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1. In [FKV] an infinite family of smooth (real) surfaces Fk embedded in S4 was cons

tructed which has the following properties:

i) The knottings (S4,Fk) and (S4,Ft) are not diffeomorphic for k *l .

ii) Fk = #10(lRp2)

iii) 'Jr1(S4 - Fk) = 112

iv) The normal Euler number (with local coefficients) of Fk in S4 is 16.

The knottings (S4,Fk) are constructed from the Dolgachev surfaces D2,2k+1. There

are antiholomorphic involutions c on D2,2k+1 with fixed point set Fk = #10(lRp2) and

orbit space D2,2k+l/c diffeomorphic to S4. Thus the diffeomorphism type of D2,2k+P

the ramified covering along the knotting, is an invariant and one can distinguish these

Dolgachev surface by Donaldson's r-type invariants [D], [FM], [OV]. It was also proved in

[FKV] that the number of homeomorphism types of these knottings is finite and it was con

jectured that they are all homeomorphic to the standard embedding (S4,F) with normal

Euler number 16. The main result of this note is an affirmative answer to this conjecture.

More precisely consider the standard embedding of IRp2 into S4 with normal Euler

class -2. This can be considered aB the fixed point set of the standard antiholomorphic in

volution e on G:p 2 embedded into G:p 2/e ~ S4. Then the standard embedding (S4,F)

with normal Euler dass 16 is obtained by taking the eonnected suro (S4,IRp2)#9(-S4,lRp2).
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Theorem: Let 8 = #10(lRp2) be embedded into 84 with normal Euler number 16 and

iT1(84-S) = 112. Then (84,S) is homeomorphic to (S4,F), the standard embedding with

normal Euler number 16. The homeomorphism can be chosen as a diffeomorphism on a

neighborhood of Sand F.

Corollary: The knottings (S4,Fk) are all homeomorphic to (84,F) implying that the

standard knotting (84,F) haa infinitely many smooth structures.

Reffiark: Recently R. Gompf [G] constructed non-diffeomorphic embeddings of a punetured

Klein bottle K (= Klein bottle minus open 2-ball) into n4 with 7r1(n4 - K) = 712 and

interseetion form of the 2-fold ramified covering along K equal to <1> Ei <-1> . The

same methods as used {or the proo{ of our Theorem show that they are pairwise homeomor

phic if they have same relative normal Euler number and the knots OK in S3 are equal.

We will comment the necessary modifications of the proof in section 5. I was infonned by

O. Viro that he has similar knottings of K in n4 which are related to the construction in

[V].

2. Proof: Since Fand S have isomorphie normal bundles we can choose a linear identifi

cation of open tubular neighborhooda and denote the complements by C and C'. We

identify the boundaries, 80 that oe = oe I =: M. We want to extend the identity on M

to a homeomorphism from C to C'. Since C and C' are Spin-manifolds a necessary

condition for this is that we can ehoose Spin-structures on C and C' which agree on the

common boundary. Another necessary condition ia that the diagram
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(1)

""1 (M)

1 1
------+1 11/ 2

commutes. One can show that by choosing the linear identification of the tubular neighbor

hoods appropriately one can achieve these two necessary conditions. I am indepted to O.

Viro for this information. To obtain condition (1), choose section sand s' !rom F
O

resp. SO (delete an open 2-disk) to M such that the composition with the inclusion to C

and C' resp. are trivial on r 1 . Since the normal Euler numhers of the knottings are

equal one can choose the linear identification of the tubular neighborhoods such that they

commute with s and s' resp. yielding (1). To obtain the compatibility of Spin structures

on M it is enough to control them on the image of s and s' . Note that for each embed

ded cirele er in FO , s( er) bounds an immersed disk D in C. The normal bundle of er

determines a 1-dimensional Bubbundle of v(D) IOD' The Spin structure on the image of s

is characterized by the obstruction mod 4 to extending this subbundle to v(D) and gives

a quadratic form q: H1(Fo) ---I 11/471 [GM]. Thus we have to control that the identifica

tion of F and S respects this form or equivalently that the Brown invariants in 71/811

agree. But this follows !rom the generalized Rochlin formula [GM].

In the following we will assurne that the Spin-ßtructures on oe = oe' = M agree

and the diagram (1) commutes. There is another obvious invariant to be controlled, the

intersection form on the universal covering. For tbis we assign to our knotted surface the

2-fold ramified covering along F denoted by X. A simple calculation shows that X is

1-eonnected, e(X) = 12 and sign(X) = --8. Thus the intersection form on X is indefinite

and odd (since otherwise the signature were divisible by 16 by Rochlin's Theorem). Hy the
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classification of indefinite forms, the intersection form on X is <1> $ 9 <-1>. The lang

exact homology sequence combined with excision and Poincare duality leads to an exact

sequence

and the map H2(X) ---i H2(F) = 712 is Q ~ Q 0 [F], the mod 2 intersection number of Q

with F. Since Ö is Spin aud X is not Spin (see above) the map Q~ Q 0 [F] is given

by w2(X): a 0 [F] = <w2(X),a>. Since the image of H1(F) is contained in the radical of

the intersection form on H2(Ö) and the form on H2(X) restricted to the kernel of w2 is

non--6ingular, the image of H1(F) is the radical of the form on H2(Ö). The form on

H2(Ö)/rad is the restriction of <1> e 9<-1> ~ ES e <1> e <-1> to the kerne! of

x >-I x 0 x which is ES EIl [~5] ~ ES + 2 [~ öl
We know that the covering transformation T acts triviallyon H1(F) and by -1

on H2(X) (since XI T = S4). Thus, if we take the A = 71[712] module structure given by

T on H2(Ö) into account we have an exact"sequence

where + or - indicates the trivial or non-trivial A-action. Moreover one cau show that

H2(Ö) = 11_ mA9 ([FKV], Lemma 5.2A). We can summarize these considerations as

follows:
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H2(Ö) ~ 71_ EB A9
j

(2) the radical of the intersection form is H2(Ö)+ J the +1 eigenspace;

the form on H2(Ö)/rad is ES EIl 2 [~ ~J .
The proof is finished by the following proposition which ia the main step.

Proposition: Let C and Cl be 4--dimensional Spin manifolds with fundamental group

712, oe = 8C ' = M and inducing same Spin-structure on M such that the conditions (1)

and (2) are fulfilled. Then there is a homeomorphism from C to Cl inducing on M the

identity.

3. Proof of the Proposition. We use the method of [Kl. The normal I-type of C is the fi

bration p: B = IRp m )( B Spin P2 IBO and anormal smoothing of X in (B,p) is

given by the non-trivial map C --+ IRpoo and a Spin-structure on C (given by a lift of

the normal Gauß map to B Spin). Thus it is uniquely determined by a Spin-structure. By

assumption there exist normal smoothings of C and C I in (B,p) which agree on the

common boundary. Thus we can form C U(-eI), a closed manifold with (B,p)-structure.

An easy computation with the Atiyah-Hirzebruch spectral aequence shows that

04(B,p) ~ 71, detected by the signature. Since sign C = sing Cl, C U-e I ia zero bordant

in (B,p).

Let W be a zero bordism. Then there exists an obstruction EJ(WJC) E lS(71/2) such

that C is h-robordant to Cl rel. boundary if and only if 8(WJC) is zero bordant [Kl.

This implies our statement using the topological h--eobordism Theorem [F].
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We will not repeat the definition oI 8(W,C). Instead we fonnulate some elementary

properties which are enough to show that in our situation 8(W,C) is zero bordant. Ele

ments in lSCll/2) are represented by pairs (H(Ar),U), where H(Ar) is the hyperbolic

form on Ar )( Ar and U ( Ar )( Ar is a half rank free direct summand. Note that the diffe

rence to the ordinary Wall groups is, that there U is an addition self annihilating (a

hamiltonian). Note also that we can forget here the quadratic refinement of the form since

it ia determined by it. Since the ordinary Wall group LS(1l2) vanishes one can charac

terize zero bordant elements in l5(1l2) aB follows:

(3) [H(Ar),u] E lS(1l/2) is zero bordant if U has a hamiltonian complement V.

Hy construction of 8(W,C) and some elementary conaiderations it haB the following

properties:

(4) If (H(Ar),U) represents 8(W,C) then (H(Ar) ,U.L) representa 8(W,C ').

(5) There exiata a surjective homomorphism d: U --+ H2(Ö) inducing an isometry of the

form on U with the intersection form on H2(Ö).

f
(6) If V = AS

I I H2(Ö) ia a free A-re80lution, 8(W,C) has a representative

(H(As),V) such that d occurring in (5) ia equal to f.

Since H2(Ö) = 71._ e A9 we can take V = A10 with the obvious map f: V --H H2(Ö).

The natural thing for showing that 8(W,C) is zero bordant ia to prove that in the

restrietion of (H(As),V) to the ±l--eigenspaces, V± have hamiltonian complements and

then to construct from them a hamiltonian complement for V.
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The restrietion of the hyperbolie form b on H(As) to the :1:1 eigenspaces is twiee the

hyperholie form on H(71s). In partieular the restrietion to V:I: is divisible by two. After

dividing by 2 we eall this form b: and V:I: sits isometrieally in H(71s).

Hy assumption (2) the form b+ vanishes identically on V+ and thus

(H(A)+,V+) represents an element in the o~dinary L-group L5 = {O}.

We have V ~ A10 f I • H2(Ö) = 71_ mA9 ----+ H2(Ö)/rad = 71:0 and fl V_ maps

onto 211:°. Thus the form b_ on V_ is 4{ES$2 · [~6J )/2 = 2· ES $4[nl Since by

(4), (H(AlO),V..l.) represents 8(W,C ') and the form on H2(Ö ') is minus the form on

H2(Ö), we know from (5) that the form on V: is -b_. Thus we have an isometrie embed

ding V_ GJ V..l. = b_GJ (-b--l into H(7110) and we are searching for a ha.m.iltonian comple

ment of V in H(7110).

The different isometry classes of embeddings of a pair of direet summands V_ and V:

(they are direct summands since V and V..l. are so) into H(7110) = H are equivalently

classified by analyzing in how many different ways the hyperbolic form can be reconstruc

tOO from the sublattiee V_ GJ V..l.. To do tbis we consider the a.djoint Adb_: V_ --- V: .

Denote the cokernel of Adb_ by L, a finite abelian group sinee Det b_ :/: O. On L we

have an induced quadratic form q:L---+ Q/71 given by q([x))=~ b_{(Adb-.J-l( ILI' x),

(Ad b~-l( ILI· x)).

Similarly starting with V: we get a quadratic form denoted by (L..l.,q..l.). Of course

(L,q) and (L..l.,-q..l.) are isometrie and by means of this isometry identify them with

(L,q). We can reconstruet H and the embeddings of V_ and V: as follows.

* ..l.* * ..l.* ..l.*H = Ker (V_ )( (V~ --- L), V_ = Ker P2 : V_ )( (V~ --- (V~ ,
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J. * J.\* * * J. *V_ = Ker PI : V_x(V-l ---+ V_. Here the map V_ x (V:j ---+ L is the difference of

the projections onto L. This reeonstruction follows from a standard argument similar to

([W], p. 285 ff).

Thus we have to analyze the isometries between (L,q) and (L.l,-q.l) = (L,q) mo

dulo those whieh ean be lifted to isometries of V*. Indeed, (H,V--l is zero bordant if and

only if the eorresponding isometry of (L,q) ean be lifted to V*. This follows since if V_

has a hamiltonian complement, (H,V--l is isomorphie to an element which corresponds to

Id on L. On the other hand the element eorresponding to a liftable isometry of (L,q) has

an obvious hamiltonian complement.

Unfortunately there exist isometries of (L,q) which cannot be lifted to V*. We

have to show that the corresponding elements of [5("0.2) don't occur in our geometrie situ

ation. The key for this is that we know that since C and C' are bordant Tel. boundary in

04(B,p) they are stabIy diffeomorphic [K], i.e. C#r(S2 xS2) is diffeomorphic to

C' #r(S2 xS2) for some r and in particular there exists a bordism Vi between

C#r(S2 xS2) and C' #r(S2 xS2) with EJ(W,C#r(S2xS2)) zero bordant. ObviousIy W is

bordant to W#r(S2 xD3) #r(S2 xD3) where the boundary connected sum takes place

along C and C' resp. and W is appropriately chosen. If (H(A2),V) represents

8(W,C) then (H(As+2r), VEBH(Arx{O})) represents 8(W,C#r(S2 xS2)). Denote

V_:= V_Ei H(Arx{O} )_. Then L= LEi H(71.r )/2. We know that the isometry of (L,q)

corresponding to 8(W,C)_ can after adding Id on H(71.r )/2 be lifted to an isometry of

V*. We call an isometry of (L,q) with this property a restricted isometry.

Lemma: The group of restricted isometries of (L,q) moduln those induced by isometries of

V* is trivial.
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Belore we prove this Lemma we finish our argument that EJ(W,C) js zero bordant,

Le. V in H(A10) has a hamiltonian complement T. We know that V:I: have hamiltonian

complements T:I:' We also know that V ia a direct summand (over A) in H(A10) = H.

Choose ll-bases aj of V+' bi 01 V_' Ci of T+ and dj 01 T_, such that (~ + bi)/2 is

a A-base of V and a. 0 c. = b. 0 d. = 26· .. Then we know that for ea.ch d. there are
I J I J IJ I

elements Q. EV+' ß· EV and 1· ET+ such that Q. + ß· + 1· + d. = 0 mod 2 in H
I I - I· I I I 1

and Pi:= (Qj+ßj +1i+di)/2 form a A-basis 01 H/V. We want to choose these elements so

that they generate a hamiltonian, Le. the form is trivial between those base elements.

Sinee a.+ b. = 0 mod 2 we ean assume ß· = O. Write a· = Ea.. a. and 1·= E1' .e.
I I I I IJ I I IJ J

with Qij E {0,±1} and ;jj E {O,l}. A simple computation with evaluation 01 the form

implies ; .. = 6.. and thus 7· = c.. Similarly one can show Q.. = Q •• mod 2 and Q.. = O.
IJ IJ I I IJ J1 11

Since we are free to change the sign 01 Q.. we ca.n assume Q.. = -Q.. for i =F j . With
IJ IJ P

these assumptions it is easy to check that Pi 0 Pj = 0 for all i,j and we are finished.

4. Proof of the Lemma. In an equivalent formulation we have to study the following situa

tion. Consider in H(ll) e ES the lattice 4· ~(1l) e 2· ES and consider

L = H(1l)/4H(1l) e ES/2ES = L1e L2 with the induced quadratic form q which is on L1

given by q[x] = ~ b(x,x) and on L2 by q[x] = i b(x,x) and L1 .l L2. A simple calcula

tion shows that the only isometries of (L1,q ILI) are %1 and % [~ ~J .which obviously

ca.n be lifted to L1 = H(ll). The nontrivial analogoUB lifting statement holds for L2 ([BS],

p. 416). Thus we are finished il modulo isometries of H(ll) e ES each restrieted isometry

of L preserves L1 and L2.

We denote the standard symplectic basis of H(ll) by e and f. Let g:(L,q) --+ (L,q)

be arestricted isometry. Write g[e] = are] + b[~ + [x] with x E ES' Since g[e] has order

4, a or b roust be odd. Since g is restricted, g fD Id on L e H(llr)/2 ca.n be lifted to
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an isometry of H(ll) Ei ES fB H(llI) under which e is mapped to ae + bf + x + 2y + 2z

where a = amod 4, b = b mod 4, y EES and z E H(7Zr). Computing the quadratic form

of this element yields 2ab + (x + 2y) 0 (x + 2y) = 0 mod S.

Since a OI b is odd we ean after acting with an appropriate liftable isometry
...

assume a = 1 or g[e] = [e] + b[f] + [x]. Now consider g(e):= e + (b - 4e)f + x + 2y,
... ... ...

where 2b + (x + 2y) 0 (x + 2y) = Sc. Then g(e) · g(e) = O. We can extend g to an iso-
... ... ~

metry of H(7Z) fB ES by setting g(f) = f. Then g(e) and g(f) span a hyperbolie plane in

H(7Z) fB ES whose orthogonal eomplement is isometrie to ES and we use this isometry to

extend g.

After eomposing with g-1 we obtain h with h[e] = [e]. Since h[e] 0 h[fj = i we
...

must have h[f] = ale] + [ij + [y]. By the same argument as above we obtain an isometry h
... ...

of H(7Z) Ei ES with h(e) = e and h[f] = ale] + [f] + [y] and after composing again with

h-1 we obtain an isometry whieh preservea H(71)/4H(71) finishing our proof.

5. Some knottings in D4. Let K be the punctured compact Klein bottle with boundary

SI. We consider smooth embeddings of (K,8K) into (04,S3) with fixed relative normal

number, 'K1(04 - K) = 112 I intersection form of the 2-fold ramified covering equal to

< 1 > Ei < -1 > and (S3,8K) a fixed knot. We claim that two such knottings (D4,K)

and (04,K ') are homeomorphic rel. boundary. The proof ia similar as for our Theorem

and we indicate the necessary changes.

As in section 2 we choose linear identifications of open tubular neighborhoods of K

and K 'and denote their complements by C and C'. We identify oe = oe I = M and

choose our identification such that the Spin structurea on M agree and the diagram (1)

commutes. A similar consideration as in section 2 shows that H2(Ö) = 11._ EB A and the

radical of the intersection form is TL+ = H2(e)+ and the form on H2(e)/rad is 2 [~ ~].
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Then we proceed as in section 3. Most of the arguments there don't ma.ke any special

assumptions which are not fulfilled in our situation. The only difference is in the analysis of

(H(A2LV-l. Again this is determined by an isometry of (L = coker 4 [~ ~] ,q). The situa

tion is easier than in section 4, since the lifting problem is simpler. The problem is here

whether any isometry on (L,q) is induced from an isometry of H(ll). But as mentioned in

section 4 this holds, finishing the argument.

I would like to thank R. Gompf, O. Viro and C.T.C. Wall for useful conversation and

M. Kneser for the information about a reference.



[BS]

[D]

[FKV)

[F]

[FM]

[G]

[GM]

[K]

[OV]

[V]

[W]

-12-

References

F. van der Blij and T. Springer: The arithmetic of octaves and of the group

G2 ' Indag. Math. 21 (1959),406-418

S. Donaldson: Irrationality and the h-eobordism conjecture, J. DiH. Geom. 26

(1987), 141-168.

S.M. Finashin, M. Kreck, O.Ya. Viro: Non-diHeomorphic but homeomorphic

knottings in the 4-sphere, in SLN 1346 (1988), 157-198

M.B. Freedman: The disk theorem for 4-manifolds, Proc. Int. Congress

Math., Warsaw 1983,647--663

R. Friedman and J. Morgan: On the diffeomorphism type of certain algebraic

suriaces I, J. Diff. Geom. 27 (1988), 297-398

R. Gompf: Nuclei of elliptic suriaces, preprint 1989

L. Guillou and A. Marin: Une extension d'un theorem Rochlin sur la

signature, C.R. Acad. Sci, 258 (1977), A 95-98

M. Kreck: An extension of results of Browder, Novikov and Wall, preprint

1985 (to appear under the title surgery and duality in the Aspects series,

Vieweg).

C. Okonek and A. van de Yen: Stable bundles and differentiable structures on

certain elliptic surfa.ces, Inv. Math. 86 (1986), 357-370

O. Viro: Compa.ct 4-dimensional exotica with smaI1 homology, to appear in

the Leningrad Math. J. voll: 4, 1989

C.T.C. Wall: Quadratic forms on finite groups, and re1ated topics, Topology 2

(1964), 281-298


