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Abstract

We give a metric characterization of the Euclidean sphere in terms
of the lower bound of the sectional curvature and the length of the
shortest closed geodesics.

1 Introduction

Let M be a complete connected Riemannian manifold of dimension d and
class C*®. The study of global structure of closed geodesics on M wvis a
vis certain quantitative restrictions on the sectional curvature K of M has
attracted considerable interest. Henceforth, we assume k to be a positive
constant. It is well-known that if K > k% on all tangent 2-planes of M,
then there must exist on M a closed geodesic whose length is < 27 /k. The
purpose of the present paper is to describe a rigidity phenomenon observed
when this length is extremal on M. More precisely, we prove

Main Theorem. If M satisfies K > k* and if the shortest closed geodesics
on M have the length = 2n/k, then M is isometric to S, the Euclidean
sphere of radius 1/k in R**1,

Note that we make no assumption about the geodesics’ having no self-
intersections. There exists an example of a 2-dimensional smooth surface
all of whose shortest closed geodesics have self-intersections (see Appendix).
These examples have some regions where the curvature is negative. It is
reported that E. Calabi has proved that on a positively curved surface, at
least one of the shortest closed geodesics is always without self-intersections.

We now mention some related rigidity phenomena. Previously, Sugimoto
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Figure 1: S? like surface with highly curved “equator”

Su), improving on an earlier work of Tsukamoto [Ts], proved
g

Theorem A. Suppose that M satisfies 4k* > K > k. If d is odd, assume
that M is simply connected. Then, if M has a closed geodesic of length 27 [k,
it is isometric with S¢.

Recall that under the curvature assumption of Theorem A, if M is simply
connected, the celebrated Injectivity radius theorem, which is primarily due
to Klingenberg (see [CE (§§5.9,10)], [GKM, §§7.5,7] and also [CG], [KS] and
[Sa2]) states that all closed geodesics on M have length > = /k.

However, we point out that, in general, an assumption on the length of
the shortest closed geodesic is a nontrivially weaker condition than an upper
bound on the sectional curvature. In fact, Suppose we are given a general
curvature bound ak? > K > k?. Although we cannot use Klingenberg’s
injectivity radius theorem, we obtain a lower estimate for the volume of M
in terms of the supremum of the sectional curvature. Then the Cheeger-
type estimate (sharpened by Heintze-Karcher) implies a lower bound on the
length of the shortest closed geodesics on M (see [C], [CE], [HK] and [Sa2]).
It is also possible to construct, for any given k and é, a Riemannian metric
on S? with K > k? and the length of the shortest closed geodesic é-close to
27 [k but whose curvature grows arbitrarily large. This construction means
that, from the point of view of rigidity theorems in Riemannian geometry,
imposing an upper bound on the curvature is nat natural in characterizing
a Euclidean sphere among complete Riemannian manifolds with K > k2
having a shortest closed geodesic of length just 27/k. See Figure 1. In the



spacial case of dimension 2, we have

Theorem B (Toponogov [T]). Suppose that M is an abstract surface with
Gauss curvature K > k%. If there exists on M a closed geodesic without
self-intersections whose length = 2w [k, then M is isometric to SE.

However, in higher dimensions, there are lens spaces of constant sectional
curvature k% so that all geodesics are closed, the prime ones have no self-
intersections, and they are either

(a) homotopic to 0 and have length = 27 /k, or

(b) homotopically nontrivial and can be arbitrarily short.

See [Sal]. Of course, it follows from our Main Theorem that

Corollary. If K > k* and the shortest closed geodesics that are homotopic
to 0 in M have the length 27 /k, then the universal covering of M must be

isometric to S,f.

Note also that Theorem B is false without the assumption of the closed
geodesics’ not having self-intersections. In fact, for any k, one can construct
an ellipsoid in R® which possess a prime clised geodesic of length = 27/k
and whose curvature is > k2.

Finally, we mention a previous related result of the first author which
gives another rigidity solution for the non simply connected case.

Theorem C (ltokawa [I1,2]). If the Ricci curvature of M is > (d — 1)k?
and if the shortest closed geodesics on M have the length > w [k, then either
M is simply connected or else M is isometric with the real projective space
all of whose prime closed geodesics have length = 7 /k.

It is not yet known if our Main Theorem remains true with the weaker
assumption on the Ricci curvature. However, we point out that examples
were shown in [I1,2] so that for the Ricci curvature assumption, the shortest
closed geodesics may have length arbitrarily close to 27 /k without the mani-
fold’s even being homeomorphic to S?. This indicates how delicate the Ricci
curvarure assumption could be.
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2 Preliminaries

The purpose of this section is to gather all the well-known results which
will be used in proving Main Theorem as well as to set straight our nota-
tional conventions and normalizations. In this paper, we agree that by the
term curve we mean an absolutely continuous mapping ¢ : R — M whose
derivative R — TM is an L, map on each closed interval. We refer to the
restriction of a curve to any interval as an arc. If ¢ is a curve and a < b are
reals, we write ¢, , to denote the arc c |, ). If ¢ happens to be differentiable,
the normal bundle; respectively, the unit normal bundle of ¢; which are in
fact bundles over R, are denoted L c; respectively, U L ¢. We shall call a
curve ¢ closed if ¢(s + 1) = ¢(s) for all s. We denote the set of all closed
curves on M by Q.

For fixed a, b, let C, ) denote the set of all arcs [a,b] —» M. It is known
that C, 5 has the structure of a Riemannian Hilbert manifold where the inner
product is given by the natural L, inner product of variation vector fields
along a curve. The restriction ¢ +— ¢o; embeds 2 in Cy; as a closed sub-
manifold. Henceforth, this is the structure we shall always assume on these
spaces.

For v € C, 5, we define the space B of all square integrable vector fields
v € T,C, , along 7 such that V(a) = 0, v(b) = 0, and v(s) €L, v for all s.
If ¢ € 2, we also define the space B, of all v € T,Q with v(s) €L, ¢ almost



everywhere. Then, B!, is canonically embedded in B..

We normalize the energy of v € C, by

B(y) = [ 1) 1 ds. (1)

Also, we denote by L(y) the length of 74 in the usual sense. Thus, in our
convention, L(y)? < E(«) with equality if and only if 4 is parametrized
proportinal to arclength. The term geodesic is always understood to mean
a nonconstant geodesic. For u € UTM, the unit tangent bundle, we denote
by ¢, the geodesic s — exp su. Recall that the critical points of £ on 2 are
closed geodesics and the constant curves.

Let ¢ be a geodesic and a < b € R. The Hessian of £ at c,), here
regarded as a symmetric bilinear form on TC,, is denoted H.. We remind
that if v € B,ca,b and is differentiable orif c€ Q,a=0,b=1, and v € B, is
differentiable, then H? equals the so called integral

R Q/ab < v"(s),v(s) > +| v(s) | €(s) |* K(v(s) A (s))ds (2)

(for the complete expression, see [BTZ1] where the normalization used is 1/2
that of ours.) We write ¢/(c, ) to denote the index of H |g: ,- 1 cis closed,

we put H := H} |p. and «(c) its index. We recall the basic inequality

e) 2 /()= 3 v'(con) (3)

0<s<1

where v'(¢cp1) is the dimension of the space of Jacobi fields in B, .. In this
notation, we start the following well-known theorem, which is primarily due

to Fet [F).

Theorem D. Assume that M satisfies K > k*. Then there ezists a closed
geodesic ¢ on M such that L(c) < 2x/k and «(c) < d—1.

For each r € R, we denote by Q7; respectively, Q=" and 2<", the sub-
spaces {c € Q : E(c) < r}; respectively, {c € @ : E(c) = r} and
{c € Q; E(c) < r}. However, ° = Q0 is identified with M itself and
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so denoted also by M. It is well-known that each Q7; r > 0, contains a
submanifold ‘Q), which is diffeomorphic to an open set in some finite product
M x --- x M and homotopy equivalent to 2<". The functional E becomes a
proper function on ‘Q),. The space '), contains all the critical points in Q<7
and the Hessian of E |.q, retains the same index as F at each critical point.
For details, see [Mi (§16)] and [Bo]. If a < r, we put Q2 := 'Q, N Q2.

We must laler consider a more general functional F' on a finite dimen-
sional Riemannian or separable Hilbert manifold X. For our purpose, X will
be either Q or 'Q :=’ ), for some fixed r. Let ¢ € X be a critical point of F.
Then T.X decomposes into a direct sum

where P, N and Z are the spaces on which the Hessian Hp of F' at c is
positive definite, negative definite and zero respectively. We write || - || for

the norm in 7. X. Then, we can state the following important fact due to
Gromoll and Meyer [GML1]:

Theorem E (Generalized Morse Lemma). In the setting described above,
there exists a neighborhood U of ¢, a coordinate chart

éc U — TcX’
with respect to which F takes the form
Fo¢ll(v) = F(o) = =l = llyll* + f(2)

where z, y and z are the projections of v € £~ (U) on P, N and Z respec-
tively, and the Taylor expansion of f at z = 0 starts with a polynomial of
degree at least 3 in z. For this decomposition, ¢ needs not be an isolated
critical point of F, but if F' has other critical points in U, they are contained
in the zero eigenspace of Hr.

We use the notation U7 ° := (Y (NDZ) and U] := ¢7(N) and call them
the unstable; respectively, the strong unstable; submanifolds of F' at ¢, even
though we make no assunption on dim Z.

Suppose that a € R. We set 0} := {c € Qor’'Q; F(c) < a}. Let I
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be the interval [—1,1]. Suppose c is a critical point of F' with a := F(c)
and ¢ := index Hp |.= dimN. Let U be a neighborhood of c as defined in
Theorem E. A differentiable embedding o : (I*,01*) — (Q,0Q% — U) will be
called an weak unstable simplez of F at ¢ if 0(0) = cand F |,< a. If o
is a weak unstable simplex of F' at c, then o N U must be contained in the
topological cone

{yeU; Hr(£(v)) < 0}

In particular, if o(I*) N ¢~(NV) contains an open neifhborhood of £71(0) in
£~ (N), we call o a strong unstable simplez. We note that

Proposition 1. Any embedded differentiable simplez o : (1,) — (X, X —U)
with 0(0) = ¢ and Hp(&(o(t))) < 0 for all t € I* — {0} is homotopic to one
of the strong unstable simplezes modulo X — U.

We shall say that a critical point c of F'is a nondegenerate critical point if
Z={0}. Note that this agreement is different from the often-used convention
of calling a closed geodesic nondegenerate if Z is the S orbit of the geodesic.
With our convention, a closed geodesic is never a nondegenerate critical point
and for E. We put a := F(c) and write X" := {z € X; F(z) < r}. If cis
a nondegenerate critical point of F', then of course c¢ is an isolated critical
point and, for some ¢ > 0, the strong unstable simplexes at ¢ represent a
nontrivial class in 7, (X?*%, X27%),

Let t > r. The set X* of all absolutely continuous o : (I,9I) — (Xt X7)
can be given the compact-open topology. We will need the following topo-
logical

Proposition 2. Suppose M is compact. Let o € X*. Then there is a neigh-

borhood O of o in L* so that any o’ € O is homotopic to o modulo X" up to
orientation. '

3 Proof of Main Theorem

It i1s clear that, in order to prove Theorem 1, we need consider only one
specific k. So, hereafter we assume that M satisfies K > k% where k := 27.



In the present section, we further assume that M contains no closed geodesic
of length < 1, or equivalently that there are no critical points of E in Q<1— M.
It now remains for us to prove that then M is isometric to Sg,.

We set

C:={c€ N;cis a closed geodesic and ¢(c) =d — 1}
and

C* := {c € C; an unstable simplex of E at ¢ represents
a nontrivial element in 74_,(Q, M)}.

Theorem D and Theorem E assert that C # §. If we can asume that each
¢ € C has an isolated critical S-orbit, the technique of Gromoll and Meyer
[GM2] fairly readily shows that C* too is non-empty. In our case, it will be
precisely one of our points that no ¢ € C* has an isolated critical orbit. Under
the stronger hypothesis of 4k > K > k?, Ballman [Ba] showed that all closed
geodesics have nontrivial unstable simplexes. However, he makes essential
use of the upper bound for K which is not available to us. Nonetheless, we
shall still prove in the next section

Lemma 1. Under the assumption of this section, C* is nonempty and is a
closed set in ().

In this section, we assume Lemma 1 for the time being, and prove

Lemma 2. For each ¢ € C*, there is a neighborhood U of ¢ (0) in UT, )M
such that whenever u € U and 7 is any tangent 2-plane containing c,(s) for
some s € R, then K(7) = k%

The idea for proving this is to construct, for each ¢ € C, a specific unstable
simplex o and its deformation so that, unless the conclusion of the lemma is
met, o is deformed into M, which is a contradiction if ¢ € C*. First, we show



Lemma3. Ifc€C, then foranys € R and anyv €1, ¢, K(d(s)Av) = k2.

Proof. Assume that, for some s; € R and v, € 1, ¢, K(c'(s1) Avy) > k%
By virtue of the natural S!-action on ), it is no loss of generality to assume
that 0 < s; < 1/2. Now, we define a real number § as follows. If there is
a point in (0, s;] which is conjugate to 0 along ¢, we choose any é so that
5 < % -6< % If, on the other hand, there is no conjugate point in (0, s;],
there is a unique Jacobi field Y along ¢ with Y(0) = 0 and Y(s;) = vy,
and by a consequence of the original Rauch comparison theorem [CE (§1.10,
Remark, p.35)], there is an s;, 5; < s, < 1/2 so that Y(s;) = 0. In this case,
we choose § so that s, < 1 — & < 1. In either case, we have (e 1) 2 1.
On the other hand, by the Morse-Schoenberg index comparison with S, we
have J/(c1_4,) = d — 1, since L(c%_s,l) > 1. Therefore, we have

() 2 () 2 Ueoyos) +U(esogy) 2 1+d—1=4d,
which is a contradiction. O
As a consequence, we have

Lemma 4. Jacobi fields in B'|,, , are constant multiple of the fields sin(ks)V (s);
0 < s <1, where V is any parallel vector field of elements in U L ¢ |1

Now, let V4, -+, V,_, be parallel vector fields of orthonormal elements in
U L c |,y By compactness argument, there exists an 5 > 0 so that each
orthogonally trajecting geodesics t +— exptx where z € U L ¢ has no point
focal to cin t < 5. Define 2(d — 1) vector fields X;(s) and ¥;(s) (0 < s < 1)
along c as follows. These vector fields are not continuous at s = 0 and s = %

oy Vi(s) ifOSsS%
X'(S)_{O if 1<s<1

and
0 ifﬂgsg%

Y"(S)“{ Vi(s) ifl<s<l
Letz = (21, --,24-4) €I C R* Y andy = (y1,"**,y4-1) € I C R*™', where

I is a small interval in R*~'. We define a (2n — 2)-dimensional simplex & in

9



Q as follows:

d-1
o(z,y)(s) = exp,) arctan{sin(27s)()_(z: Xi(s) + v:Yi(s)))}.

=1

' The strange impression of “arctan” of a vector will disappear if we “define”
arctanz for € U L c to be p(arctan ||z||)z. We deform this simplex in the
following way. If z = y, we make no change on the corresponding loop. If
z # y, then we make a suitable short cut at the non-trivial angle (created

1

by the discrepancy z # y) at s = 7. For instance, we fix a small positive

number é§ and make a short cut between points corresponding to s = % -4
and s =  + 6. After performing this modification and reparametrizing the
corresponding loops by arc length, we get a (2d — 2)-dimensional simplex o.
We note that

(i) the (d — 1)-dimensional simplex & N ¢ consists of those closed curves and
is defined by z = y, i.e., variations which integrate global Jacobi fields on ¢,
and

(i1) the vector fields sin(27s)X;(s) and sin(27s)Y;(s) are naturally regarded
as Jacobi fields along ¢ |[0'%]; respectively, ¢ |[%,1} which vanish at end points.
If z # y, then, after performing the above modification, we see that o(z,y)
is strictly under the level set Q7! of E = 1. We see this, by applying Rauch
type comparison theorem of Berger (Rauch’s second comparison; see [CE
(8§1.10)]) to variations:

d-1
€XPp,(s) arctan{sin(27s) >z Xi(s)}

=1
for s € [0,3] of ¢ |[0'%], and
d-1
exp.(,) arctan{sin(2ms) > 2.Y(s)}
i=1
for s € [3,1] of ¢ |[%’1] fixing their end points. Summing up, we have

Lemma 5. There ezists a neighborhood W of ¢ € C so that the (2d — 2)-
dimensional simplex 0 N W is contained in QL.

We now consider the foliation on R*~? by affine subspaces orthogonal

10



to the linear subspace defined by the equations z = y. It follows from
Proposition 1 that the (n — 1)-simplex 7 defined by

T(z)(s) = o(z, —z)(s) = exp,y arctan{sin(?ws)(z_:(m;X;(s) - z;Y(s)))},

i=1

i.e., 7(z) = 7(z,y), where (z,y) varies over the leaf containing the origin (so
y = —z), is homotopic to an unstable simplex in the sense of Proposition
1. Indeed, we can easily show that, for any vector field v in B{ , tangent to
7, Hg(v,v) < 0 for the Hessian Hg at c¢. This is essentially because of the
Taylor expansion cosf =1 — % + O(6*) as 8 — 0. Thus, from Proposition
1, we have

Lemma 6. Ifc € C*, then there is a neighborhood U of ¢ in Q so that,
for € > 0 and a subneighborhood W C U, 7 constructed above represents a
nontrivial element in my_ (W, W N Q'~=.)

The proof of Lemma 6 is easy using standard Morse theoretic arguments.
If we define a (d — 1)-dimensional simplex 7 by

d-1
7(z) := expyy arctan{sin(ms) Z z;Vi(s)},

=1
then direct calculation of the Hessian implies that 7 also defines an unstable
simplex at ¢ and belongs to the same class as 7 in the relative homotopy
group. This unstable simplex corresponds to the eigen vector of the index
form (2) with negative eigenvalue. In this sense, 7 is more natural than 7.
Now define a (2d — 2)-simplex &, which also contains the (d — 1)-simplex
(defined by = = y in our simplex o) corresponding to the global Jacobi field
on c, by

d-1
5(z,y)(s) := expy, arctan{) _(z; sin(ws) + y; sin(kmrs))Vi(s)}.
i=1
Although this construction is natural, it turns out to be not clear whether
there exists an interval I containing 0 such that (7 x I) is contained in Q.
This is the reason why our construction of (2d — 2)-simplex o is based on
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Figure 2: unstable simplex o

the short cut argument of broken geodesics in the model space, although the
unstable simplex 7 does not directly integrate the negative eigenspace of the
Hessian of the energy functional E at c.

One of the following two cases is possible. Namely, either

(A) For at least one choice of zo € I, there is some ¢ > 0 such that

€XP,(s) arctan{sin(27s)(S1 20, Xi(s) + 20,;Yi(s))}

= exXp,(y) arctan{sin(27s)(2%21 0, Vi(s))}

is contained in Q'~?° as is illustrated in Figure 2, in which the variation
vector fields Y and Z along c are of the form

Y = sin(27s) Y 2;Vi(s)  (Jacobi fields)
Z = sin(2rs) S (2 X(s) — 2;Yi(s)),

i=1
or,
(B) There exists an a; 0 < @ < 1 so that whenever | z;, -+, z4-; |< q,
d-1
€XPe(s) arctan{sin(27s)(>_ z;Vi(s))}
i=1
lies in =1,

If Case (A) prevails, o can be deformed into U N W N Q= which contra-
dicts the conclusion of Lemma 5. Hence ¢ € C*. If, on the other hand, we
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start out with a ¢ € C*, then Case (B) must really be the case. We thus get
a (d — 1)-dimensional local submanifold S of 2=! which is tangent to the 0

eigenspace of the Hessian of E defined on B,,, through c.

€0,1

Lemma 7. In the present situation, each member € of S is a closed geodesic

in C.

Proof. 1f ¢ is not a critical point of E, there exists at least one z, €
I ¢ R*! such that the (d — 1)-dimensional simplex defined by the (d — 1)-
dimensional affine subspace through z, orthogonal to the linear subspace de-
fined by = y contains no critical point. Then, by following the trajectory
of —grad E, 7 is deformed into U N W N Q=% which contradicts assumption
that we strated with ¢ € C*. Hence all ¢ € S are closed geodesics. If some
¢ & C, then «(c) > d — 1, so 7 is again deformed into U N W N Q!¢ via the
unstable simplex of ¢. Hence, either way, we get a contradiction. O

By construction, we also see that for any ¢ € S, ¢(0) = ¢(0). Translared
into M, this means that there is a open tube B around the set ¢(0, %) Uc(%, 1)
such that for each ¢ € B, a geodesic joining ¢(0) to ¢ extends to a closed
geodesic in C whose image lies in B except at s = half integers. Applying
Lemma 3 to each geodesics proves Lemma 2. O

Even more is true. By Proposition 2, we get

Lemma 8. Let c € C* and let UC T 0)M be the set in Lemma 2. Then,
there exists an open set U*; ¢/(0) € U* C U, so that, for all u € U*, c, € C*.

That is to say, the set
U* = {u € UTC(O)M; Cy € C*}

is an open set in UTyq)M. On the other hand, by Lemma 1 and the con-
tinuous dependence of geodesics on their initial values, the set U* is also a
closed set. Since UT, )M is connected, U* must in fact be all of UT M.

Together with Lemma 2, we summariae our result as

Lemma 9. Let M be assumed in this section. Then, there ezists a point
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p € M such that for allu € T,M, ¢, is a closed geodesic of prime length 1
and K(7) = k?* for all 2-planes 7 tangent to the radial direction from p.

Proof. Take a ¢ € C* and let p := ¢(0). O

Now it is a standard technique to construct an explicit isometry from
M onto S{ exactly as in Toponogov’s maximum diameter theorem (see, for

example, [CE (§6.5)] or [GKM (§7.3)]). Thus, Main Theorem is proven as

soon as Lemma 1 is established.

4 Proof of Lemma 1

In this section, we continue to assume K > 472 The following proposition
is essentially contained in earlier works of Berger and is easy to prove by
Morse-Schoenberg index comparison with Sf and the tautological isomor-

phism m;(Q) & 7, (M).

Proposition 3. If M contains no closed geodesic of length < 1/2, then M
has the homotopy type of a sphere. In particular, we have
Z ifi=d-1

”‘(Q’M)g{ 0 for0<i<d—2

for the relative homotopy groups m;(Q, M) up to1 < d — 1.

We now return to the assumption that the length of the shortest closed
geodesic on M is 1. Let C and C* be as defined in §3. We wish to prove that
a strong unstable simplex at at least one ¢ € C represents a nontrivial class of
74-1(Q, M). Our technique will be to approximate E with other functionals
that are guaranteed to have nontrivial unstable simplexes. Although all.our
arguments carry through in all of Q in an S'-invariant fashon, essentially
because the functional E satisfies the Condition (C) of Palais and Smale and
because an S'-invariant formulation of Theorem E is available [GM2], we
find it a little easier to work in a finite dimensional space.

More precisely, choose r sufficiently large, say r > 2. Then, all closed
geodesics not in " will have index > 2(d — 1). Let 'Q := 'Q,. Then

71','(’0, M) =3 71','(Q, M)

14



forall2; 0<:<2d—3,andd—-1<2d —3if d > 2. Using Theorem E and
a partition of unity on ‘Q?, we can approximate E with a sequence {E,}2,
of functionals on 'Q? with the following properties.

(i) lim,_ E, = E in the C? topology.

(ii) For some € > 0, all critical points of E, in the closure of the set
L:="'Q;.— 'Q_. either belong in _; or have index > 2d — 2, and outside
L, each E, agree with E.

(111) Each E, has only nondegenerate critical points in the set L, all of which
have index > d — 1. '

Let C be the set of all closed geodesics in ‘2=' and let C, be the set of
all critical points of F, that lie in L.

Lemma 10. For each n, there exists in C,, at least one critical point of E,
that possesses a strong unstable simplex that represents a nontrivial element

in Td-1 (IQ, M)

Proof. From the topology described in Proposition 3, there must exist
a nontrivial element p of 7,_1('Q, M). We first deform p so that the only
points of C,, — (M N C,,) that lies on the image of p are the relative maxima
of E, o p. In fact, since there are no critical poionts of index < d — 1 except
in M, at every critical point of E, lying on p, say ¢, other than relative max-
ima, the unstable dimension of E, in ‘{2 is strictly greater than the unstable
dimension of E, o p in the image of p. Therefore, in some neighborhood
of ¢ in which a chart of the form described in Theorem E is valid, we can
deform p in a direction transversal to itself and which decreases E,. Since
the critical points of E,, are isolated and p is contained in a compact region,
by repeating this deformation a finite number of times and by deforming p
along the trajectory of —grad F,, we can deform p until it is expressed as a
sum of disjoint simplexes, each summand of which is a simplex in ('Q?, M),
hanging from a single critical point of index = d — 1. Such critical points
must be in C,,, and at least one summand must be nontrivial itself. O

Of course, it is not necessarily true that a sequence of critical points {c,}
of C, converges to a closed geodesic. However, that lim,_, ., C,, C C in the
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following weaker sense is clear.

Lemma 11. Given any open neighborhood U of C in '}, whenever n is
large enough, C, C U.

In fact, since the convergence is specified in the C? topology, we can state
the even stronger

Lemma 12. Let {U; CU;%}.ec be a family of pairs of open sets in 'Q so
that, for each ¢ € C, U, is a neighborhood of the strong unstable submanifold
U- of E at c and US° is a neighborhood of the unstable submanifold U;°.
Then, for n sufficiently large, for each c, € C,, there exists some ¢ € C,
so that U7, the strong unstable manifold of E, at c, is contained in U°.
Moreover, for such ¢, and c, a strong unstable simplex t, of ¢, contains a
subsimplez 7, with dim7, = dimU; = ((c) which is actually contained in

u:.

To see the above, we can take a local coordinate expression around each
¢ € C as described in Theorem E and look at the partial derivatives. By
taking n large, if ¢, € C, is close to ¢ € C, the corresponding second deriva-
tives respectively of E, at c¢,, F at ¢, and E at ¢ can all be made arbitratily
close to each other by the property (i). But, in U, the strong unstable sub-
manifolds and unstable submanufolds are determined by the second partial
derivatives. :

Now, for each n, let ¢, be the critical point in Lemma 11 which has a
strong unstable simplex 7, that is nontrivial in m;_;1(Q, M). For such a ¢y,
7, N U must itself be contained in a neighborhood U of the strong unsta-
ble submanifold at some ¢ € C by index comparison and the dimensional
consideration. From the construction of 7,, this ¢ must be € C. Let 7 be a |
strong unstable simplex at ¢ with 7(8I#~!) C M. By repeating the standard
Morse theoretic arguments in the proof of Lemma 6, 7 is seen to represent
a nontrivial element in 7;_;(Q, M). Hence ¢ € C*. Then, that C* is closed
follows from Proposition 2. This completes the proof of Lemma 1 and thus
of Main Theorem. O
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Figure 3: triangle with “cusps”

Appendix
Yoe Itokawa

This is a reproduction of Appendix in Itokawa [I3] (1985), which was dis-
tributed but never published because the proof of the main theorem in [I3]
contained a gap.

The purpose of this Appendix is to show

Theorem (A). There exists a compact embedded surface in R® all of whose
shortest closed geodesics have self-intersections.

This result is due independently and simultaneously to E. Calabi [Pri-
vate communication], but his construction does not appear in print. We
appreciate Calabi for encouraging us to publish our construction. Although
our construction is essentially similar to his, it allows slightly more explicit
computations. Both of these constructions are based on Calabi’s example
of a sequence of convex surfaces with closed geodesics with self-intersections
whose length approaches the shortest lengths arbitrarily close. '

Proof. Take three circles of unit radius in the (z,y)-plane arranged so
that each is tangent to the other two. Let S be the bounded component of
the intersection of the exteriors of the three circles (Figure 3). For any 4,
let My := 9(S x [0, 8]), where the second factor is taken in the z-axis. Let
7 : Ms — S be the perpendicular projection. Now, while M; os of course
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not smooth, it has the structure of a Holder continuous 2-manifold. If we
interpret a geodesic on M; to be a Holder continuous piecewise smooth curve
that monimizes length on sufficiently short segments, it is easy to calculate
that the only closed geodesics on M; without self-intersections are of the type
c; whose image is the set z = constant and the type ¢, such that 7(c,) is the
axis in S of the symmetry that interchanges two of the three circles. Upon

calculation, we obtain
L(c,;) = =~ 3.1416

and

L(cy) = 2(vV3 — 1) &~ 1.4641 + 26.

On the other hand, consider the nonsimply closed curve which starts at the
center of the three circular arcs of S, extending as a straight line segment
perpendicular to an adjacent circular arc, climbing vertically up to z = §,
returning straight to the point at z = § with the same (z,y) coordinates
as the initial point, dropping vertically down to the initial point, and then
repeating the same procedure on the morror image of the reflection that
interchanges the two arcs not containing the initial point. The length of this

4(V5 —2v3 — 1) + 46 ~ 0.9573 + 46.

By following the negative gradient trajectory of the length functional in the
loop space of M;, whose direction near the present curve can be easily identi-
fied on Mj itself, we reach a local minimum ¢; of L, which is nontrivial, has a
self-intersection at z = %6, and whose image is invariant under the reflection
that interchanges two of the circular arcs. For 6 sufficiently small, ¢3 has
a shorter length than any of the closed geodesics without self-intersections.
The non-simple closed curve c3 is illustrated in Figure 4. Now we approxi-
mate M; with smooth surface. We can do this so that the lengths of geodesics
on the smooth surface converge to the length of the limiting geodesics on Mj.
Moreover, below a set length, no new closed geodesics are introduced. This
is a consequence of the fact that Mj; is C™ outside a set of lower dimension
and Hélder continuous along the singularity. We omit the details, since the
argument will be technical, while geometrically (or visually), the argument
is clear. O

curve 1s
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Figure 4: ¢, ¢, and c3 in Mj
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