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0. Introduction

R.S. Hamilton [H] proved that any riemannian metric g, with
positive Riccl curvature on a compact 3-dimensional manifold is
deformed to an Einstein metric along the equation

(0.0.1) (n = dimension = 3) ,

where rt. denotes the Ricci tensor of gt ' Et the mean value
of the scalar curvature. It is weakly generalized to the case on

higher dimensional manifolds by S. Nishikawa [N].

Equation (0.0.1) has quite good properties: if the initial
riemannian metric 99 is invariant under a compact group action
then so is 9y i if 99 is a K&hler metric then so 1is Iy -
In fact, H.D. Cao [Col] proves that any Kihler metric on a compact
Kdhler manifold with vanishing or negative first Chern class is

deformed to a K&hler-Einstein metric along equation (0.0.1).



This result suggests that, even on a compact Kdhler mani-
fold with positive first Chern class, the solution of equation
(0.0.1) converges to a Kihler-Einstein metric if it exists. The
first purpose of this paper is to show that it is true in some
special cases due to Y. Sakane [S] and N. Koiso - Y. Sakane
[KS] (Theorem 4.2), which contains rotationally symmetric metrics
on the 2-dimensional sphere. On the other hand, if the manifold
admits no K&hler-Einstein metrics then the solution of equation
(0.0.1) can not converge. But it is interesting to see the be-
haviour of the solution, which is the second purpose (Theorem
5.5). We will see "how Futaki's obstructionobstructs the convergence

to an Einstein metric" (Propositions 5.2 and 5.3).

In 1 we will show the long time existence for équation
(0.0.1) on compact Kdhler manifolds with positi&e first Chern
class by a similar way to [Co]. In 2 we will introduce some
manifolds in [KS1] and reduce equation (0.0.1) to a heat equation
of one variable. In 3 we will show that the solutionAconverges.
In 4 we will see, unsing results in 3, that the metric converges

to a Kdhler-Einstein metric if it exists. In 5 we will treat the

cases without Kdhler-Einstein metrics.



1. The long time existence

Let M 'be an m-dimensional compact complex manifold with

positive first Chern class C1(M) . We consider Hamilton's equation
a ~ _ ~ ~ ~ N . . ~
(1.0.1) 3E J¢ © rt+ 9 (rt is the Ricci tensor of gt} ,

with an initial Khler metric g, in C,(M) . We will show in

this section the following

Proposition 1.1 The solution of equation (1.0.1) exists for

all time.

Since the short time unique existence is known by [H,
Theorem 4.2]}, it suffices to prove some a priori estimates. We
will prove it by the same way as the proof of Cao [Co] for the case

of vanishing first Chern class. Fix a Kdhler metric g in C1(M)

and define real valued functions u, and £ by
(1.1.1) gt = g+ aaut ’
(1.1.2) r = g+293of ,

where 033 denotes the complex hessian. Then, using a general

formula



/

(1.1.3) r =-233 log det g ,

we see that equation (1.0.1) reduces to

(1.1.4) aa(sz ut) = 99 log det gt-aa log det g-+33ut-33f ’
and so

b _ ~ ._
(1.1.5) 3% Y = log det g - log det g+u ~-f .

From now on, omitting t , u denotes the maximal solution

of equation (1.1.5) such that the tensor g is positive definite.

Put
(1.1.6) ©=jpu-u+t
ot
Then we see that
1.1.7) A det § = e” det g .

We will apply S.T. Yau's results [Y] to this equality. (But

we refer to alsclBl].) Since we know the short time existence for
equation t1.1.5), it suffices to show the a priori estimates up to
third order which may depend on time. We assume that the solution
exists only for finite time [0,T) and denote by Ci a priori

constants which may depend on T and Ci constants which do



not depend on T .

Lemma 1.2 The function %? u is time dependently estimated:
(1.2.1)
and so

(1.2.2) lul s ¢, and |o| s C4

Proof Put

. ij ~=_~1j T
(1.2.3) 8 =-g 3,37, 7 §78,05 o E- 5
Differentiating equation (1.1.5) by t , we get
D 2w = 2 1o det el

(1.2.4) 3T (§E u) = T log det g-{at u

=% (o 3_

e T T
and so

-t 3 _

(1.2.5) o(e ~3gxu =0 .
Thus by the maximum principle, the function et %? u is

bounded. Q.E.D.



Lemma 1.3 There exist time dependent positive constants

C and C such that

[ ]

{1.3.1) C1g < g < ng

Proof Since E is positive definite, we see that
m=Au > 0 . We want to show that Au is bounded from below. If

m = 1 , then it is a direct consequence of Lemma 1.2 and the

equality : e® = m-Au . Assume that m > 1 . Applying [Y. (2.22)]

or [B, p. 126] to equality (1.1.7) we see that
(1.3.2) exp (Ciu) 2 {exp (-Ciu)(m- Au)}
m__

< mp+m2 inf R +C§m(m—a.u,) - (c§+inf R) exp {-¢/ (m=-1)) (m - Au)m'1 '

where R 1is the curvature tensor of g , inf R = inf Riijf and

Ci is a constant such that C5-+inf R >1 . On the other hand,
' _3_ - 1 -
(1.3.3) exp (Cju) z¢ {exp (-Cju) (m-Au)l
= - ' - a_ —a_
C3(m Ag) ST U~ 5F Au .
Therefore we see that

(1.3.4) exp (Céu) o {exp(-Céu)(m-Au)}

>- (Af+m2inf R-m) + (c} %"E u=-C4m=1) (m- du)



m

+ (Cé-rinf R) exp (-q:a/(m-1))(m-Au)m-1 .

At the maximum point of -exp(-Céu)(m-Au) , we use Lemma 1.2

and get

m

-1
(1.3.5) O.Z-Ca-c's(m-Au)+C6(m-Au)m ,
and so we see that m-Au s C, . Therefore
(1.3.6) exp (-Qén)(m-Au).S c8 '

which hol?s not only at the maximum point but also for all times

in {0,T). Thus

(1.3.7) ‘ laul s cg .

Now we apply Shauder estimate (e.g. [GT, Theorem 8.32]), and get

(1.3.8) Iui| $Cyp v

where ui ’ uii etc. denote the derivatives. Take a normal
coordinate of M so that uiﬁ = 0 for i %+ 3j at a point. Then

Au =-ZuiI ’ uii-b1 > Q and so uiI s C11

Since



(1.3.9) T(1+u,z) = det g = e? det g
i

we see that I log (1-ruiI) s Ci2 and finally that

(1.3.10) |log g7l = llog (1 +u;7)| 5 Cuq s
which implies (1.3.1). Q.E.D.
Lemma 1.4 Put § = aiiakiapﬁu T us, = . Then
: ilp kg °
(1.4.1) S 3 C1
Proof - By [B, p. 161] we have
(1.4.2) BS s C(u)-S+F ,
where
- ~ij~kl~pq ©=n <U. =
(1.4.3) F (wllp jkq jkquilp)
1a~bj~k ~pq ~i§~k5~bi~pq ~ij~kl~pa bq _ .
+ (g 99 g9 9 "+g g Vo343 TpY3ka
and C{u) is a function depending only on uif (and g }. The
time derivative -2 S becomes exactly the function F replacing

ot
3

¢ by 3E 9 - Thus,



(1.4.4) nSZ-CZ—C3-S .

Moreover, by [B, p. 151] we have
~ ~i§~k1 o
(1.4.5) AAu e - Ap +gT-g uilpujkp+c(u)
Z-Acp+c4.,-s-cs '

and so

9
{(1.4.6) oAu SAw—C4-S+C5—Aﬁu

S--C4-S+C6 .
Let C.7 be a constant such that C7-C4 > C2 . Then

(1.4.7) o (S--C7-Au) pS (CT'C4_C2)S+C8

s (C.7-C -C2) (S-C.7-Au)+C9 .

4

(Compare with [Y, (3.4)].) Therefore, by the maximum principle,

we see that S-C7-Au s (210 and so S & C11 .



Proof of Proposition 1.1 Differentiating equation (1.1.5)

we have

(1.4.8) au, =-gtd;

k k%13 + 1

* gljakgii T Uty

We saw that the coefficients of o©o and the right hand side are
bounded with their space derivatives in finite time [O,T). There-
fore Schauder estimate (e.g. [LSU, III Theorem 11.1) allows us

to estimate Ha’a/2

a,a/2

norm of the space derivatives of w where

H means weighted Hdlder continuity counting the time variable

as half time of space variables. Thus the coefficients of © and

the right hand side are bounded in Ha’a/2

a+2,0/2+1

norm, and so uk is

bounded in H norm, again by Schauder estimate (e.g.

[(LSU, IV Theorem 5.1]).

We can repeat this procedure and see that u 1is bounded
in ¢" norm in finite time. Thus we can extend the solution u
over t."= T , which contradicts to the assumption that T 1is

maximal. | ' Q.E.D.

Finally, we give a sufficient condition for the convergence
of a modified solution, which will be used to treat the cases
without Einstein metrics. Let V be a holomorphic vector field
on M and define a one-parameter family of riemannian metrics

R = Y-1*§ , where y(t) = exp tV .



Proposition 1.5 Assume that h converges uniformly to g

and is bounded in C1 norm. Then h converges in c® norm.

'Proof Define a function v by H = g+ 33v. Then it is

easy to check that

(1.5.1) 33 ( v - log det h)

w| o
]

==~ 33V[v] -33f+33v-33 log det g-Lyg -

Since V is holomorphic, there is a c” function p so that

ng = 8§p . Thus
(1.5.2) %V—loq.detﬁ'=-(f+p+log det g) = Viv] +v ,

modulo constant depending on time. Therefore we can apply the
same argument as Proof of Proposition 1.1, moreover we can
estimate the C° norm of vy time-independently.

Assume that R does not converge to g in C° norm.
Then there exists a sequence ﬁ(ti) which converges to some

R(w) + g in c¥ norm, which is a contradiction. Q.E.D.

Corollary 1.6 If Au converges uniformly to 0 , then

g converges to g in c” norm.



Proof By the last argument of Proof of Lemma 1.3, we

see that uiﬁ and u; converge uniformly to 0 . Remark that

the constants Ci in Proof of Lemma 1.4 depend only on the

C0 norm of uii . Thus we can estimate the function S time
independently and apply Proposition 1.5 with V = 0 .

Q.E.D.



2. Reduction to a heat equation of one variable

First we recall [KS}]. Let (N, gN) be a compact K&hler-
-Einstein manifold with ry = 9y and 7w :L -» N a hermitian
holomorphic line bundle. We assume that the eigenvalues of the

Ricci form B of L with respect to are constant on N .

In
We put E = L\{0-section} and consider a compact complex mani-
fold M which contains E as an open dense subset. Assume
that M\E has two connected components N1 and N2 which are
closed submanifolds of M of codimension d1 and d2 ; re-
spectively. The indexes i of N, are chosen so that N,
(resp. N,) coincides with the image of {0-section} (resp.

{~ - section}) with respect to the continuousgly extended map:

L]
P{(1 @ L) > M of the inclusion map: L — M .
We consider K&hler metrics g on M -of the form
(2.0.1) g = dsz+ (dsoJ)2+ﬂ*g§

o
on L , where s is a function on M depending only on the
norm of L and increasing for the norm, and gg a one-

. 0o .

parameter family of K&hler metrics on N such that gy 1is
the Einstein metric Iy - Let M be the set of all such Kdhler
metrics g which represent the first Chern class C1(M) . We
assume that the set M 1is non-empty, in particular that C1(M)

is positive.



[KS1, Theorem 4.1] using g° as a reference Kdhler metric.

Q.E.D.

Lemma 2.4 Let g° € M and (x°, ¢°) the corresponding
pair. A Kidhler metric g on M is an element of M if and only
if there exists a C  function h(x°) of x° such that

g = g°4-3§h .

Proof Assume that such a function h 1is given. We put
# = x° + %‘H[h] and o(x) = w°tx°h—% Hz[h]. Then the functions
x and ¢ satisfy the conditions in Lemma 2.3, and so a K&hler
metric g, € M corresponds. By [KS1, Lemmas 1.2 and 1.3], 94
coincides with g . Conversely, assume that a Kdhler metric
g € M is given and let (x, ¢) be the corresponding pair of
functions. Since x = x° on N, UN, , the function
(x~-x°)/9°(x°) is a C~ function of x° . Therefore there is a
c” function h(x°) such that x = x°->% H[h] , and so
@(x) = H[x] = w°(x°)+-% HZEh] . By [KS1, Lemmas 1.2 and 1.3], we

see that g = g° + 33h . : Q.E.D.
Now we define a real number E by
(2.4.1) [ 2 xe B¥q(x)dx = 0

Since Q(x) > 0 on (-d1, dz) , such E 1is unique. Remark that

the left hand side of equation (2.4.1) with E = 0 gives Futaki's



Now all hypotheses in sections 1 and 2 in [KS1] are satis-
fied. We have P1(m)-bundles M over Kdhler C-space N with
C1(N) > 0 as typical examples of such manifolds, provided

that C1(M) > 0.

Let g € M . Since E is a Et-bundle over N , we can
define a holomorphic vector field H on M corresponding to
the holomorphic action of R* so that H[s] > 0 and
exp 2m(JH) = idM . Remark that the function H[s] is a function
of s and define a function x on M by x = fg H(s)ds . Put
o(x) = H[s]1® = g(#, H) and Q(x) = det (id-xgy'B) . Let

[min x, max x] be the range of x .

Lemma 2.1 ([XS1, Lemma 2.1]) The function x is a ¢C°
function on. M . A function h(x) of x 1is a ¢” function on
M if and only if it is c” as a function of x , i.e., if it
extends to a C° function on an open interval containing

[min %, max x]. For such a function h , we see that
_ 3
(2.1.1) H(h] = ©(x) X h .

Lemma 2.2 (1) [min x, max x] = [-d1, d2]. (2) The
function ¢(x) is a ¢ function of x . It is positive on
(-d1, d2) , vanishes at x =--d1 and d2 , and its derivative
is 2(resp.-2) at x =-d1(resp. d,) . (3) The function Q(x)
is positive on (-d1, d2) and contains (1+3/d1)(resp. (1-—x/d2))

as a factor of power dT"1 (resp. dz-1) . (4) If a ¢



33 f , then

function f on M satisfies the equation r-g

it is a C° function of x and satisfies the equation

(2.2.1) %§w+2x+

L@] 151

3 3 _
3‘}-{-Q+(03—£.f-0o'

Proof These are shown in section 2 of [KS1], provided that
(1) is assumed. When we do not assume (1), we only know that the
left hand side of equation (2.2.1) is a constant C and that (1)

holds if and only if C = 0 . However, by the same way as [KS1],

N9t % CB , where 1 is a section

of m : L —-—> N such that s o 1 = 0 . Thus under our assumption

we can check that 33(1*f) = r

that r, = and the eigenvalues of B are constant on. N , we

N - Iy
see that C =0 . Q.E.D.

Lemma 2.3 Let o(y) be a function of y which satisfies
the properties in Lemma 2.2 (2). Then there exists a continuous
function X on M with range [-d1, d2] whose restriction on
E is a ¢! function depending only on the norm of L and satis-
fies the equation : H[X] = ¢(xX) . Such a function x is auto-
matically ¢ on M and isvunique up to the holomorphic action
of R’ . Moreover, there exists a unique K&hler metric g € M

to which the functions x and ¢ correspond.

Proof Remark that we assume that M 1s non-empty and so
we can take an element g° of M . Then the construction of the

function x and the metric g can be done by the same way as



obstruction IM H[f] for existence of Kihler-Einstein metrics
with respect to the holomorphic vector field H ([XS1, (3.1.1)1]).
Define a function ©°(x) by '

-d’

1

(2.4.2) ©°(x) =-2Q(x)

This function satisfies condition (2) in Lemma 2.2 and hence,
taking a function x° so that ¢°(x°) = H[x°], defines a Kihler
metric g° on M . Remark that the function ¢° satisfies the
equation

Q
(2.4.3) %iwuz,“g %{_Q=Ewo .

Combining with equation (2.2.1), we get

Proposition 2.5 ([KS1, Theorem 4.1, 4.2]). The following
conditions are equivalent. (1) E = 0 . (2) g° 4is an Einstein
metric.u(3) M admits a Kidhler-Einstein metric. (4) Eutaki's

obstruction of M vwvanishes.

Now we solve Hamilton's equation (0.0.1) with an initial K&hler
metric 30 € M and denote by Et the solution. Remark that all
Et are in M by Lemmas 2.2, 2.3 and 2.4. Thus we can take two

coordinate systems of M xR’ essentially : (x°, t) and (xt, t)

where Xy corresponds to Et . We denote by Dt(resp. %E) the

time differential



with respect to (x°, t) (resp. (xt, t}). We will omit t of

X£ and @0, - Hamilton's equation is given by

(2.5.1) Dt§=-?+§=-a§ft '

where

(2.5.2) g(H, H) = @(x) ,

(2.5.3) (33£,) (B, H) = + w(x)g—xﬁ £, ([KS1, Lemma 1.31) .

And by equation (2.5.1),

= - a— 2 = a—.. 3— (_Qa_
(2.5.4) D0 == (0 527 = 0 == (37 @0+ 2x+5 3% Q

On the other hand, we see that

_ 3 .9 d 4 _ C_
{(2.5.5) Dt = DtX'B—x"'ﬁ ' [Dtr o) "a""}'c‘] = [Dt: H] =0 7
and so
3_, 3 3 1 4
(2.5-6) [Dtx ax"'ﬁr ® 3_1{] 0 ’
3 = o o - .9
(2.5.7) SEP =0 P (Dtx) Dtx 5% ®
(2.5.8) Dw=aw+Dx-a—w=w§—(Dx)
T t 3t t7 9x IX 't !



3. Convergence of the heat equation of one variable.

We continue the discussion in 2. To prove the convergence

of ¢ , we need the following
3
o - -
Lemma 3.1 ©°(x) - x = 9°(x) > 0 on [ d1, d2] .

Proof Put E£(x) = xe-ExQ (x) and ni(x) = [® £(x)dx .
-d
1

Remark that %?E (e'ExQ ©°®) =-28£ and ° =-2eEx-Q-1 n .

Therefore,

(3.1.1) e o (0o -x z 00) = 20T €2 -0 5 )

3 o
= ,) >0 at
3

- - . 2 _
X = d1 (resp. d2) , it suffices to prove that § n I3 g >0

Since we know that ¢°-x 2d1(resp. 24

on (-d1, dz) . Then ¢° > 0 and so n < 0 . Moreover, since

E(0) =0, n(0) <0 and Q(0) = 1 , we see that gz-n%g>o

at x = 0 . In the following, we consider only on the interval

(0, dz) . Similar proof holds on (-d1, 0) .

Since the function Q@Q(x) 1is the product of polynomials

2

of first order, the second derivative i_i log £ 1is negative on
ax

(0, dz) , which implies that the first derivative %;‘E acrosses

with the x-axis at most once. If %; £ does not across with the



3 -2

x-axis, then 52-n %E E>0 on (0, d2) , which completes the
proof. Assume that %§ g acrosses with the x-axis at x=a . Then
52-n %; £ >0 on (0, a] and so we may consider only on the
interval (a, d2).
Thus it suffices to prove that (%; E)-1£2-n <0 on la, dz)'
because %;15 < 0 ., But we see that
2
3 3 -1.2 - -2 3 2_. 0

(3.1.2) g lgg 878 -nd = G O gz O -8 5 Eh
here,

2 2

3 -2 2
{(3.1.3) 0>;2-log’c:=€ {52?5'(%5) .

Therefore, the function (%; E)—ng- n is increasing. Moreover,

at x =4, , %5<0, £2 20 and n = 0 . Hence

'152_ ne<0 on (a, dz) . Q.E.D.

3
(3% &)
Lemma 3.2 The function ¢ converges uniformly to 0 1in

exponential order.

Proof By Lemmas 2.6, 3.1 and equation (2.7.2), we see that
the minimum of ¢ is increasing. By Lemma 3.1 we can choose a
positive number C smaller than

{max w°)_1-min (p° -x %E ®°) « (1+min ¢0) . Then by equation (2.7.2),



we get

(3.2.1) 2¢° g—t (%)

2 .
= 0% 3—2- (ethb) - e Ct (e % (eCt¢))2- 2xp° —g—x (eCt¢)
X
-2{(p° - x g—x ©°) (1 +¢) - Cw°}eCt¢ ,

from which we conclude that the function eCt¢ is bounded by the

maximum principle. Q.E.D.

Lemma 3.3 The function o° %; ¢ converges uniformly to

0 1in exponential order.

Proof Put. § = ¢° %; ¢+ Cx¢ , where C 1is a constant. By

definition we see that
o O _ o 9 o 9_ _ (3 .o ~ 9mo O
Here,

(3.3.2) 20°

0 3 £2E% - (z 00 -Ccx)o+d- 0o+ (C+2)x1E
o 9 s 2
—{C+2) (0 =x 57 0°) (1 +¢) -C(C+2)x"}¢ .

and so,



2

(3.3.3) 0° & (20° & 4) = 020 25 £+ (- g term) - (3o 00 - cm) g’
ax
2
o a a 2 ] a o
- {(C+2)(20 “X sz 0 ) —C{(C+2)x" + 0o — © + {¢ term)}g
ax

+ (¢ term) .

Substituting equations (3.3.2) and (3.3.3) into equation (3.3.1),

we get
3 32 3
° . = ° —_—
(3.3.4) 2¢ ST € ©°p ;2- £+ (3x E; term)
o a L] 32 ) . a o a o 2

- {(C+2) (20°-x 53 ©°)+ (0° -a?w°—2x 3R 90T (5 00T+ (e term)) }¢

~+ (¢ term) .
If we remark that 20°-x %; ©°® 2 p°~-x %§ @° > 0 and choose C

sufficiently large, then we can choose a positive constant C

1
c,.t
so that the function e 1 £ 1is bounded by a similar way to Proof

of Lemma 3.2. We know that ¢ converges to 0 , so is

[+ a ¢

® X

1

Lemma 3.4 The function o '. (@° %; ¢ - 2xd) 1is bounded.

Proof Put £ = ¢-1-(¢° %; ¢ - 2X¢) . Remark that £ is a



c¢” function on [-d1, dZ]X[O, w) , Since
3 =2
(3.4.1) % E = 20 "
we get
D b oo 00 e b 2me) S £r2ol. B (00 -
(3.4.2) ZEE- (o Bxd’ 2x¢) axE+2(D T (o 8x¢ 2x0) .
On~the other hand,

(3.4.3) ®° %; ¢ - 2x4¢ =-%§ w-—(%; ©° + 2x)¢

Therefore,

-, '

9 - 2 - S - (3. o 3
(3.4.4) 25 € =0 £+ {06+ 2 55 0 (55 0%420) (140)) 5 €
In particular, at x =-d., d

9 - 3_ -
(3.4.5) 2 o E(-—d1) = 2(d1+1) oy & | d1) '
23 £ (@, =-2(d,+1) & £(d,)
at 2 2 ax 27 °
Thus the maximum principle completes the proof. Q.E.D.

-1

Lemma 3.5 The functions (9»°) ¢ and %E ¢ are bounded.



Proof Put n = (9°) '¢ . Since 4 converges uniformly

to 0 , it suffices to prove that n 1s bounded on a neighbour-
hood ¢f x =-d1, d2 . In fact, then %; ¢ is bounded by Lemma
3.4. Remark that the function £ in Lemma 3.4 is bounded and so
is (1 + ¢} . But

)

(3.5.1) (1+¢)E=m°%n+(§; ° - 2x)n

Thus we can choose a positive constant C so that

1

—C. - (& po- o 9_ - (3 oo -
(3.5.2) C1 (Bx; 2X)n < o 5% D < C1 (ax 2x)n .

If we choose a sufficiently small neighbourhood (a, d2]
of x =,d2 , then we can select a positive constant C2 so that

— ° - 2x e-cz on (a, d2] . Therefore, by inequality (3.5.2),

X
-1 3 ' . -1
if n > C1C2 then = N> Q, andﬁlf n <--C1C2 then
%; n < 0 . On the other hand, substituting x = d2 into in-

equality (3.5.2), we see that

(3.5.3) - (d2+1)'1c1 < n(dy) < (dy+ 17

1
<4

1

Thus |n| < max {(d2-+1)— Cy v C1C;1} on (a, d2] . We can

prove for [-dT, b) by the same way. Q.E.D.

Corollary 3.6 The function (w°)-1¢ converges to 0 in

Ll' norm.



4. Convergence to a K&hler-Einstein metric

In this section we assume that Futaki's obstruction of
M wvanishes, i.e., E = 0 in equality (2.4.1). By Proposition
2.5, the function ¢° defines a Kihler-Einstein metric. By

equation (2.7.1) we know that

3
= o -
(4.0.1? 2Dtx = 0° A= ¢ - 2x¢% ,
and the right hand side converges uniformly to 0 in exponential

order by.- Lemmas 3.2 and 3.3. Therefore the function =x converges
uniformly to a function X _ Since the function ¢ also converges

to the function ¢° , the fuﬁction Xe satisfies the equation
H[Xep] = ©°(Xw) , and thus the pair (X«, ©°) defines a Kihler-Ein-
stein metric by Lemma 2.3. We replace x° by xwo so that x
converges uniformly to x° . Note that the pair (x°, ©°)

o

corresponds to a Kdhler-Einstein metric g° € M . Since

v (x) %; = % (x°) 3 = H , there exists a function c{t) of ¢t
Ix°
such that
dv x° dv
(4.0.2.) (% - = | +c(t)
0 oly) 70 Loy

Remark that c¢(t) converges to 0

Lemma 4.1 The function w°(x°)—1m(x) converges uniformly

to 1.



Thus,
(a.1.6) | 2L g g E gy g(x)) - EL o) g
©° (x°) 9° (x°) ©°(x°) ©°(x°)
= |¢(x)|] 0°(x) |4‘_ l0°(x) = 9°(x°) |
©°(x°) ©°(x°)
S 16(x) ] ©°(x°) +Clx-x°f Clx-x°]

©°(x°) ©°(x°)

A

|o(x) | (1 +2Ce) + 2Ce .

Theorem 4.2. If Futaki's obstruction vanishes, then

~

Proof We see that

(4.2.1) fu =-tr (g-g°)
gﬂ

== 0°(x°) " o (x) - 0°(x°)) ,

where u and A are defined by (1.1.5) and (1.2.3). On the

other hand, if h 1is a c” function of x° , then

3
ax°

(4.2.2) g°(dh, dh) = 7 ©°(x°)

h) 2,

g, € M converges to a K&hler-Einstein metric € M in c”

norm.



Proof First we see that

(4.1.1) XS Xt dy
©° (y) ©°(y)
s |1 Sl P> A IR B I =L |

=1 f5 Ty W T leway [+ e |

and the last line converges uniformly to 0 by Lemmas 3.2 and
3.6. Put C = max |%§ ©°(y)| and let I be the closed interval

between x and x° . If

(4.1.2) 3 S px° Ay,
®° (y) ©° (y)

|<E,.
then

(4.1.3) e > |[¥ S| 2 |x-x°
x° ©°(y)

min {0°(y) "1},
I
and so

(4.1.4) |x - x°| $ e-max {©°(y)} s e-{0°(x°) +C:|x-x°|}
I

Therefore, if e is sufficiently small then

(4.1.5) X =-x°| s 2e9°(x°)



because g°{(H, H) = ¢°(x°) and H[h] = ©°(x°) 8
. Ix°
Au  is bounded, then u is bounded in c3 norm

. There-

fore, if
ax°

(up to constant factor). Now,

(4.2.3) -2 Ay =--2 [_@(x) )

ox° ox° \to° {x°)
= @ (x) { 1 (% ©° (x) - 3 ©°{x°))+ ¢(X) +(D° (x) g__¢ (X)}
®° (x°) “°(x°) 3x° ©° (x°) @°(x°) °F !

and the last line is bounded by Lemma 4.1, inequality (4.1.4) and
Lemma 3.5. Combining equation (4.2.1) with Lemma 4.1, we see that
the assumption of Proposition 1.5 with V = 0 holds, or more

directly, we can apply Corollary 1.6. Q.E.D.



5. Pseudo-convergence to a quasi-Einstein metric

To study the cases when there are no Einstein metrics we

give the following

Definition 5.1 A riemannian metric g 1is called 'a quasi-

~Einstein metric if there is a vector field V such that

r-duf1§g=rvg .
We easily see

Proposition 5.2 The solution of Hamilton's equation (0.0.1)

whose initial riemannian metric 90 is a quasi-Einstein metric

is given by 9: = yz1ig0 , wWhere = exp tV . In particular,

T
if d, is not Einstein then g, does not converge.

For the case of Kihler manifolds with positive first Chern

class, we get

Proposition 5.3 A Kdhler metric g in the first Chern

class is a quasi-Einstein metric if and only if r-g = ng
for some holomorphic vector field V . In particular, such a
Kdhler metric is an Einstein metric if and only if Futaki's ob-

struction vanishes.

Proof Put r-g = 30f . Then by definition of V ,



(5.3.1) DiVE-PDEVi = DiDSf ,
(5.3.2) Divj+r>jvi =0 ,

where D denotes the covariant derivative. Therefore,

k _ k k
(5.3.3) -D (DkVi-Din) ——DkD Vi+DiD Vk

k

k
--Dk(D Dif- Din) +DiD Vk

X k. .
f+Dka+D V) =0,

= Di(-DkD

which implies that DiVj =0, i.e., V 1is holomorphic.

Assume that Futaki's obstruction vanishes. By definition

({F1),

(5.3.4) I\I[f]vg =0

On the other hand, there is a complex valued function n such
that Vi = Din , because the first Chern class is positive and
so there are no non-trivial harmonic 1-forms. Substituting it

into equality (5.3.1}, we get

{5.3.5) DiD-]r(n+n-f) =0 ,



and so there is a real valued function v such that

n = % £+ /=17 v . We substitute it into equality (5.3.4) and see

that df = 0 . Q.E.D.
Now we come back to the situation of 2 and 3 and assume
that Futaki's obstruction of M does not vanish, i.e., E # 0

in equality (2.4.1). Then we get

Proposition 5.4 The Kihler metric g° corresponding to

the pair (x°, ¢°) . is a quasi-Einstein metric but not an Einstein

metric.

Proof Put r°-g° = 33f . By equalities (2.2.1) and (2.4.3)

we see that
(5.4.1) (Af)H = - Ep°(x°) =-Eg°(H, H) ,

i.e., grad £=-EH . Thus r°-g° ==L,

1 go . ’ QoEoDa
2

EH

If we solve Hamilton's equation with an initial metric EO ’
then by equality (2.7.1) and Lemmas 3.2 and 3.3 the function

2Dtx does not converge to 0 , hence the Kdhler metric Et

does not converge. Therefore we analyse the behaviour of the one-
=14 .
~parameter family Ye 9 of Kidhler metrics, where
1 =%
Yy = exp (-5 Et H) . Remark that Ye 9 corresponds to the



. -1
pair (xtoy £ wt) . (See Lemma 2.3).

Theorem 5.5 The family Y;**Ege M converges to a quasi-

-Einstein metric € M in ¢ norm.

Proof If we can show that Dt(x ! ) converges uniformly

t° Tt
to 0 in exponential order, then the proof will be completed by a

similar way to 4. By equality (2.7.1) we see that

-1 _ _
(5.5.1) ZDt(xt-Yt )oyt = 2Dtx EH[x]

2Dtx-E-w(x)

9°(x) 22 (%) + (E-0° (x) = 2%) ¢ (x) = B+ (@(x) = 9°(x)) ,

and the last line converges to 0 by Lemmas 3.2 and 3.3.

Remark 5.6 The K&hler metric g° is not extremal in the

sence of Calabi [Cl]. A K&hler metric is extremal if and only if
the gradient of its scalar curvature is holomorphic. In our case,

it is equivalent to the equation

(5.6.1) _25 (¢ 2~ £) = constant,

and by condition (2) in Lemma 2.2 we get a unique solution



(5.6.2)  o(x) ==-[2, {C(d; +x) (d,=x) +2x}Q(x)ax/Q(x) ,
1

where the constant C 1is chosen so that w(dz) = 0 . We can

easily check that this function ¢ defines an (extremal) K&hler
metric by Lemma 2.3, but it is a quasi-Einstein metric if and only

if E=0 and C =0, i.e., if they are Einstein metrics.
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d - d E) @ 9
(2.5.9) 2@ % (Dtx) =0 5% (§§_w-+2x-ro 3% Q) .
But here we know that D, x = 0 and 2_ q>+2x-l--(12 2
t ax Q 9x

= - é-- —4 —Y . -
== g £f =0 at x = d1, d2 . Thus

= 9 ® 3
(2.5.10) 2Dtx = 53 P+ 2x +

Q ox
Using the function ¢°(x) defined by (2.4.2), we put
(2.5.11) o(x) £ 0°(x) lolx) -1.

Then by Lemma 2.2 (2) we see

Lemma 2.6 The function ¢{(x) is a ¢® function such that

¢(x) = 0 at x=-43,, d, and 1+¢ > 0 on [-d1, dz] .

Lemma 2.7
(2.7.1) 2Dtx = ®°(x) % ¢ (x) + (Ew® (x) - 2x) ¢ (x) + Ep°(x) ,
(2.7.2) . 20° 2 %
che ot
32 3 .2 3 5
= 0% T2 0= (9° 35 ¢) 7 - 2x0° 37 - 2(0° = x == ©°) (1+¢) ¢ .
X

Proof Equation (2.7.1) is easy to see by equations (2.5.10)
and (2.4.3). Substituting it into equation (2.5.7), we get

equation (2.7.2). Q.E.D.






