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Abstract

We eonstruet a trace on the algebra of all classieal elements in Boutet de Monvel's
ealeulus on a eompa.ct manifold with boundary of dimension n > 1. This tra.ce
eoincides with Wodzieki's noncommutative residue in ease the boundary is empty.
Moreover, we show that it is the unique continuOUB trace on this algebra up to a
constant.
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Introduction

Let M be a c10sed compact manifold. Denote by \1100 the algebra of all classical pseu­
dodifferential operators on M with integral order and by \l1-00 its ideal of all smooth­
ing pseudodifferential operators. The noncommutative residue is a trace on the algebra
A = \l1OO /'I!-oo, i.e. a surjeetive linear map

res : A ---io C,

whieh vanishes on all eommutators: res (PQ - QP) = 0 for all P, Q E A. In fact, this
traee, res, turns out to be the unique traee on this algebra, up to a multiplieative eonstant,
provided that the manifold is eonneeted and of dimension higher than 1. It is given as an
integralover a loeal density, resx , on M.
For one-dimensional manifolds, the noneommutative reaidue was discovered by Manin
[10] and Adler [1] in eonneetion with geometrie aspeets of nonlinear partial differential
equations. In this situation, the algebra A can be viewed as the algebra of formal Laurent
series in the eovariable ~ E R, and the loeal density resx indeed takes the form of a
classical residue: it is the coefficient of ~-1. For arbitrary c10sed compact n-dimensional
manifolds, the noncommutative residue was introdueed by Wodzicki in [14] using the
theory of zeta functions of elliptic pseudodifferential operators. Later, Wodzicki gave a
more geometrie account based on the theory of homogeneous forms on symplectic cones
[15]. In this framework of symplectic eones, Guillemin had independently discovered the
noncommutative residue as an important ingredient of his so-called 'soft' proof of Weyl's
formula on the asymptotic distribution of eigenvalues [6].
Meanwhile, the noncommutative residue has found many applications in both mathemat­
ics and mathematical physics. A detailed introduction to the noncommutative residue
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together with its mathematical consequences was given by Kassel in [8]. For applications
in physics cf. e.g. Connes [4], Radul [11], Kravchenko and Khesin [9].
In the present paper, we introduce a noncommutative residue for the operators in Boutet
de MonveI's algebra on manifolds with boundary. More precisely, let M be a compact
coooected manifold with boundary of dimension n > 1. Denote by 8 00 the algebra of
all operators in Boutet de MonveI's calculus (with integral order) and by 8-00 the ideal
of the smoothing operators. We then construct a. trace on the quotient 8 = 8 00 /8-00

•

Moreover, we show that this trace is the only continuous trace on B. As in [15] we work
directly at the symbol level. We avoid zeta function techniques, primarily, because the
known results are not sufficiently good for our purposes. Computatioos of the Hochschild
and cyclic homologies of 8 00 /8-00 will be the subject of a. forthcoming paper in the spirit
of Brylinski-Getzler [3].
The paper is organized as follows. In Section 1 we give a simplified proof (see Theorem
1.4 and formula (1.8)) for the existence a.nd uniqueness of the noncommutative re.c:;idue
on a compact manifold without boundary. Section 2 starts with a short review of Boutet
de MonveI's algebra B. We then consider two natural subalgebras of B: the algebra Bo
of a11 operators with vanishing interior pseudodifferential symbol, and the subalgebra B.
of all operators whose interior pseudodifferential symbol stabilizes in a neighborhood of
the boundary. We define (see formula (2.13)) an analog of the noncommutative residue
on Bo and show that it is the unique continuous trace on 8 0 , cf. Proposition 2.3. We
can extend this trace to B,; however, this extension will 00 longer be the only trace on
8,. In Section 3 we fina11y treat the general case. We define the noncommutative residue
on B (see formula (2.23)). We prove in Theorem 3.1 that this noncommutative residue
is a trace on 8. In Theorem 3.2, we prove that it is the unique continuous trace up to a
multiplicative constant. This is achieved by using the uniqueness property in Bo and by
proving that there is no trace on B/80 •

1 Wodzicki's Residue on a Closed Compact Mani­
fold

In this section we recall the construction of the noncommutative residue for a closed
compact manifold. We will need some lemmata on homogeneous functions on Rn \ O.
Let Rn be the standard oriented Euclidian 8pace, n > 1, with coordinates ~l, ~2, ••• l en.
A smooth function p(e) on Rn \ 0 is homogeneous of degree A E R if for any t > 0

Euler's theorem for homogeneous functions states that then

n ap
Lejae. = Ap;
j=l J

this fo11ows by differentiating (1.1) with respect to t and setting t = 1.
Consider the n - I-form
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where the hat indicates that the corresponding factor has been omitted. Clearly, du =
n d{1 A d{2 /\ ... A den. Restricted to the unit sphere S = sn-I, U gives the volume form
on sn-I.

Lemma 1.1 FOT any function p-n(e) which is homogeneous of degree -n the form
P-nU is closed.

Proof. We have

d( ) ~ 8P-n At d
P-n U = ~ ~lM."i Au + p-n U

)=1 )

= 't 8;{.n ~jd6 Ad{2 A... A d{n + np-nd{. A ... A d{n = 0
j=1 )

by Euler's theorem.

We will consider the integral

(1.5)

(1.3)

For a bounded domain D C Rn

faD P-nU= fs p-nU (1.4)

since the form P-nU is closed. Here we suppose that 8D is also oriented by the outer
normal, otherwise we have to change the sign in (1.4).
Consider the behavior of (1.3) under a linear change of variables. Let 9 be alinear map,
and let TI = ge. Using (1.4) with the proper sign we get

f P-n( TI )u7] = ± 1. P-n (TI )u7] = ± rg* (P-n( '1 )U7])1s gS 15
- ± fs P-n(g~)(g·u)ge= Idetgl fs P-n(g~)Uge,

fs P-n U

over the unit sphere oriented by the outer normal.
containing the origin,

since under the linear change we have

(g*u)t = det 9 Uot·

Equality (1.4) also holds for some unbounded domains D. We will need the ca.se when Dis
the cylinder {e ERn: I~'I < 1, ~n ER}. Here, e' = (el,e2, ... ,~n-d ERn-I. Denoting
by S' and u' the n - 2-dimensional unit sphere and the corresponding n - 2-form we obtain
from (1.4)

(1.6)

The orientation of S' is completely defined by this equality.

Lemma 1.2 Let P-n be a derivative

8
P-n = ael: P-(n-l)'

where p_ (n-l) is a smooth homogeneous function on Rn \ 0 0 f degree - (n - 1). Th en

fsP-nu = O.
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Proof. Without 10ss of genera1ity take k = n. Then by (1.6)

{ { (100

8P-(n-l) )'
}sP-nU = 1s1 -00 a~n d{n q = 0,

since the inner integral ia equal to

P-(n-l)(e,OO) - P-(n-l)(e,-OO)

and P-(n-l) vanishes at infinity.

Lemma 1.2 raises the question as to whether a homogeneous function may be represented
as a sum of derivatives.

Lemma 1.3 Let p be a homogeneous /unction on Rn \ O. Each 0/ the /ollowing con­
ditions is sufficient /or P to be a Bum 0/ derivatives:

(i) deg P f= -no

(ii) degp = -n and JsIJU = O.

(iii) P = ~a8ßq where q is a homogeneous fu nction and IßI> 10'1.

Proof. (i) If degp = A f= -n, then

n 8 n 8p
L a~. (~;p) = L~; a~. +np = (n +A)p
;:;:;;1 1 ;:;:;;1 1

by Euler's theorem.
(ii) On the unit sphere S consider the equation

where ßs is the Laplace-Beltrami operator, and pis denotes the restrietion of P to S. This
equation has a solution since pis ia orthogonal to Ker ßs which consists of the constants.
Denoting lei by r and applying the Lap1ace operator

ß =~ 8'2 = _1_~ (rn-l~) + ..!-ßsf;: 8e} r n - 1 8r 8r r2

to the function n
1
_'1 q we obtain

r

(
1 ) 1 1ß -q = -ßSq = - pi = p,rn - 2 rn r n S

from which the second statement follows.
(iii) Let 8ß = 8~j/J1. Then

p = ~Q a~j Ef'q = a~j (e"Ef'q) - ~~: Ef'q,

and the case of multi-indices 0:, ß is reduced to the case 0: - {j}, , with bl = IßI - l.
Hence, the third statement follows by induction. U
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Now let M be a closed compact manifold of dimension n > 1. Consider the algebra A =
woo Iw-oo

, where WOO denotes the algebra of all classical scalar-valued pseudodifferential
operators on M and \lf-OO its ideal of smoothing elements. We aBsume all orders to be
integers. Let U be an arbitrary loeal eoordinate ehart. An operator P E \1100 of order
mEZ on U c M is defined up to a smoothing operator by its 'symbol'

p(x,e) ~ LPm-;(x,e);
;=0

(1.7)

this ia an infinite formal sum of funetions PA:(x, e) on U X (Rn \ 0), whieh are homogeneous
in eof degree k, k = m, rn-I, .... The present version of symbol differs from the usual
notion of the complete symbol ooly by a term of order -00, but it is sufficiently precise
for our purposes.
The form dXl A dX2 A ... A dX n defines an orientation of U and induees the orientation of
Re given by ~1 A d{2 /\ ... A den. For P E A with symbol P we define the loeal density
res~ P, x E M, by

resx P = (fs P-n(x, Ou) dXl /\ dX2/\ •.. /\ dxno (1.8)

The definition of the noneommutative residue and its properties are given in the following
theorem.

Theorem 1.4 (Wodzicki) Expression (1.8) is a density on M not depending on the
loeal representation 0/ the symbol, so that

resP = LresxP (1.9)

is well-dejined.
For any P,Q E A

res[P, Q] = 0, (1.10)

(1.11)

henee the noneommutative rfsidue is a trace on the algebra A.
Any trace defined on the algebra A eoincides with the traee res up to multiplieation by a
eonstant.

The case of pseudodifferential opera.tors with values in seetions of veetor bundles over M
is an easy consequence, cf. Remark 1, below.

Proof. Under a change of variables x = f(y) the symbol p(x, e) transforms to a symbol
p according to the formula

p(y, 'f'(y)e) ~ L 8;p(f(y),e)<;?a(y,e),
lal~O

where 'Pa(y,e) are polynomiaJs in eof degree ~ lal/2 and 'Po = 1 (see Hörmander [7],
formula (18.1.30)). Using (1.5) and (1.11) we get

fsP-n(Y'f/)U~ - Idet J'(Y)I fsP-n(Y, 'I'(Y){)U( (1.12)

= 1det I'(y) I L l(aepU(Y)'~)<Pa(y,m-nu(
lal~O s

- Idet j'(y)11 P-n(f(y),{)U(
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since the terms with 10'1 > 0 do not contribute to the integral in virtue of Lemma 1.3(iii).
The transformation law (1.12) shows that expression (1.8) is indeed a density on M, so
that (1.9) is well-defined.
We may proceed considering the operators whose symbols have supports in a fixed coor­
dinate chart. The general case may be reduced to this special one using a partition of
unity since the density resz P does not depend on the choice of loeal coordinates.
To prove (1.10), consider two operators P, Q with symbols p and q supported in a coor­
dinate chart U. Without loss of generality, we shall assnme that U is diffeomorphic to an
open ball of Rn. The symbol of [P, Q] is given by

(1.13)

This expression may be represented as a surn of derivatives

(1.14)

where Aj and Bj are bilinear expressions in p and q and their derivatives. In particular,

they have compact supports contained in U. Thus, the integrals over S of (at A j ) -n

vanish by Lemma 1.2, while the integrals of (a:.Bj) over U vanish, since all Bj have
J -n

compact support in U. This proves (1.10).
We will need the explicit expressions of A j and Bi for tbe terms in (1.13) with 10'1 = 1,
that is

(1.15)

Finally, to prove uniqueness, consider an operator P with symbol p supported in a coor­
dinate chart U and let Xj and li denote any symbols with supports in U coineiding with
Xj and ~j on the support of p. Then, taking q = Xj or q = fj in (1.15), we obtain

[P ..... ] .8p
,Xj = -I a~j; (1.16)

Given a trace r on the whole algebra of cornplete symbols the equalities (1.16) imply that

r(8P
) =r(8p

) =0at . 8x·
~J J

(1.17)

since the trace must vanish on commutators. Let p -- Ek<m Pk E wlX> lW-IX> and define
P-n(x) = vo~s JsP-n(X,~)(7(. Applying Lemma 1.3 (i) to P~ for all k "I -n, there exist

n functions qij)(x, ~), 1 ~ j ~ n, homogeneous of degree k + 1 in esuch that Pk ­

E1$j$n 8(jql;)· Define, for all 1 ~ j ~ n, bj(x,~) -- Ek:5m, k#;-n qij). One has

n

p(x,~) - P_n(x)I~I-n = L 8(jbj(x,~) + (P-n(X,~) - P_n(x)I(I-n).
;=1
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Since L(P-n(X,!) - P_n(x)I!I-n)ue = 0

Lemma 1.3 (ii) shows that the expression (P-n(x,e) - P_n(x)lel-n) is a (finite) sum of
derivatives in the variable e. Putting this together, it follows that

r(p) = r(P_n(x)lel-n).

Now, the map Co(U) 3 f ~ lJ(f) = r(flel-n) defines aC-linear form on Cgo{U); it fol­
lows from (1.17) above that p(8:r:jf) = 0 for all 1 ~ j ~ n and f E Cö(U), Hence, since
U is diffeomorphic to an open ball of Rn, there exists c E C such that p(f) = c Ju f(x)dx
for all f E C~(U). ~

Remark 1. The theorem remains valid for pseudodifferential operators actiog 00 sections
of vector bundles over M, if we replace P-n by the matrix trace Tr P-n. Thus, in the general
case, the definition of the noncommutative residue will read

(1.18)

Remark 2. As may be seen from the proof, no continuity condition is required for the
uniqueness of the noncommutative residue.

2 Bautet de Monvel's Algebra

Let M be a compact manifold with boundary aM and dimension dirn M = n > 1.
In a neighborhood of the boundary we consider local coordinates x', X n where x' =
(Xb"" Xn-l) are coordinates on aM and X n is the geodesic distance to aM in some
Riemannian metric. So, any boundary coordinate chart U is diffeomorphic to the c10sed
half-space R+. = {xn ~ O}, and transition diffeomorphisms change x' E Rn-l = aR+.
on]y, while X n remains unchanged.
For a detailed introduction to Boutet de Monvel's algebra see Boutet de Monvel [2], Grubb
[5], Rempel-Schulze [12] or Schrohe-Schulze [13]. In the following we will give a review of
some basic facts we need.
By 8 00 let UB denote the algebra of all operators in Boutet de Monvel's calculus of arbitrary
(integer) order aod type; by 8-00 denote the ideal of aU regularizing elements of arbitrary
type in 8 00

• We will be ioterested in the algebra 8 = 8 00/8-00
• This quotient can be

viewed as the set of all pairs {pi, Pb}, where Pi and Pb are called the interior and boundary
symbol, respectively.

In order to introduce the interior and bouodary symbols we need some preparations. By 0
denote the characteristic function 00 the half-line R+ in R: O(t) = 0 for t ~ 0, O(t) = 1
for t > O.
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H+ is the space of all Fourier transforms of functions of the form Du, u E S(R). It
consists precisely of all functions h E Coo(R) which have an analytic extension to the
lower complex half-plane {Im ( < O} and an asymptotic expansion

00

h(() ~ L c~
k=1 (

(2.1)

a.s 1(1 -+ 00, Im ( ~ 0, that ca.n be formally differentiated.
Similarly, Bö is the space of all Fourier transforms of functions of the form (1 - D)u,
with u E S(R). It can be characterized aa the spa.ce of all functions in Coo(R) that have
an analytic extension into the upper half-plane {Im( > O} and an asymptotic expansion
(2.1) aB 1(1-+ 00, Im( ~ 0, that cau be formally differentiated, cf. [12], Section 2.1.1.1.
Finally, H' is the space of all polynomials. We let H- = Hö ES H ' and H = H+ ffi H- . Hy
n+ (resp. n-) we denote the projections onto H± (resp. H-) parallel to H- (resp. H+).
For calculations it is convenient to think of H as a spa.ce of rational functions having no
poles on the real axis (these funetions form a dense set in the topology of H). On these
functions, the projectors n± may be represented by Cauchy integrals

where r+ is a eontour consisting of a segment of the real axis and of a half-circle sur­
rounding all the singularities of h in the upper half-plane. Introduce also the functional
11' on H, defined by

For rational functions the eontour r+ may be shifted slightly into the upper (lower) half­
plane. Clearly, n' vanishes on the subspace H-. For functions h E H nL 1(R) the integral
may be taken over the real axis instead of r+. Moreover, if h E H+ nL1 (R), then TI'h = 0,

because h is holomorphic in the lower half·plane with an estimate jh(en)! = 0 Ce~11 ).
Let us now foeus first on the interior symbols. The interior symbols are classical pseudod­
ifferential symbols in the sense of Section 1, cf. (1.7), exeept that the eoordinate x varies
in R+ for boundary charts. Moreover, they have the transmission property. For a classical
pseudodifferential symbol p with an asymptotic expansion p ~ l: PI into homogeneous
terms PI of degree I this means that in every boundary ehart we have

DaDk (' 0 0 +1) - i1l'"(I-lal) Da Dk (' 0 0 1)e' ~nPI x, " - e e' ~nPI x, , ,-

for every multi-index a and all k E N, cf. (12), Section 2.2.2.3. In particular, we will then
have D~D;nPI(X', 0, e', en) E H as a function of en for all fixed (x', e') E T·ßM \ O.

We make the following observations.
In a boundary chart the composition formula for interior symbols on M takes the form

(2.2)
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where 0' means tbe composition of symbols on 8M and X n as wen as en are regarded as
parameters, that is

, (_i)lol
Pt 0 P'l = L I 8(,Pl EJ:,P'l. (2.3)

a.
lol~o

Using representation (2.2) we obtain the following formula for a commutator in a boundary
chart.

Lemma 2.1

Here [',']' denotes the commutator with respect ta 0',

( ')m+i+l
A - ""' -I &! am 0' am ~+l

n - ~ (m + .+ I)! (n %nP1 (n %n 112
mJ~O J

(2.4)

(2.5)

and

(2.6)

Proof. Straightforward calculation.

In particular, the terms in (2.5) and (2.6) with j = m = 0 give (1.15).

Next we describe the boundary symbols. Tbe boundary symbol is a family of operators
parametrized by T·aM \ O. In a local chart on 8M it has the form of a 2 x 2 matrix

(
b{x', e', Dn) k(x', ~', Dn) ) (x', t') E T·aM \ O.
t{x',e',Dn) q(x',f) , '>

(2.7)

It acts on pairs of the form ( ~ ) , where h E H+ is in general vector-valued, and v is a

vector in eh. Tbe entries of the above matrix (2.7) are operators given again by symbols
b= b{x',~',~n,1Jn),k = k(x',~',~n),t = t(x',e',~n), and q = q(x',e'), respectively. First of
all, these symbols are formal sums of jointly homogeneous smooth functions with respect
to all tbe variables except for x'. So,

b(x',e',en,'1n) - L b,(x', e', en, '7n),
-oo<l.~m

k(x', e', en) - L k,(x', e', ~n),
-oo<l$m

t(X',e',en) - L t,(X', e', en),
-oo<l$m

q(x', e') - L q,(x', e'),
-oo<'$m
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where, for A > 0,

b,(x', Af, A~n, Al1n) = A'b,(x', ~', ~n, l1n),
k,(x', .-\e, .-\~n) - .-\'k,(x',e',~n),

t,(x', .-\e, .-\~n) - .-\'t,(x',~', ~n),

q,(x', .-\~') - .-\'q,(x', ~').

Under a change of variables on 8M they obey the same rule (1.11) as symbols on 8M,
that is with respect to the variables x', e', the extra variables ~n, '1n can be considered as
parameters. In order to state the additional properties of the symbols and the way they
act we consider them separately.

(1) The symbol b is called the singular Green symbol. For every land fixed x', e
( " ) +"b, x ,~ ,~n, '1n E H fS1f H-

(where as usual ®1f denotes Grothendieck's completion of the algebraic tensor prod­
uct). The operator b(x', ~', Dn ) : H+ -. H+ ia given by

[b( x',~', Dn)h](~n) = n~" (b(x', ~', en, '1n)h( 'fJn)).

Singular Green symbols on 8M form an algebra under composition; this algebra is
denoted by g.

(2) For fixed x', e', ea.ch component k, (x' , e',en) of the potential symbol k (x' , e',en)
belongs to H+ fS (C k ). with respect to en. The operator k(x',~', D n ) : C k

-. H+
acts on v E Cl. by multiplication v 1--+ k(x',~', ~n)v E H+.

(3) For fixed x',e', each component t,(x',e',en) of the trace symbol t(x',e',en) belongs
to H- fS C k with respect to en. The operator t(x', e', Dn):H+ -. C k acts by

(4) The symbol q = q(x', e') is simply a classical pseudo-differential symbol on 8M
in the sense of (1.7) with values in .c{Ck

); q(x', e') and q, (x' ,e') act by matrix
multiplication 00 Cl..

Giveo two operators in B with symbols (Pil,PbI) and (Pi2,Pb2) the composition is again an
operator in B. It has the symbol (Pi,Pb), where Pi = Pil 0 Pi2 simply is the composition
of the pseudodifferential symbols in the sense of (2.2); it again satisfies the transmission
condition. The resulting bounclary symbol has the form

(2.8)

Here, PbI 0' Pb2 is the pseudodifferential composition of PbI and Pb2 with respect to the
variables (x', e'), cf. (2.3), together with composition of the operator-valued matrices (2.7).
The terms in the second summand rome from the interior symbols. There, the composition
is the pseudo-differential composition for operator-valued symbols with respect to (x',~'),

cf. (2.3). We have denoted the entries of Pbj,j = 1,2 by bj , kj , and tj and omitted the
variables (x', e') for better legibility.
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(i) L(pil' Pi2) is the so-called leftover term. It is induced by the particular way the action
of a pseudodiffereotial operator P on the manifold with boundary M is defined: We
assurne that M is embedded in a manifold without bouodary aod that P extends
to it. Given a functioo or distribution on M of sufficiently high regularity we first
extend it by zero to the full manifold, then apply P aod finally restrict to M, in
other words we apply the operator PM = rMPeM; here eM denotes extension by
zero and rM restriction to M. Given two pseudodifferential operators PI and P2 with
interior symbols Pil and Pi2 respectively, the difference [P1]M[P2]M - [P1P2]M turns
out to be a singular Green operator with an associated singular Green boundary
symbol operator L(PiJ,Pi2)' The asymptotic expansion of the associated singular
Green symbol can be computed from the knowledge of PiJ, Pi2, and their derivatives
at the boundary. Obviously it is zero if either Pil or Pi2 is zero.

(ii) Given an interior symbol Pi, the operator pt(x', ~', Dn ) : H+ ...-. H+ is induced
from the action of the interior symbol in the normal direction for fixed (x', f). More
precisely, understanding Pi as a full classical symbol rather than the associated
formal SUffi, one lets

The last integral should be understood as an oscillatory integral. It is 80 conse­
quence of the transmission property that ulß.+ E S(R+), so that J="(Ou) E H+. This,
however, is of minor importance here. We shall rnainly be interested in the (000­

trivial) fact that for a singular Green boundary symbol operator b(x',~',Dn} both
compositions

pt (x',~',Dn)b(x', {', Dn) and b(x', {', Dn)pt (x',~', Dn)

are singular Green boundary symbol operators and that the asymptotic expansion
of the corresponding symbols can be computed from the knowledge of Pi and its
derivatives at the boundary.

More information will be given later when we need it.
It should be pointed out that the current terminology is not quite the standard terminol­
ogy. In general, the boundary symbol operator also contains the term pt (x', f, Dn ) from
the interior symbol Pi. Noting that the only operator which is induced by both 80 classical
pseudodifferential symbol and a classical singular Green symbol is 0, both parts can be
neatly separated in this cootext. So it makes the presentation easier to set up things the
way we did.

Now we give the following definition:

Definition 2.2 (80) 8 0 is the subalgebra 0/8 consisting 0/ all elements with zero in­
terior symbol.
(b) 8 8 is the subalgebra 0/ 8 where the interior symbol stabilizes near the boundary;
Pi(X', xn,~) = Pi(X', O,~) /or small xn.

Note. The following facts are well-known but important:

(i) the identity is not a singular Green operatorj in particular, Bo is a nonunital algebra;
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(ii) the operator induced by an interior symbol pt is not a singular Green operator
unless it ia zero; however composing pt with a singular Green operator on the right
or on the left yields a singular Green operator.

Clearly Bo ~ B. ~ B, and Bo is an ideal in B, since both the resulting pseudodifferential
part and the leftover term in any composition will be zero.

For fixed x', e', and a singular Green boundary symbol operator

b(x', e', Dn ) : H+ ~ H+

acting by

[b( x', {', Dn)h](en) = n:m (b( x', {', en, '1n)h( '1n)) = -2
1

{ b(x', {', en, '1n) h( '1n )d'1n
11" Jr+

we define a trace similarly to the trace of usual integral operators

trb(x',e',Dn) = nenb(x',e',en,en) = -2
1

( b(x',f,en,en)den. (2.9)
1r 1r+

In case b(x', e', Dn ) is matrix-valued we additionally take the matrix trace under the
integral. We clearly have the trace property:

tr (bt(x', e', Dn)~(x', e', Dn)) = tr (~(x',e',Dn)b1(x',e', Dn)).

As indicated by the missing 0', the composition is with respect to the xn-action Dn only.
Moreover, taking the trace of a singular Green boundary symbol operator b(x', e, Dn )

yields a symbol b(x',f) on aM:

b(x',e') = trb(x',e',Dn) = nenb(x',e',~n,en) = -2
1 r b(x',e',en,en)den (2.10)
7( 1r+

is a sum of homogeneous componentsj the component bk(x', e') of degree k is obtained
from bk - 1(x' ,e',en, '1n). Indeed,

bk ( x', te') - f-1 bk- 1(x', t{', ~n, ~n)d~n (2.11 )
1r r+

- ;-1 bk - 1(x', t{', t'l/n, t'l/n)d'l/n (2.12)
1r r+

t
k 1 (' I )- 2 bk - 1 x, e ,T/n, T/n dT/n
1r r+

- tkbk(x', e').

Since the change of variables acts on x', e', and does not affect the variables en, T/n, of the
Green symbol b(x',e',en, T/n), b(x', e') is indeed a symbol on aM

Proposition 2.3 Assume thai aM is connecled. For the boundary symbol we use the
notation 0/ (2.7). Then the functional

reSaMPb = [ resr,{tr b(x', e', Dn ) +Tr q(x', e')} = r resxl(b +Tr q) (2.13)laM IBM
is the unique continuous tmce functional on the subalgebra Bo C B up to multiplication
by a constant.
As be/ore, Tr denotes the matrix tmce on .c(Ck ).
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In the proof of Proposition 2.3, we sha11 use the following simple argument that we have
isolated below in tbe following

Lemma 2.4 Let T : 8 0 --+ C be aC-linear form. Then T is a trace on Bo if and only
if there exists a trace Tl on 9 (the algebra of singular Green symbols) and a trace T2 on
q,OO(8M)/q,-OO(8M) such that for all trace operators t and all potential operators k

(2.14)

and

Sketch of proof. Let 130 be the algebra consisting of matrices of the form

(2.15)

(
bEBt cl k

q
) , cE C,

with the multiplication formula

(2.16)

(b ffi cl) (b' ffi c'I) = (bb' +cb' +c'b) ffi cc'I . (2.17)

130 is a unital algebra by construction. Let T be a trace on 8 0 ; then the C-linear form on
Ba defined by

is a tra.ce on Ba. Using the equalities

[(~ ~),(~ ~)]=(~ ~)
and

[(~ ~),(~ ~)]=(~ ~)

tbe lemma easily follows for (130,T) and, according to (2.18), for (Ba, T).

(2.18)

(2.19)

(2.20)

Proof of Proposition 2.3. Correctness and the trace property (1.10) follow from The­
orem 1.4 applied to Ba considered as an operator-valued symbol algebra on 8M whose
coefficient trace is

trb(x',f,Dn ) + Tr q(x', e'), (x',~') fixed. (2.21)

Conversely, let T be a tra.ce on Ba. Applying Lemma 2.4, there exist tra.ces Tl and T2 such
that

(2.22)

The functional T2 is a trace on ,!!OO(8M)/'lJ-OO (8M); hence, Wodzicki's result shows that
there exists a consta.nt c E C such that T2 = C res. Since by assumption T is a tra.ce

13



on Bo, (2.14) bolds and shows tbat, for all trace symbols t and potential symbols k,
'TI(kt) = eres (tk). Hence the functional 'T - eres 8M vanisbes on a.ll elements of tbe form

(2.23)

for all potential symbols ki , k, all trace symbols ti, t and all pseudo-differential symbol q.
Since tbe set of such elements is dense in Bo (see properties (1)-(2)-(3) after Lemma 2.1)
and since tbe trace 'T is continuous, one has 'T = C res 8M • ~

Remark. In case 8M consists of finitely many components, the preceding proof shows
that we may pick a constant factor for each component.

Next we consider the subalgebra B. ~ B.
We use the notation of (2.7) and set for a pair P = {Pi(X, {), Pb(X', e)} E B.

res P = r resrPi(x, {) - 21r r resr/(tr b(x', (, Dn ) + Tr q(x', e')). (2.24)1M IBM

Theorem 2.5 For any P, Q E B.

res (P, Q] = O.

Proof. Note that, in general, neither of the two terms in (2.24) vanishes on commutators.
First let us compute the contribution of the interior symbols. In view of Wodzicki's
theorem it is sufficient to prove Theorem 2.5 for symbols supported on a boundary chart.
Using Lemma 2.1 and formula (1.6) we obtain after a straightforward computation

r resr[Pi,qi] = - r r (100

(Bn)_n den) u'dxI/\."/\ dXn_l.
~ hMk, -00

where, as in Section 1, S' is the (n - l)-sphere with volume form u'. Since the symbols
pi, qi do not depend on X n the only nonvanishing term of (2.6) is that with m = j = 0, so

Now for the boundary symbol part. Deuote the entriee; of the matrix Pb by b1, klJ tI, qI,
those of qb by ~,k'J, t'J, q'J. Considering the representation (2.8) for the compositioo of the
boundary symbol operators aod the fact that res is a trace on Bo, we conclude that the
contribution by Pb 0' qb - qb 0' Pb is zero. The only terms that may contribute are those in
the difference 91 (x', e, Dn ) - 9'J (x', e, Dn ) where

91 (Dn) = L(pi' qi) + pt(Dn)~(Dn) + bt(Dn)qt(Dn) and

9'J(Dn) = L(qi,Pi) + qt(Dn)bt(Dn) + ~(Dn)pt(Dn).

We will show the following identities:

Jres~,{pt(Dn)~(Dn) - ~(Dn)pt(Dn)} - 0,

Jres.,. {bI (Dn)qt"(Dn) - qt(Dn)b1(Dn)} = 0,

J res~,{L(p;, q;) - L(q;,Pi)} - 2~ JM reS.,[Pi, qi).

14
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Let us start with (2.26). We have the foHowing asymptotic expansion formulas for the
symbols Cl and C2 of the compositions pt(x',~',Dn) 0' ~(x',~',Dn) and ~(x',e',Dn) 0'

pt(x',~',Dn),cf. [5, Theorem 2.7.4, ~,3°].

(X) ";

Cl (x', e', en, '1n) f"W L 1'1 ntn{~n {~nPi(X', O,~', en) 0' ~(x',e', en, '1n)} }; (2.29)
;=0 ).

C2(X', {', en, fln) ~ f: (j~)j n;;J~nbl(X', {', en, fln) 0' aLpi(X', 0, {', flnn· (2.30)
,=0

Since Pi is independent of X n elose to the boundary this reduces to

and
C2(X',e', en, '1n) f"W n;n {~(x',e',en,'1n) 0' pi(X', 0, e','1n)},

respectively. For the associated symbols Cl and C2, cf. (2.10), we then have

Cl (x', ~') - n~n (nt {pi(X', 0, e', en) 0' ~(x',e', en, 71n)} 171n=(n)

= n~n ({pi(X', 0, e', en) 0' ~(x',e', en, 71n) I71n=en ),

since nZn {pi(X',O,e',en) 0' ~(x',e',en,'1n)l71n=en}E H-, where n' vanishes. In particular,
we have, according to (2.11),

(2.31 )

Similarly,

(C2(X', ())-(n-l) - n~n(l1;n {~(x',e',~n,71n) 0' pi(X', 0, e', 71n)}I71n=en)-n

= n~n(~(x', e', en, 71n) 0' pi(X', 0, e', '1n)l71n=(n)-n' (2.32)

This time the reason is that (ntn {~(x' , e',en, 71n) 0' Pi (x' , 0, e',71n)}171n=(n )-n is a function
in H+ n L] (R), where II' also vanishes (recall that n > 1 and that the subscript -n
denotes the component of homogeneity -n). We therefore have

r resx , {tr Cl (x', e', Dn ) - tr C2 (x', e', Dn )}
IBM

- II~n [ resx,{pi(X',O,e',en) 0' b~(x',e',en,en)- ~(x',e',en,~n) 0' pi(X,O,e',en)} = 0IBM
by Theorem 1.4. This proves (2.26). It also proves (2.27), since the situation there is
completely analogous.
Hence consider (2.28). The leftover terms depend only on the behavior of tbe interior
symbols nea.r the boundary. In view of the fact that those stabilize near the boundary by
assumption, we mayas weH assume that both Pi and qi are independent 01 Xn' Then the
action of pt(x', f, Dn ) : H+ ~ H+ is simply given by

(2.33)

similarly for qi. Moreover,
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Again, we have omitted x', e', and denoted by qi(Dn ) : H+ ~ H- the operator given by
qi(Dn)h = n-(qh), analogously to (2.33). The standard expression for the symbol of this
leftover term, cf. [12] or [2] is not helpful for our purposes. We therefore shall now derive
a new representation. Keeping (x',e') fixed, we let r = r(en) = nfnPi(x',O,e',en) and
q± = q±(en) = ntqi(x' , 0, e',en) be the projections of the interior symbols on H+ and
H-, respectively, not to be confused with the operators Pf(Dn ) and qt(Dn ).

Applying the operator qi(Dn ) to a function h E H+ and observing that n-(q+h) = °we
obtain

slnce
q-(e~) f 1. h«)d( = 0,

21rt Jr+ ( - en - 10

noting that h E H+. A similar argument applied to tbe function v = II- (q- h) E H­
yields

(2.34)

and
b .. = _1_ f ÄC f (p+«() - p+(en)) 0' (q-«() - q-(~n)) d( (2.35)

P.q. (21rP Jr+ ~n Jr+ «( - ~n)2 •

Considering the inner integral shift the contour r+ to a contour rt in the upper half-plane
so that rt is inside r+. Then the inner integral is equal to

and the second term vanishes being analytic inside rt. Integrating the first term over
en E r+ we may calculate the integral by means of the residue at the pole en = ( yielding

Similarly an integration by parts gives

16



Thus,

(2.36)

slnce

ll' ( + 0' 8
q+) = n' (p- 0' 8

q-) = o.
P aen

-n aen
-n

Notice that we could interchange the order of P- and 8(nq+ as a consequence of Theorem
1.4. Using formulas (2.24), (1.6) and (1.8), one obtains at onee (2.28). This completes
the proof of Theorem 2.5. ~

For the algebra. B, there is no uniqueness property of the noncommutative residue. Ex­
amples of trace funetionals not coinciding with res P may be constructed as follows. For
P = {pi, Pb} take Pi Ixn=O = Pi(x' , ~', ~n). The variable ~n is globally defined so that for
any k = 0,1,2, ... we have a symbol on 8M defined by

and we may define
(2.37)

taking the noncommutative residue of the symbols ak on 8M. It ia easy to verify that
these functionals are really traces on B,. The reason is that the restriction map

ia a an algebra homomorphism from B, to the algebra. of classical pseudodifferential oper­
ators on aM (under the assumption that Pi does not depend on X n near the boundary),
and any trace on the restricted algebra will serve as a trace for the whole algebra B,.

3 The Noncommutative Residue on Boutet de Mon­
vel's Algebra

Now we consider the full algebra B. An operator P E 8 will be identified with its symbol, a
pair {pi, Pb}, consisting of the interior symbol Pi and the boundary symbol Pb as introduced
in Section 2. We define the noncommutative residue by the same formula (2.24) as in the
case of B,. As before reSxpi and res,rlPb are densities on M and 8M, respectively, since
the change of variables on a boundary ehart does not affect the variables X n and en.

Theorem 3.1 The residue (2.24) is a trace on the algebra B.
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Proof. Let P and Q be operators in B with symbols {p"Pb} and {q" qb}, respectively.
In order to show that res[P, Q] vanishes we will use the same set-up and notation as in
the proof of Theorem 2.5; we suppose that all symbols are supported in a boundary chart
and that the boundary symbols Pb and q" are given by matrices as in (2.7) whose entries
we denote by bt, k), t), q) and ~,k'l, t 2, q2, respectively.
Of course we can rely on what we showed in the proof of 2.5. Since now Pi and q,
may depend on Xn, we will have to revise (2.25). On the other hand we know that the
noncommutative residue is a trace on the ideal Ba C B of all operators with zero interior
symbol. So the contribution of Pb 0' q" - q" 0' P" will va.nish again, and it will suffice to
show the identities (2.26), (2.27), and (2.28) using the composition formulas (2.29) and
(2.30), plus an asymptotic expansion formula for the symbol of the leftover term in the
xn-dependent case, cf. (3.1), below.
In analogy to (2.31) we get

00 .,

(CI (x', f))-(n-I) - L ;! rr~n { {öfJ~nP;(x', 0, e, tn) 0' ~(x',e, tn, 7Jn)]} I.n=en Ln
)::;;;0

00 .

'"'" (-i)J , {{ a!. (' , )' &!. 1..( " )} I }
rv ~TTIen rnPi X ,o,e ,en 0 'lnV2 X ,e ,en, '1n 'Jn::;;;en -n'

)::;;;0

Here we have made use of an induction on j and the following identity

together with the fact that IIen (8~n a(en, en)) = 0.
Similarly,

(C2(X',f))-(n-l) - f (j~)j rr~n { {(y"~(x',e,tn,7Jn) 0' ~nPi(x',o,e,tn)}l.n=eJ_n
)::;;;0

so that

by Theorem 1.4 for aM.

Now for the leftover terms. In the xn-dependent case we will have to replace (2.34)
according to [5, Theorem 2.7.7] by

Abbreviating a = ~np,lxn::;;;o, and b= a:,na~~mqilrn::O' each term bab under the summation
in (3.1) denotes the singular Green symbol obtained from the xn-independent symbols a
and b by (2.34). Writing a± = II±a, b± = rr±b we have
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Witb tbe airo of eventually cornputing bpiqi we put 1]n = en, rnultiply by (211'")-1, and
integrate over {n E r+. We obtain, using integration by parts,

bab __1_ f tIe f &! a+(() - a+({n) 0' amb-(en) - b-(() d(
(211'")2 Jr+ n Jr+ en ( - {n en en - (

_ (-I)i f ~n f a+(() - a+({n) 0' am+i b-({n) - b-(() d(.
(27r)2 Jr+ Jr+ ( - {n e" ~n - (

Trus integral rnay be simplified similarly to (2.35). For tbe integration over (sbift tbe con­
tour r+ to a contour ri inside r+ and note that for fixed ~n, tbe function a;:.+i b-(e;1=~-(')
is analytic in the upper half plane {Im ( > O}. We get

bab = (-I)i f d~n f a+(() 0' 8r:+i b-(en) - b-(() d(
(27r)~ Jr+ Jr+ ( - {n ~n en - (

1

(-I)i+1i i am+i+1b-(()d(
= a+(() 0' , d(

21r r+ (m +j + 1) .
I

For tbe second equality we have interchanged tbe order of integration and applied Caucby's
theorem for fixed (. The identity is most easily checked using that

8e:+jb-(~e~=~-(() = 8e:+j [(8(nb-)«( + IJ(~n - ())dIJ.

Thus,

bpiqj = -2
1 f bpiqi(en,en)d{n
11" Jr+
~ i;+I+m+1 (-1 )m+;+1 1 i . +' , ,'+m+;+l m+l -, ,

l"'oJ Li 'I' "' ( +. + 1) -2 a::nPi (x ,O,e ,en) 0 8e... 8:r: ... qi (x ,O,e ,en)den'.,m. .J. m J 11' r+
J, ,m=O

The notation should be obvious: we let pr(x', 0, e', en) = rrfnPi(x', 0, e', en) and qr(x', 0, e', en) =
rrtqi(X', 0, e', en).
We need to calculate the surn

(-l)m
L m! I! (m +j +1)'m+l=k

To this end consider binomial formula

(1 - t)k = k! L (-~)~ tm.
I

L m.l.
m+=~

Multiplying by t; and integrating over [0,1] we obtain

( l)m 11 k' .,, - _ i _ k _" _ .J.
k. L 11' ( "1) - t (1 t) dt - B (J + 1, k + 1) - (k . ), .

I m . . m + J + 0 + J + 1 .m+=k

Substituting this result we get

~ (-1 )i+
1
ii+

k
+

1
rr' (i:U +(' 0 t' t) ,~+k+18k -( , 0 t' t ))bpiqi = !--' (" + k + I)! en ~nPi x, ,~, ~n 0 uen :r:n qi x, ,~, ~n

J,k=O J

00 ( ");+k+l- L (j-.: k + 1)! neo (~n8%.p;(x', 0, e, ~n) 0' a:~18~nqi(x', 0, e, en)) .
J,k=O

19



Similarly,

~ (_i)i+
k
+
1

TI' (a!. ak +( , °t' t) , m+1ak -(' 0 t' t ))
~ (i + k + I)! (n Zn (n qi X, ,~, ~n 0 en znPi X, ,~, ~n

J,k=O

00 { ');+k+l
- -;E (j-.;. k + 1)!I1(n <a::-1

;p"nQ7(x',O,e',e..) 0' a:nÖ~nPi(x',O,e',e.. )).
1,.1:=0

Thus,

In the last expression we may interchange the order of at: l 81:nqt(x', 0, e, ~n) and

aina:npi (x', 0, e', en) as a eonsequenee of Theorem 1.4. With the eonsiderations justi­
fying (2.36) we then eonclude that

[ (resz ' b piqj - resz , bqjpJ (3.2)
IBM

_ 1 { { {OO (X) ( _i)i+k+1

2'11" IBM 1s.1-00 ;~o (j +k+ 1)!

(at:natPi(X', o,~', en) 0' a1~1a;nqi(X', 0, e', en)) -n den er' dXl 1\ ... 1\ dXn-l

sinee the ++ and -- parts vanish after integration with respeet to en'
Now the representation of the eommutator Pi 0 qi - qi 0 Pi in (2.6) together with (1.6)
shows that (3.2) eoincides precisely with

Henee the sum of both is zero, aod we have proven the theorem.

Unlike in the ease of 8 6 , the noneommutative residue is the unique eontinuous traee on
the full algebra 8.

Theorem 3.2 Denote by 8 Boutet de Monvel's algebra on M as introduced in Section
2. Then any continuous trace on B coincides with the noncommutative residue res up to
a constant factor.

Proof. Let Tr be a eontinuous trace funetional on B. Choose a boundary ehart U that
intersects only one component oI8M. Denote by 8 u ~ B the ideal of those elements whose
interior symbol has support in U aod whose boundary symbol has support in U n 8M.
By 8f denote the subset of those elements with zero interior symbol. Restricted to Bf
the trace Tr must coincide with CU res for a suitable constant cu. This is a coosequence of
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(3.3)

the considerations for the uniqueness part in the proof of Theorem 1.4 together with the
fact that there is only one continuous trace on the algebra of boundary symbol operators,
established in the proof of Proposition 2.3. Then Tr' = Tr - CU res is a tra.ce functional
on BU vanishing on the subalgebra B~.

Clearly, Bft is a two-sided ideal in BU , so Tr' is a.ctually defined on the algebra BU / B~.

This quotient is understood purely algebraically (no topology on BU /Bf is required);
moreover, it obviously can be identified with the algebra of all interior symbols supported
in U. Without lass of generality we may assume that U ia an interval in IG.. It therefore
follows from the lemma, below, that any trace functional on this algebra ia trivial. Thia
yields the assertion of the theorem. U

Lemma 3.3 Let U =] - 1, l[n-l x[O, l[e IG.. Denote by C the algebra 0/ a11 classical
pseudodifferential symbols with x-support in U that satisfy the transmission condition al
X n = O. Then any trace on C vanishes as a consequence 0/ the /ollowing three assertions:

(a) We have C = [C ,C] + Co, where Co denotes the subalgebra 0/ all eIements 0/ C
vanishing identically in a neighborhood 0/ {xn = O}.

(b) Let Tr' be a trace on C. Then Tr' = c res /or a suitable constant c.

(c) The constant in (b) is necessarily 0.

Proof. (a) Let p be an arbitrary classical symbol with the transmission property. We may
confine ourselves to the case where p(x, e) vanishes for x outside [-1/4, 1/4]n-l x [0,1/4].
Choose a smooth function a ;::: 0 on [0, oo[ with a(t) =1 for 0 ~ t ~ 1/3 and a(t) =0
for t ;::: 1/2. By fn denote a symbol with the transmission property which is equaI to en
for x E [-1/2, 1/2]n-l x [0,1/2] and vanishes for x outside a compact set in U.
Let q(x,~) = a(xn) J;n p(x', t, e) dt. Then q is a classical symbol with the transmission

property. The symbol of the commutator [ifn, q] is

8rnq(x,~) = p(x, 0 +8rno:(xn ) [" p(x', t, 0 dt

This gives the desired decomposition.
(b) Let Tr' be a tra.ce on C. The restriction of Tr' to Co is a trace, and according to the
considerations in the proof of Theorem 1.4 it coincides with cres for a suitable constant
c. We conclude from (3.3) and the fact that Tr'8:r:nq = 0 that

Tr'p = -cres (8rnQ(Xn) l''''' p(x', t,~) dt)

- -c fXJ 8:r:n a (xn )dxn { (1 (CO P-n(x',t,e)dtt7e) dXl' .. dXn-lJo JRn-l 5 Jo
= cresp.

(c) In order to see that c vanishes, choose a homogeneous function h(e) of degree -n with
fs h(e) t7e =I 0 that satifies the transmission condition; it is well-known that such functions
exist, cf. [12, Section 2.3.2.4]. Then pick ß E C~(] - 1/4, 1/4[n-l, [0, 1]), not identically
zero, and let p(x',xn,e) = a(xn)ß(x')h(e) with the function er introduced in (a). Define

q(x,e) = -100

p(x', t,e) dt.
Zn
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Clearly, the symbol q satisfies the transmission condition and, in the notation of (a),

[ifn, q) = 8zn q = p. This implies that Tr'p = 0, while, by construction, res p =/:. O. Heuce
c = O. ~

Remark. What we have implicitly used in the proof of the Theorem is, of course, the fact
that the first Cech cohomology group with compact support H:ompact([O, 00), R) = {O}.
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