ∼

der A321 (37546) ⇒ A214
∼

der A327

A216 (2; 1, 6) ∼

der A382 (23)(456) ⇒ A214
∼

der A383

A223 (3; 2, 6) ∼

der A381 (34)(5876) ⇒ A223
∼

der A374

A223 (1; 4) ∼

der A322 (1827)(35)(46) ⇒ A223
∼

der A328

A234(∗) (5; 4, 6, 8) ∼

der A293 (4685) ⇒ A234
∼

der A263

A241 (8; 5) ∼

der A178 (132) ⇒ A274
∼

der A204

A249 (4; 3, 6) ∼

der A285 (13247568) ⇒ A260
∼

der A261

A260(∗) (2; 1, 4, 7) ∼

der A345 (134)(687) ⇒ A249
∼

der A355

A260 (4; 3) ∼

der A125 (34)(67) ⇒ A249
∼

der A159

A279 (3; 2, 5) ∼

der A241 (18274536) ⇒ A303
∼

der A274

A281 (4; 3, 6) ∼

der A252 (17542861) ⇒ A267
∼

der A266

A283 (3; 2, 5, 7) ∼

der A261 (18)(267)(34) ⇒ A296
∼

der A285

A293 (5; 4) ∼

der A351 (38765) ⇒ A263
∼

der A353

A293 (6; 4) ∼

der A200 (68) ⇒ A263
∼

der A183

A293 (2; 1, 5) ∼

der A389 (18435726) ⇒ A263
∼

der A389

A297 (1; 4) ∼

der A362 (18)(2736) ⇒ A310
∼

der A365

A306 (7; 4, 8) ∼

der A65 (15437268) ⇒ A307
∼

der A71

A312 (4; 3) ∼

der A183 (34) ⇒ A314
∼

der A200

A326 (8; 3, 7) ∼

der A328 (172846)(35) ⇒ A326
∼

der A322

A340(∗) (6; 5, 7) ∼

der A360 (148)(25) ⇒ A348
∼

der A349

A346 (7; 2, 6) ∼

der A362 (57) ⇒ A364
∼

der A365

A350 (2; 1, 5) ∼

der A335 (18536)(27) ⇒ A357
∼

der A356

A360 (1; 3) ∼

der A306 (12)(48)(576) ⇒ A349
∼

der A307

A367 (4; 3, 5) ∼

der A178 (18)(25)(3746) ⇒ A375
∼

der A204

A368 (8; 3) ∼

der A283 (1827)(46) ⇒ A372
∼

der A296

A369 (5; 4) ∼

der A386 (132)(46758) ⇒ A378
∼

der A390

A369 (7; 6, 8) ∼

der A373 (17428536) ⇒ A378
∼

der A373
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A369 (4; 3, 7) ∼

der A354 (16)(287)(35) ⇒ A378
∼

der A371

(∗) the direction of some arrow(s) is changed in a sink or source

D.10 Polynomial 6(x8 + x
6 + x

5 + x
3 + x

2 + 1)

Aop
15

∼

s/s A15, A
op
88 = A88, A

op
179 = A184, A

op
205 = A211, A

op
209 = A215, A

op
268 = A299, A

op
270 = A280, A

op
290

∼

s/s

A319, A
op
300 = A308, A

op
309

∼

s/s A317, A
op
313 = A323, A

op
320 = A320, A

op
325

∼

s/s A325, A
op
331 = A339, A

op
341 = A358,

Aop
376 = A377, A

op
384 = A385, A

op
387 = A391

Aop
15 (2; 1, 3) ∼

der A184 (28)(37)(46) ⇒ A15
∼

der A179

A88 (2; 1, 8) ∼

der A323 (124)(5678) ⇒ A88
∼

der A313

A184 (3; 2) ∼

der A280 (1238) ⇒ A179
∼

der A270

A184 (7; 6, 8) ∼

der A215 (123658)(47) ⇒ A179
∼

der A209

A205 (4; 3, 7) ∼

der A341 (16542738) ⇒ A211
∼

der A358

A211 (3; 2, 8) ∼

der A377 (142536)(78) ⇒ A205
∼

der A376

A280 (7; 1, 6) ∼

der A308 (4657) ⇒ A270
∼

der A300

A290 (3; 2, 5) ∼

der A309 (18)(267)(34) ⇒ A319
∼

der A317

A299 (5; 4, 8) ∼

der A391 (186)(243) ⇒ A268
∼

der A387

A308 (5; 4, 7) ∼

der A313 (1234)(67) ⇒ A300
∼

der A323

Aop
317 (5; 2, 6) ∼

der A325 (386547) ⇒ A309
∼

der A325

A320 (7; 6, 8) ∼

der A319 (14725836) ⇒ A320
∼

der A290

A323 (6; 3) ∼

der A377 (1846)(273) ⇒ A313
∼

der A376

A325 (2; 1, 4, 8) ∼

der A323 (1468)(23)(57) ⇒ A325
∼

der A313

A339 (6; 1, 5) ∼

der A358 (476) ⇒ A331
∼

der A341

A384 (4; 3, 6, 8) ∼

der A300 (34) ⇒ A385
∼

der A308

A387 (4; 3, 7, 8) ∼

der A377 (1425786) ⇒ A391
∼

der A376

D.11 Polynomial 6(x8 + x
7 + 2x4 + x + 1)

Aop
38 = A45, A

op
39

∼

s/s A73, A
op
50

∼

s/s A57, A
op
56

∼

s/s A68, A
op
62 = A75, A

op
97 = A115, A

op
108 = A114, A

op
117 = A188,

Aop
138 = A189, A

op
139 = A195, A

op
141

∼

s/s A164, A
op
145 = A158, A

op
147 = A198, A

op
156 = A167, A

op
157 = A190,

Aop
180 = A197, A

op
191 = A194, A

op
210 = A217, A

op
228 = A248, A

op
229 = A264, A

op
230 = A233, A

op
235 = A251, A

op
245

∼

s/s

A254, A
op
253 = A255, A

op
256 = A287, A

op
257

∼

s/s A292, A
op
284

∼

s/s A294, A
op
289 = A298, A

op
291 = A316, A

op
336 = A347,

Aop
344 = A359

A38 (4; 3, 7) ∼

der A233 (1728)(3645) ⇒ A45
∼

der A230

A39(∗) (7; 6, 8) ∼

der A257 (1) ⇒ A73
∼

der A292

A45 (6; 5, 8) ∼

der A57 (18)(2536)(47) ⇒ A38
∼

der A50

A62 (2; 1, 5) ∼

der A289 (1524876) ⇒ A75
∼

der A298

A68 (6; 3, 8) ∼

der A39 (18)(27456) ⇒ A56
∼

der A73

A68(∗) (2; 1, 5) ∼

der A287 (16347258) ⇒ A56
∼

der A256

A75 (3; 2, 8) ∼

der A235 (1537246) ⇒ A62
∼

der A251

A108 (2; 1, 4) ∼

der A145 (1845)(2736) ⇒ A114
∼

der A158

A114 (8; 6) ∼

der A228 (185)(26)(37) ⇒ A108
∼

der A248

A115 (6; 5) ∼

der A230 (1728)(3546) ⇒ A97
∼

der A233

A117 (2; 1, 4) ∼

der A158 (134) ⇒ A188
∼

der A145

A139 (5; 3) ∼

der A257 (58)(67) ⇒ A195
∼

der A292

A139 (2; 1, 4) ∼

der A180 (134) ⇒ A195
∼

der A197

A141 (2; 1, 3, 6) ∼

der A253 (24)(35) ⇒ A164
∼

der A255

A141 (5; 4) ∼

der A235 (17)(246358) ⇒ A164
∼

der A251

A147 (1; 4) ∼

der A287 (1638257) ⇒ A198
∼

der A256

A156(∗) (6; 4, 8) ∼

der A359 (123)(67) ⇒ A167
∼

der A344

A157 (4; 2, 7) ∼

der A347 (123)(45)(687) ⇒ A190
∼

der A336
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A189 (3; 2, 4) ∼

der A197 (1432)(687) ⇒ A138
∼

der A180

A191 (5; 4, 7, 8) ∼

der A230 (1837)(25)(46) ⇒ A194
∼

der A233

A228 (1; 3, 4) ∼

der A38 (17)(2638) ⇒ A248
∼

der A45

A229 (2; 1, 4) ∼

der A245 (134) ⇒ A264
∼

der A254

A229 (7; 6) ∼

der A139 (67) ⇒ A264
∼

der A195

A257 (6; 5, 7) ∼

der A57 (5876) ⇒ A292
∼

der A50

A284 (4; 3, 5) ∼

der A75 (387654) ⇒ A294
∼

der A62

A291 (2; 1, 5) ∼

der A62 (35)(46) ⇒ A316
∼

der A75

A291 (1; 3) ∼

der A210 (164)(253) ⇒ A316
∼

der A217

A291(∗) (3; 2, 4, 6) ∼

der A284 (145632) ⇒ A316
∼

der A294

A336 (5; 4, 7) ∼

der A141 (17436)(285) ⇒ A347
∼

der A164

A344 (3; 2, 5) ∼

der A210 (146532) ⇒ A359
∼

der A217

A359 (4; 3, 7) ∼

der A189 (5687) ⇒ A344
∼

der A138

(∗) the direction of some arrow(s) is changed in a sink or source

D.12 Polynomial 8(x8 + 2x7 + 2x4 + 2x+ 1)

Aop
91

∼

s/s A101

A91 (6; 5, 8) ∼

der A101 (5786)

D.13 Polynomial 8(x8 + x
7 + x

6 + 2x4 + x
2 + x + 1)

Aop
59 = A63, A

op
64 = A82, A

op
79 = A81, A

op
130 = A168, A

op
236 = A288, A

op
244 = A271, A

op
250 = A259, A

op
269 = A301,

Aop
329 = A334, A

op
330 = A332

A59 (6; 3, 8) ∼

der A64 (1745628) ⇒ A63
∼

der A82

A63 (4; 2, 8) ∼

der A288 (123)(45)(678) ⇒ A59
∼

der A236

A64 (2; 1, 4) ∼

der A82 (134)
A79 (2; 1, 6) ∼

der A250 (1827)(35)(46) ⇒ A81
∼

der A259

A244 (3; 2, 5) ∼

der A259 (18)(273645) ⇒ A271
∼

der A250

A250 (6; 5) ∼

der A330 (46) ⇒ A259
∼

der A332

A269 (6; 1, 5) ∼

der A236 (1735428) ⇒ A301
∼

der A288

A288 (7; 4) ∼

der A334 (1742836) ⇒ A236
∼

der A329

A330 (6; 3, 7) ∼

der A130 (1) ⇒ A332
∼

der A168

A334 (1; 3, 5) ∼

der A168 (1423) ⇒ A329
∼

der A130
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