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Abstract

We construct a trace on the algebra of all classical elements in Boutet de Monvel’s
calculus on a compact manifold with boundary of dimension n > 1. This trace
coincides with Wodzicki’s noncommutative residue in case the boundary is empty.
Moreover, we show that it is the unique continuous trace on this algebra up to a
constant.
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Introduction

Let M be a closed compact manifold. Denote by ¥* the algebra of all classical pseu-
dodifferential operators on M with integral order and by ¥~ its ideal of all smooth-
ing pseudodifferential operators. The noncommutative residue is a trace on the algebra
A =U%® /P~ je. asurjective linear map

res : A — C,

which vanishes on all commutators: res (PQ — QP) = 0 for all P,Q € A. In fact, this
trace, res, turns out to be the unique trace on this algebra, up to a multiplicative constant,
provided that the manifold is connected and of dimension higher than 1. It is given as an
integral over a local density, res;, on M.

For one-dimensional manifolds, the noncommutative residue was discovered by Manin
[10] and Adler {1] in connection with geometric aspects of nonlinear partial differential
equations. In this situation, the algebra A can be viewed as the algebra of formal Laurent
series in the covariable £ € R, and the local density res, indeed takes the form of a
classical residue: it is the coeflicient of ¢!, For arbitrary closed compact n-dimensional
manifolds, the noncommutative residue was introduced by Wodzicki in [14] using the
theory of zeta functions of elliptic pseudodifferential operators. Later, Wodzicki gave a
more geometric account based on the theory of homogeneous forms on symplectic cones
[15). In this framework of symplectic cones, Guillemin had independently discovered the
noncommutative residue as an important ingredient of his so-called ‘soft’ proof of Weyl’s
formula on the asymptotic distribution of eigenvalues [6).

Meanwhile, the noncommutative residue has found many applications in both mathemat-
ics and mathematical physics. A detailed introduction to the noncommutative residue

1



together with its mathematical consequences was given by Kassel in [8]. For applications
in physics cf. e.g. Connes [4], Radul [11], Kravchenko and Khesin [9).

In the present paper, we introduce a noncommutative residue for the operators in Boutet
de Monvel’s algebra on manifolds with boundary. More precisely, let M be a compact
connected manifold with boundary of dimension n > 1. Denote by B™ the algebra of
all operators in Boutet de Monvel’s calculus (with integral order) and by B~ the ideal
of the smoothing operators. We then construct a trace on the quotient B = B>®/B~>,
Moreover, we show that this trace is the only continuous trace on B. As in [15] we work
directly at the symbol level. We avoid zeta function techniques, primarily, because the
known results are not sufficiently good for our purposes. Computations of the Hochschild
and cyclic homologies of B* /B~ will be the subject of a forthcoming paper in the spirit
of Brylinski-Getzler [3].

The paper is organized as follows. In Section 1 we give a simplified proof (see Theorem
1.4 and formula (1.8)) for the existence and uniqueness of the noncommutative residue
on a compact manifold without boundary. Section 2 starts with a short review of Boutet
de Monvel’s algebra B. We then consider two natural subalgebras of B: the algebra By
of all operators with vanishing interior pseudodifferential symbol, and the subalgebra B,
of all operators whose interior pseudodifferential symbol stabilizes in a neighborhood of
the boundary. We define (see formula (2.13)) an analog of the noncommutative residue
on By and show that it is the unique continuous trace on By, cf. Proposition 2.3. We
can extend this trace to B,; however, this extension will no longer be the only trace on
B,. In Section 3 we finally treat the general case. We define the noncommutative residue
on B (see formula (2.23)). We prove in Theorem 3.1 that this noncommutative residue
is a trace on B. In Theorem 3.2, we prove that it is the unique continuous trace up to a
multiplicative constant. This is achieved by using the uniqueness property in By and by
proving that there is no trace on B/B,.

1 Wodzicki’s Residue on a Closed Compact Mani-
fold

In this section we recall the construction of the noncommutative residue for a closed
compact manifold. We will need some lemmata on homogeneous functions on R" \ 0.
Let R™ be the standard oriented Euclidian space, n > 1, with coordinates £;,£2,. .., &
A smooth function p({) on R"\ 0 is homogeneous of degree A € R if for any ¢t > 0

p(t¢) = t'p(¢). (1.1)
Euler’s theorem for homogeneous functions states that then
n ap
—— = Ap; 1.2
; EJ 6{, ( )

this follows by differentiating (1.1) with respect to ¢ and setting ¢t = 1.
Consider the n — 1-form

o= (-1Gde AL NdE N Ny,

i=1



where the hat indicates that the corresponding factor has been omitted. Clearly, do =
ndfy Adéa A ... AdE,. Restricted to the unit sphere S = S"~1, & gives the volume form
on S,

Lemma 1.1 For any function p_,(€) which is homogeneous of degree —n the form
P-n0 18 closed.

Proof. We have

Op_n
d(p-n0) = Z gf: dé; Ao + p_ndo

Zag{—"f:dfl’\d&/\ Ndéy+np_ndét AL AdE, =0
2

by Euler’s theorem. 4

/S P-n0 (1.3)

over the unit sphere oriented by the outer normal. For a bounded domain D C R"

containing the origin,
/ P-n0 = / P_nO (1.4)
8D s

since the form p_, 0 is closed. Here we suppose that 0D is also oriented by the outer
normal, otherwise we have to change the sign in (1.4).

Consider the behavior of (1.3) under a linear change of variables. Let ¢ be a linear map,
and let 7 = g€. Using (1.4) with the proper sign we get

/Sp-n(n)an = ifsp-.n(n)% = iLg‘(p-n(n)an) (1.5)
- /S P_n(9€)(g"0)gt = | det g] /S Ponl96)st,

since under the linear change we have

=1

We will consider the integral

(9°0)e = det g oge.
Equality (1.4) also holds for some unbounded domains D. We will need the case when D is

the cylinder {£{ € R™: |¢'| < 1, €. € R}. Here, & = (&1,63,...,€a-1) € R™1. Denoting
by §’ and ¢’ the n —2-dimensional unit sphere and the corresponding n— 2-form we obtain

from (1.4) )
/S P = ]S | ( / i P-n(ﬁ',fn)dfu) o' (1.6)

The orientation of S’ is completely defined by this equality.

Lemma 1.2 Let p_, be a derivative

-9
Pon = a&P-(u-l)a

where p_(n_1) i5 @ smooth homogeneous function on R™\ 0 of degree —(n —1). Then

/p-na =0.
s
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Proof. Without loss of generality take k = n. Then by (1.6)

Jpao= [ ([ Zaetae) o=

since the inner integral is equal to
p—(n—l)(f's 00) - p-(n—l)(f'v —OO)
and p_(,-1) vanishes at infinity. i

Lemma 1.2 raises the question as to whether a homogeneous function may be represented
as a sum of derivatives.

Lemma 1.3 Let p be a homogeneous function on R"\ 0. Each of the following con-
ditions ts sufficient for p to be a sum of derivatives:

(i) degp # —n.
(ii) degp = —n and [Gpo =0.
(iii) p = £28Pq where g is a homogeneous function and |B| > ||

Proof. (i) If degp = A # —n, then

DI K/ S

by Euler’s theorem.
(i1) On the unit sphere S consider the equation

Agq = P|s

where Ag is the Laplace-Beltrami operator, and p|g denotes the restriction of p to S. This
equation has a solution since p|g is orthogonal to Ker As which consists of the constants.
Denoting |¢| by r and applying the Laplace operator

=, 9? 1 8(,,0 1
8= gm = ) * s

i=1

to the function r,,—l_;q we obtain

1 1 1

from which the second statement follows.
(iii) Let 8° = 2-8”. Then

g ace
=§¢*—d"¢= *g" ——0d,
p=E5g0= 3, (E q) - a5
and the case of multi-indices a, f is reduced to the case a — {5}, v with |y| = |B] - 1.
Hence, the third statement follows by induction. §
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Now let M be a closed compact manifold of dimension n > 1. Consider the algebra A =
Yo /P~ where U™ denotes the algebra of all classical scalar-valued pseudodifferential
operators on M and ¥~ its ideal of smoothing elements. We assume all orders to be
integers. Let U be an arbitrary local coordinate chart. An operator P € ¥* of order
m € Z on U C M is defined up to a smoothing operator by its ‘symbol’

p(:t:,f) ~ me—j(z,f); (17)

this is an infinite formal sum of functions px(z,£) on U x (R™\0), which are homogeneous
in £ of degree k,k =m,m —1,... . The present version of symbol differs from the usual
notion of the complete symbol only by a term of order —oo, but it is sufficiently precise
for our purposes.

The form dz; Adxzy A ... A dzx, defines an orientation of U and induces the orientation of
R} given by dé; A déy A ... A d€,. For P € A with symbol p we define the local density
res; P,z € M, by

res; P = (] p_,,(:z:,f)ar) dzy Adza A ... Adz,. (1.8)
S
The definition of the noncommutative residue and its properties are given in the following
theorem.

Theorem 1.4 (Wodzicki) FEzrpression (1.8) is a density on M not depending on the
local representation of the symbol, so that

resP=/ res, P (1.9)
M

is well-defined.
Forany P,Q € A
res[P,Q] =0, (1.10)

hence the noncommutative residue is a trace on the algebra A.
Any trace defined on the algebra A coincides with the trace res up to multiplication by a
constant.

The case of pseudodifferential operators with values in sections of vector bundles over M
is an easy consequence, cf. Remark 1, below.

Proof. Under a change of variables £ = f(y) the symbol p(z, ) transforms to a symbol
P according to the formula

By, F'®)6) ~ D 9p(f(¥): E)pa(y, ), (1.11)

lal20

where ¢, (y, ) are polynomials in ¢ of degree < |a|/2 and ¢y = 1 (see Hormander (7],
formula (18.1.30)). Using (1.5) and (1.11) we get

[ pntwmion = et £ JERCR O (112)
S S
= ldet f ) / (@ (¥), )pa (¥, £))—n0

lal20

= |det f'(y)] L pon(f(¥),E)o
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since the terms with |a| > 0 do not contribute to the integral in virtue of Lemma 1.3(iii).
The transformation law (1.12) shows that expression (1.8) is indeed a density on M, so
that (1.9) is well-defined.

We may proceed considering the operators whose symbols have supports in a fixed coor-
dinate chart. The general case may be reduced to this special one using a partition of
unity since the density res. P does not depend on the choice of local coordinates.

To prove (1.10), consider two operators P, Q with symbols p and ¢ supported in a coor-
dinate chart U. Without loss of generality, we shall assume that U is diffeomorphic to an
open ball of R". The symbol of [P, Q] is given by

iyl
Z( % agp oz - opaazn). (1.13)

o!
lal20

This expression may be represented as a sum of derivatives

2 T (1.14)

=1

where A; and B; are bilinear expressions in p and ¢ and their derivatives. In particular,

they have compact supports contained in U. Thus, the integrals over S of ( 36 A)

vanish by Lemma 1.2, while the integrals of (a—:ij) over U vanish, since all B; have

compact support in U. This proves (1.10).
We will need the explicit expressions of A; and B; for the terms in (1.13) with |a| = 1,
that is

a_pﬂ_ aq ap = —3 - i 3q 0 aq
Z 3¢, Bz, 06 Ozx 'g 3%, (Pazk) ~ 3z (Pa&) . (1.15)

Finally, to prove uniqueness, consider an operator P with symbol p supported in a coor-
dinate chart U and let Z; and §; denote any symbols with supports in U coinciding with

z; and §; on the support of p. Then, taking ¢ =7, or ¢ = £; in (1.15), we obtain

_iop.
"¢’

Given a trace 7 on the whole algebra of complete symbols the equalities (1.16) imply that

(gé) (g:;) =0 (1.17)

since the tra.ce must vanish on commutators. Let p ~ EKM pr € /¥~ and define
Poa(z) = Wls fs p-n(z,€)0e. Applying Lemma 1.3 (i) to pi for all k # —n, there exist

- ~ .0
[p, %5 = . &) = an (1.16)

n functions qk (:1: €), 1 £ j < n, homogeneous of degree £ 4+ 1 in £ such that pp =
ZKK“ 3(,(},: Define, for all 1 £ 7 < n, b;(z,§) ~ ZKM b q(-’) One has

P(2,6) = P(@)EI™ = ) 9,32, &) + (p-n(z, ) — P (=) €] ™) -

i=1



Since

/g (Pn(2,€) — P (@)lE| ™) = 0

Lemma 1.3 (ii) shows that the expression (p_n(z,£) — P=n(2)|é|™) is a (finite) sum of
derivatives in the variable {. Putting this together, it follows that

7(p) = r(p=a(=)KI™").

Now, the map C§°(U) 3 f - p(f) = 7(f|¢]™") defines a C-linear form on CP(U); it fol-
lows from (1.17) above that p(9;;f) =0forall 1 < j < n and f € Cg°(U). Hence, since
U is diffeomorphic to an open ball of R", there exists ¢ € C such that u(f) = c [, f(z)dz
for all f € C§°(U). i

Remark 1. The theorem remains valid for pseudodifferential operators acting on sections
of vector bundles over M, if we replace p_,, by the matrix trace Trp_,,. Thus, in the general
case, the definition of the noncommutative residue will read

resP:[ /Trp_,,(:z:,f)crf dry A ... Adz,. (1.18)
MJs

Remark 2. As may be seen from the proof, no continuity condition is required for the
uniqueness of the noncommutative residue.

2 Boutet de Monvel’s Algebra

Let M be a compact manifold with boundary M and dimension dimM = n > 1.
In a neighborhood of the boundary we consider local coordinates z’,z, where z/ =
(21,-..,Zn—1) are coordinates on dM and z, is the geodesic distance to M in some
Riemannian metric. So, any boundary coordinate chart U is diffeomorphic to the closed
half-space RT = {z, > 0}, and transition diffeomorphisms change z' € R*"! = 3RE
only, while z, remains unchanged.

For a detailed introduction to Boutet de Monvel’s algebra see Boutet de Monvel [2], Grubb
[5], Rempel-Schulze [12] or Schrohe-Schulze [13]. In the following we will give a review of
some basic facts we need.

By B let us denote the algebra of all operators in Boutet de Monvel’s calculus of arbitrary
(integer) order and type; by B~ denote the ideal of all regularizing elements of arbitrary
type in B*®. We will be interested in the algebra B = B*/B~*. This quotient can be
viewed as the set of all pairs {p;, ps}, where p; and p, are called the interior and boundary
symbol, respectively.

In order to introduce the interior and boundary symbols we need some preparations. By 6
denote the characteristic function on the half-line R} in R: 8(t) =0fort <0, 6(t)=1
fort > 0.



H* is the space of all Fourier transforms of functions of the form fu,u € S(R). It
consists precisely of all functions A € C*°(R) which have an analytic extension to the
lower complex half-plane {Im({ < 0} and an asymptotic expansion

MO~ & (2.1)
k=1

as |{| = o0, Im({ <0, that can be formally differentiated.

Similarly, Hy is the space of all Fourier transforms of functions of the form (1 — )u,
with u € S(R). It can be characterized as the space of all functions in C*°(R) that have
an analytic extension into the upper half-plane {Im¢{ > 0} and an asymptotic expansion
(2.1) as |{| = o0, Im({ > 0, that can be formally differentiated, cf. [12], Section 2.1.1.1.

Finally, H' is the space of all polynomials. We let H~ = Hy @ H' and H = H*® H~. By
Ii* (resp. II") we denote the projections onto H* (resp. H~) parallel to H~ (resp. H*).
For calculations it is convenient to think of H as a space of rational functions having no
poles on the real axis (these functions form a dense set in the topology of H). On these
functions, the projectors [I* may be represented by Cauchy integrals

1 h{1s)

*h) () = F— / —————d1)s,,
( Jn) :F21n r+ Mn— €n £ 10 "

where I't is a contour consisting of a segment of the real axis and of a half-circle sur-

rounding all the singularities of k in the upper half-plane. Introduce also the functional

Il on H, defined by

Wh= lim (F'A)(z.) = / M) dEn

::"—00

For rational functions the contour I'* may be shifted slightly into the upper (lower) half-
plane. Clearly, IT' vanishes on the subspace H~. For functions h € HN L!(R) the integral
may be taken over the real axis instead of I'*. Moreover, if h € H*NL'(R), then IT'A = 0,

because A is holomorphic in the lower half-plane with an estimate |A(¢,)] = O ﬁ)

Let us now focus first on the interior symbols. The interior symbols are classical pseudod-
ifferential symbols in the sense of Section 1, cf. (1.7), except that the coordinate z varies
in R} for boundary charts. Moreover, they have the transmission property. For a classical
pseudodifferential symbol p with an asymptotic expansion p ~ )" p; into homogeneous

terms p; of degree ! this means that in every boundary chart we have
Dg.DE pi(2,0,0,+1) = ™D D2 DX p(2,0,0,-1)

for every multi-index a and all k € N, cf. [12], Section 2.2.2.3. In particular, we will then
have Dg, D% pi(z',0,¢',&,) € H as a function of ¢, for all fixed (z/,¢) € T*OM \ 0.

We make the following observations.
In a boundary chart the composition formula for interior symbols on M takes the form

o0

pl(x', zmﬁf:gn) OPZ(x’aImE’afn k' (22)
k=0



where o’ means the composition of symbols on M and z, as well as £, are regarded as
parameters, that is
nom=Y

|aj>0

—)lel

30!’?1 3::1’2- (23)

Using representation (2.2) we obtain the following formula for a commutator in a boundary
chart.

Lemma 2.1

7] d
[p1,p3] = Z( ) (851,05, pa) + 3+ g B (2.4)
k=0
Here [, denotes the commutator with respect to o',
(_i)m-i-.‘l'-i-l o
A“= Z> ma’a no 66 aJ+1 (2.5)
m,j>0
and
m+J+1 1) m+1
Zma’a p o O7t8 pa (2.6)
m,j>0
Proof. Straightforward calculation. 8

In particular, the terms in (2.5) and (2.6) with j = m = 0 give (1.15).

Next we describe the boundary symbols. The boundary symbol is a family of operators
parametrized by T*0M \ 0. In a local chart on M it has the form of a 2 x 2 matrix

b(x” E” D") k(z's f’v Dn) 1 gt »
( t(.‘n', E" Dn) Q(zl,f') ) s (I ,{ ) €T OM \ 0. (27)

. h . . .
It acts on pairs of the form ( v ) , where h € H* is in general vector-valued, and v is a

vector in C*. The entries of the above matrix (2.7) are operators given again by symbols
b=b(z',€,&n, 1), k= k(z',€,€n),t = t(2', &, &n), and ¢ = g(2', '), respectively. First of
all, these symbols are formal sums of jointly homogeneous smooth functions with respect
to all the variables except for z’. So,

b(x'i E”ﬁmnn) ~ Z b((x’, Fifﬂ’ﬂﬂ)ﬁ

—oogi<m

K06 ~ D k(€6

—-oo<i<m

Ha'€hb) ~ Y h(@hE ),

—co<i<m

Q(J:l: 6’) ~ E ql(a:'afl)v

—oogi<m



where, for A > 0,

/\‘bl(zly ffs fm Un)’

kl(z’v '\'f's ’\fﬂ) A’kl'(:':’, E's en)a

bz, M M) = AN(2', €, 4),
91(3’, Af’) = Alq:(ﬂi', f’)

Under a change of variables on M they obey the same rule (1.11) as symbols on M,
that is with respect to the variables z’,¢’, the extra variables £,,n, can be considered as
parameters. In order to state the additional properties of the symbols and the way they
act we consider them separately.

bi(z', A, Ay Aa)

(1) The symbol b is called the singular Green symbol. For every ! and fixed z’, ¢’
61(3'7 5’, €as nn) € H+®,H_

(where as usual &, denotes Grothendieck’s completion of the algebraic tensor prod-
uct). The operator b(z’,¢',Dn) : HY — H? is given by

[b(z', &', Dn)k](€n) = TI; (6(=", €', §ns 1n) (7m0 ))-

Singular Green symbols on M form an algebra under composition; this algebra is
denoted by G.

(2) For fixed z',¢', each component ki(z',{’,€n) of the potential symbol k(z',¢, &)
belongs to H* @ (CF)* with respect to &,. The operator k(z’,¢',D,) : CF - H*
acts on v € C*¥ by multiplication v — k(z',¢', & )v € H*.

(3) For fixed z’,¢’, each component ¢,(z’, &', €,) of the trace symbol t(z', ¢, €,) belongs
to H~ ® C* with respect to £&,. The operator #(z',¢', D,) : Ht — CF acts by

t(z',¢', Da)h = TU(t(, €', €2) A (£n))-

(4) The symbol q¢ = ¢(z’,¢’) is simply a classical pseudo-differential symbol on M
in the sense of (1.7) with values in £(C*); ¢(2',¢') and q(z’,€') act by matrix
multiplication on C*.

Given two operators in B with symbols (p;1, ps1) and (piz, ps2) the composition is again an
operator in B. It has the symbol (pi,ps), where p; = p;; 0 pi; simply is the composition
of the pseudodifferential symbols in the sense of (2.2); it again satisfies the transmission
condition. The resulting boundary symbol has the form

. D + ] !
o+ (L7 H DD EB(DRED) D)D) ()

Here, py; o' psa is the pseudodifferential composition of py; and py; with respect to the
variables (2, {'), cf. (2.3), together with composition of the operator-valued matrices (2.7).
The terms in the second summand come from the interior symbols. There, the composition
is the pseudo-differential composition for operator-valued symbols with respect to (z’, ¢'),
cf. (2.3). We have denoted the entries of py;,7 = 1,2 by b;, k;, and ¢; and omitted the
variables (z',¢’) for better legibility.
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(i)

(i)

L(pi1, pia) is the so-called leftover term. It is induced by the particular way the action
of a pseudodifferential operator P on the manifold with boundary M is defined: We
assume that M is embedded in a manifold without boundary and that P extends
to it. Given a function or distribution on M of sufficiently high regularity we first
extend it by zero to the full manifold, then apply P and finally restrict to M, in
other words we apply the operator Py = rpsPeps; here epr denotes extension by
zero and ry restriction to M. Given two pseudodifferential operators P, and P, with
interior symbols p;; and p;; respectively, the difference [Py|m[P2]ap — [Py Pa]m turns
out to be a singular Green operator with an associated singular Green boundary
symbol operator L(pi1,piz). The asymptotic expansion of the associated singular
Green symbol can be computed from the knowledge of p;1, p2, and their derivatives
at the boundary. Obviously it is zero if either p;; or p;; is zero.

Given an interior symbol p;, the operator pf(z’,¢,D,) : H* — H* is induced
from the action of the interior symbol in the normal direction for fixed (z/,¢’). More
precisely, understanding p; as a full classical symbol rather than the associated
formal sum, one lets

1 .
p?-(zla f'a Dﬂ)h = _7-'(9;;), where u(mﬂ) = 2_’; .[ ewnfnpi(m’} xmflaen)h(fn)dfn-

The last integral should be understood as an oscillatory integral. It is a conse-
quence of the transmission property that u|r, € S(Ry), so that F(fu) € H*. This,
however, is of minor importance here. We shall mainly be interested in the (non-
trivial) fact that for a singular Green boundary symbol operator b(z’,¢’, D,,) both
compositions

p?‘(:r',f’,Dﬂ)b(J:',f',Dn) and b(zl:flsDn)P?(I"E'vDﬂ)

are singular Green boundary symbol operators and that the asymptotic expansion
of the corresponding symbols can be computed from the knowledge of p; and its
derivatives at the boundary.

More information will be given later when we need it.

It should be pointed out that the current terminology is not quite the standard terminol-
ogy. In general, the boundary symbol operator also contains the term p} (z',¢’, D,,) from
the interior symbol p;. Noting that the only operator which is induced by both a classical
pseudodifferential symbol and a classical singular Green symbol is 0, both parts can be
neatly separated in this context. So it makes the presentation easier to set up things the
way we did.

Now we give the following definition:

Definition 2.2 (a) By is the subalgebra of B consisting of all elements with zero in-
terior symbol.
(b) B, is the subalgebra of B where the interior symbol stabilizes near the boundary:

pi(z’,

zn, &) = pi(2',0,¢) for small z,.

Note. The following facts are well-known but important:

(i)

the identity is not a singular Green operator; in particular, By is a nonunital algebra;
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(ii) the operator induced by an interior symbol p} is not a singular Green operator
unless it is zero; however composing p} with a singular Green operator on the right
or on the left yields a singular Green operator.

Clearly By C B, C B, and By is an ideal in B, since both the resulting pseudodifferential
part and the leftover term in any composition will be zero.

For fixed 2/, ¢’, and a singular Green boundary symbol operator
b(z',¢,D,): Ht - HY

acting by

[6(z", £, Da)h](én) = 1, (5(z", £, &as ) B(ma)) = % jr . b(z', €', n, 1a) b (00 )dNn

we define a trace similarly to the trace of usual integral operators

bz, &, Du) = T, Bz, €, bn, E0) = 2% '[F RCAARAS (2.9)

In case b(z',£', D,) is matrix-valued we additionally take the matrix trace under the
integral. We clearly have the trace property:

tr(bi(a’, ¢, Dn)ba(z', €', D)) = tr (ba(2', £, Da)bs(2', ¢, Dn)).

As indicated by the missing o’, the composition is with respect to the z,-action D, only.
Moreover, taking the trace of a singular Green boundary symbol operator b(z',¢’, Dy)
yields a symbol &z’,£’') on OM:

Ha',€) = trb(z', €, Du) = Mo &', s = 2 [ 0106 ) (210)

is a sum of homogeneous components; the component bi(z’,¢’) of degree k is obtained
from bi—1(z’, €', &0, 0n). Indeed,

. 1
(e €)= 5 / beot (2, 4€, En, En)dbn (2.11)
riy r+
t '
= 5 br—1(z', t€', tnn, tna)dn, (2.12)
" Jr+
tk ’ 7
= 2_1r F+bk—l(xs£s7?m’7n)d’?n

= tkgk(m’, f’)

Since the change of variables acts on z’, £, and does not affect the variables £,, 75, of the
Green symbol b(z', &', £n, 1), b(z',¢’) is indeed a symbol on M

Proposition 2.3 Assume that OM is connected. For the boundary symbol we use the
notation of (2.7). Then the functional

resamps = / resg{trb(z’, &', Dn) + Trq(«',{')} = j res.+(b + Tr g) (2.13)
oM 8

M

is the unique continuous trace functional on the subalgebra By C B up to multiplication
by a constant.
As before, Tr denotes the matriz trace on L(CF).
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In the proof of Proposition 2.3, we shall use the following simple argument that we have
isolated below in the following

Lemma 2.4 Let 7: By — C be a C-linear form. Then 7 is a trace on By if and only
if there ezists a trace 7y on G (the algebra of singular Green symbols) and a trace 7, on
V(M) /¥~°(0M) such that for all trace operators t and all potential operators k

T1(kt) = 1a2(tk) (2.14)

1—{( X ’; )} = n(8) +a(q).- (2.15)

Sketch of proof. Let By, be the algebra consisting of matrices of the form

bdel k b k
( ¢ q),cEC, (t q)EBo, (2.16)

with the multiplication formula

and

(b’ DI)= (b +cb +b) DT (2.17)

By is a unital algebra by construction. Let 7 be a trace on By; then the C-linear form on

By defined by
AT 5 =0 Ea)] (218)

is a trace on Bo. Using the equalities

(F9)- G a)l-=( o) o
[(56)-(5)]=(5 ) -

the lemma easily follows for (Bo, 7) and, according to (2.18), for (Bo, 7). i

and

Proof of Proposition 2.3. Correctness and the trace property (1.10) follow from The-
orem 1.4 applied to By considered as an operator-valued symbol algebra on dM whose

coefficient trace is
trb(z’, ¢, D,) + Trg(2', &), (2',€) fixed. (2.21)

Conversely, let 7 be a trace on By. Applying Lemma 2.4, there exist traces 7, and 73 such

that
wee{(F) w03} e

The functional 7, is a trace on ¥*(IM)/¥Y~°(8M); hence, Wodzicki’s result shows that

there exists a constant ¢ € C such that 7, = cres. Since by assumption 7 is a trace

13



on By, (2.14) holds and shows that, for all trace symbols ¢t and potential symbols k,
11(kt) = cres (tk). Hence the functional T — cres s vanishes on all elements of the form

( 2%1 kiti ;" ) (2.23)

for all potential symbols k;, k, all trace symbols t;, ¢ and all pseudo-differential symbol q.
Since the set of such elements is dense in B, (see properties (1)-(2)-(3) after Lemma 2.1)
and since the trace 7 is continuous, one has 7 = cresgys. i

Remark. In case M consists of finitely many components, the preceding proof shows
that we may pick a constant factor for each component.

Next we consider the subalgebra B, C B.
We use the notation of (2.7) and set for a pair P = {pi(z,§),ps(2", ')} € B,

res P = / res:pi(z,£) — 2#/ res(trb(z’, ¢, D) + Trq(2', €')). (2.24)
M M
Theorem 2.5 For any P,Q) € B,
res[P, Q] = 0.

Proof. Note that, in general, neither of the two terms in (2.24) vanishes on commutators.
First let us compute the contribution of the interior symbols. In view of Wodzicki’s
theorem it is sufficient to prove Theorem 2.5 for symbols supported on a boundary chart.
Using Lemma 2.1 and formula (1.6) we obtain after a straightforward computation

/ res|pi, gi] = /m /s (/ (B.)_,. d{n) o'dzy A ... ANdzaq.

where, as in Section 1, S’ is the (n — 1)-sphere with volume form o’. Since the symbols
Pi, i do not depend on z, the only nonvanishing term of (2.6) is that with m =5 =0, so

[ reselpad=—i [ (/ de [, (mo geq)

Now for the boundary symbol part. Denote the entries of the matrix py by by, k1,11, ¢4,
those of gy by b3, ks, 13, 2. Considering the representation (2.8) for the composition of the
boundary symbol operators and the fact that res is a trace on By, we conclude that the

contribution by p, o' g, — g ©' py 1s zero. The only terms that may contribute are those in
the difference ¢:(z',¢', D,.) — ga(=', €', D,,) where

91(Da) = L(pi,q:) + P} (Dn)ba(Dn) + 61(Dn)gf (Da) and
92(Da) = L(gi,pi) + ¢ (Da)br(Dn) + ba(Dn)p (Da).

We will show the following identities:
[ rese ot (D)D) = (DD} = 0, (2.26)
[ rese (D2 (D) - (DD = o, (2.27)
[reeltoon) - Lanrl) = 5 [ resdpoal (229

) dIl A A dmn_l. (2.25)
rn=0

14



Let us start with (2.26). We have the following asymptotic expansion formulas for the
symbols ¢; and c; of the compositions p}(z', ¢, D,) o by(2',¢', D,)) and by(', ¢, D,,) o
pH(z',¢,D,), cf. [5, Theorem 2.7.4, 2°,39).

o0 -y

cl(z’a ea £m qn) ~ Z: ';-—J!Hg.{aj.{ainpi(x', 0, Ela {n) o’ bZ(x,a f’s ffn nn)}}; (229)

1=0
R Y]
Cﬂ(z',ffyfrnnn) ~ Z:(];)

=0

I, {& bi(2', €, €nynn) o & pil2, 0, ,m0)}. (2:30)

Since p; is independent of z,, close to the boundary this reduces to

Cl(l", 5': §ns nn) ~ H?;{P.'(x’, 0, E" En) o’ bZ(x'a E'vfna Un)}

and
62(:‘:’; g’) Em 77") ~ H;,.{bZ(I,v f”gﬂa Uﬂ) o’ p;(I’, 0: 51, nﬂ)}v

respectively. For the associated symbols & and ¢, cf. (2.10), we then have
a (:'C', ‘f,) = H'f,. (Hg:. {pf(z', 0) £'y £n) o bﬂ(I” 8" £m nn)} |nn=€u)
= H;"({pi(z” 0’ 6” Eﬂ) O' b‘z(I', 6') 5"” nﬂ)lﬂn#n)’

since [T {pi(z',0,£',&,) o' ba(2', €', €ny n)lnn=en } € H™, where II' vanishes. In particular,
we have, according to (2.11),

(E(Z', €)= (no1y = I, (9i(2',0,€,&a) 0 ba(2', €', &ny 10 )l mmtin ) —n- (2.31)
Similarly,
@(@, €)1y = He, (I {ba(z',€',6ny ) © pila’, 0,8, 70)} mmte)n
= H;"(bg(z’, 5’1 £ﬂ1 '}ﬂ) 0’ pa'('rjy 0) f’a f)n)[nn=£n)—n- (232)

This time the reason is that (IT} {b(2’, ¢, &n,1m) o pi(2’,0,€',7n)}na=¢n )-n is a function
in H* N L,(R), where II' also vanishes (recall that n > 1 and that the subscript —n
denotes the component of homogeneity —n). We therefore have

/ resp{trey (', €', Dn) — trea(2', €', Dy}
oM
= H;n ,/8M rest’{pi(m’a 0! E,! fﬂ) o 62(12,, f’aEﬂi fﬂ) - bg(z”f"fﬂ’gﬂ’) o’ pi(x’o’s” En)} =0

by Theorem 1.4. This proves (2.26). It also proves (2.27), since the situation there is
completely analogous.

Hence consider (2.28). The leftover terms depend only on the behavior of the interior
symbols near the boundary. In view of the fact that those stabilize near the boundary by
assumption, we may as well assume that both p; and ¢; are independent of z,. Then the
action of pf(2',¢', D,) : HY — H™ is simply given by

(P! (2", £, Da)hl(6n) = I {pi(", 0, ', &a) 2 (é0)}, (2.33)

similarly for ¢;. Moreover,
L(pi, ¢:) = p! (Dn) o' ¢ (Dn) = (pi 0 )" (Dn) = —p} (D) o' q; (Ds).
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Again, we have omitted z’,¢’, and denoted by ¢, (D,): Ht — H~ the operator given by
¢ (Dn)h = I~ (gh), analogously to (2.33). The standard expression for the symbol of this
leftover term, cf. [12] or [2] is not helpful for our purposes. We therefore shall now derive
a new representation. Keeping (z',¢') fixed, we let p* = p*(¢,) = I pi(<’,0,¢',€a) and
gt (&) = H:‘q.(:c 0,¢',€,) be the projections of the interior symbols on H* and
H -, respectlvely, not to be confused with the operators p¥(D,) and ¢&(D,).
Applying the operator ¢ (D,) to a function A € H* and observing that I[I=(¢*k) = 0 we
obtain

I (6,0, €, A6 = To(ah)(En) = 5 [ L hcric

27t Jrae (—&n — 30
1 [ ) -q ()
i o T O
since _
&) [ k0 =0,

7% Jps ( — €n — 30
noting that A € H*. A similar argument applied to the function v = II=(¢~h) € H~
yields

I (=0, €0 60(6) = M) = —5 [ I sutan)an,

1 pt(na) — p*(§s)

Thus, the singular Green boundary symbol operator L(p;, ¢;) is given by the symbol

by 10) = 5= / ”+(C<):’g:(£") of q—(",’;::g_mdc, (2.34)
and
pt(() — p* () o (¢7(Q) — 97 (£n))
briai = 2#)2 /[: /p € — &) . (239

Considering the inner integral shift the contour I'* to a contour I'f in the upper half-plane
so that I'J is inside I'*. Then the inner integral is equal to

PH(0) o (4(0) = 4~ (Ew) S TO-a ),
/p; (ETA A /r;‘ AR

and the second term vanishes being analytic inside I'Y. Integrating the first term over
€. € 't we may calculate the integral by means of the residue at the pole ¢, = ¢ yielding

A vovae o [ O =T ()
bpii = (27)? /l__l+ pr(¢)d¢ ./l'"+ AL dé.
L p*(¢) o 6q'(C)dC i, {p*(én) o 3q'(fﬂ)} |

1

271 Jp+ a¢ 0¢n
Similarly an integration by parts gives

- dp~ (¢ - &) -
bun, = =il {7 (€ o ) i {00 i)
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Thus,
/ "esz’(i’paq.' - -Bqapa)—(n-l)
oM

= —— mresx'/ (+(fn)°' qaf(f") P (6a) o' %)_nd&=

_ , aqs(x’!ovflifﬂ))
= /aMres,/ (p.(:c 0,8,&)0 3¢, . dén (2.36)

2 Fij
I (p+o' 32") =1T (p‘ ’6(2") =0.

Notice that we could interchange the order of p~ and J¢,.q* as a consequence of Theorem
1.4. Using formulas (2.24), (1.6) and (1.8), one obtains at once (2.28). This completes
the proof of Theorem 2.5. §

since

For the algebra B, there is no uniqueness property of the noncommutative residue. Ex-
amples of trace functionals not coinciding with res P may be constructed as follows. For
P = {pi,p} take pi|, .o = pi(2’,{’,£s). The variable ¢, is globally defined so that for
any £k =0,1,2,... we have a symbol on M defined by

ap = {% (Pil_-cn:o)}

Try P = resgapran (2.37)

£n=0

and we may define

taking the noncommutative residue of the symbols ag on M. It is easy to verify that
these functionals are really traces on B,. The reason is that the restriction map

{p‘! pb} = pil:,,:o

is a an algebra homomorphism from B, to the algebra of classical pseudodifferential oper-
ators on M (under the assumption that p; does not depend on z, near the boundary),
and any trace on the restricted algebra will serve as a trace for the whole algebra B,.

3 The Noncommutative Residue on Boutet de Mon-
vel’s Algebra

Now we consider the full algebra B. An operator P € B will be identified with its symbol, a
pair {p;, p» }, consisting of the interior symbol p; and the boundary symbol p, as introduced
in Section 2. We define the noncommutative residue by the same formula (2.24) as in the
case of B,. As before res;p; and res,.p, are densities on M and dM, respectively, since
the change of variables on a boundary chart does not affect the variables z,, and &,.

Theorem 3.1 The residue (2.24) is a trace on the algebra B.

17



Proof. Let P and Q be operators in B with symbols {p;,ps} and {g;, s}, respectively.
In order to show that res[P, @] vanishes we will use the same set-up and notation as in
the proof of Theorem 2.5; we suppose that all symbols are supported in a boundary chart
and that the boundary symbols p, and ¢; are given by matrices as in (2.7) whose entries
we denote by by, ky, 1y, ¢ and by, k3,12, g2, respectively.

Of course we can rely on what we showed in the proof of 2.5. Since now p; and ¢;
may depend on z,, we will have to revise (2.25). On the other hand we know that the
noncommutative residue is a trace on the ideal By C B of all operators with zero interior
symbol. So the contribution of py o’ ¢y — g3 o' p, will vanish again, and it will suffice to
show the identities (2.26), (2.27), and (2.28) using the composition formulas (2.29) and
(2.30), plus an asymptotic expansion formula for the symbol of the leftover term in the
z,-dependent case, cf. (3.1), below.

In analogy to (2.31) we get

@@, €)-n- ~ Z n&{{a’, P2, 0,€,60) © bale!, &, bn Y, Lo}

J—O

> P, {{0hne0.€,6) o 0 € oty )

=0

Here we have made use of an induction on j and the following identity

d
'(aEa(fm )

together with the fact that IT; ( ~a({n,£n)) = 0.
Similarly,

a
a_fﬂa(fm En) =

a
+ %G(‘fn, M)

n=€n Mm={n

(62(3’: 6,))-(n—1) Z( t) H { ,,bﬁ(z’vf,$£na 1711) 0' (SI: 0 £ E")}L; _E"}

so that

f (resy«€; — resy€y) =0
M

by Theorem 1.4 for M.

Now for the leftover terms. In the z,-dependent case we will have to replace (2.34)
according to [5, Theorem 2.7.7} by

( 1 myH+m m
P.?o(fﬂ:nn) ~ Z ""—' I'm' 3&"' ﬂnb&inpﬂg"-o'ashai‘;mq‘]*nﬂo(fn,nn)' (31)

Jlym=0

Abbreviating a = & _pi|z,=0, and b= 8] 0™¢i|.,=0, each term b,y under the summation
in (3.1) denotes the singular Green symbol obtained from the z,-independent symbols a
and b by (2.34). Writing a* = [1*a,b* = I[1*b we have

. . at —at n) 1 gm b= n) — b
%naxbab(fn:nn) — %./r.’ aé,.a (Cc)—fn (6) 6,,“ (qu_( (C)dC'
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-1

With the aim of eventually computing b,,,, we put 1, = &,, multiply by (27)~!, and

integrate over {, € I't. We obtain, using integration by parts,

_— 'w«—ﬂm,mrm)bw
bas = (2« /N /r+ e - s —c &
a+(<) - a"' f,.) of g™t b=(§s) — b (¢)
(2w /r+ fr —& ‘% —e-¢ %

This integral may be simplified similarly to (2.35). For the integration over ( shift the con-
tour I'* to a contour I'f inside I'* and note that for fixed £, the function 85" i b—_(%}%(ﬂ
is analytic in the upper half plane {Im( > 0}. We get

I ( 1)’ a"‘(() o m+j ( ) b~ (C)
bab = ,["-i- E“/r'l‘ a

(=6 € —¢
(—1)"“1 , O+ (¢)d
- S O

For the second equality we have interchanged the order of integration and applied Cauchy’s
theorem for fixed (. The identity is most easily checked using that

g =20 _ g [ (@073 + (60 - ).

Thus,

- 1
bp-’q.‘ = 2_”, [I‘+ bpm.'(fmfn)df
hiaad ,':'+l+m+1( 1)m+:'+1 1

Z miltjl(m+5+1) 27

3 dm=0
The notation should be obvious: we let p¥(z’,0,¢',¢,) = anp,(:z: 0,¢,¢,) and ¢&(2',0,¢',¢,) =
ILE 4:(2",0,€', 6n)-

We need to calculate the sum

/n 8Pt (',0,€,6) o' BT 0T g7 (21,0, €', ) den

(=n~
E m!l(m+j+1)

m+i=k

To this end consider binomial formula
k (_l)m m
(-t =k > —t™
Multiplying by ¢ and integrating over {0, 1] we obtain

k! E mm(—l)"f ) =/01tj(1-t)kdt=B(j+1,k+1)=

m+4l=k ’ .(m +‘7 + 1

k! 5!
(k+7+1)"

Substituting this result we get
- 2 (=1t
bpii = z()—k——
) G+Ek+1)
oud 3+k+1 ’ : o
= > J+k+1):“eu(6’ Ok p(a',0,€,6,) o' 010 g7 (=',0,¢',6.)) -

7k=0

(0.0 (,0,€,6) o 0510 47 (21,0, 64))
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Similarly,

haid __,,,)J+k+l

Bq-'p-' = E G+E+1) I, (a;‘inaek"q?(m”o’f',fn) o’ aj:la:npi_(“",oaf,a‘fn))
7,k=0
y o T (88,6 ,0,¢06) 0 (2,0,€,6)-
= - &n qI 2 g fn zﬂp‘ z n
7. k=0 (J+k+1
Thus,

./ (resq E""" — TesSy Eqapa)
J+k+1 a’ ak +7.0 0 ! faj+lak —_ t 0 ’
'[ v/S'/ ]+k+1 ( za U6 Pi (.’L", 1£$En)° tn Y209 (.’C, sf;fn)
+ 6;‘_:"16’ a4 (;'C 0 f fﬂ) 0 (n z..pl (:C 0 E fn.))_ﬂ dfn O'Jd.’L'l A A d:r,,,_l

In the last expression we may interchange the order of ae'*'laJ ¢f(=',0,¢,¢,) and

agn % p7(2',0,¢',€n) as a consequence of Theorem 1.4. With the considerations justi-
fying (2.36) we then conclude that

/ (reSzs bpyg; — T€Szr byp,) (3.2)

/ ]/ J+k+1
t J oo k_0(3+k+1

& O pi(x',0,¢,6,) o BT qil',0,¢,¢,)) déno'dzy AL Adz,,
n€n n n -n

since the ++ and —— parts vanish after integration with respect to £,.
Now the representation of the commutator p; o ¢; — ¢; o p; in (2.6) together with (1.6)
shows that (3.2) coincides precisely with

/ / ] w)enlzazodéno’dzy A . Adz,y = —/ resz([p;, gi]-
M JS!

Hence the sum of both is zero, and we have proven the theorem. il

Unlike in the case of B,, the noncommutative residue is the unique continuous trace on

the full algebra B.

Theorem 3.2 Denote by B Boutet de Monvel’s algebra on M as introduced in Section
2. Then any continuous trace on B coincides with the noncommutative residue res up to
a constant factor.

Proof. Let Tr be a continuous trace functional on B. Choose a boundary chart U/ that
intersects only one component of M. Denote by BY C B the ideal of those elements whose
interior symbol has support in U and whose boundary symbol has support in U N dM.
By BY denote the subset of those elements with zero interior symbol. Restricted to BY
the trace Tr must coincide with ¢y res for a suitable constant ¢y. This is a consequence of
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the considerations for the uniqueness part in the proof of Theorem 1.4 together with the
fact that there is only one continuous trace on the algebra of boundary symbol operators,
established in the proof of Proposition 2.3. Then Tr' = Tr — ¢y res is a trace functional
on BY vanishing on the subalgebra By .

Clearly, By is a two-sided ideal in BY, so Tr' is actually defined on the algebra BY/BY.
This quotient is understood purely algebraically (no topology on BY/BY is required);
moreover, it obviously can be identified with the algebra of all interior symbols supported
in U. Without loss of generality we may assume that U is an interval in ﬁ: It therefore
follows from the lemma, below, that any trace functional on this algebra is trivial. This
yields the assertion of the theorem. i

Lemma 3.3 Let U =] — 1,1{""'x[0,1{C R7}. Denote by C the algebra of all classical
pseudodifferential symbols with z-support in U that satisfy the transmission condition at
Zn = 0. Then any trace on C vanishes as a consequence of the following three assertions:

(a) We have C = [C,C] + Co, where Co denotes the subalgebra of all elements of C
vanishing identically in a neighborhood of {z, = 0}.

(b) Let Tr' be a trace on C. Then Tr' = cres for a suitable constant c.
(c) The constant in (b) is necessarily 0.

Proof. (a) Let p be an arbitrary classical symbol with the transmission property. We may
confine ourselves to the case where p(z, {) vanishes for z outside [—1/4,1/4]"~! x [0,1/4].
Choose a smooth function a > 0 on [0,00[ with a{t) =1 for 0 £ ¢ < 1/3 and a(t) =0
for t > 1/2. By E,, denote a symbol with the transmission property which is equal to &,
for z € [-1/2,1/2]"" x [0,1/2] and vanishes for z outside a compact set in U.

Let q(z,§) = a(z,) fy" p(a',t,€) dt. Then q is a classical symbol with the transmission

property. The symbol of the commutator [ig,.,q] is

0:,9(z,€) = p(z,€) + 0z, 0(zn) /0 - p(z',t,€) dt (3.3)

This gives the desired decomposition.

(b) Let Tr’ be a trace on C. The restriction of Tt’ to Cp is a trace, and according to the
considerations in the proof of Theorem 1.4 it coincides with cres for a suitable constant
¢. We conclude from (3.3) and the fact that Tt'd; q = 0 that

Tr'p = —cres (3,,0(1:,.)] p(a:',t,f)dt)
0
= —cj 3,"a(xn)dz,,/ (]/ p_n(z',1,6) dtoz) dz; ...dz,_,
0 Rr-1 \Js Jo
= cresp.

(c) In order to see that ¢ vanishes, choose a homogeneous function A(¢) of degree —n with
Js h(€)o¢ # 0 that satifies the transmission condition; it is well-known that such functions
exist, cf. [12, Section 2.3.2.4]). Then pick 8 € C$*(] — 1/4,1/4[*",0,1]), not identically
zero, and let p(z', 2, ) = a(z,)B(z')h(£) with the function « introduced in (a). Define

¢(z,§) = — /mp(a:',t,f) dt.
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Clearly, the symbol ¢ satisfies the transmission condition and, in the notation of (a),
[#.,q) = 8:,q = p. This implies that Tr’p = 0, while, by construction, resp # 0. Hence
c=0. ¥

Remark. What we have implicitly used in the proof of the Theorem is, of course, the fact
that the first Cech cohomology group with compact support H,.....([0,00),R) = {0}.
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