Non-coherence of some lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$

M. Kapovich, L. Potyagailo and E. Vinberg

To the memory of Heiner Zieschang

1 Introduction.

The aim of this paper is to prove non-coherence of certain families of lattices in the isometry group $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ of the hyperbolic n-space $\mathbb{H}^{n}(n>3)$. We recall that a group G is called coherent if every finitely generated subgroup of G is finitely presented. It is well known that all lattices in $\operatorname{Isom}\left(\mathbb{H}^{2}\right)$ and $\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ are coherent. Indeed, it is easy to prove that every finitely generated Fuchsian group is finitely presented. The coherence of 3 -manifold groups was proved by P. Scott [Sc2]. First examples of geometrically finite non-coherent discrete subgroups of $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$ were constructed in [KP1], [P1], [P2]. An example of non-coherent uniform lattice in Isom $\left(\mathbb{H}^{4}\right)$ was given in $[\mathrm{BM}]$.

In what follows we will identify \mathbb{H}^{n} with a connected component of the hyperboloid

$$
\{x: f(x)=-1\} \subset \mathbb{R}^{n+1}
$$

where f is a real quadratic form of signature $(n, 1)$ in $n+1$ variables. Then the group Isom $\left(\mathbb{H}^{n}\right)$ is identified with the index 2 subgroup $O^{\prime}(f, \mathbb{R}) \subset O(f, \mathbb{R})$ preserving \mathbb{H}^{n}.

Let f and g be quadratic forms on finite-dimensional vector spaces V and W over \mathbb{Q}. It is said that f represents g if the vector space V admits an orthogonal decomposition (with respect to f)

$$
V=V^{\prime} \oplus V^{\prime \prime}
$$

so that $f \mid V^{\prime}$ is isometric to g. In other words, after a change of coordinates, the form f can be written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{k}\right)+h\left(x_{k+1}, \ldots, x_{n}\right)
$$

where $n=\operatorname{dim}(V)$ and $k=\operatorname{dim}(W)$. Whenever f represents g, a finite index subgroup of $O(g, \mathbb{Z})$ is naturally embedded into $O(f, \mathbb{Z})$.

The main result of this paper is:
Theorem A. For every $n \geq 4$ and every rational quadratic form f of signature ($n, 1$) which represents the form

$$
q_{3}=-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2},
$$

the lattice $O(f, \mathbb{Z})$ is non-coherent.
Corollary 1.1. For every $n \geq 4$ there are infinitely many commensurability classes of non-uniform non-coherent lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$.
We refer the reader to Section 3 for the discussion of uniform lattices. By combining Theorem A with some standard facts on rational quadratic forms, we prove
Theorem B. For every $n \geq 6$, every non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is non-coherent.

As a by-product of the proof, in Section 2.2, we obtain a simple proof of the following result of independent interest (which was proven in [ALR] in the case $n=3$). Recall that a subgroup of a group Γ is called separable if it can be represented as the intersection of a family of finite index subgroups of Γ. For instance, separability of the trivial subgroup is nothing else than residual finiteness of Γ.
Theorem C. In every non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)(n \leq 5)$, every geometrically finite subgroup is separable.

We refer the reader to $[\mathrm{K}]$ for the definition of geometrically finite discrete subgroups of $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$. Recall only that every discrete group which admits a finitelysided convex fundamental polyhedron is geometrically finite.

In Section 4 we adopt the method of [GP] to obtain examples of non-arithmetic non-coherent lattices:
Theorem D. For each $n \geq 4$ there exist both uniform and non-uniform non-coherent non-arithmetic lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$.

The above results provide a strong evidence for the negative answer to the following question in the case of non-uniform lattices:
Question 1.2 (D. Wise). Does there exist a coherent lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ for any $n>3$?

In Section 5 we provide some tentative evidence for the negative answer to this question in the uniform case as well.

Our proof of the non-coherence in the non-uniform case is different from the one in $[\mathrm{BM}]$: The finitely generated infinitely presented subgroup that we construct is generated by four subgroups stabilizing 4 distinct hyperplanes in \mathbb{H}^{n}, while in the construction used in $[\mathrm{BM}]$ two hyperplanes were enough. Direct repetition of the arguments used in $[\mathrm{BM}]$ does not seem to work in the non-uniform case.

Acknowledgements. During this work the first author was partially supported by the NSF grants DMS-04-05180 and DMS-05-54349. A part of this work was done when the first and the second authors were visiting the Max Plank Institute for Mathematics in Bonn. The work of the third author was partially supported by the SFB 701 at Bielefeld University.

The second author is deeply grateful to Heiner Zieschang who was his host during his Humboldt Fellowship at the University of Bochum in 1991-1992. The third author is thankful to Heiner for many years of his generous friendship.

2 Preliminaries.

We refer the reader to [K, Ma] for the basics of discrete groups of isometries of the hyperbolic spaces \mathbb{H}^{n}.

Notation. Given a convex polyhedron $Q \subset \mathbb{H}^{n}$ let $G(Q)$ denote the subgroup of Isom $\left(\mathbb{H}^{n}\right)$ generated by the reflections in the walls of Q.

We will frequently use the quadratic forms

$$
q_{n}=-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2} .
$$

Let f be a quadratic form

$$
f=\sum_{i, j} a_{i j} x_{i} x_{j}
$$

defined over a number field $K \subset \mathbb{R}$, and σ be an embedding $K \rightarrow \mathbb{R}$. Then f^{σ} will denote the form

$$
\sum_{i, j} \sigma\left(a_{i j}\right) x_{i} x_{j}
$$

2.1 Arithmetic groups.

Let f be a quadratic form of signature $(n, 1)$ in $n+1$ variables with coefficients in a totally real algebraic number field $K \subset \mathbb{R}$ satisfying the following condition:
${ }^{(*)}$ For every nontrivial (i.e., different from the identity) embedding $\sigma: K \rightarrow \mathbb{R}$ the quadratic form f^{σ} is positive definite.

Below we discuss discrete subgroups of $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ defined using the form f. Let A denote the ring of integers of K. We define the group $\Gamma:=O(f, A)$ consisting of matrices with entries in A preserving the form f. Then Γ is a discrete subgroup of $O(f, \mathbb{R})$. Moreover, it is a lattice, i.e., its index 2 subgroup

$$
\Gamma^{\prime}=O^{\prime}(f, A):=O(f, A) \cap O^{\prime}(f, \mathbb{R})
$$

acts on \mathbb{H}^{n} so that $\mathbb{H}^{n} / \Gamma^{\prime}$ has finite volume. Such groups Γ (and subgroups of Isom $\left(\mathbb{H}^{n}\right)$ commensurable to them) are called arithmetic subgroups of the simplest type in $O(n, 1)$, see [VS].

Remark 2.1. If $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is an arithmetic lattice so that either Γ is non-uniform or n is even, then it follows from the classification of rational structures on $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ that Γ is commensurable to an arithmetic lattice of the simplest type. For odd n there is another family of arithmetic lattices given as the groups of units of appropriate skew-Hermitian forms over quaternionic algebras. Yet other families of arithmetic lattices exist for $n=3$ and $n=7$. See e.g. [VS, LM].

A lattice $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is called uniform if \mathbb{H}^{n} / Γ is compact and non-uniform otherwise. An arithmetic lattice $O(f, A)$ of the simplest type is non-uniform if and
only if $K=\mathbb{Q}$ and f is isotropic, i.e., there exists a non-zero vector $v \in \mathbb{Q}^{n+1}$ such that $f(v)=0$.

Meyer's theorem (which follows from the Hasse-Minkowski principle, see [BS, pp. 61-62] or [Ca, Corollary 1, page 75]) states that every indefinite rational quadratic form of rank ≥ 5 is isotropic. Thus, for each rational quadratic form f of signature $(n, 1), n \geq 4$, the lattice $O(f, \mathbb{Z})$ is non-uniform. Conversely, every non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is commensurable to $O(f, \mathbb{Z})$, where f is a rational quadratic form.

In particular, the groups $O^{\prime}\left(q_{n}, \mathbb{Z}\right) \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ are non-uniform arithmetic lattices. The group $O^{\prime}\left(q_{3}, \mathbb{Z}\right)$ coincides with the group $G(\Delta)$, where $\Delta \subset \mathbb{H}^{3}$ is the simplex with the Coxeter diagram

(see [VS, Chapter 6, 2.1] and references therein).
Lemma 2.2. The group $G(\Delta)$ contains a finite index subgroup Γ such that \mathbb{H}^{3} / Γ fibers over the circle.

Proof: Let $v_{4} \in \Delta$ denote the (finite) vertex of Δ disjoint from the 4 -th face. Consider the union O of the images of Δ under the stabilizer of v_{4} in $G(\Delta)$. Then O is a regular right-angled ideal hyperbolic octahedron in \mathbb{H}^{3}, $[\mathrm{PV}, \mathrm{VS}]$. The group $G(\Delta)$ contains $G(O)$ as a finite index subgroup. It is well known that $G(O)$ is commensurable with the fundamental group of the Borromean rings complement which fibers over the circle, [Th]. The property of being the fundamental group of a surface bundle over the circle is hereditary with respect to subgroups of finite index. Thus $G(\Delta)$ contains a subgroup Γ of finite index so that \mathbb{H}^{3} / Γ fibers over the circle.
$Q E D$.

2.2 Rational quadratic forms.

The following proposition is well-known in the theory of rational quadratic forms, see [Ca, Excercise 8, Page 101]. We present a proof for the sake of completeness.

Proposition 2.3. Let f and g be non-singular rational quadratic forms having respectively the signatures (r, s) and (p, q) such that $r \geq p$ and $s \geq q$. If $\operatorname{rank}(f)-\operatorname{rank}(g) \geq 3$ then f represents g.

Proof: Recall that a rational quadratic form f on a rational vector space V represents $b \in \mathbb{Q}$ if there exists a vector $v \in V \backslash\{0\}$ such that $f(v)=b$.

Lemma 2.4. Suppose that f is a non-singular rational quadratic form in $n \geq 4$ variables and b is an arbitrary non-zero rational number. Then
(a) If f is positive definite and $b>0$ then f represents b.
(b) If f is indefinite then f represents b.

Proof: The form

$$
F\left(y_{1}, \ldots, y_{n}, y_{n+1}\right):=f\left(y_{1}, \ldots, y_{n}\right)-b y_{n+1}^{2}
$$

is an indefinite non-singular form of rank ≥ 5. By Meyer's theorem the form F represents 0 . Hence by [BS, Theorem 6, p. 393], the form f represents b. $Q E D$.
Proof of Proposition 2.3. Let $n:=r+s, k:=p+q$ be the ranks of f and g respectively. After changing coordinates in \mathbb{Q}^{k} we may assume that g has the diagonal form

$$
g=b_{1} x_{1}^{2}+\ldots+b_{k} x_{k}^{2}
$$

where $b_{i} \in \mathbb{Q}_{+}$, if $i \leq p$ and $b_{i} \in \mathbb{Q}_{-}$, if $i>p$.
Since f represents b_{1} by Lemma 2.4, the form f is isomorphic to $b_{1} y_{1}^{2}+f_{1}\left(y_{2}, \ldots, y_{n}\right)$. By applying the same procedure to f_{1} and arguing inductively we obtain, after k steps,

$$
f=b_{1} y_{1}^{2}+\ldots+b_{k} y_{k}^{2}+f_{k}
$$

where f_{k} is a form in $n-k$ variables. Note that the argument works as long as $n-k \geq 3$. Indeed, if $n=k+3$ we will have

$$
f=b_{1} y_{1}^{2}+\ldots+b_{k-1} y_{k-1}^{2}+f_{k-1}\left(y_{k}, y_{k+1}, y_{k+2}, y_{k+3}\right)
$$

and therefore we can apply the above argument the last time to f_{k-1}. $Q E D$.
We now use the above proposition to prove Theorem C stated in Introduction.
Proof: We will use the following result proven by P. Scott in [Sc1] for the convexcocompact subgroups and in [ALR] for the geometrically finite subgroups:

Suppose that $P \subset \mathbb{H}^{n}$ is a right-angled polyhedron of finite volume. Then every geometrically finite subgroup of $G(P)$ is separable.

Let Γ be a non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{k}\right), k \leq 5$. Then Γ is commensurable to $O(g, \mathbb{Z})$ where g is a non-singular rational quadratic form of signature $(k, 1)$.

According to $[\mathrm{PV}]$ there exists a right-angled noncompact convex polyhedron of finite volume $P^{8} \subset \mathbb{H}^{8}$. Moreover, the group $G\left(P^{8}\right)$ is a finite index subgroup in $O^{\prime}\left(q_{8}, \mathbb{Z}\right)$, see $[\mathrm{VS}]$. Since $\operatorname{rank}\left(q_{8}\right)-\operatorname{rank}(g) \geq 3$, it follows that q_{8} represents g, see Proposition 2.3. Hence we have a natural embedding of a finite index subgroup of Γ into $G\left(P^{8}\right)$. As P^{8} is right-angled, every geometrically finite subgroup of $G\left(P^{8}\right)$ is separable. Since subgroup separability is hereditary with respect to passing to a subgroup, we conclude that every geometrically finite subgroup of Γ is separable. $Q E D$.

2.3 Hyperplane separability.

In Section 4 we will need the following variation on subgroup separability. Suppose that $\Gamma=O^{\prime}(f, \mathbb{Z})$ is an arithmetic subgroup of $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$, where f is a rational quadratic form of signature $(n, 1)$. Let $V_{i} \subset \mathbb{R}^{n+1}, i=0,1, \ldots, k$ be rational vector
subspaces of codimension 1 , so that $V_{i} \otimes \mathbb{R}$ intersects \mathbb{H}^{n} along the hyperplane H_{i}, $i=0,1, \ldots, k$. We assume that

$$
\begin{equation*}
H_{0} \cap H_{i}=\emptyset, \quad i=1, \ldots, k . \tag{1}
\end{equation*}
$$

The following proposition is a generalization of [L]; its proof follows the lines of the proof of [MV, Lemma 10].

Proposition 2.5. There exists a finite index subgroup $\Gamma^{\prime} \subset \Gamma$ so that for every $\gamma \in \Gamma^{\prime}$ either $\gamma\left(H_{0}\right)=H_{0}$ or

$$
\gamma\left(H_{0}\right) \cap\left(H_{0} \cup H_{1} \cup \ldots \cup H_{k}\right)=\emptyset .
$$

Proof: Let (\cdot, \cdot) denote the symmetric bilinear form on \mathbb{R}^{n+1} corresponding to f. Suppose that $V, V^{\prime} \subset \mathbb{R}^{n+1}$ are codimension 1 vector subspaces which intersect \mathbb{H}^{n} along hyperplanes H, H^{\prime}. Let $e, e^{\prime} \in \mathbb{R}^{n+1}$ be non-zero vectors orthogonal to V, V^{\prime} respectively. Then H intersects H^{\prime} transversally iff

$$
\left|\left(e, e^{\prime}\right)\right|<\sqrt{(e, e)\left(e^{\prime}, e^{\prime}\right)} .
$$

For each $V_{i}(i=0,1, \ldots, k)$ choose an orthogonal primitive integer vector e_{i}. Then (1) implies that

$$
\left|\left(e_{i}, e_{0}\right)\right| \geq \sqrt{\left(e_{i}, e_{i}\right)\left(e_{0}, e_{0}\right)}, \quad i=1, \ldots, k
$$

Choose a natural number N which is greater than

$$
2 \max _{i=0,1, \ldots, k}\left|\left(e_{0}, e_{i}\right)\right|
$$

Let $\Gamma^{\prime}=\Gamma(N)$ denote the level N congruence subgroup in Γ, i.e., the kernel of the natural homomorphism

$$
\Gamma \rightarrow G L(n+1, \mathbb{Z} / N \mathbb{Z})
$$

Then for every $\gamma \in \Gamma^{\prime}, i=0,1, \ldots, k$,

$$
\left(\gamma\left(e_{i}\right), e_{0}\right) \equiv\left(e_{i}, e_{0}\right) \quad(\bmod N)
$$

and therefore either

$$
\left|\left(\gamma\left(e_{i}\right), e_{0}\right)\right|=\left|\left(e_{i}, e_{0}\right)\right|
$$

or

$$
\left|\left(\gamma\left(e_{i}\right), e_{0}\right)\right|>\left|\left(e_{i}, e_{0}\right)\right| \geq \sqrt{\left(e_{i}, e_{i}\right)\left(e_{0}, e_{0}\right)}=\sqrt{\left(\gamma\left(e_{i}\right), \gamma\left(e_{i}\right)\right)\left(e_{0}, e_{0}\right)}
$$

hence either $\gamma\left(H_{0}\right)=H_{i}$ or $\gamma\left(H_{0}\right) \cap H_{i}=\emptyset$.
Lastly, we have to ensure that $\gamma\left(e_{0}\right) \neq \pm e_{i}$ for $i=1, \ldots, k$ and all $\gamma \in \Gamma^{\prime}$. This is achieved by taking N which does not divide some non-zero entries of $e_{0}+e_{i}$ and of $e_{0}-e_{i}$ for all $i=1, \ldots, k$.
$Q E D$.

2.4 A construction of non-coherent groups.

Let $L \subset \operatorname{Isom}\left(\mathbb{H}^{3}\right)$ be a subgroup commensurable to the reflection group $G(\Delta)$ defined in Section 2.1. We embed \mathbb{H}^{3} in \mathbb{H}^{4} as a hyperplane H and naturally extend the action of L from H to \mathbb{H}^{4}. Let $p_{1}, p_{2} \in \partial H$ be distinct parabolic points of L. Let Π_{1}, Π_{2} be perpendicular hyperplanes in \mathbb{H}^{4} which are parallel to H and asymptotic to p_{1}, p_{2}, respectively. Let τ_{i} denote the (commuting) reflections in $\Pi_{i}, i=1,2$. Set $\tau_{3}:=\tau_{1} \tau_{2}$. Let G denote the subgroup of $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$ generated by L, τ_{1}, τ_{2}.

Theorem 2.6 ([KP1]). For every choice of the group L, hyperplane H, points p_{1}, p_{2} and hyperplanes Π_{1}, Π_{2} as above, the group G is non-coherent.

We will need the following:
Corollary 2.7. Suppose that $L_{0}, L_{1}, L_{2}, L_{3}$ are arbitrary finite index subgroups in

$$
L, \quad \tau_{1} L \tau_{1}, \quad \tau_{2} L \tau_{2}, \quad \tau_{3} L \tau_{3}, \quad \text { respectively. }
$$

Then the subgroup S of G generated by $L_{0}, L_{1}, L_{2}, L_{3}$ is non-coherent.
Proof: The intersection

$$
L^{\prime}:=L_{0} \cap \tau_{1} L_{1} \tau_{1} \cap \tau_{2} L_{2} \tau_{2} \cap \tau_{3} L_{3} \tau_{3}
$$

is a finite index subgroup in L. Let S^{\prime} denote the subgroup of S generated by

$$
\begin{equation*}
L^{\prime}, \quad \tau_{1} L^{\prime} \tau_{1}, \quad \tau_{2} L^{\prime} \tau_{2}, \quad \tau_{3} L^{\prime} \tau_{3} . \tag{2}
\end{equation*}
$$

It is clear that S^{\prime} has index 4 in the group generated by $L^{\prime}, \tau_{1}, \tau_{2}$. Since the latter is non-coherent by Theorem 2.6, it follows that S^{\prime}, and thus S, is non-coherent as well. $Q E D$.

Remark 2.8. Note that the groups in (2) have the invariant hyperplanes $H, \tau_{1}(H)$, $\tau_{2}(H), \tau_{3}(H)$, respectively. See Figure 1, where we use the projective model of \mathbb{H}^{4}.

3 Construction of non-coherent arithmetic lattices.

Proof of Theorem A. Our strategy is to embed a non-coherent group G (of the type described in Section 2.4) into the lattice $O(f, \mathbb{Z})$. Then it would follow that $O(f, \mathbb{Z})$ is non-coherent.

Let q_{3} be the quadratic form of rank 4 on the rational vector space U as in Section 2. Then $O^{\prime}\left(q_{3}, \mathbb{Z}\right)=G(\Delta)$, see Section 2.1. We can change the coordinates in U to y_{i} $(i=1,2,3,4)$ so that q_{3} takes the form:

$$
g=2 y_{1} y_{2}+y_{3}^{2}+y_{4}^{2} .
$$

p_{1}

Figure 1:

Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the corresponding basis of U. Note that the group $O(g, \mathbb{Z})$ is commensurable to $O\left(q_{3}, \mathbb{Z}\right)$.

Let $(U, g) \rightarrow(V, f)$ be a rational embedding. Pick a non-zero vector $e_{5} \in V$ orthogonal to U. Then

$$
a:=f\left(e_{5}\right)>0
$$

Define a 5 -dimensional vector space W spanned by the vector e_{5} and U. Let h be the restriction of the form f to W; hence we have $(U, g) \subset(W, h) \subset(V, f)$. It therefore suffices to embed some non-coherent group G (as in Section 2.4) into the group $O^{\prime}(h, \mathbb{Z})$.

We let (\cdot, \cdot) denote the bilinear form on W corresponding to h. The space W splits as the orthogonal direct sum $U \oplus \mathbb{Q} e_{5}$. We will consider \mathbb{H}^{4} canonically embedded in $W \otimes \mathbb{R}$ and identify \mathbb{H}^{3} with the hyperplane $H:=U \otimes \mathbb{R} \cap \mathbb{H}^{4} \subset \mathbb{H}^{4}$.

After replacing e_{2} with $a e_{2}$ we obtain $\left(e_{1}, e_{2}\right)=a$. Set

$$
u_{1}:=e_{1}+e_{5}, u_{2}:=-e_{2}+e_{5} .
$$

Thus

$$
\left(u_{1}, u_{1}\right)=\left(u_{2}, u_{2}\right)=a, \quad\left(u_{1}, u_{2}\right)=\left(u_{1}, e_{1}\right)=\left(u_{2}, e_{2}\right)=0
$$

$$
\left(u_{1}, e_{2}\right)=-\left(u_{2}, e_{1}\right)=a
$$

Let $U_{i} \subset W(i=1,2)$ be the 4 -dimensional vector subspace orthogonal to u_{i}. Since $a>0$, it follows that each $U_{i} \otimes \mathbb{R}(i=1,2)$ intersects \mathbb{H}^{4} along a hyperplane Π_{i}. The reflection

$$
\tau_{i}: w \mapsto w-2 \frac{\left(w, u_{i}\right)}{\left(u_{i}, u_{i}\right)} u_{i}
$$

in the subspace U_{i} is represented by a matrix with integer coefficients in the basis $\left\{e_{1}, \ldots, e_{5}\right\}$. Thus $\tau_{i} \in O^{\prime}(h, \mathbb{Z}), i=1,2$.

Because $g\left(e_{i}\right)=0$, the vector e_{i} corresponds to a parabolic point $p_{i} \in \partial \mathbb{H}^{4}$ of the group $O(g, \mathbb{Z}), i=1,2$. Since $\left(u_{1}, u_{2}\right)=0$, it follows that Π_{1} is perpendicular to Π_{2}. Moreover, since $e_{i} \in U_{i}$, we conclude that $\partial \Pi_{i}$ contains $p_{i}, i=1,2$. Since

$$
\left(u_{i}, e_{5}\right)=\sqrt{\left(u_{i}, u_{i}\right)\left(e_{5}, e_{5}\right)}
$$

the hyperplane Π_{i} is parallel to H, see the proof of Proposition 2.5.
Let L be a finite index subgroup of $O^{\prime}(g, \mathbb{Z})$ contained in $O^{\prime}(h, \mathbb{Z})$. The group G, generated by L, τ_{1}, τ_{2}, is contained in $O^{\prime}(h, \mathbb{Z})$. Theorem 2.6 then implies that the lattice $O^{\prime}(h, \mathbb{Z})$ is non-coherent. Hence $O(f, \mathbb{Z})$ is non-coherent as well. Theorem A follows.
$Q E D$.
We next prove Corollary 1.1. For any number $a \in \mathbb{N}$ consider the quadratic form

$$
f_{a}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+a x_{4}^{2}+x_{5}^{2}+\ldots+x_{n}^{2} .
$$

Each f_{a} defines a non-uniform arithmetic lattice $O^{\prime}\left(f_{a}, \mathbb{Z}\right) \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$. Moreover, for infinitely many appropriately chosen primes a these lattices are not commensurable. Since each form f_{a} represents q_{3}, Corollary 1.1 follows from Theorem A. $Q E D$.

Theorem 3.1. For each $n \geq 4$ there exist uniform non-coherent arithmetic lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$. Moreover, for each $n \geq 5$ there are infinitely many commensurability classes of such lattices.

Proof: The assertion is a rather direct corollary of the result of Bowditch and Mess [BM], but we present a proof for the sake of completeness. We start with a review of the example of Bowditch and Mess [BM] which is a non-coherent uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$.

Consider the right-angled regular 120 -cell $D \subset \mathbb{H}^{4}$: It is a compact regular polyhedron, see for instance [D, VS]. It appears that it was first discovered by Schlegel in 1883 in [Sch], who was interested in classifying honeycombs in the spaces of constant curvature, see [Co].

Each facet of D is a right-angled regular dodecahedron. Let $\Gamma=G(D) \subset \operatorname{Isom}\left(\mathbb{H}^{4}\right)$ be the reflection group determined by D. The group Γ is commensurable to $O(q, A)$,
where $q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$ is the quadratic form given by the matrix

$$
\left[\begin{array}{ccccc}
1 & -\cos (\pi / 5) & 0 & 0 & 0 \tag{3}\\
-\cos (\pi / 5) & 1 & -1 / 2 & 0 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 & 0 \\
0 & 0 & -1 / 2 & 1 & -\cos (\pi / 5) \\
0 & 0 & 0 & -\cos (\pi / 5) & 1
\end{array}\right]
$$

and A is the ring of integers of the field $K=\mathbb{Q}(\sqrt{5})$. Thus Γ is a (uniform) arithmetic lattice. Consider the facets F_{1}, F_{2} of D which share a common 2-dimensional face F. There is a canonical isomorphism $\varphi: G\left(F_{1}\right) \rightarrow G\left(F_{2}\right)$ fixing $G(F)$ elementwise. The reflection group $G\left(F_{1}\right)$ contains a finite index subgroup isomorphic to the fundamental group of a hyperbolic 3 -manifold M^{3} which fibers over S^{1}, see [Th]. Let $N_{1} \subset \pi_{1}\left(M^{3}\right)$ be a normal surface subgroup and set $N_{2}:=\varphi\left(N_{1}\right) \subset G\left(F_{2}\right)$. In particular, both N_{1}, N_{2} are finitely generated. On the other hand, $N_{i} \cap G(F)$ is a free group E of infinite rank, $i=1,2$. One then verifies that the subgroup of Γ generated by N_{1} and N_{2} is isomorphic to $N_{1} *_{E} N_{2}$ and therefore is not finitely presentable, [Ne]. Hence Γ is a non-coherent uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$.

In order to construct lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ consider the quadratic forms

$$
f_{a}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)+a x_{5}^{2}+x_{6}^{2}+\ldots+x_{n}^{2},
$$

where $a \in \mathbb{N}$ are primes. Since q^{σ} is positive definite for the (unique) nontrivial embedding $\sigma: K \rightarrow \mathbb{R}$, it follows that each $O\left(f_{a}, A\right)$ is a uniform arithmetic lattice in $O\left(f_{a}, \mathbb{R}\right)$. As in the non-compact case, the groups $O\left(f_{a}, \mathbb{R}\right)$ are not commensurable for infinitely many primes a. As $O(q, A) \subset O\left(f_{a}, A\right)$, the assertion follows. $Q E D$.

Remark 3.2. Clearly, the subgroup generated by any finite index subgroups of $G\left(F_{1}\right)$ and $G\left(F_{2}\right)$ is non-coherent as well.

Remark 3.3. The above construction produces only one commensurability class of non-coherent lattices in Isom $\left(\mathbb{H}^{4}\right)$. Using noncommensurable arithmetic lattices in Isom $\left(\mathbb{H}^{4}\right)$ containing $G\left(F_{1}\right)$, one can construct infinitely many commensurability classes of uniform non-coherent arithmetic lattices in $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$.

Theorem B. For every $n \geq 6$, every non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is non-coherent.

Proof: Let Γ be a non-uniform arithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ where $n \geq 6$. Then Γ is commensurable to $O(f, \mathbb{Z})$ for some rational form f of signature ($n, 1$). Since $n+1 \geq 7$ and q_{3} has rank 4, it follows from Proposition 2.3 that f represents q_{3}. Therefore, by Theorem A, the group $O(f, \mathbb{Z})$ is non-coherent. Thus Γ is non-coherent as well.
$Q E D$.

4 Non-arithmetic non-coherent lattices.

The goal of this section is to prove
Theorem D. For each $n \geq 4$ there exist both uniform and non-uniform, non-arithmetic, non-coherent lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$.
Proof: We produce these non-coherent examples by using the construction of nonarithmetic lattices in Isom $\left(\mathbb{H}^{n}\right)$ due to Gromov and Piatetski-Shapiro [GP]. We begin with a review of their construction.

Let f be a quadratic form of signature $(n-1,1)$ in n variables with coefficients in a totally real algebraic number field $K \subset \mathbb{R}$. Let A denote the ring of integers of K. We assume that f satisfies Condition $\left(^{*}\right)$ from Section 2.1.

We let K_{+}denote the set of $a \in K$ such that for each embedding $\sigma: K \rightarrow \mathbb{R}$ we have $\sigma(a)>0$. For $a \in K_{+}$we consider the quadratic form

$$
h_{a}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)+a x_{n}^{2}
$$

It has signature $(n, 1)$ and satisfies Condition $\left({ }^{*}\right)$. Then $\Gamma_{a}:=O^{\prime}\left(h_{a}, A\right)$ is a lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$. Similarly, $\Gamma_{0}:=O^{\prime}(f, A)$ is a lattice in $\operatorname{Isom}\left(\mathbb{H}^{n-1}\right)$.

In what follows we will consider pairs of groups Γ_{a}, Γ_{1}, where $a \in \mathbb{N}$. Observe that both groups contain the subgroup Γ_{0}. Let $\Gamma_{a}^{\prime} \subset \Gamma_{a}, \Gamma_{1}^{\prime} \subset \Gamma_{1}$ be torsion-free finite index subgroups such that

$$
\Gamma_{1}^{\prime} \cap \Gamma_{0}=\Gamma_{a}^{\prime} \cap \Gamma_{0}
$$

We let Γ_{0}^{\prime} denote this intersection and set $M_{1}:=\mathbb{H}^{n} / \Gamma_{1}^{\prime}, M_{a}:=\mathbb{H}^{n} / \Gamma_{a}^{\prime}$.
Without loss of generality (after passing to deeper finite index subgroups), we may assume that $\mathbb{H}^{n-1} / \Gamma_{0}^{\prime}$ isometrically embeds into M_{1} and M_{a} as a non-separating totally geodesic hypersurface, see [Mi]. Cut M_{1} and M_{a} open along these hypersurfaces. The resulting manifolds M_{1}^{+}, M_{a}^{+}both have totally geodesic boundaries isometric to the disjoint union of two copies of $M_{0}=\mathbb{H}^{n-1} / \Gamma_{0}^{\prime}$.

Let M be the connected hyperbolic manifold obtained by gluing M_{1}^{+}, M_{a}^{+}via the isometry of their boundaries. It is easy to see that M is complete. Then there exists a lattice $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ such that $M=\mathbb{H}^{n} / \Gamma$. Note that M is compact iff both M_{1}, M_{a} are. It is proven in [GP] that
Γ is arithmetic if and only if a is not a square in K.
Note that there exist infinitely numbers a which are not squares in K. Indeed, it is well known that square roots of prime numbers are linearly independent over \mathbb{Q}. Therefore only finitely many of them belong to K.

We now prove Theorem D by working with specific examples.

1. Compact case. For $n \geq 5$ take $K=\mathbb{Q}(\sqrt{5})$ and consider the quadratic form

$$
f=q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)+x_{5}^{2}+\ldots+x_{n-1}^{2},
$$

where the form q is given by the matrix (3). The quadratic form q yields a uniform arithmetic lattice $O^{\prime}(q, A)$ in $\operatorname{Isom}\left(\mathbb{H}^{4}\right)$ which is commensurable to the reflection group $G(D)$ defined in the proof of Theorem 3.1. The group $O^{\prime}(q, A)$ is non-coherent according to Theorem 3.1. On the other hand, by applying the Gromov- Piatetski-Shapiro construction to f and taking any prime number $a \neq 5$, we obtain a uniform nonarithmetic lattice in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ which contains $O^{\prime}(q, A)$ and, hence, is non-coherent.

It remains to analyze the case $n=4$. Take facets F_{1}, F_{2}, F_{3} of D so that F_{1} and F_{2} intersect along a 2-dimensional face and

$$
F_{3} \cap F_{1}=F_{3} \cap F_{2}=\emptyset .
$$

Then the group generated by the reflections in the facets of F_{1} and F_{2} is non-coherent, see the proof of Theorem 3.1.

By taking an appropriate finite index subgroup $\Gamma_{1} \subset G(D)$, we obtain a hyperbolic 4-manifold $M_{1}=\mathbb{H}^{4} / \Gamma_{1}$ which contains embedded totally geodesic hypersurfaces S_{i} corresponding to the facets $F_{i}, i=1,2,3$, so that

$$
S_{3} \cap S_{1}=S_{3} \cap S_{2}=\emptyset, \quad S_{1} \cap S_{2} \neq \emptyset
$$

Now cut M_{1} open along S_{3} and apply the gluing construction of Gromov and PiatetskiShapiro. In this way one can obtain a non-arithmetic compact hyperbolic manifold M whose fundamental group contains the subgroup of Γ_{1} generated by some finite index subgroups of $G\left(F_{1}\right)$ and $G\left(F_{2}\right)$ and, hence, is non-coherent (see Remark 3.2).
2. Non-compact case. For $n \geq 5$ take $K=\mathbb{Q}$ and consider the quadratic form $f=q_{n-1}$. Taking any prime number for a, apply the same argument as in the compact case.

Consider $n=4$. We will imitate the proof in the compact case. However we will appeal to the results of Section 2.3 instead of using a particular fundamental domain.

Let $\Gamma:=O^{\prime}\left(q_{4}, \mathbb{Z}\right)$. Clearly, q_{4} represents the form q_{3}. Set $L:=O^{\prime}\left(q_{3}, \mathbb{Z}\right) \subset \Gamma$, and let $\tau_{1}, \tau_{2} \in O^{\prime}\left(q_{4}, \mathbb{Z}\right)$ be the commuting reflections constructed in the proof of Theorem A. Set $\tau_{3}:=\tau_{1} \tau_{2}$ and $L_{0}:=L, L_{i}:=\tau_{i} L \tau_{i}, i=1,2,3$.

By passing to any finite index subgroups $L_{i}^{\prime} \subset L_{i}$, we obtain a non-coherent subgroup G^{\prime} in Γ generated by $L_{i}^{\prime}, i=0,1,2,3$, see Corollary 2.7. Since Γ is a linear group, we can assume without loss of generality that Γ is torsion-free. Let $H_{0}=H \subset \mathbb{H}^{4}$ be the L-invariant hyperplane. Then $H_{i}:=\tau_{i}(H)(i=1,2,3)$ is the L_{i}-invariant hyperplane.

Lemma 4.1. There exists a finite index subgroup $\Gamma^{\prime} \subset \Gamma$ so that for the groups $L_{i}^{\prime}:=L_{i} \cap \Gamma^{\prime}$ we have:

1. H_{0} / L_{0}^{\prime} embeds as a hypersurface S_{0} into $\mathbb{H}^{4} / \Gamma^{\prime}$.
2. Let M^{+}denote the manifold obtained by cutting $\mathbb{H}^{4} / \Gamma^{\prime}$ along S_{0}. Then G^{\prime} embeds into $\pi_{1}\left(M^{+}\right)$.

Proof: We have to find a subgroup Γ^{\prime} so that:
a. For all $\gamma \in \Gamma^{\prime}$ either $\gamma\left(H_{0}\right)=H_{0}$ or

$$
\gamma\left(H_{0}\right) \cap\left(H_{0} \cup H_{1} \cup H_{2} \cup H_{3}\right)=\emptyset .
$$

b. For all $\gamma \in \Gamma^{\prime}$, the hyperplane $\gamma\left(H_{0}\right)$ does not separate the above hyperplanes from each other.

This is achieved by applying Proposition 2.5 to the hyperplanes $H_{0}, H_{1}, H_{2}, H_{3}$ and $H_{4}:=\Pi_{1}, H_{5}:=\Pi_{2}$. QED.

We now glue an appropriately chosen manifold M_{a}^{+}along the boundary of M^{+}. Let M be the resulting complete hyperbolic manifold. Then, as in the case $n \geq 5$, the fundamental group of M is non-arithmetic. On the other hand,

$$
G^{\prime} \subset \pi_{1}\left(M^{+}\right) \subset \pi_{1}(M)
$$

Therefore $\pi_{1}(M)$ is non-coherent.
$Q E D$.

5 Non-coherence and Thurston's conjecture.

We recall the following conjecture:
Conjecture 5.1 (Thurston's virtual fibration conjecture). Suppose that M is a hyperbolic 3-manifold of finite volume. Then there exists a finite cover over M which fibers over the circle.

We expect that all lattices in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ are non-coherent for $n \geq 4$. Proving this for non-arithmetic lattices is clearly beyond our reach. Therefore we restrict to the arithmetic case. Even in this case our discussion will be rather speculative. We restrict to the arithmetic groups of the simplest type $\Gamma=O(f, A)$, where f is a quadratic form on $V=K^{n+1}$ and $K \subset \mathbb{R}$ is a totally real algebraic number field (see Section 2.1). Choose a basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ in which the form f is diagonal:

$$
f=a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}
$$

Here $a_{0}<0, a_{1}, \ldots, a_{n}>0$ and for all nontrivial embeddings $\sigma: K \rightarrow \mathbb{R}$ we have $\sigma\left(a_{i}\right)>0$, for all $i=0,1, \ldots, n$. To simplify the discussion, we will assume that Γ is uniform (the non-uniform lattices were discussed in Theorems A and B).

For a 4-element subset $I=\{0, i, j, k\} \subset\{0,1, \ldots, n\}$ let $V_{I} \subset V$ denote the linear span of the basis vectors $e_{l}, l \in I$. Set $H_{I}:=V_{I} \otimes \mathbb{R} \cap \mathbb{H}^{n}$. Then $f \mid V_{I}$ determines a lattice Γ_{I} in $\operatorname{Isom}\left(H_{I}\right)$, which is naturally embedded into Γ. Assuming Thurston's conjecture, up to taking finite index subgroups, each Γ_{I} contains an (infinite) normal finitely generated surface subgroup N_{I}. Moreover, by taking I and J such that $I \cap J$ consists of 3 elements, we obtain subgroups Γ_{I}, Γ_{J} whose intersection is a Fuchsian group F. It now follows from the separability of F in Γ (see $[\mathrm{BM}]$, $[\mathrm{L}]$ or Proposition
2.5 of this paper) that, after passing to certain finite index subgroups $\Gamma_{I}^{\prime} \subset \Gamma_{I}, \Gamma_{J}^{\prime} \subset$ Γ_{J}, we get the inclusion

$$
\begin{equation*}
\Gamma_{I}^{\prime} *_{F} \Gamma_{J}^{\prime} \subset \Gamma \tag{4}
\end{equation*}
$$

Set $N_{I}^{\prime}:=\Gamma_{I}^{\prime} \cap N_{I}, N_{J}^{\prime}:=\Gamma_{J}^{\prime} \cap N_{J}$. Then $E:=N_{I}^{\prime} \cap N_{J}^{\prime}$ is a free group of infinite rank. Now (4) implies that Γ is non-coherent since the subgroup

$$
N_{I}^{\prime} *_{E} N_{J}^{\prime} \subset \Gamma
$$

is finitely generated but not finitely presented, $[\mathrm{Ne}]$. Therefore we obtain:
Suppose that Thurston's conjecture holds for all compact arithmetic 3-manifolds. Then all uniform arithmetic lattices of the simplest type in $\operatorname{Isom}\left(\mathbb{H}^{n}\right), n \geq 4$, are non-coherent.

Thus we expect the negative answer to the question of Dani Wise stated in Introduction.

References

[ALR] I. Agol, D. Long and A. Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. (2), vol. 153 (2001), no. 3, pp. 599-621.
[BM] B. Bowditch and G. Mess, A 4-dimensional Kleinian group, Transactions of Amer. Math. Soc., vol. 344 (1994), pp. 391-405.
[BS] Z. Borevich, I. Shafarevich, Number Theory, Academic Press, 1966.
[Ca] J.W.C. Cassels, Rational Quadratic Forms, Academic Press, 1978.
[Co] H.S.M. Coxeter, Regular honeycombs in hyperbolic space, Proc. Internat. Congr. Math. (Amsterdam, 1954), Vol. III, Noordhoff, Groningen, and North-Holland, Amsterdam (1956), pp. 155-169.
[D] M. Davis, A hyperbolic 4-manifold, Proc. Amer. Math. Soc., vol. 93, (1985), pp. 325-328.
[GP] M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math., vol. 66 (1988), pp. 93-103.
[K] M. Kapovich, "Hyperbolic manifolds and discrete groups," Progress in Mathematics, 183. Birkhauser Boston, 2001.
[KP1] M. Kapovich and L. Potyagailo, On the absence of Ahlfors' finiteness theorem for Kleinian groups in dimension 3, Topology and its applications, vol. 40 (1991), pp. 83-91.
[KP2] M. Kapovich and L. Potyagailo, On the absence of finiteness theorems of Ahlfors and Sullivan for Kleinian groups in higher dimensions, Sibirsk. Mat. Zh., vol. 32 (1991), pp. 61-73.
[LM] J.-S. Li and J. J. Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J., vol. 71 (1993), no. 2, pp. 365-401.
[L] D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc., vol. 19 (1987), p. 481-484.
[MV] G. Margulis and E. B. Vinberg, Some linear groups virtually having a free quotient, Journal of Lie Theory, vol. 10 (2000), pp. 171-180.
[Ma] B. Maskit, "Kleinian groups," Grundlehren der Mathematischen Wissenschaften, 287. Springer-Verlag, Berlin, 1988
[Mi] J. J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2), vol. 104 (1976), pp. 235-247.
[Ne] W. Neumann, Some remarks on infinite groups, J. London Math. Soc. vol. 12 (1937), pp. 120-127.
[P1] L. Potyagailo, The problem of finiteness for Kleinian groups in 3-space, "Knots-90", (International Conference on Knot Theory and Related Topics, Osaka 1990), edited by A. Kawauchi, Walter de Gruyter, Berlin, New-York etc., 1992, pp. 619-623.
[P2] L. Potyagailo, Finitely generated Kleinian groups in 3-space and manifolds of infinite homotopic type, Transactions of Amer. Math. Soc., vol. 344 (1994), pp. 57-77.
[PV] L. Potyagailo and E. B. Vinberg, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv., vol. 80 (2005), no. 1, pp. 63-73.
[Sch] V. Schlegel, Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta Leop. Carol., vol. 44 (1883), pp. 343-459.
[Sc1] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc., vol. 17 (1978), pp. 555-565; Correction ibid, vol. 32 (1985), pp. 217220.
[Sc2] P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc., (2) vol. 6 (1973), pp. 437-440.
[Th] W. Thurston, The geometry and topology of 3-manifolds, Princeton, Princeton University Lecture Notes, 1978.
[VS] E. B. Vinberg and O. V. Shvartsman, Geometry II. Discrete groups of motions of spaces of constant curvature, Encyclopaedia of Mathematical Sciences, vol. 29, Springer-Verlag, 1993, pp. 139-248.

Michael Kapovich: Department of Mathematics, 1 Shields Ave., University of California, Davis, CA 95616, USA, kapovich@math.ucdavis.edu

Leonid Potyagailo: UFR de Mathématiques, Université de Lille 1, 59655 Villeneuve d'Ascq cedex, France; potyag@math.univ-lille1.fr
Ernest Vinberg: Department of Mechanics and Mathematics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, GSP-2, Russia; vinberg@zebra.ru

