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Abstract

In this mini-course, we make use of Spinc geometry to study special hyper-
surfaces. For this, we begin by selecting basic facts about Spinc structures and
the Dirac operator on Riemannian manifolds and their hypersurfaces. We end by
giving a Lawson type correspondence for constant mean curvature surfaces in
some 3-dimensional Thurston geometries.
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1 Introduction and motivations

Having a Spin or Spinc structure on a Riemannian manifold (Mn, g), we can define
a natural first order elliptic differential operator called the Dirac operator. It acts
on spinor fields: sections of a complex vector bundle ΣM called the spinor bundle.
The geometry and topology of a Riemannian Spin or Spinc manifold and their
submanifolds are strongly related to the spectral properties of this operator.

On a compact Riemannian Spin manifold (Mn, g) of positive scalar curvature,
A. Lichnerowicz [Lich63] proved that any eigenvalue λ of the Dirac operator D
satisfies

λ2 >
1

4
inf
M

Scal,

where Scal denotes the scalar curvature of (Mn, g). Then, the kernel of the Dirac
operator is trivial and by the Atiyah-Singer theorem, the topological index of Mn is
zero. This yields a topological obstruction for the existence of positive scalar metrics.
Th. Friedrich [Fri80] refined the argument of A. Lichnerowicz and proved that

λ2 ≥ n

4(n− 1)
inf
M

Scal.

The equality case is characterized by the existence of a real Killing spinor. The
existence of such spinors leads to restrictions on the manifold. For example, the
manifold is Einstein and in dimension 4, it has constant sectional curvature. The
classification of simply connected Riemannian Spin manifolds carrying real Killing
spinors [Bär93] gives, in some dimensions, other examples than the sphere. These
examples are relevant to physicists in general relativity where the Dirac operator plays
a central role.

From an extrinsic point of view, Th. Friedrich [Fri98] characterised simply con-
nected surfaces isometrically immersed in R3 by the existence of a spinor field
satisfying the Dirac equation. Indeed,

{
(M2, g) ↪→ R3

of mean curvature H

}
⇐⇒


M2 is a simply connected Spin surface

carrying a spinor field ϕ of constant norm
satisfying Dϕ = Hϕ︸ ︷︷ ︸

The Dirac equation

 .

The spinor field ϕ is the restriction to the surface M of a parallel spinor on R3. A
similar result holds for surfaces in S3 and H3 [Mor05]. As an application, we have an
elementary proof of a Lawson type correspondence. H.B. Lawson proved a correspon-
dence between surfaces of constant mean curvature in R3, S3 and H3: every simply
connected minimal surface in S3 (resp. in R3) is isometric to a simply connected sur-
face in R3 (resp. H3) with constant mean curvature equal to 1. In 2001, O. Hijazi, S.
Montiel and X. Zhang [HMZ01a, HMZ01b] proved that the first positive eigenvalue of
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the Dirac operator defined on the compact boundary of a Riemannian Spin manifold
(Mn, g) of nonnegative scalar curvature satisfies

λ1 ≥
n− 1

2
inf
M
H,

where H is the mean curvature of the boundary, assumed to be nonnegative. As an
application of the limiting case, they gave an elementary spinorial proof of the famous
Alexandrov theorem: the only compact embedded manifold in Rn of constant mean
curvature is the sphere Sn−1 of dimension n− 1.

Recently, Spinc geometry became a field of active research with the advent of
Seiberg-Witten theory [KM94, Wit94, Sei-Wit94, Fri00]. This theory is based on the
fact that every oriented Riemannian compact 4-dimensional manifold has a Spinc

structure. Applications of the Seiberg-Witten theory to 4-dimensional geometry and
topology are already notorious: several theorems arising from Donaldson theory
found an elementary proof [Don96]. C. LeBrun [LeB95, LeB96] obtained topological
restrictions on 4-dimensional Einstein manifolds and with M.J. Gursky [GL98], they
calculated the Yamabe invariant for some 4-dimensional manifolds like the complex
projective space CP 2.

From an intrinsic point of view, Spin, almost complex, complex, Kähler, Sasaki
and some classes of CR manifolds have a canonical Spinc structure. For example,
using Spinc structures, A. Moroianu [Moro99] proved the Lichnerowicz conjecture
on Kähler Spin manifolds which are limiting manifolds for the Kirchberg inequality
in even complex dimension [Kir86].

In 2006, O. Hijazi, S. Montiel and F. Urbano [HMU06] constructed on Kähler-
Einstein manifolds with nonnegative scalar curvature, Spinc structures carrying
Kählerian Killing spinors. The restriction of these spinors to minimal Lagrangian
submanifolds provides topological and geometric restrictions on these submanifolds.

Hence, the restriction of Spinc spinors is an effective tool to study the geome-
try and the topology of submanifolds. Moreover, from the extrinsic point of view, it
seems that it is more natural to work with Spinc structures rather than Spin structures,
which are by now very classic. In this mini-course, we will examine Spinc structures
on hypersurfaces, to prove a Lawson type correspondence for constant mean curvature
surfaces in some 3-dimensional special geometries.

2 Algebraic facts

The aim of this section is to present some algebraic ingredients lying at the heart of
Spinc geometry. We refer to [LM89, Hij01, BHMM].

We denote by Cln the real Clifford algebra. It is the unitary algebra generated
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by elements v, w ∈ Rn such that

v · w + w · v = −2 < v,w >Rn ,

where < ., . >Rn is the canonical scalar product of Rn and “·” denotes the binary
operator. If {e1, . . . , en} is an orthonormal basis of Rn, then

{1, ei1 · . . . · eik , 1 ≤ i1 < . . . < ik ≤ n, 0 ≤ k ≤ n}

is a basis of Cln (dimR Cln = 2n). The complex Clifford algebra Cln is the complex-
ification of the real one, i.e.,

Cln = Cln ⊗R C.

Examples 2.1 A basis of Cl1 is given by {1, e1} with e2
1 = −1, then e1 = i and Cl1 =

C. Moreover, Cl1 = C ⊗R C ' C ⊕ C. A basis of Cl2 is given by {1, e1, e2, e1 · e2}
with e2

1 = e2
2 = (e1 · e2)2 = −1 and e1 · e2 = −e2 · e1. One has Cl2 = H and

Cl2 = H ⊗R C ' C(2). Here H denotes the Quaternion and C(2) the set of complex
matrix of order 2.

Let ωC := i[
n+1
2

]e1 · e2 · . . . · en be the complex volume element.

Theorem 2.1 A complex representation of Cln is irreducible if and only if it is of
complex dimension 2[n

2
], where [n2 ] denotes the integer part of n

2 . More precisely, if
n = 2m is even, Cln has an unique irreducible representation of complex dimension
2m:

γ2m : Cl2m
'−→ EndC(Σ2m ' C2m).

Moreover, (γ2m(ωC))2 = Id. If n = 2m + 1 is odd, Cln has two inequivalent irre-
ducible representations both of complex dimension 2m:

γ2m+1 and γ,2m+1 : Cl2m+1 −→ EndC(Σ2m).

Moreover, γ2m+1(ωC) = Id and γ,2m+1(ωC) = −Id.

We denote by Cl0n the even part of Cln. It is the subalgebra of Cln generated by

{1, ei1 · . . . · eik , 1 ≤ i1 < . . . < ik ≤ n, 0 ≤ k ≤ n, k is even}.

Lemma 2.2 For every n ∈ N∗, we have Cln ' Cl0n+1.

Proof. Let {e1, e2, . . . , en, ν} be an orthonormal basis of Rn+1 such that
{e1, e2, . . . , en} is an orthonormal basis of Rn. The following map

Cln −→ Cl0n+1

ei1 · . . . · eik 7−→
{
ei1 · . . . · eik if k is even,
ei1 · . . . · eik · ν if k is odd,

is an isomorphism.
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Proposition 2.3 For every m ∈ N∗, we have

γ2m+1(Cl02m+1) = AutC(Σ2m),

γ2m(Cl02m) = AutC(Σ+
2m)⊕AutC(Σ−2m),

where Σ2m = Σ+
2m ⊕ Σ−2m and Σ±2m = {σ ∈ Σ2m, γ2m(ωC)σ = ±σ}.

Proof. For n = 2m + 1, the map γ2m+1|Cl02m+1

: Cl02m+1 −→ EndC(Σ2m) defines

a complex representation of Cl02m+1 ' Cl2m of complex dimension 2m. But γ2m is
the unique irreducible representation of Cl2m of complex dimension 2m, then γ2m '
γ2m+1|Cl02m+1

. Thus, γ2m+1(Cl02m+1) = EndC(Σ2m). Moreover, for all u ∈ Cl02m+1,

γ2m+1(u) is an isomorphism. In fact, for u = e1 · . . . ·ek, k even, we set v = ek · . . . ·e1

and we can check that γ2m+1(u) ◦ γ2m+1(v) = Id.

3 Spinc structures and the Dirac operator

In this section, we define Spinc structures on a Riemannian manifold (Mn, g) accord-
ing to S. Montiel [Mon05]. A Spinc structure on M is needed to define globally a
complex vector bundle ΣM called the spinor bundle, such that at every point x ∈M ,
the fiber is given by ΣxM = Σn = C2[

n
2 ]

. On sections of the spinor bundle ΣM , we
then define the Dirac operator and we give its basic properties.

Definition 3.1 Let (Mn, g) be an oriented compact Riemannian manifold. A Dirac
bundle on (Mn, g) is a complex vector bundle ΣM of rank l endowed with
• A Hermitian metric < ., . > and a connection∇ which parallelizes the metric, i.e.,

X(< ψ,ϕ >) =< ∇Xψ,ϕ > + < ψ,∇Xϕ >,

for all X ∈ Γ(TM) and ψ,ϕ ∈ Γ(ΣM).
• A C∞(M)-linear map γ : TM −→ End(ΣM) satisfying

< γ(X)ψ,ϕ > + < ψ, γ(X)ϕ >= 0, (1)

∇X(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇Xψ, (2)

γ(X)γ(Y ) + γ(Y )γ(X) = −2g(X,Y ), (3)

for allX,Y ∈ Γ(TM), ψ,ϕ ∈ Γ(ΣM) and where the second connection on Equation
(2) is the Levi-Civita connection on M .

Why do we need the existence of such a map γ ?
Why do we ask γ to satisfy these three conditions ?
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On a Riemannian manifold (Mn, g), giving a complex vector bundle (ΣM,∇, 〈., .〉),
we have not any nontrivial natural first order operator acting on Γ(ΣM). However, we
have a second order operator: the Laplacian4. When γ exists, we can define a natural
first order operator D by

D : Γ(ΣM) −→ Γ(ΣM)

ψ 7−→ Dψ =

n∑
j=1

γ(ej)∇ejψ,

where {ej}j=1,...,n is a local orthonormal basis tangent to M . Conditions (1), (2) and
(3) are needed to get some properties of D.

Proposition 3.2 Let (ΣM,∇, 〈., .〉 , γ) be a Dirac bundle over a compact manifold
M . Then,

1. If M is without boundary, D is formally self-adjoint with respect to the L2-
scalar product (., .) :=

∫
M < ., . > vg, where vg is the volume element of M

(Conditions (1) and (2)).

2. D2 and4 have the same principal symbol (Conditions (2) and (3)).

Proof. We choose normal coordinates at x ∈M , i.e., (∇ejek)x = 0, 1 ≤ k, j ≤ n.

1. For any ψ,ϕ ∈ Γ(ΣM), we compute

< Dψ,ϕ > = <

n∑
j=1

γ(ej)∇ejψ,ϕ >

(1)
= −

n∑
j=1

< ∇ejψ, γ(ej)ϕ >

= −
n∑
j=1

[ej < ψ, γ(ej)ϕ > − < ψ,∇ej (γ(ej)ϕ) > ]

(2)
= −

n∑
j=1

ej < ψ, γ(ej)ϕ > + < ψ,Dϕ >

= −divX1 − i divX2+ < ψ,Dϕ >,

where X1, X2 ∈ Γ(TM) are defined by

g(X1, Y ) + i g(X2, Y ) =< ψ, γ(Y )ϕ > .

Finally, integrating over M , we get the desired result.

2. For every ψ ∈ Γ(ΣM), we have

D2ψ =

( n∑
k=1

γ(ek)∇ek
)( n∑

j=1

γ(ej)∇ejψ
)
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(2)
=

n∑
k,j=1

γ(ek)γ(ej)∇ek∇ejψ

(3)
= −

n∑
j=1

∇ej∇ejψ +

n∑
k,j=1;k 6=j

γ(ek)γ(ej)∇ek∇ejψ

= −
n∑
j=1

∇ej∇ejψ +
n∑
k<j

γ(ek)γ(ej)(∇ek∇ej −∇ej∇ekψ)

= 4ψ +
1

2

n∑
i,j=1

γ(ei)γ(ej)Rei,ejψ,

whereR is the tensor curvature associated with the connection∇ on ΣM .

The condition (3) is the same defining the Clifford algebra on (TM, g). Then, the map
γ can be extented to the Clifford bundle Cl(TM): it is the vector bundle overM whose
fibers at every x ∈ M are Cl(TxM) ' Cln. The extension of γ will also be denoted
by γ:

γ : Cl(TM) −→ End(ΣM)

X1 · . . . ·Xk 7−→ γ(X1 · . . . ·Xk) = γ(X1) ◦ . . . ◦ γ(Xk).

Hence, at every point x ∈ M , γ : Cl(TxM) ' Cln −→ End(ΣxM) ' End(Cl) is a
representation of Cln of complex dimension l.

Definition 3.3 A Spinc structure on (Mn, g) is a Dirac bundle (ΣM,∇, < ., . >, γ)
of rank l = 2[n

2
]. In other terms, it is a Dirac bundle supplying at every point x ∈M an

irreducible representation of Cln. In this case, γ is called the Clifford multiplication,
ΣM the spinor bundle, a section ψ ∈ Γ(ΣM) is called a spinor field and D the
associated Dirac operator.

Proposition 3.4 Let (Mn, g) be a Riemannian Spinc manifold. Then, the determinant
line bundle det ΣM has a root of index 2[n

2
]−1, i.e., there exists a complex line bundle

L on M such that
L ⊗ · · · ⊗ L︸ ︷︷ ︸
2[

n
2 ]−1 times

= L2[
n
2 ]−1

= det ΣM.

The complex line bundle L is called the auxiliary line bundle associated with the Spinc

structure.

Proof. (n = 2m + 1). We denote by ϕij : Ui ∩ Uj −→ Aut(Σ2m) the transition
functions of the spinor bundle ΣM . We recall that at every x ∈M , γ is given by γ2m+1

and by Proposition 2.3, we have γ2m+1(Cl02m+1) = Aut(Σ2m). Then, we define

ψij : Ui ∩ Uj
ϕij−→ Aut(Σ2m)

γ−1
2m+1−→ Cl02m+1,
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i.e.,ϕij = γ2m+1◦ψij . Moreover, for allX ∈ Γ(TM), we know that γ(X)2 = −|X|2,

then (det γ(X))2 = |X|2
[n2 ]+1

. Let us define

sq : Cl02m+1 −→ C∗

λv1 · . . . · v2k 7−→ λ2|v1|2 . . . |v2k|2.

It is easy to check that at each point x ∈M ,

(detϕij(x))2 = (det γ2m+1(ψij(x)))2 = [sq(ψij(x))]2
[n2 ]

.

Hence the line bundle L whose transition functions are lij = sq(ψij) satisfies

L2[
n
2 ]−1

= det ΣM .

4 Examples and remarks

Let (Mn, g) be a Riemannian manifold. Is it always possible to find a Dirac bundle
ΣM with rank 2[n

2
], yielding an irreducible representation of Cln ' Cl(TxM) on the

vector space ΣxM ' Σn at every x ∈M ?

Proposition 4.1 ([Mon05, Nak11b, Fri00, Moro97]) Every Kähler manifold has a
canonical Spinc structure carrying parallel spinors, i.e., there exists a spinor field
ψ satisfying∇ψ = 0.

Proof. Let (Mn=2m, g, J) be a Kähler manifold of complex dimension m. The endo-
morphism J : TM −→ TM satisfying J2 = −1, can be extented to the complexified
tangent bundle T cM = TM ⊗R C,

J : T cM −→ T cM.

It satisfies also J2 = −1. Then,

T cM = T1,0M ⊕ T0,1M,

where T1,0M (resp. T0,1M ) is the eigensubbundle of T cM corresponding to the eigen-
value i (resp. −i). The bundle of complex r-forms of type (1, 0) is defined by

Λr,0M := Λr(T ∗1,0M).

For example, if r = m, the complex line bundleKM := Λm,0M is called the canonical
bundle of the Kähler manifold. We set ΣM = Λ∗,0M := ⊕mr=0Λr(T ∗1,0M). It is a
complex bundle over M of rank 2m = 2[n

2
]. We define on T1,0M a Hermitian metric

given by
< Z,W >= gC(Z,W ),

for any Z,W ∈ T1,0M . Here gC denotes the complexification of g. The extension of
the Levi-Civita connection to T1,0M and the Hermitian metric< ., . > are compatible.
We define γ by

γ : TM −→ End(Λ∗,0M)

X −→ γ(X)ω =
1√
2

(X − iJX)[ ∧ ω −
√

2(Xyω),
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where (X − iJX)[ is the complex vector X − iJX viewed as a complex 1-form.
Using the properties of ∧ and y, we can prove that γ satisfies Conditions (1), (2) and
(3). Hence, M has a Spinc structure carrying parallel spinors (the complex constant
functions). Let us find the auxiliary line bundle associated with this Spinc structure.
We have L = det(Λ∗,0M)21−m

. Then, the first Chern class c1 of L is given by

c1(L) = 21−mc1(det Λ∗,0M) = 21−mc1(Λ∗,0M)

= 21−m
m∑
r

c1(Λr,0M) = 21−m
m∑
r

Crm c1(T ∗1,0M)

= c1(T ∗1,0M) = c1(ΛmT ∗1,0M) = c1(KM ).

So, L = KM .

Remarks 4.2 1. Let (Mn, g) be a Spinc manifold. The auxiliary line bundle asso-
ciated with the Spinc structure satisfies [Mon05, Fri00]

ω2(M) = [c1(L)]2,

where ω2(M) ∈ H2(M,Z2) is the second Steifel-Whitney class of the manifold
M and c1(L) the first Chern class of the auxiliary line bundle L. Conversely,
the existence of a complex line bundle L over M satisfying ω2(M) = [c1(L)]2
defines a Spinc structure onM whose auxiliary line bundle isL [Mon05, Fri00].

2. When the auxiliary line bundle L is a square, i.e., there exists a complex line
bundle V on M , such that V ⊗V = L, then ω2(M) = 0 and the Spinc structure
is called a Spin structure.

3. Let (Mn, g) be a Riemannian Spinc manifold. For every complex line bundle L
endowed with a connection∇L and a Hermitian metric < ., . >L,

Σ
′
M = ΣM ⊗ L,

defines another Spinc structure on M . In this case,

γ
′
(X)(ψ ⊗ l) = γ(X)ψ ⊗ l, (4)

∇′ = ∇⊗ Id + Id⊗∇L, (5)

< ., . >,=< ., . >< ., . >L, (6)

L′ = L ⊗ L2. (7)

Conversely, for any two Spinc structures on M , there exists a complex line bun-
dle L endowed with a connection ∇L and a Hermitian metric < ., . >L such
that Σ

′
M = ΣM ⊗ L [Mon05]. In addition, γ and γ,, ∇ and ∇′ , < ., . > and

< ., . >,, L and L, are related by (4), (5), (6)and (7). When we have a Spin
structure, the auxiliary line bundle L can be chosen to be trivial. In fact, since
M is a Spin manifold, we have L = V2 where V is a complex line bundle over
M . Let Σ

′
M = ΣM ⊗ V−1. This Spin structure has a trivial auxiliary line

bundle.
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Corollary 4.3 The complex projective space CPm is a Spin manifold if m is odd and
if m is even it is not a Spin manifold.

Proof. Since CPm is a Kähler manifold, it carries a canonical Spinc structure whose
auxiliary line bundle L is KCPm (see Proposition 4.1). It is known that the index of
CPm is m + 1 [HMU06]. It is the greatest number such that there exists a complex
line bundle V over CPm satisfying Vm+1 = KCPm . Moreover, the line bundle V is the
tautological bundle of CPm. On the other hand, the spinor bundle of any other Spinc

structure on CPm can be written as [Fri00, HMU06]:

ΣM = Λ∗,0CPm ⊗ V
q−m−1

2 ,

where q ∈ Z and it satisfies q−m−1 ∈ 2Z. We recall that the auxiliary line bundle of
this new Spinc structure is given byKCPm⊗Vq−m−1 = Vq. Then, ifm is odd, q could
be 0. In this case, Vq=0 is trivial and the Spinc structure for q = 0 is a Spin structure.
But for m even, q is always odd. Hence Vq cannot be a square and then CPm is not a
Spin manifold.

5 The Schrödinger-Lichnerowicz formula

An important tool when examining the Dirac operator is the Schrödinger-Lichnerowicz
formula. It relates the square of the Dirac operator to some geometric data, like the
scalar curvature.

Proposition 5.1 (The Levi-Civita Spinc connection) Let (Mn, g) be a Riemannian
Spinc manifold. For everyX ∈ Γ(TM) and a local spinor field ψ : U ⊂M −→ ΣM ,
we have

∇Xψ =
1

4

n∑
j=1

γ(ej)γ(∇Xej)ψ +
i

2
α(X)ψ,

where iα : TU −→ iR is an imaginary local 1-form. It is the local expression of the
connection on the auxiliary line bundle L.

Proof. We denote by ∇0
Xψ = 1

4

∑n
j=1 γ(ej)γ(∇Xej)ψ. We can check (exercice) that

∇0 satisfies the same condition (2) as∇, i.e., for all X,Y ∈ Γ(TM)

∇0
X(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇0

Xψ.

Then ∇′X = ∇X − ∇0
X satisfies ∇′X(γ(Y )ψ) = γ(Y )∇′Xψ. Hence, ∇′ commutes

with γ(TxM) for all x ∈ U and so with γ(Cl(TxM)) for all x ∈ U . But ∇′X ∈
End(ΣxM) and since it commutes with End(ΣxM) ⊂ γ(Cl(TxM)), we have that
∇′X is in the center of End(ΣxM) which is trivial. Then, there exists on U a complex

1-form β such that ∇′X = β(X)Id. Now, we endow L = (det ΣM)21−[n2 ]

with the
connection induced from∇ on ΣM . Locally, we have

iα(X) = 21−[n
2

]∇det ΣM
X = 21−[n

2
]tr(∇X)

= 21−[n
2

]tr(∇0
X + β(X)Id) = 21−[n

2
]2[n

2
]β(X) = 2β(X),

because∇0
X is traceless.
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Theorem 5.2 (The Schrödinger-Lichnerowicz formula) Let (Mn, g) be a Rieman-
nian Spinc manifold. Then,

D2 = 4+
1

4
Scal +

i

2
γ(Ω),

where iΩ = idα is the curvature 2-form on L (it is an imaginary global 2-form)
and γ(Ω) is the extension of γ to forms given by γ(X ∧ Y ) = γ(X)γ(Y ) for all
X,Y ∈ Γ(TM).

Proof. From Proposition 5.1, we can compute the curvatureR on ΣM associated with
∇ and we get, for all X,Y ∈ Γ(TM),

R(X,Y ) = R0(X,Y ) +
i

2
Ω(X,Y ),

where R0(X,Y ) = 1
4

∑n
i,j=1 g(R(X,Y )ei, ej)γ(ei)γ(ej) and R is the Riemannian

tensor. Moreover from Proposition 3.2, we have

D2 = 4+
1

2

n∑
i,j=1

γ(ei)γ(ej)R(ei, ej)

= 4+
1

2

n∑
i,j=1

γ(ei)γ(ej)R0(ei, ej) +
i

4

n∑
i,j=1

Ω(ei, ej)γ(ei)γ(ej).

Denoting by Rijkl = g(R(ei, ej)ek, el), we have for all ψ ∈ Γ(ΣM),

1

2

n∑
i,j=1

γ(ei)γ(ej)R0(ei, ej)ψ =
1

8

n∑
i,j,k,l=1

Rijklγ(ei)γ(ej)γ(ek)γ(el)ψ

(3)
=

1

8

n∑
l=1

(1

3

∑
i 6=j 6=k

(Rijkl +Rjkil +Rkijl)γ(ei)γ(ej)γ(ek)

+
∑
i,j

Rijilγ(ei)γ(ej)γ(ei)

+
∑
i,j

Rijjlγ(ei)γ(ej)γ(ej)
)
γ(el)ψ

(3)
=

1

8

(∑
l,j

−Ric(ej , el)γ(el)γ(ej)ψ −
∑
i,l

−Ric(ei, el)γ(ei)γ(el)ψ
)

= −1

4

n∑
i,j=1

Ric(ei, ej)γ(ei)γ(ej)ψ

(3)
=

1

4
Scal ψ.

Similary, we have

i

4

n∑
k,j=1

Ω(ek, ej)γ(ek)γ(ej)ψ =
i

2

∑
k<j

Ω(ek, ej)γ(ek)γ(ej)ψ =
i

2
γ(Ω)ψ.
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6 Hypersurfaces of Spinc manifolds

Now, we move to study Spinc structures on hypersurfaces, such as the restriction of
the spinor bundle of an ambient manifold and the Spinc Gauss formula.

Proposition 6.1 ([Nak11b, Mon05]) Every real oriented hypersurface (Mn, g) of a
Spinc manifold Zn+1 is also a Spinc manifold.

Proof. (n = 2m) Let Mn ↪→ Z be an isometric immersion of M into Z . We denote
by ν the normal vector field of the immersion and by II the second fundamental form,
II(X) = −∇ZXν, for all X ∈ Γ(TM). The complex vector bundle ΣM := ΣZ|M is

of rank 2[n+1
2

] = 2[n
2

] = 2
n
2 . Now, if we restrict the Levi-Civita Spinc connection ∇Z

to M , we do not obtain a suitable connection because Condition (2) implies

∇ZX(γ(Y )ϕ) = γ(∇ZXY )ϕ+ γ(Y )∇Xϕ,

for all X,Y ∈ Γ(TM ), ϕ ∈ Γ(ΣM), where γ denotes the Clifford multiplication
on Z . Since ∇ZXY is the Levi-Civita on Z and not on M , we do not have a suitable
connection. We want to define γM : TM −→ End(ΣM) such that at every point
x ∈ M , γM : Cl(TxM) −→ End(ΣxM) defines an irreducible representation of
Cl(TxM) ' Cln. We know that, at every x ∈ M , γ is an irreducible representation

of Cl2m+1 and by Proposition 2.3, γ2m+1(Cl02m+1) = End(C2[
n
2 ]

) = End(C2[
n+1
2 ]

).
Then,

Cl2m
'−→ Cl02m+1

γ2m+1−→ End(C2[
n+1
2 ]

)

ej 7−→ ej · ν 7−→ γ2m+1(ej)γ2m+1(ν)

defines an irreducible representation of Cl2m. So, we set γM (X) = γ(X)γ(ν) and
γM satisfies Conditions (1) and (3). Now, if ∇M is a suitable connection on M , then
we should have

∇MX ϕ =
1

4

n∑
j=1

γM (ej)γ
M (∇MX ej)ϕ+

i

2
αL

M
(X)ϕ,

for every X ∈ Γ(TM), ϕ = ψ|M ∈ Γ(ΣM) and where iαL
M

is local expression of
the connection on the auxiliary line bundle LM . Moreover, we have the three following
facts:

1. For all X,Y ∈ Γ(TM), we have

γM (X)γM (Y ) = γ(X)γ(ν)γ(Y )γ(ν) = γ(X)γ(Y ).

2. The auxiliary line bundle LM is given by

LM = (det ΣM)21−[n2 ]

= (det ΣZ|M )21−[n2 ]

= (det ΣZ)21−[n+1
2 ]

|M = LZ|M .

Then iαL
Z

(X) = iαL
M

(X) for all X ∈ Γ(TM).
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3. The Levi-Civita connections ∇M and ∇Z are related by the Gauss formula
∇ZXY = ∇MX Y + II(X,Y )ν, for all X,Y ∈ Γ(TM).

Then, we have

∇MX ϕ =
1

4

n∑
j=1

γ(ej)γ(∇ZXej)ψ|M −
1

4

n∑
j=1

II(X, ej)γ(ej)γ(ν)ψ|M +
i

2
αL
Z

(X)ψ|M

= ∇ZXψ|M −
1

4
γ(ν)γ(∇ZXν)ψ|M −

1

4
γ(II(X))γ(ν)ψ|M

= ∇ZXψ|M +
1

4
γ(ν)γ(II(X))ψ|M −

1

4
γ(II(X))γ(ν)ψ|M

(3)
= ∇ZXψ|M −

1

2
γ(II(X))γ(ν)ψ|M

= ∇ZXψ|M −
1

2
γM (II(X))ϕ. (The Spinc Gauss formula)

Choosing ∇M to be ∇MX ϕ = ∇ZXψ|M −
1
2γ

M (II(X))ϕ, for all ϕ = ψ|M ∈ Γ(ΣM)
and X ∈ Γ(TM), we get a suitable connection satisfying Condition (2).

Corollary 6.2 Let Mn (n even) be a real oriented hypersurface isometrically im-
mersed into a Spinc manifold Z of mean curvature H = 1

ntrII . Then,

1. DMϕ = n
2Hϕ−γ(ν)DZψ|M −∇Zν ψ|M , where ϕ = ψ|M andDM (resp.DZ )

is the Dirac operator on M (resp. on Z).

2. Denoting by iΩZ (resp. iΩM ) the curvature of the auxiliary line bundle LZ
(resp. LM ), we have

γ(ΩZ)ψ|M = γM (ΩM )ϕ− γM (νyΩZ)ϕ, (8)

Proof. For every ϕ = ψ|M , we have

DMϕ =

n∑
j=1

γM (ej)∇Mej ϕ

=

n∑
j=1

γ(ej)γ(ν)
(
∇Zejψ|M −

1

2
γ(II(ej))γ(ν)ψ|M

)
= −

n∑
j=1

γ(ν)γ(ej)∇Zejψ|M +
1

2

n∑
j=1

γ(ej)γ(II(ej))ψ|M

= −γ(ν)DZψ|M + γ(ν)(γ(ν)∇Zν ψ|M +
n∑

k,j=1

II(ej , ek)γ(ej)γ(ek)ψ|M

(3)
= −γ(ν)DZψ|M −∇Zν ψ|M +

n

2
Hϕ.

13



Moreover,

ΩZ =
n∑
j<k

ΩZ(ej , ek)ej ∧ ek +
n∑
j=1

ΩZ(ej , ν)ej ∧ ν

=

n∑
j<k

ΩM (ej , ek)ej ∧ ek − νyΩZ ∧ ν.

Finally, γ(ΩZ)ψ|M = γM (ΩM )ϕ− γM (νyΩZ)ϕ.

7 Geometric applications

A Riemannian manifold is said to be homogeneous if its isometry group acts transi-
tively on it, i.e., for any two points p and q, there exists an isometry that maps p to q.
A homogeneous manifold is necessarily complete. It is a classical result of Rieman-
nian geometry that a homogeneous 2-manifold has constant curvature. Consequently,
up to homotheties there are only three simply connected homogeneous 2-manifolds:
the Euclidean plane R2, the sphere S2 and the hyperbolic plane H2. In dimension 3,
the classifcation of simply connected homogeneous manifolds is also well-known but
more examples arise. Such a manifold has an isometry group of dimension 3, 4 or 6.
When the dimension of the isometry group is 6, then we have a space form (R3, S3 and
H3). When the isometry group has dimension 3, then we have the solvable group Sol3.
The ones with a 4-dimensional isometry group are denoted by E(κ, τ). All manifolds
E(κ, τ) have the property that there exists a Riemannian fibration

E(κ, τ) −→M2(κ),

over the simply connected surface M2(κ) of curvature κ with bundle curvature τ . The
bundle curvature τ measures the defect to be a product. When τ = 0, the fibration
is trivial, i.e., E(κ, τ) is nothing but the product space M2(κ) × R. There exist five
different kinds of manifolds according to the parameters τ and κ: the product spaces
S2(κ) × R and H2(κ) × R, Berger spheres, the Heisenberg group Nil3 and the uni-
versal cover of the Lie group PSL2(R). Homogeneous 3-manifolds are also related
to “Thurston geometries”. In fact, all homogeneous manifolds of dimension 3, i.e.,
R3,H3,S3, Sol3 and all E(κ, τ), except Berger spheres, are the eight geometries of
Thurston.

Proposition 7.1 Let (M2, g) be a simply connected oriented surface isometrically
immersed into H2(−1) × R = H2 × R of mean curvature H . Then, there ex-
ists a Spinc structure on M carrying a spinor field ϕ of constant norm satisfying
DMϕ = Hϕ. Moreover, in any local orthonormal frame {e1, e2} of M , the cur-
vature of the auxiliary bundle LM associated with this Spinc structure is given by
iΩM (e1, e2) = i < ϕ, ϕ

|ϕ|2 >, where ϕ = ϕ+ − ϕ− is given by the decomposition of
ϕ = ϕ+ + ϕ− into positive and negative spinors.

Proof. The manifold H2 is Kähler, so by Proposition 4.1, it has a Spinc structure
carrying a parallel spinor field. Also, R is a Spin manifold carrying a parallel spinor
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field [Hij01]. So, the product H2 × R is also a Spinc manifold carrying a parallel
spinor field ψ [Moro97, Nak11b]. We endow M with the restricted Spinc structure
and let ϕ = ψ|M . Since ψ is a parallel spinor, we have for all X ∈ T (H2 × R),

X(|ψ|2) =< ∇H2×R
X ψ,ψ > + < ψ,∇H2×R

X ψ >= 0,

i.e., ψ is of constant norm, and so ϕ is also of constant norm. By Corollary 6.2, we
have

DMϕ = Hϕ− γ(ν)DH2×Rψ|M −∇H2×R
ν ψ|M = Hϕ.

It remains to show that iΩM (e1, e2) = i < ϕ, ϕ
|ϕ|2 >. By the Schrödinger-

Lichnerowicz formula (see Theorem 5.2), we have γ(ΩH2×R)ψ = −iψ. Moreover,
using that, in even dimension, γM (ωC)ϕ = ϕ, we get

γM (ΩM )ϕ = ΩM (e1, e2)γM (e1)γM (e2)ϕ

= −iΩM (e1, e2)γM (ωC)ϕ

= −iΩM (e1, e2)ϕ.

Now, taking the scalar product of (8) with ϕ, we have

−i < ϕ, ϕ >= −iΩM (e1, e2)|ϕ|2− < γM (νyΩH2×R)ϕ,ϕ > .

Finally, we can check (exercice) that < γM (νyΩH2×R)ϕ,ϕ >= 0, and we obtain
ΩM (e1, e2) =< ϕ, ϕ

|ϕ|2 >.

Remarks 7.2 1. The converse of Proposition 7.1 is also true, i.e., having a simply
connected Spinc surface (M2, g) carrying a spinor field ϕ of constant norm,
satisfying the Dirac equation DMϕ = Hϕ such that ΩM (e1, e2) =< ϕ, ϕ

|ϕ|2 >,
we can immerse M into H2 × R. In fact, B. Daniel [Dan09, Dan07] proved
that to immerse a simply connected surface M into H2 × R, we should have
a symmetric endomorphism E on M , a vector field T and a real function f
satisfying

K = detE − f2 (Gauss equation), (9)

‖T‖2 + f2 = 1, (10)

d∇E(X,Y ) = −f(g(Y, T )X − g(X,T )Y ), (Codazzi equation) (11)

∇XT = fEX, (12)

X(f) = −g(EX,T ), (13)

where K is the Gauss curvature of M . Having a Spinc structure on M carrying
a spinor field ϕ of constant norm satisfying DMϕ = Hϕ and iΩM (e1, e2) =
i < ϕ, ϕ

|ϕ|2 >, there exists a natural choice [Nak11b, NR11] of f , T andE using
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the spinor ϕ and such that Equations (9), (10), (11), (12) and (13) are satisfied.
In fact, we have f =< ϕ, ϕ

|ϕ|2 >, T is defined by

g(T, e1) =< iγM (e2)ϕ,
ϕ

|ϕ|2
>, and g(T, e2) = − < iγM (e1)ϕ,

ϕ

|ϕ|2
>,

and E = `ϕ, where `ϕ is the energy-momentum tensor associated with ϕ. It is a
symmetric 2-tensor defined by

`ϕ(X,Y ) = Re < γM (X)∇MY ϕ+ γM (Y )∇MX ϕ,
ϕ

|ϕ|2
>,

for all X,Y ∈ Γ(TM). This tensor has been studied by many authors (see
[Hij95, BGM05, Ha-Na10, Nak11a]).

2. We can also characterise simply connected surfaces in S2×R [Ha-Na10, NR11],
Berger Spheres, the Heinsenberg group Nil3 or the universal cover of PSL2(R)
[NR11]. In fact, E(κ, τ), with τ = 0, are Spinc manifolds carrying a parallel
spinor field. When τ 6= 0, E(κ, τ) are Spinc manifolds carrying a Killing spinor
field of Killing constant τ2 [NR11], i.e., a spinor field ψ satisfying

∇E(κ,τ)
X ψ =

τ

2
γ(X)ψ,

for all X ∈ Γ(TE(κ, τ)). As for H2 × R, the restriction to M of the Killing
spinor field ψ defines a spinor field ϕ on M of constant norm and satisfying
DMϕ = Hϕ − iτϕ. The curvature of the auxiliary line bundle is given by
iΩM (e1, e2) = −i(κ − 4τ2) < ϕ, ϕ

|ϕ|2 > . Since, the converse is also true, we
get

{
(M2, g) ↪→ E(κ, τ)

of mean curvature H

}
m


M2 is a simply connected Spinc surface

carrying a spinor field ϕ of constant norm
satisfying DMϕ = Hϕ− iτϕ.

The curvature of the auxiliary line bundle

is given by iΩM (e1, e2) = −i(κ− 4τ2) < ϕ, ϕ
|ϕ|2 > .

 .

Theorem 7.3 (A Lawson type correspondence). Every simply connected surface
minimal in Nil3 is isometric to a simply connected surface immersed into H2 × R
of constant mean curvature 1

2 .

Proof. From Proposition 7.1, we have
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{
(M2, g) ↪→ H2 × R = E(−1, 0)

of mean curvature H = 1
2

}

m


M2 is a simply connected Spinc surface

carrying a spinor field ϕ of constant norm
satisfying DMϕ = 1

2ϕ.
The curvature of the auxiliary line bundle

is given by iΩM (e1, e2) = i < ϕ, ϕ
|ϕ|2 > .

 . (14)

From the remark above, we have also,

{
(M2, g) ↪→ Nil3 = E(0, 1

2)
of mean curvature H = 0

}

m



M2 is a simply connected Spinc surface
carrying a spinor field Φ of constant norm

satisfying DMΦ = −i1
2Φ.

The curvature of the auxiliary line bundle

is given by iΩM (e1, e2) = i < Φ, Φ
|Φ|2 > .


. (15)

To prove the correspondence between minimal surfaces in Nil3 and surfaces in H2 ×
R of constant mean curvature 1

2 , we have to prove that Systems (14) and (15) are
equivalent. In fact, considering System (14), we define Φ = ϕ+ + iϕ− which satisfies
System (15). Conversely, having System (15), we define ϕ = Φ++iΦ− which satisfies
System (14).

Remarks 7.4 1. The Lawson type correspondence between simply connected con-
stant mean curvature surfaces can be done for all E(κ, τ) [NR11].

2. The Lawson type correspondence between simply connected surfaces in E(κ, τ)
has been proved by B. Daniel with another proof [Dan07].

3. The manifolds E(κ, τ) are also Spin manifolds. But, using Spin structures on
E(κ, τ), we cannot prove this Lawson type corrrespondence because the Spin
structure on E(κ, τ) does not carry a natural spinor field (like a parallel or a
Killing spinor field).
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