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Abstract

The usage of the method of geometrical optics for constructing short-wave
expansions in diffraction problems is a classical one. This method has the most
simple form for investigation of the wave field in the light region where the corre

sponding rays are real ones. Application of the geometrical optics approximation
in the deep shadow region is much more complicatcd task. This is connected with
the fact that not all (complex) rays which appear in this situation do contribute
to the asymptotic expansion. Therefore, one needs to give a criteria of selecting

active rays (that is, those who really contribute to the asymptotics).

In this paper we proposc the proccdure of investigation of this phenomenon

which leads to the explicit selection rule far active rays based on the so-called
resurgent analysis method (see [1]).

Introduction

This paper is aimed at the asYlnptotic investigation of wave fields in the framework of

the geometrical opties approxiInation including exponentially decreasing fields (which

ean oeeur, for exarnple, when eonsidering the wave field in shadow regions). It is

well-known that sueh an investigation can be performed with the help of the so-called

comp/ex rays method which encounters not only the rays of geometrical optics going
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along the real space but also those rays which come to the real space along the complex

space (see [2] - [10], and others).
However, when using the complex rays method one can obtain that not all com·

plex rays coming to the given point of tbe (real) physical space will contribute in the
asymptotic expansion of the wave field at this point. So the problem arises to give a
rule of selection of those complex rays whicb contribute to the asymptotic expansion
of the wave field, say, in shadow regions.

Let us discuss in more detail the statelnent of the problem.

Acknowledgments. This paper was written in the framework of the Exponential
Asymptotics program at the Isaac Newton Institute for Mathematical Sciences (spring
semester of 1995). We are very grateflll to the Institute and to the organizers of the
program, especially ~1. V. Berry and C. J. Howls, for their invitation and for very

stirnulating environment.

1 The wave field with a circular caustic. '

To make the discussion more dear, we shall consider first the well-known example of
tbe wave field, that is the wave field with a circular caustic (see Figure 1). Such field
is a. solution to the Helmholz equation

(1)

where n(x, y) is an optical density of the considered medium. This field can be described
. as a field corresponding to the congruence of geometrical optics rays tangent to a given

drele; to be definite, we consider a cirde with the unit radius

in the two-dimensional real plane R2 with coordinates (x, y).
The above mentioned congruence of rays cau be described by equations

{

X = q +pt,

y = -p +qt,
p'l +q'l = 1,

(2)

where (p, q) is the vector tangent to the considered ray, and t is a natural parameter
along this ray. Let us investigate how many rays of geometrical optics come through
tbe given point (x, y) of the physical space. To begin with, let us consider the region
x'l + y2 2:: 1. Solviug equations (2) with respect to p, q, and t we obtain two different
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Figure 1: Circular caustic (ray picture).

solutions
_ -y±x{x2+ y'2- 1

p - x + y2 l

_ X ± y~x2 + y'2 - 1
q - x + y2 ,

t = ±y'x2+ y2 - 1,

where signs in all the formulas must be chosen in one and the same way. So, the
asymptotics of the wave field in the considered region is

00 00

u (x, y, k) = eiJ.-s+(x,lI) L k-iaj (x, y) + eikS-(x,lI) L k-iaj (x, y). (4)
i=O i=O

In the last formula k is a wave number, S(±) (x, y) are actions (eikonals) correspondi ng
to the rays (3) and a}±) (x, y) are amplitude functions. As usual, actions S(±) (x, y) can
be found with the help of an integral

(x,y)

S±(x,y)= J pdx+qdy,

(XO,1IO)

(5)

(where (xo, Yo) is some fixed point in the plane R 2 which is chosen, for convenience, on

the caustic x 2+y2 = 1) with p and q given by (3). Thus, as we have already mentioned,
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in the light region the asymptotics of the wave field is given hy the sum (4) of two terms
each corresponding to a ray of geometrical optics coming to the considered point.

On the contrary, if we consider the shadow region x 2 + y2 ~ 1, we shall obtain quite
different situation. Actually, there is again exactly two rays (3) coming through this
point, hut now these rays are complex ones and, as a consequence, the values of actions

corresponding to these rays by formula (5) are complex ones. More exactly, the a.ctions
S(±) (x, y) will be complex-conjugate to each other and, hence, the second term on the
right in (4) will have exponential growth as k ~ 00. For physical reasons, such term
cannot be included ioto the asymptotic expansion of the wave field and the expansion
in the shadow region will contain only the exponentially decreasing term

00

u (x, y, k) = ejkS+(x.~) L k-iaj (x, y)
i=O

corresponding to one of the complex rays passing through the point (x, y).
Thus, in the shadow region one of the complex rays (3) contributes to the asymp

totic expansion (we shall call it an aclive ray) and the other does not (the passive

ray). Certainly, for wave fields with more complicated geometry of rays the criteria
for selecting active rays will be of more complicated nature than simple reasons of
exponential growth. In particular, the selection of rays is performed not only with the
help of (evident) property of exponential growth as k ~ +00, but also with the help
of the more refined criteria connected with the Stokes phenomenon. One of the aims
of this paper is the explicit formulation of such criteria.

2 Geometrical description

In this Section we introduce a geolnetrical object which helps to visualize all the variety
of rays which ca71 contrihute to asymptotic expansion of the wave field corresponding to
the given congruence of rays of geometrical optics. To do this, we remark that, as it was
shown in the previous section, not only the rays themselves hut also the values of actions
carried by these rays are of importance for constructing the asymptotic expansions. To
include this values into our consideration, we shall 'lift' rays of geometrical optics to
the three-dimensional space R 3 with coordinates (s, x, y) with the help of the formula

s = S(x,y),

where S (x, y) is the action carried by the corresponding ray (this function can be
computed with the help of formula (5) where the integral can be considered as the
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Figure 2: Circular caustic (the surface E).

integral along the ray). The union of all rays included into the congruence in question
form (after the described lifting) a surface in the space R 3 which we denote by E. We
remark that the projection of E on the physical space R 2

( ) is exactly the light regionr,y

for the considered congruence of rays (the example of such surface corresponding to
the wave field with circular caustic is drawn on Figure 2).

Mathematically this situation can be described with the help of the Lagrangian manifold

which is formed by trajectories of the lIamilton system determined by the raya included

iuto the congruence in question. More exadly, for describing the asymptotic expansion

of the given wave field one must fix the action on this Lagrangian manifold, thus con

sidering a Legendrt manifold rather than Lagrangina one. This Legendre manifold is a

submanifold in the space of 1-jets of the space R 2 with coordinates (x, y, p, q, s) and is

determined by eqnation s =S(Q) W here Q is a poi nt of the Lagrangian manifold and

S(0') is the above mentioned action. The concrete value of the action can be deter

mined, in particular, by a choke of a base point on the considered Lagrangian manifold

(cf. formula 5 above). \Ve remark that the action can be a muItivalued fundion on the

Lagrangian manifold and, heuce, the projection of thus constructed Legendre manifold

on the initial Lagrangian one will be a covering, not a diffeomorphism. Thus, unlike

the Lagrangian manifold, which is a graph of the differential of the action, the Legendre

manifold ia a graph of the action itself.

Now we cau give the geometrical description of all possible contributions to the
asymptotic expansion of the considered wave field. Ta encaunter all the contributions
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(6)

at some point (x, y), one have to intersect the surface ~ by the vertical (that is, parallel
to the s-axis) line coming through this point. Each point of intersection will correspond

to some term of the form
00

eikS(x,lI) l:(ik)-jaj(x, y)
j=O

of the asymptotic expansion of the wave field in question. We remark that, if we con
sider the real situation, every point of intersection will correspond to some contribution
to the asymptotic expansion, so the set of intersection points is in one-to-one corre

spondence witb the set of terms (6) of the asymptotic expansion at the given point

(x, y).

Let us turn our mind to consideration of (not only real, but) complex rays. In this
case the space R 3 fiUSt be replaced by the corresponding complex space C3 ; we shall
denote the coordinates in this space by the same letters (s, x, y) which now must be
considered as complex nunlbers.

Remark 1 Tbe nesessity of cOll1plexification along the s-axis is quite evident from
the above considerations; clearly one should also complexify the variables x and Y to
include complex rays into consideration.

Remark 2 Clearly, for the described complexification to be possible, one should re
quire that the ray congruence in question is an analitic one.

So, let us consider the complexification of the above introduced surface ~ in the

space C3
. To avoid the complicated notation, we denote this complexification by the

same letter~. Now for any point (x,y) E C 2 (even for real values of x and y) consider
the intersection E(x,y) of the surface E with the vertical (complex) line coming through
this point.

From the first glance it seems that, similar to the real case, all the aetions obtained
with the help of this procedure (and, as a consequence, aB complex rays originating
this aetions) will really contri bute into the asymptotic expansion. However, the above
example shows (and it is well-known in physics), that the situation ia quite different.
Namely, only some of complex rays (different for different points (Xl y)) do contribute
to the asymptotic expansion. Thus, unlike the real case l E is not a geometrical objeet
adequate to the asymptotie expansion.

Thus l there arises a problem of constructing an adequate geometrical objeet. It is conve
nient to solve this problem in terms of the Borel trans/orm of the wave field in question.
Namely, the above constructed surface E ean be treated as the set of singularities of the
Borel image of the wave field.
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Now the resurgent analysis gives us an adequate description of the needed geometri

cal object, and the corresponding Lap/ace transform (the return to the physical space)

supplies us with the asymptotic expansion including the needed camplex rays.

3 Resurgent analysis of the wave field

Consider the Borel transform of the function u (x, y, k) with respect to the variable k

! 00

U (s, x, y) = ß [u (x, y, k)] = (2~) Je-ikau(x, y, k) dk,
A

(7)

where A is an arbitrary positive number (this integral is uniquely defined up to an
entire function). The following affirmation is valid.

Theorem 1 Each point 0/ the set ~ is a singular point 0/ the /unction U (8, x, y).

The proof of this Theorem is based on the following observations. First of all, the
function u (x, y, k) describing the considered wave is clearly a solution of the Helmholz
equation (1) Applying the Borel transform to equation (1), we obtain the following
equation for the function U (8, X, y):

'2 ( 82U (s, x, y)
'ö'U(s,x,y)+n x,y) 8s2 =0. (8)

It can be easily verified that the characteristics for the obtained equation with respect
to smoothness exactly coincide with rays of geometrical optics of the Helmholz equation
(1 ).

More naturally (and, maybe, more exactly) one should speak about 8/8s-characteristics
of equation (8). It is known (see, for example, [11]' [12]) that 8/8s-characteristics
(similar to any other characteristics) are connected with same (special) quantization. In
the considered case this quantization is

(
8 ) -1 8

x 1-+ x, P 1-+ as 8x '

such that the operator corresponding to the Hamil tonian H (x, p) is H (x, (/;)-I/;)
(for the details see [12]).

Later on, the straightforward con1putation shows that if the function u (x, y, k) has
a term of the asymptotic expansion of the form (6) then the corresponding function
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u (s, x, y) has the singularity of the typet

1 [ Uo (x, y) f-. (s - S (x, y))i ]
U(s,x'Y)~-2· -S( )+ln(s-S(x,y))L..t ., ai+t(x,y)

1r"Z s X, Y ,J.
1=0

at point s = S(x,y).

Actually, since 8 [1] = 2~:' and

80 k =-i:s 08,

expansion (6) will be transformed by 8 into the expansion

which coincides with expansion (9).

(9)

So, at least for real values of (x, y) lying over the light region the function U (s, x, y)
has a singularity at any point of the surface E. Since the surface E in the complex
space was constructed simply as the analytic continuation of the corresponding real

surface, we arrive at the conclusion that any point of the surface E is a singular point
of the function U (5, x, y).

Thus, the constructing a wave field corresponding to the given congruence of rays

of geometrical optics including exponentially decreasing terms can be (at least theo
retically) performed with tbe help of the following procedure.

1. Construction of the complex surface E E CT",x,y} corresponding to the given
congruence of rays.

2. Construction of a solution to equation (8) having E as a set of its singularities.
3. Computation of the wave field u(x, y, k) as tbe inverse (Laplace) transform of

the above constructed function U (s, x, V).

Let us try to understand, how active and passive (complex) rays of geometrical
optics will be selected during this process.

Clearly, it cannot happen earlier than at the third stage since the function U (s, x, y)
computed at tbe second stage encounters all thc rays as its singularities. The only place
where the mentioned selection can happen is the third stage of the above described pro
cedure. Thus, this procedure can be performed in the process of analytic continuation
of the integral

J 'k
U (x l Y, k) = e l "U (s, x, y) ds

r(X,lI}

lSingularities of such type are called simple singularities in the resugent analysis.
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where r(x, y) defines some relative homology dass in the complex plane C. modulo

Ims = +00.

The investigation of tbe analytic continuation of integrals of the type (10), usual
in the resurgent functions theory, shows tha~ any ray can change its properties (to be
passive or active) exactly at points of the Stokes surfaces, that is, surfaces in the space

C(.:r'lI) determined by the relation

Re Sj (x, y) = Re Si (x, y)

for any j :j:. 1. Here {Sj (x, y), j = 1, 2, ... } are branches of a ramifying analytic
function S (x, y) such that the equation of E is

E = {(8,x,y)! 8 = S(x,y)}.

In case when we know all information about the Riemannian surface of the function
U (8, X, y) the choice of active (con1plex) rays for the wave field (10) is quite simple.
Namely, to select active rays one should deform the integration contour f(x, y) in (10)
along the direction of positive imaginary axis. As a result, integral (10) would be
represented as a surn of integrals2

u(x,y,k) = L J eikoU(s,x,y) ds

J rj(L,y)

(11 )

(12)

over special contours r j (x, y) encirc1ing $Olne of ramification points of the function
U (s, x, y). The set of ramification points in the sunl (11) is determined by the contour
r(x, y) as weIl as by the structure of the Riemannian surface of the function U (s, x, y)
(see Figure 3). \Ve recall that all these points are in one-to-one correspondence with
all (real and complex) rays of geometrical optics as weIl as with all possible terms of
asymptotic expansion of the function u (x, y, k) at the given point (x, y).

Now we notice that, as it was already mentioned (see formula (9) above), eacb
integral J eibU(s, X, y) ds

rj(.:r,y)

on the right in (11) has an asYlnptotic expansion of the form (6) provided that the

singularity of U at the point Sj( x, y) has the form (9). Therefore, (11) gives rise to the

2The eonvergenee of integrals on the right in (11) is not of importance because even if these integrals
diverge they ean be eorreetly defined moclulo functions deereasing more rapidly than any exponential;
see [1].
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o r;(x,y)

I;(x,y)

r(x,y)
Singularities
01 U(s,x,y)

Figure 3: Decomposition of the contour.

asymptotic expansion

00

u(x, y, k) = L eikSj (r,lI) L(ik)-lalj(x, y),
j j~O

(13)

which is the (exact) WKB expansion of the function u(x, y, k). This shows that active
rays correspond (at the point (x, y)) exactly to the points 01 singularity 01 the function
U(s,x,y) involved into the right-ha1ld part of(14). Thus, we have obtained some form

of the needed selection procedure.

We emphasize that for perfonning the above nlentioned deformation procedure one

should have the exact knowledge about the global structure of the Riemannian surface
of the function U. Unfortunately, the global investigation of the mentioned Riemannian
structure is rather a. difficult task and it is hard to compute it explicitely even in the
simplest cases and, hence, it is difficult to realize directly the selection procedure in
tbe above mentioned form. Therefore, one needs to construct some computational
procedure allowing to determine the set of active rays (or, what is the same, the set

of singularities of the function U (s, x, y) involved into the decomposition (11)). Such
procedure is connected with the so-called resurgent equations (see, for example, [1], [13],

[14]), and we shall describe its application to the considered problem in the following
Section.
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(14)

4 Resurgent equations

Let us briefly recall here main notions of resurgent analysis needed for formulation of
a computational rule for activity of rays of geometrical optics.

We remind (see [1]) that functions u (x, y, k) rep resentable in the form (11) wi th

an endlessly continuable3 in s function U (s, x, y) under the integral sign are called
resurgent functions in the variable k.

Let us investigate in more detail the structure of asymptotic expansion (13) for the

given function u(x, y, k). As it can be seen from the above considerations, we have two
possible represntations of terms of this asymptotic expansion. Namely, each its term
can be represented both in tbe form (6) (k-representation, which is the basic one in
the asymptotic analysis) and in the form (12) (s-representation, which is, as we shall
see below, the main computational tool). Since k-representation is more or less cIear,

let us turn our mind to the investigation of the s-representation. First of all, we notice
tbat each term J eibU (s,x,y) ds

rj(X,y)

on the right in (11) depends on the function U(s,x,y) up to terms holomorphic in a

neighbourhood of the corresponding singular point Sj = Sj (x, y). Therefore, expression
(14) can be treated as a Laplace transform of the element of quotient space of endlessly
continuable functions modulo functions holomorphic in a neighbourhood of the point
Sj. These elements are determined by the function U (s, x, y) with the given value of
(x, y) at its points of singularity and are called microfunetions with support at the

point Sj. The space of microfunction supported at a point s will be denoted by M,.
Let us introduce two functional spaces which we shall use for the description

of asymptotic expansions of the fonTI (13) under the assumption that the solution

U( s, x, y) to equation (8) is fixed.
We remark first that the different choice of the integration contours in (10) leads

to different solutions to Helmholz equation. Since the choice of the integration contour
is crucial for the selection rule, it is natural to consider the space As of asymptotic
expansions (13) for all functions u(x, y, k) constructed in such a way. Clearly, this
space contains only linear combinations of expansions

00

Uj(x, y, k) = eikSj (x.lI) L (ik )-1alj( x, y)
';0

(15)

3 An endlessly eontinuable funetion is a ramifying analytic function with diserete set of singularities
on its Riemannian surface (the exact definitions ean be found, for example, in [1], [13]).
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each determined by some singular point Sj = Sj(x,y) of the function U(s,x,y). Later
on, not all combinations of such terms can play the role of an asymptotic expansion.
Actually, for (13) to be an asymptotic expansion of some function, it is nesessary that
it contains only a finite number of terms having less decay than any given exponential.
Thus, the set of points Sj corresponding to the given asymptotic expansion (13) must
have a finite intersection with any half-plane Im S < A.

The second of the two above mentioned spaces is simply the s-representation of the

first one. We recall that each term of the form (15) corresponds in the s-representation
(via formula (12)) to the microfunction U. j (s, x, y) determined by the analytic fuoction

U( oS, x, y) at its singular point Sj = Sj( x, y). Therefore, the asymptotics of the form
(13) corresponds to the formal 4 surn of nlicrofunctions

(16)

such that the iotersection of the set of singular points involved in this sum with any
half-plane Im S < A is finite. We denote by M the space of formal sums (16) satisfying
the above requirement.

To complete the discussion on the introduced functional spaces, we remark that the
Laplace transfonn determines an isomorphism

J: : M -+ As

between the two ahove introduced spaces.

Up to this moment the dependence of functions in question on the parameters (x, y)
was inessential. Now we turn our mind to the investigation of this dependence.

As it can he seen from t he above considerations, decomposi tioo (11) is determined
by the decomposition of the homology dass h (x, y) defined by the integration contour
r (x, y) involved in formula (10) over thc special basis {h j (x, y) I j = 1,2, ...} of the
homology group. This basis is determined by the set of special contours

{f j (x, y)1 j = 1,2, ... } .

What will happen with this decomposition during the process of analytic continuation

in variables (x, y)? Clearly, this decomposition will be regular at all points (x, y) except
for the points of topological rebuilding of the considered basis. Such rebuilding takes

place exactly at those points of C 2
( ) at which
X,JI

"'This sum is a formal one since one cannot consider the sum of microfunctons supported at different
points 8 of the complex plane C (unlike the corresponding asymptotic expansions for which the
corresponding surn is well-defined).
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Figure 4: Topological rebuilding of the integration contour. When points Si l

and Si2 intersect the integration contour, the ray corresponding to Si l

becomes passive, and the ray corresponding to Si2 becomes active.

for some j =I I (see Figure 4). The set of the above mentioned points of rebuilding

forms a surface in Cfx.lI) nanled Stokes sur/ace of the function u (x, y, k) in question. So,
we see that the decomposition (11) is changed by jump when the point (x, y) intersects

the Stokes sur/ace in the process of analytic continuation. Thus, the points of Stokes
surfaces are exactly the points at which the propcrty of geometrical optics rays to be
passive or aetive can be ehanged.

The eonneeted regions bounded by the Stokes surface will be ealled Stokes regions.

Remark 3 We emphasize that, though the decomposition (11) and, henee, the asymp
totie expansion of the eonsidered function, changes by jump at points of the Stokes
surfaee, the function u (x, y, k) itself remains analytic at these points. Opposite, if
we consider a function u (x, y, k) having one and the same asymptotic expansion in

different Stokes regions, this function will have jumps at points of the Stokes surface.

The jumps of the decomposi tion (11) at points of the Stokes surface can be described
by the so-called connection homomorphism 5

T: M ~M.

51n fact, the space M possesses a natural structure of the algebra with respect to the convolution
and the connection homomorphism is an algebra homomorphism of this algebra. Below we shall not
use the mentioned algebraic structure in the explicit way.
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To describe the exact meaning of this homomorphism we first note that at points of
the Stokes surface the definition of the Laplace transform of the microfunction is an
ambiguous one. Actually, if a point (x, y) lies on the Stokes surface, there exists at least
one pair of points s = Si (x, y) and s = S, (x I y) lying on one and the same verticalline in
the complex plane C,. Then the vertical ray emanated from the lower point (suppose, for
defini teness, that this point is s = Si (x, y)) along the di rection of the posi tive imaginary
axis will clearly intersect the upper one. In this situation the integration contour rj{x, y)
involved into integral (14) is not uniquely determined: this contour ean encircle singular
points either from the left or from the right. To determine the directon of encircling of
each point of singularity met by the integration cantour, one has to find out does this
point approach the integration eontour from the left or from the right when the point
(x, y) approaehes the Stokes surface from its negative side6. Clearly, in the first ease
the eorresponding point mnst be encircled by the integration eontonr from the right,
and in the second ease it must be eneircled from the left. The case when the point
(x, y) approaches the Stokes surfaee from its positive side ean be considered in a similar
way. We denote the two Laplace transforms of the microfunction Uj(s, x, y) supported
at the point s = Si (x, y) with the two above described determinations of the integrating
contour by L,_ and L+, correspondingly.

Now the definition of the connection homomorphism can be written down with the help
of the formula

for any element U E M.

The above considerations show that ta describe the selection rule for geometrical
optics rays one must describe the Stokes phenomenon, that is, compute the connection
homomorphism at any point of the corresponding Stokes surface. However, as it was
shown above (see Figure 3 and the corresponding explanations), the direct computation
of the Stokes phenomenon (with the help of direct computation of asymptotic expan
sions of the considered function in different Stokes regions) requires the knowledge of

the global structure of the Riemannian surface of the function U (8, x, y), and it is a

very complicated problem to find out this global structure for the given ray congruence.

Thus, there arises a problem of working out the apparatus which allows one to

compute the connection homomorphisill without explicit use of the global structure of
the Riemannian surface of the function U. Such an apparatus is based on the notion
of the so-called resurgent equations.

The notion of resurgent equations is based on the following observation.

Let us consider a set of IDeal points of the function u (x, y, k), that is, the set of

6We suppose that same orientation is ehosen and fixed on the Stokes 8urfaee of the considered
functions. If this orientation is changed, the connection homomorphism T will be replaced by its
mverse.
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points (x, y)" for which the relation

takes place for some j f:. 1. These points are, as a rule, ramification points of the

action S (x, y) and, henee, the asymptotic expansion of the wave field u (x, y, k) is

ramified on the set of foeal poins. From the other hand, the wave field u (x, y, k) itself,

being a solution of the Helmholtz equation, is a real-analytie funetion and, hence, have

uo singularities at focal points. Therefore, the asymptotie expansion of the funetioD

u (x, y, k) must be a univalued function in neighbourhood of foeal points provided that

we have encountered the Stokes phenomenon during the computations.

Let us try to write down the formulas expressing the above observation.
Let (xo, Yo) be some focal point of the function u (x, y, k) and let 1 be a loop sur

rounding the set of foeal points in a neighbourhood of (xo, yo) having transversal in
tersection with the Stokes surface7

• Denote by At, ... , AN the points of intersection of

the loop 1 with the Stokes surface enumerated in the order they appear on 1 (see Figure
5). For convenience we suppose that the origin of the loop 1 coincides with the point

Al and that the orientation of the Stokes surface is chosen in such a way that the loop

1 goes from the negative to the positive side of this surface at each point Ai' Denote

by Ul , ••. , UN the elements of M corresponding to the function u (x, y, k) via relation

(11) at points AI, ... , AN if we use a decomposition determined by the positive side of

the Stokes surface. Then it is evident that the univaluedness of the function u (x, y, k)
along 1 is equivalent to the following system of relations:

(17)

where Ai stands for the operator of analytic continuation along the loop I from the
point A j to the point Aj +l (we identify the point AN +l with Al). The system of

relations (17) is exactly the system, 0/ resurgent equations written in one of the possible

forms (later we shall see another representation of this system).

At the moment the method oE obtaining the needed informaton from system (17)
remains unclear. In other words, to investigate the Stokes phenomenon we must present
the method of solving this systenl. To do this, we shall try to rewrite this system in a

little bit more pleasent form.

To begin with, we shall examine the connection homomorphism 'T in more detail.
Clearly, it is sufficient to describe the action of the connection homomorphism on the
generators of the space M. These generators are single microfunctions Ui supported

7We remark that the set of focal points is an analytic set in the space C 2 of comp/ex codimension
1 unlike the Stokes surface which is a variety of real codimension 1.
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o

Figure 5: Illustration to the construction of resurgent equations

at different points si = Sj( x, y) of singularity of the function U( s, x, y) in question.
The above considerations show that the formula

takes place, where the sum is taken over all microfunctions U1 determined by the
function U (s, x, y) at points lying on the cut originated from Sj (x, y) and going along
the direction of positive imaginary axisB

• So, we can introduce a 'difference' operator

E : M --+ M,

EUi = TUi - Ui (18)

corresponding to the 'shift' operator T. The operator E is an operator of strictly negative

order in the sense that it takes a microfunction supported at Si (x, y) to the surn of
micfofunctions with their supports posited strictly above the point Si (x, y) in the

complex plane C •. Actually, it is clear that the Laplace transform of the obtained surn
of microfunctions will be of less exponential order than the Laplace transform of the

initial microfunction.

8 As a consequence of the latter formula we obtain that the continuation of the Laplace transform
of the microfunctions uj across the Stokes surface from its negative to its positive side leads to a
functions with asymptotic expansion Uj + L Ul, where the functions Uj are given by (15).

1
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Now we ean rewrite system (17) of resurgent equations in terms of tbe operator

(18):
(19)

(20)

Tbe obtained system of equations contains the 'differenee' operator S, thus being an

analogue of systems of differenee equations in the usual analysis. However, from the
usual analysis it is weIl-known that differenee equations are mueh less convenient for

usage than differential ones. Therefore, there arises an idea to write down the system
of resurgent equations as, in some sense, a system of 'differential' equations. It oecurs,
that this ean be done with the help of a new nation of the derivative (the so-called
alient derivative) whieh is related to the 'shift' operator" in the same way as usual
derivative is related to the standard shift operator

Namely, having the relation

as a model, one ean define the alient derivative ~ by the relation

" = eß
, or ~ ~r In T = In (1 +S).

The verifieation of the correctness of this definition a.s weIl as the presentation of the
full theory of alient derivatives (alient differential calculus) are out of the framework
of this paper (see, for example [15], [1]). However, in the next Section we shall try to
illustrate these nations on the siInplest Inadel of resurgent functions of the Airy type.

5 Example: resurgent functions of Airy type

In this Section we shall eonsider functions of variables (x, k) where x E C and k ~ 00

is a large parameter. We say that aresurgent function u (x, k) is aresurgent function
0/ the Airy type if the set of singularities of its Borel transform is given by

2 3

S = S± (x) = ±3x'"

Clearly, the only foeal point for such a function in the x-plane is the origin x = O.
Henee, we can use the unit circle x = eil.p, i..p E [0, 21r] as the loop 1for the construction
of the system of resurgent equations described in the previous Section.

To visualize our considerations, we shall use the so-ealled illumination diagram ([1]).
We say that one singularity point (say, S+ (x)) illuminales the other if this other point

17



a)

Xl -----+------t

8.. (X)

b)

Figure 6: Resurgent function of the Airy type.

lies on the ray originated from S+ (x) along the direction of the positive imaginary
axis. Tbus, the point x belongs to the Stokes surface if and only if one of tbe singular
points (20) illuminates the another. Evidently, this is possible if and only if<p = 1r or
Cf' = ±1r/3. Thus, the Stokes lines for a function fo Airy type are such as it is drawn
on Figure 6 a) (the loop land its intersections with these Stokes lines are also shown
there).

The situation which takes place at points of interseetion of the loop 1 with the
Stokes lines is schematically shown by the illumination diagram (illumination diagram;
see Figure 6 b)). The very left verticalline on this diagram represents the loop 1, and
the two subsequent verticallines represent the two points (20) when the point x moves
along I. Since the points S± (x) change their places three times when tracing along
tbe loop 1, the lower and the upper endpoints of these lines must be identified as it is
sbown on Figure 6 b).

Later on, tbe horizontal lines on the diagram represent points of intersection of
tbe loop I with the Stokes lines, and the horizontal arrow coming from one point of
singularity to another denotes that the first singularity point illuminates the second.

Now one can see that each arrow involved into the illumination diagram gives rise
to exactly aue resurgent equation of the type (19).

First of all , we note that in the considered case the space M is at each point
x =1= 0 a two-dimensional complex space with the two microfunctions U± supported at
points (20)as generators. The corresponding space in the k-representation consists of

18



(21 )

asymptotic expansions of the fonTI

00 00

u(x, k) = eikS+(;r;) L(ik)-iaj(x) + eikS_(:r) L(ik)-iaj(x)
i=O i=O

Now, equating the components of elements from M in both sides of (19), and denoting
the components of Ui at singulari ty points S± (xi) by ut, we come to the followi ng

equations:

{
Ui = AU; +ö (AU;) ,
U1- = AU;,

at point Xl of intersection of the Ioop I with the first Stokes line LI (we have taken
into account the above mentioned identifications);

at point X~h and

{
U2 = AU! + ö (AU:-) ,
U+ - AU+2 - 1 ,

{
Ui = AU;- + ö (AU;),
U3- = AU;,

(22)

(23)

at point X3.

One can exclude the microfunctions U1, Ui, and U; corresponding to the illumi
nating points from equations (21) - (23) thus obtaining the following system of equa
tions for the components ui, Ui', and U; corresponding to the illuminated points:

{

Ur = A2U; + ö (AU:) ,
u; = A2U; + ö (AUt) ,
ui = A2ut +ö (AU;) .

Now we notice that for the consiclerecl geometry of singular points of the function
U (s,x,y) one has ö2Uf = 0 for all j = 1,2,3 and, hence,

6U~ = In(1 +ö)U~ = öU?=.
J J J

Thus, the latter system of resurgent equations can be rewritten in the form of system
of alient differential equations:

{

Vi = A2V; +6 (AU:) ,
Ui' = A2U: + 6 (AUt) ,
U; = A2Ut + 6 (AU;) .

(24)

The obtained system of resurgent equations being a 'differential' one has one great

disadvantage. The matter is that it contains the operator A of analytic continuation
which is not convenient in use. We shall try to exc1ude this operator from the system.

19



(25)

Besides, we emphasize that for any given function U (S, x) with (20) as ramification
points one can choose a set of microfunctions Vi, V:;, and Vi determined by singu
lar points of the funetion V (s, x) in question in such a way that the corresponding
resurgent funetion u (x, k) is univalued in a neighborhood of the origin and, hence, the
resurgent equations (24) are valid. To do this, it suffices to define the funetion u (x, k)
as the integral of the form (10) with the integration eontour r (x) encircling both ram

ification points of U (s, x). Then the decomposition of the obtained funetion will give

us the required microfunetions whieh satisfy system (24). However, if we require that
the analytie continuation of the Laplace transform of any mierofunction determined
by the function V (s, x) at some point x (say, x = xd is a univalued funetion, then
resurgent system (24) imposes SOIne restrictions on the function U (s, x) in question.

Ta be definite, let us eonsider the system of resurgent equations for the microfune

tion corresponding to the recessi ve component of u (x, k) at the point Xl. Ta do t his,

we set Vi = 0 in (24). Then we arrive at the following system of resurgent equations:

{

U+ - A2U-1 - 2 ,

U:; = ß (AUi) ,
o = A2Ut + ß (AU:;) .

Excluding the microfunction U:; from the obtained system, we obtain

{
A-2Ui = ß (AUi) ,
ß (A-1Ui) = -A2Vi.

Taking into account that Vd ~f A-1Ut and Ur ~( A 2Ut are dominant and reeessive

components of the funetion V (s, x, y) at point X3, respeetively, one ean obtain a system
of alient differential equations at one and the same point X3:

{
(AßA-l) Vr = Ud,

ßUd = -Ur'

Taking into aceount that the operator AßA-1 being applied to the function Vr ean
be treated as the alient derivative of Ur at the point S+ (X3), we can rewrite the
latter system in the following fOrIn (whieh does not eontain the operator A of analytie
eontinuation):

{
ßUr = Ud,
ßUd = -Ur.

Now we shall illustrate the procedure of solving the obtained system of resurgent

equations. This proeedure is based on the strang analogy between alient differential
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equations and usual ordinary differential equation. Namely, we shall use the following

result.

Consider an alient differential equation of the form

{
l:::t.F=Al(X)F+Bl(X)G,
l:::t.G = A2 (x) F + B2 (x) G,

(26)

where Fand G are dominant and recessive components of some resurgent function

whose Borel transform has singularities at most at two points in the complex plane C•.
Then the following affirmation is valid (see [14]).

Theorem 2 Let (F I , Gd and (F2 , G2) be two solutions to system (26) such that

D ~f I Fl F2 I= FI G2 - F2G1
GI G2

is an invertible element in Mo. Then the general solution to (26) is given by

where Cl and C2 are constants of resurgence, that is elements CI, O2 E Mo such that

l:::t.Cj = o.

Now we take into account that the classical Airy function Ai (x, k), that IS, the

solution of the following differential equation

y" + k2xy = 0

is a univalued resurgent function with singularities of its Borel transform at points

(20). Hence, its dominant and recessive components UJ and U~ satisfy system (25).
Clearly, the same is true for the dominant and recessive components UJ and U; of the
derivative ßAi (x, k) lax. It can be shown that the corresponding Wronskian does not

vanish, and, hence, Theorem 2 is applicable. Thus, we arrive at the following result.

Any resurgent function of the Airy type can be represented in the form

u (x, k) = Cl (x, k) Ai (x, k) + C2 (x, k) 8Ai8~' k),

where Cl (x, k) and C2 (x, k) are constants of resurgence, that is, the Stokes phe

nomenon for these functions is trivial. Thus, the following affirmation is valid

Corollary 1 Stokes phenomenon Jor any resurgent Junction 01 Airy type is exactly the

same as for the A iry functon itself.
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Remark 4 The considerations of this example (as well as of the two subsequent ex

amples) can be carried out in the similar manner for the case wben tbe resurgent

structure of tbe functions in question can be reduced to the form (20) with the help of

a holomorphic variable change.

6 Refraction of an electromagnetic wave on the

ionosphere layer

In this Section we illustrate the above described computational procedure on a rather

simple example. Let us consider a plane electromagnetic wave

Uo( x, y, k) = eik(px+qll)

which falls from the left on an ionosphere layer with optical density depending only on

x and given by

{

x2 - a
2

, lxi ~ J{l+T,
n 2(x,y) = n 2(x) =

1, lxi 2:: J{l+T.

The potential u(x, y, k) of the resulting wave field satisfies the Helmholz equation

(27)

completed by the corresponding radiation condition, that is, by the requirement that

the difference

u (x, y, k) - Uo (x, y, k)

is a wave propagating in the direction inclined to the angle less than 1r /2 to the direction

of the negative part of the axis x.

One can search for the solution of problem (27) in the form

u(x,y,k) = eikqllv(x,k) (28)

Substituting (28) into (27) we obtain the following equation for the function v(x, k):

cPv 2 2(
dx2 + k nIx)v = 0,

where n~ (x) is the reduced optical density:

(29)

So, the considered two-dimensional problem can be reduced to an one-dimensional

problem for Helmholz equation with the new optical density. We remark that the
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(30)
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Figure 7: Reduced optical density.

reduced optical density ni(x) can be negative in some regions even in the ease when

the initial optieal density n2 ( x) is everywhere positive.

To avoid eomplieated notation, we shall eonsider a model problem similar to the
above deseribed reduced problem. Namely, let us eonsider an one-dimensional wave
u (x, k) propagating through the media with optical density given by the expression
(see Figure 7)

{

x2 - 1, Ixl::;~,
n2 (x) =

1, lxi ~~.
We suppose tbat the wave falls upon the ionosphere layer from the side of tbe

negative values of x. Then from the physieal reason it is evident that in the light

region (that is, for x < -1) there exist tbe ineoming and the refleeted waves, in the

shaclow region there exists a transillitted wave with exponentiaUy small amplitude, and

in tbe region Ix I ~ 1 whieh intransparent for real rays of geometrieal optics the field
will exponentially deerease from its left boundary x = -1 to its right boundary x = 1.

In the investigation below we do not take eare of the reAeetion from the angle

points x = ±~ of the function n2 (x) given by (30) and, henee, we ean earry out all
our eonsiderations in the region lxi::; 2 where the funetion n2 (x) is an analytic one.

To begin with, let us compute the resurgent structure of the considered wave field,
that is, tbe equation of the above introduced surface E. As it fo11ows from the above
eonsiderations, to do this we must just eompute the action. Due to the Hamilton-Jacobi
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equation we have

s (x) = Jp(x) dx,

where the function p (x) is determined by the equation

p2 _ n2 (x) = O.

Henee, the action S(x) is given by the relation

S(x= JJxJ-ldx={xJx-l-{ n(x+JxJ-l)

up to an additive constant. Thus, the equation of the surfaee E reads

(31)

For x > 1 tbe intersection of E with the (complex) line x = const forms a lattice with
the step i1r originated by two real points corresponding to the two signs of the square
root in (31) if we choose real values of t he logarythm (see Figure 9 a) below). As we
have seen above, each point of intersection of the surface E with the line x = const
corresponds ta exaetly one (real or complex) ray of the geometrical optics coming
through the considered point x. Thus, we see that there is an infinite number of rays
coming through each point of the physieal spacej clearly, this is true also for all other
regions on the x-spaee (see Figures 9 - 10).

As we have seen above, the computation of the Stokes phenomenon (and, as a

consequence, the seleetion of active rays in each Stokes region) is determined by the
behavior of points s = Sj (x) near foeal points of the wave field in question. Therefore,
our nearest task is to investigate this behavior.

Let us consider first the foeal point x = 1. "Ve put

x=l+e

thus introducing the small parameter e near the considered focal point. The straight

forward computations show that

(32)

for any integer k E Z. Similar, in a neighbourhood of the second focal point we obtain

i1r 2/2 3/2 (2)'S(-I+e)=2--3-(-e) +0 e +l1rk,kEZ.
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Figure 8: Path of analytic continuation.

It is not hard to show that there exists a change of variable x such that the function

v (x, k) becomes a function of the Airy type in a neighbourhood of each its focal point.
Now Remark 4 shows that the Stokes phenolnenon for the considered function in a
neighbourhood of any of its focal points is equivalent to that of the Airy function. This
fact will be used in the subsequent computations.

Let us proceed with the constructing of the asymptotic expansion of the wave field

v (x, k). To do this we shall begin with a single wave in the region x > 1 propagating
in the direction of the positive real axis (the transmitted wave) and shall continue
analytically the corresponding function along the path I shown on Figure 8.

Remark 5 Since we consider the wave field as aresurgent function satisfying the

corresponding resurgent equations, the function v (x, k) is univalued in a neighbourhood

of each its focal point. Hence, the particular form of the path I chosen for the analytic

continuation process is not of importance, since the result will be just the same.

The function v (x, k) corresponding to a single wave propagating in the direction of
the positive real axis can be represented as the Laplace transform of the micfofunction
supported at the right real point of singularity of the function V (s, x) (see Figure 9
a)). In other words, this function is

v(x,k)= Je;bV(s,x)ds

r(x)
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Figure 9: Passing along I from a to b.
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(cf. (10)), where r(x) is a standard eontour emanated from the above mentioned point
of singularity in the direetion of the positive part of the imaginary axis (see Figure
9 a); the geometrical situation on this Figure eorresponds to values of x > 1 lying
sufficiently dose to 1).

Now we perform the analytic continuation of the wave (33) along the half-cirde
going along the path I from the point a to the point b. Equation (32) shows that
when the point x is tradng this half-drele, the eorresponding points s = Sj (x) will
rotate to the angle 31l" /2 eountereloekwise. Taking into account the fact that any point
of singularity which intersects the integration eontour extracts from it exactly one
integrating eontour9

, one can see that the result of the analytic continuation will be
represented in tbe form of the surn of integrals of the type (33) taken over the eontours'
shown on Figure 9 b).

To simplify our eonsiderations we shall eonsider only the dominant components of

the asymptotic expansion of the wave field v (x, k). Therefore, the upper integration
eontour shown on Figure 9 b) will not be of irnportanee for uso

Later on, when the point x moves along the part of the path 1coming from the point
b to the point c, the eorresponding points s = Sj (x) will move along the imaginary axis
and, as a result, these points will come to a neighbourbood of tbe points i (if /2 + ifk) as
it is shown on Figure 10 b). One ean perform the analytic continuation along the half
drele coming from c to d exaetly in the same way as it was done above for the half-drele
ab (certainly, in this process we have to use the fact, that the considered function is of

the Airy type in a neighbourhood of x = -1). The result of the analytie eontinuation
is shown on Figure 10 b). Thus, we have constructed the analytic continuation of the
function given by (33) to all regions on the real axis R x (elearly, in the region lxi ~ y'2
which is of interest for us).

We remark that, as this ean be seen {roIn Figures 9 and 10 the constructed function

has exponential growth in all the regions of R x except for x > 1 and, hence, have no
physical sense. To overCODle this difficulty one can just shift all the above obtained
resurgent structure to the value irr /2 in the complex plane C. (on Figures 9 and 10
this shift is showh by the new real axis drawn as a dashed line).

These considerations eomplete the procedure of selection of the active eomplex rays.
Namely, the active rays in each of the three regions

x < -1, -1 < x < 1, and x > 1

correspond exactly to those points s = Sj (x) whieb carry the integration cantours.
In partieular, in the region x < -1 we have rays corresponding to the incoming and

9This follows from the above mentioned fact that the Stokes phenomenon for the eonsidered fune
tion near eaeh of its foeal points is equivalent to that of Airy function.
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Figure 10: Passing along I from c to d.
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refleeted waves (see Figure 10 b)), in the region x > 1 we have one ray eorresponding
to the transmitted wave (see Figure 9 a)), and in the region -1 < x < 1 we have rays,
eorresponding to exponentially deereasing waves existing in the non transparent part
of the eonsidered media (see Figures 9 b) and 10 a)).
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