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o. Introduction

R.S. Hamilton [H] proved that any riemannian metrie go with

positive Rieei eurvature on a compact 3-dimensional manifold is

deformed to an Einstein metric along the equation

(0.0.1) a 1 -- g- =-r·+- 5 .gat t t n t t (n = dimension = 3)

where r t , denotes the Ricci tensor of gt' St the mean value

of the scalar eurvature. It is weakly generalized to the ease on

higher dimensional manifolds by S. Nishikawa [N].

Equation (0.0.1) has quite good properties: if the initial

riemann1an metric 1s invariant under a compact group action

then so is is a Kähler rnetric then so is

In fact, H.D. Cao [Co] proves that any Kähler metric on a compact

Kähler manifold with vanishing or negative first Chern class 1s

deformed to a Kähler-Einstein metric along equation (0.0.1).
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This result suggests that, even on a compact Kähler mani­

fold with positive first Chern class, the solution of equation

(0.0.1) converges to a Kähler-Einstein metrie if it exists. The

first purpose of this paper is to show that it is true in some

special cases due to Y. Sakane [S] and N. Koiso - Y. Sakane

[KS] (Theorem 4.2), which contains rotationally symmetrie metries

on the 2-dimensional sphere. On the other hand, if the manifold

admits no Kähler-Einstein metries then the solution of equation

(0.0.1) can not eonverge. But it i8 interesting to see the be-

haviour of the solution, which is the second purpose (Theorem

5.5). We will see "how Futaki I s obstruction obstructs the convergence

to an Einstein metric" (Propositions 5.2 and 5.3).

In 1 we will show the long time existence for equation

(0.0.1) on compact Kähler manifolds with positive first ehern

class by a similar way to [Co]. In 2 we will introduce some

manifolds in [KS1] and reduce equation (0.0.1) to a heat equation

of one variable. In 3 we will show that the solution converges.

In 4 we will see, unsing results in 3, that the metric converges

to a Kähler-Einstein metric if it exists. In 5 we will treat the

cases without Kähler-Einstein metries.
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1. The long time existence

Let M "be an rn-dimensional compact complex manifold with

positive first Chern class C, (M) . We consider Hamilton's equation

(1.0.1)

with an initial Kähler metric go in C1 (M) • We will show in

this section the following

Proposition 1.1 The solution of equation (1.0.1) exists for

all time.

Since the short time unique existence 1s known by [H,

Theorem 4.2], 1t suffices to prove some apriori estimates. We

will prove it by the same way as the proof of Cao [Co] for the case

of van1shing first Chern class. Fix a Kähler metric g in C
1

(M)

and define real valued functions u t and f by

(1.1.1)

(1.1.2) r = g + aäf

where aä denotes the complex hessian. Then, using a general

formula
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(1.1.3) r = - aä log det g ,

we see that equation (1.0.1) reduces to

( 1 • 1 • 4) aä (~ t u t ) = aä log det gt - aa log det g + aäu t - aäf ,

and so

(1.1.5)

From now on, omitting t, u denotes the maximal solution

of equation (1.1.5) such that the tensor

Put

,..",

g is positive definite.

(1.1.6)

Then we see that

(1.1.7)

a
<.P = at u-u+f.

det g = e<.P det g .

We will apply S.T. Yau's results [y] to this equality. (But

we refer to also[ B] .) Since we know the short time existence for

equation (1.1.5), it suffices to show the apriori estimates up to

third order which may depend on time. We assume that the solution

exists only for finite time [O,T) and denote by C.
1.

apriori

constants which may depend on T and CI
i

constants which do
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not depend on T.

Lemma 1.2 The function a
ät u is time dependently estimated:

(1.2.1)

and so

(1.2.2)

Proof Put

I~t u I :;a C1 '

7:: ""'IgiJa a- 7:: a
U i j , C =- U - at

Differentiating equation (1.1.5) by t , we get

(1.2.4)

and so

(1.2.5)

a a a a
at (at u) = at log det g + at U

=- Z (a u) +.L uät at

c ( e -t a u) = 0
at

Thus by the maximum principle, the function

bounded.

-t a
e at u 1s

Q.E.D.
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Lemma 1.3 There exist time dependent positive constants

C
1

and C
2

such that

(1.3.1)

Proof Since g i8 positive definite, we see that

m - fiu. > 0 • We want to show that 6u. is bounded from below. If

m = 1 , then it is a direct consequence of Lemma 1-.2 and the

equality: e'!> = m - 6u, • Assume that m > 1 • Applying [Y. (2.22)]

or [B, p. 126] to equality (1.1.7) we see that

(1.3.2) exp (C3u) Z {exp (- Cju) (m - 6u) }

m
2 m-1

:;j 6<p + m inf R + Cj m(m -6uJ - (C) + inf R) exp (- (!)/ (m - 1)) (m - 6u)

where R 18 the curvature tensor of g, inf R = inf RiIj] and

CI
3 is a constant such that C3+ inf R > 1 • On the other hand,

(1.3.3) a
exp (C:3u) at {exp (- C j u) (m - 6 u) }

a a=- Cj (m - Su) ät U - ät 6u •

Therefore we see that

(1.3.4) exp (C3u) c {exp ( - C)i.r) (m - 6.u) }

2: - (fif + m
2

inf R - m) + (C3 ~t u - C)ffi - 1) (m - 6.u)
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m
m-1

+ (C3+ inf R) exp (- <pI (m - 1) ) (m - ~u) .

At the maximum point of . exp ( - C3u) (m - ~u) , we use Lemma 1.2

and get

(1.3.5)

m
m-1o .a: - C 4- C's (m - ßU ) + C 6 (m - ~U ) ,

and so we see that m - Liu :si C7 • Therefore

(1.3.6) exp (- ~jo) (m- ~u) :si Ca '

which hol~s not only at the maximum point hut also for all times
\

in [O,T). Thus

(1.3.7)

Now we apply Shauder estLmate (e.g. [GT, Theorem 8.32]), and get

(1.3.8)

where u
i

, U."":' etc. denote the derivatives. Take anormal
~J

coordinate of M so that u i 3 = 0 for i * j at a point. Then

Liu = - Eui ! , uiI + 1 > 0 and so uiI :si C 11 .

Since
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~(1 +uiI) = det g = e4' det g ,
:l

we see that E log (1 + uiI) :i C12 and finally that

(1.3.10)

which implies (1.3.1). Q.E.D.

Lemma

(1.4.1)

1 • 4 Put
,....i -j,....kt""'pq-

S - g g' g U.- u~ - • Then
~lp J~q

S :i C 1 •

Proof·5y [5, p. 161] we have

(1.4.2)

where

(1.4.3)

'ES:i C(u)·S+F,

and C (u) is a function depending only on Uij (and g ) . The

time derivative a becomes exactly the function F replacing-- Sat
lP by a Thus,at u .
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(1.4.4)

Moreover, by [B, p. 151] we have

(1.4.5)

and so

(1.4.6)

~ ~ij~kI
.6..6.u· Co - ß,n + g g u - u- - + C (u)

.. 'V ilp jkp

~ - .6.q> + C4'· S - C5 '

Let C7 be a constant such that C,.C 4 > C2 • Then

(1.4.7)

(Compare with [Y, (3.4)].) Therefore, by the maximum principle,

we see that S - C, • .6.u :Si C10 and so S:Si C
11

•

Q.E.D.
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Proof of Proposition 1.1 Differentiating equation (1.1.5)

we have

(1.4.8) _ "'iJ i3
Cl uk - - g akgiJ+ g akgi3- U k + f k ·

We saw that the coefficients of Cl and the right hand side are

bounded with their space derivatives in finite time [O,T). There­

fore Schauder estimate (e.g. [LSU, III Theorem 11.1) allows us

to estimate Ha ,a/2 norm of the space derivatives of ~ , where

Ha ,a/2 means weighted Hölder continuity counting the time variable

as half time of space variables. Thus the coefficients of Cl and

the right hand side are bounded in Ha,~/2 norm, and so u
k

is

b d d i HCt+2, a/ 2+ 1 i b h d . (oun e n norm, aga n y Sc au er est~mate e.g.

[LSU, IV Theorem 5.1]).

We can repeat this procedure and see that u is bounded
co

in C norm in finita time. Thus we can extend the solution u
,-

over t = T , which contradicts to the assumption that T is

maximal. Q.E.D.

Finally, we give a sufficient condition for the convergence

of a rnodified solution, which will be used to treat the cases

without Einstein metries. Let V be a holornorphic vector field

on M and define a one-parameter family of riemannian metries

n = -1.",
y g, where y(t) = exp tV .



converges uniformly toProposition" 1.5

and is bounded in C1
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Assume that 11

norm. Then h converges in
co

C norm.

g

Proof Define a function v by h = 9 + aav. Then i t is

easy to check that

(1.5.1) aa( ~t v - log det h)

Since V is holomorphic, there is a
co

C function p so that

rvg = aap · Thus

(1.5.2) ~t v - log det h = - (f + p + log det g) - V[v] + v ,

modulo constant depending on time. Therefore we can apply the

same argument as Proof of Proposition 1.1, moreover we can

estimate the
co

C norm of vk time-independently.

Assurne that 11 does not converge to 9 norm.

Then there exists a sequence 11 (t. )
1.

which converges to some

11 (co) * 9 in er norm, which is a contradiction. Q.E.D.

Corollary 1.6 If ßU converges uniformly to 0 , then

9 converges to 9 in
co

C norm.
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Proof By the last argument of Proof of Lemma 1.3, we

see that Uij and u i converge uniformly to O. Remark that

the constants C. in Proof of Lemma 1.4 depend only on the
~

cO norm of Uij . Thus we can estimate the function S time

independently and apply Proposition 1.5 with V = 0 . Q.E.D.
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2. Reduction to a heat equation of one variable

First we recall [KSt"]. Let (N, gN) be a compact Kähler­

-Einstein manifold with r N = gN and 7T: L ~ N a hermitian

holomorphic line bundle. We assume that the eigenvalues of the

Ricci form B of L with respect to gN are constant on N .
o

We put L = L\{O-section} and censider a compact complex rnani-
o

fold M which contains L as an open dense subset. Assume
o

that M\L has two connected components N, and N2 which are

closed submanifolds of M of codimension d, and d 2 ' re­

spectively. The indexes i of Ni are chosen so that N,

(resp. N2) coincides with the image of {O-section} (resp.

{co - section}) wi th respect to the continueus ly extended rnap:
o

P(' e L) ~ M of the inclusion map: L ~ M .

We consider Kähler metries 9 on M ·of the form

(2.0.')
2 2 s

9 = ds + (dsoJ) + 7T*gN

o

on L , where s is a function on M depending only on the

snorm of Land increasing for the norm, and gN a one-
o

parameter family of Kähler metrics on N such that gN is

the Einstein metric gN. Let M be the set of all such Kähler

rnetrics gwhich represent the first Chern class C, (M) . We

assume that the set M is non-empty, in particular that C, (M)

15 positive.



2 - 4

[KS1, Theorem 4.1] using gO as a reference Kähler metric.

Q.E.D.

Lemma 2.4 Let gO F. M and (XO, ~O) the corresponding

pair. A Kähler metric g on M 1s an element of M if and only
00

if there exists a C function h(xO) of XO such that

g = gO + aäh .

Proof Assume that such a function h 1s given. We put
1 .

x = XO + "2 H[h] and 1 2
~ (x) = t,p0 (:XO)+"2 H [h]. Then the functions

x and t,p satisfy the conditions in Lemma 2.3, and so a Kähler

rnetric g1 E M corresponds. By [KS 1 , Lemmas 1 .2 and 1 .3] , g1

coincides with g . Conversely, assume that a Kähler metric

g E M 18 given and let (~ , t,p) be the corresponding pair of

functions. Since x = XO on N1 U N2 the function

(x - XO) /t,p0 (XO)
00

of XO Therefore there 1sis a C function . a

C
OO

function h (XO) such that x = XO + 1H[h] , and so

~(x) = H[x] = t,p0 (XO) + 1H2 [h] . By [KS1, Lemmas 1.2 and 1.3], we

see that g = gO + aäh .

Now we define areal number E by

Q.E.D.

(2.4.1)

Since Q (x) > 0 on (- d
1

, d
2

) , such E is unique. Remark that

the left hand side of equation (2.4.1) with E = 0 gives Futaki's
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Now all hypotheses in sections 1 and 2 in [KS1] are satis­

fied. We have P 1 (a:) - bundles M over Kähler C - space N wi th

C1 (N) > 0 as typical examples of such manifolds, provided

that C1 (M) > o.

o *
Let g E M • Since L is a a: - bundle over N , we can

define a holomorphic vector field H on M corresponding to

the holomorphic action of m+ so that H[s] > 0 and

exp 27r(JH) = idM . Remark that the function H[s] is a function

of 5 and define a function x on M by x = J~ H{s)ds . Put

q> (x) H[s]2 g(H, H) and Q(x) det -1= = = (id - xgN B) . Let

[min x, max: x] be the range of x .

Lemma 2.1 ([KS1, Lemma 2.1]) The function x 1s a
QO

C

~unction on. M A function h(x) of x is a
co

C function on

M if and only if it i5
co

C as a function of x , i.e., if it

extends to a
co

C function on an open interval containing

[min x, max x]. For such a function h , we see that

(2.1.1) H[h] a= tP(x) ax h ·

Lemma 2. 2 ( 1 )

function tP(x) i5 a

[min x, max xl = [- d 1 , d 2 ]. (2) The
co

C function of x. It 1s positive on

( - d 1 , d 2 ) , vanishes at x =- d 1 and d 2 ' and its derivative

15 2 (resp. - 2) at x =- d 1 (resp. d 2). (3) The function Q (x)

is positive on (- d 1 , d 2 ) and contains (1 +~/d1) (resp. (1 - x/d
2

) )

00
as a factor of power d 1 - 1 (resp. d 2 -1). (4) If a C
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function f on M satisfies the equation r - g = a ä f , then

it 15 a
00

C function of X' and satisfies the equation

(2 • 2 • 1 ) La q) + 2x + ~Q ~ Q + q) ~ f = 0x ox ox.

Proof These are shown in section 2 of [KS1], provided that

(1) is assumed. When we do not assume (1), we only know that the

left hand side of equation (2.2.1) is a constant C and that (1)

holds if and only if C = 0 . However, by the same way as [KS' ] ,

we can'check that aä(l*f) = r - g + 1 CB , where 1 1s a sectionN N 2

of 1T . L --+ N such that s ° 1 = 0 Thus under our assumption. .
that r N = gN and the eigenvalues of B are constant on. N , we

see that C = 0 . Q.E.D.

Lemma 2.3 Let q)(y) be a function of y which satisfies

the properties in L~a 2.2 (2). Then there exists a continuous

function
o
L 1s a

x on M with range [- d" d
2

] whose restriction on

function depending only on the norm of Land satis-

fies the equation H[X] = q;>(x) • Such a function x is auto-

matically
00

C on M and 1s unique up to the holomorphic action

of m+ • Moreover, there exists a unique Kähler metric g E M

to which the functions x and q;> correspond.

Proof Remark that we assume that M is non-empty and so

we can take an element gO of -M • Then the construction of the

function x' and the metric g can be done by the same way as
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obstruction IM H[f] for existence of Kähler-Einstein metries

with respect to the holomorphic vector field H ([KS1, (3.1.1)]).

Define a function. ~O(x) by

(2.4.2)
-1 EX x -Ex

'Po (x) =- 2Q(x) e I ~e ··Q(x)dx.
-d1

This function satisfies condition (2) in Lemma 2.2 and hence,

taking a function XO so that ~O(XO) = H[X~], defines a Kähler

metric gO on M. Remark that the function ~o satisfies the

equation

(2.4.3)
CI ,nO a
~ tP° + 2x + ~ - Q = Et,p° •"x Q ax

Combining with equation (2.2.1), we get

Proposition 2.5 ([KS1, Theorem 4.1,4.2]). The following

conditions are equivalent. (1) E = 0 . (2) gO 1s an Einstein

metric. (3) M admits a Kähler-Einstein metric. (4) Eutakils

obstruction of M vanishes.

Now we solve Hamiltonls equation (0.0.1) with an initial Kähler

metric go E: M
f'<oj

gt are in M

and denote by gt the solution. Remark that all

by Lemmas 2.2, 2.3 and 2.4. Thus we can take two

coordinate systems of M x::IR+ essentially: (XO, t) and (x
t

' t) ,

awhere x t corresponds to gt. We denote by Dt(resp. ät) the

time differential
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with respect to (XO, t) (resp. (~t' t)). We will omit t of

~t and ~t · Hamilton's equation is given by

(2.5.1)

where

(2.5.2) g(H, H) = ~(x) ,

( [KS.1, Lemma 1. 3 ]) •

And by equation (2.5.1),

(2.5.4) a a ~ a
= ~ ax (ax ~+2x+Q dX Q)

On the other hand, we see that .

(2.5.5)

and so

[D
t

, ~ L] =
dX

[D t , H] = 0 ,

(2.5.6) a a L] 0[Dtx. c):x; + at' ~ Q ,ax

(2.5.7) a a
(Dtx)

a
dt ~ = ~ ax- - D x·- ~ ,

t dX

(2.5.8) Dtl.O
a a a

(Dt~)= at l.O + D x·- <P = <P OX ,
t· o:x;
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3. Convergence of the heat equation of one variable.

We continue the discussion in 2. To prove the convergence

of ~ , we need the following

Lemma 3.1

Proof

Remark that

Put -Exf; (x) = xe Q (x) and n(x) = IX f;(x)dx.
-d

1
Ex -1

\.po =-2e -Q .n.

Therefore,

Since we know that \.po - x 3 1.00 2d
1

(resp. 2d2) 0 at
3x = >

x =- d (resp. d2) it suffices to prove that 2 3 f; 0, E; - n ax >1

on ( - d 1 ' d 2) Then \.po > 0 and so n < 0 . Moreover, since

E; ( 0) 0 n (0) 0 and Q (0) 1 that 2 3
0= , < = , we see f; - n 3 x E; >

at x = 0 • In the following, we consider only on the interval

(0, d 2 ) • Similar proof holds on (- cl l' 0) •

is negative on

Since the function Q(x) is the product of polynomials

3
2

3x2 log E;of first order, the second derivative

(0, d2) , which implies that the first derivative ~~_E; acrosses

with the x-axis at most once. If ~~ E; does not across with the



3 - 2

x-axis, then on (0, d2) , which completes the

proof. Assume that acrosses wi th the x-axis at x = a . Then

S2 - n .L ~ > 0 on (0, a] and so we may consider only on the
dX

interval (a, d
2
).

Thus it suffices to prove that on

because

(3.1.2)

here,

aax ~ < 0 • But we see that

(3.1.3)

Therefore, the function (.L ~) -1 s2 - n is increasing. Moreover,
dX

at x - d . a
S 0 C;2 '= 0 and 0 Hence, ax < , n = .- 2

d E;)-1e;2 - n < 0 on (a, d
2

) Q.E.D.( dX .

Lemma 3.2 The function $ converges uniformly to 0 in

exponential order.

Proof By Lemmas 2.6, 3.1 and equation (2.7.2), we see that

the minimum of $ is increasing. By Lemma 3.1 we can choose a

positive number C smaller than

(max q>0) -1. min (q>0 - x ~x, q>0). (1+min $0) • Then by equation (2.7.2),
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we get

from which we conclude that the function eCt~ is bounded by the

maximum principle. Q.E.D.

Lemma 3.3 The function converges uniformly to

O· in exponential order.

Proof oPut. ~ = <.po dX 4> + Cxep , where c 1s a constant. By

definition we see that

Here,

(3.3.2)

and so,

a '- 2 0 a
= <.p ..... x ~.:.. ~ - { (- <.p 0 - Cx) ~ + - <.p ° + (C + 2) x} ~

Q ox ox

- { (C + 2) (<.po - x a <.pO) (1 + A.) - C (C + 2) x2 }A. •OX '+' 'f



(3.3.3) 0· a (2 tnO a '+')
q> dX '+" aX 't'

3 - 4

+ ($ term) .

Substituting equations (3.3.2) and (3.3.3.) into equation (3.3.1),

we get

(3.3.4)

--+ (q, term) •

If we remark that 2q>° - x L !.00 ;;: q>0 _ x L q>0 > 0 and choose Cax ax

sufficiently large, then we can choose a positive constant C1C1t
so that the function e t; is bounded by a similar way to Proof

of Lemma 3.2. We know that $ converges to 0 , so is

a
q>0 dX $ .

Q.E.D.

Lemma 3.4 The function q>-1.(q>o ~x $-2x$) i8 bounded.

Proof Put t; = 1.0-
1 . (q>0 ~X e:p - 2xq,) • Remark that t; is a
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co
C function on [- d 1 , d 2 ] x [0, co) • Since

(3.4.1)

we get

(3.4.2) =-

= 2,n-2. a
'+" at lO ,

On the other hand,

(3.4.3)

Therefore,

(3.4.4) a a2 a a ' a
2 TI ~ = lO ~ t; + {-<.pE; + 2 ax lO - (ax lO° +2x) (1 +$)} ax ~ ·

In particular, at x =- d" d 2 '

(3.4.5) a ) a
2 ät ~ ( - d 1 ) = 2 (d, +' ax ~ (- d 1 )

Thus the maximum principle completes the proof. Q.E.D.

Lemma 3.5 The functions (lOO)-'$ and ~x $ are bounded.
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Proof Put n = (~o)-1$ • Since $ converges uniforrnly

to 0 , it suffices to prove that n is bounded on a neighbour­

ahood of x = - d
1

, d 2 In fact, then dX $ is bounded by Lemma

3.4. Remark that the function ~ in Lemma 3.4 is bounded and so

is (1 + 4» ~ • But

(3.5.1) (1 + !P) t; = ~o ~X n + (~X ~o - 2x) n •

Thus we can choose a positive constant C
1

so that

(3.5.2) - C1 - (~ x: '~ 0 - 2x) n < ~ 0 ~ x n < C1 - (~ x ~ 0 - 2x) n •

If we choose a sufficiently small neighbourhood (a, dZ]

of x =-dZ ' then we can select a positive constant Cz so that

(a, dZ] . Therefore, by inequality (3.5.2),

3 -1
3x n > 0, and if n < - C1Cz then

a
3x n < 0 • On the other hand, sUbstituting x = dZ into in-

equality (3.5.2), we see that

(3.5.3)

Thus Inl
prove for

-1 -1
< max {( d 2 + 1) C1 ' C1C2 }

[ - d" b) by the same way.

on

Q.E.D.

Corollary 3.6 The function (~o)-1$ converges to 0 in

norm.
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4. Convergence to a Kähler-Einstein metric

In this section we assume that Futaki's obstruction of

M vanishes, i.e., E = 0 in equality (2.4.1). By Proposition

2.5, the function ~o defines a Kähler-Einstein metric. By

equation (2.7.1) we know that

(4.0.1) 20 = (na a .+.. - 2x.+.. ,t X ...... dX '+' '+'

and the right hand side converges uniformly to 0 in exponential

order by.Lernmas 3.2 and 3.3. Therefore the function x converges

uniformly to a function xoo.. Since the function <.P also converges

to the function <.po , the function X~ satisfies the equation

H[Xm] = ~O(xoo) , and thus the pair (xoo, ~O) defines a Kähler-Ein-

stein metric by Lemma 2.3. We replace X O by xoo so that x

converges uniformly to x O,. Note that the pair (X O
, ~O)

corresponds to a Kähler-Einstein rnetric gO € M • Since

~(x) h =
such that

= H , there exists a function c (t) cf t

(4.0.2.) f x O dv·= + C (t)
o ~o (y)

Remark that c(t) converges to o.

.tc 1.

Lemma 4. 1 The function converges uniformly



Thus,
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(4.1.6) lP(x) -1[ ~ [lPO(X)

lPO(XO) lPO(XO)
(1 + 4l (x) ) - lPo (x) I + [lPo (x) - 1 I

lPO(XO) lPO(XO)

;S !4l(x) I lPO(XO) +C/x-x°!.+f.Jx-xoL

lPO(XO) lPO(XO)

~ [tf> (x) [ (1 + 2Ce::) + 2Ce:: •

Q.E.D.

Theorem 4.2. If Futaki's obstruction vanishes, then

gt E M converges to a Kähler-Einstein metric E M

Proof We see that

( 4 • 2 • 1 ) 6u = - tr (g _ gO)
gO

00

in C norm.

where u and 6 are defined by (1.1.5) and (1.2.3). On the

other hand, if h is a
co

C function of XO , then

(4.2.2) gO(dh, dh) = ~ lPO(X O) (_d__ h)2 ,
dXo
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Proof First we see that

(4.1.1) XO dy- f 0
1.0 0 (y)

and the last line converges uniformly to 0 by Lemmas 3.2 and

3.6. Put C = max l~y 1.0 0 (y) I and let I be the closed interval

between x and X O
• If

(4.1.2)

then

(4.1.3)

and so

e: > I c: Ix - x 0 I •min {1.0 ° (y) -1} ,
I

(4.1.4) Ix - x 0 1 ~ e:. max { ce 0 (y)} Se:· {(,O ° (x 0) + c· 1x - x 0 I} •
I

Therefore, if e: 15 sufficiently small then

(4.1.5)
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norm
3

C

h . There-o
oxo

i5 bounded' inuis bounded, thenfore, if _0_ ~u

oxo

(up to constant factor). Now,

(4.2.3) a
~u

0 ( tP(x) )=---
\t,po (XO) .axo axo

..

t,p (x)

{tPo~xO)
0 'Po (x) 0 t,p°(XO))+ p(x) + <po (x) a

(x) } ,= (ox --- dX ept,p0 (XO) dXo {po (XO) t,p°(XO)

and the last line is bounded by Lemma 4.1, inequality (4.1.4) and

Lemma 3.5. Combining equation (4.2.1) with Lemma 4.1, we see that

the assumption of Proposition 1.5 with V = 0 holds, or more

directly, we can apply Corollary 1.6. Q.E.D.
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5. Pseudo-convergence to a quasi-Einstein metric

To study the cases when there are no Einstein metries we

give the following

Definition 5.1 A riemannian metric g is called'a quasi-

-Einstein metric if there is a vector field V such that

-1 -r - dirn s g = Iv g

We easily see

Proposition 5.2 The solution of Hamilton's equation (0.0.1)

whose initial riemannian metric go is a quasi-Einstein metric

is given by

if is not Einstein then gt

Y
t

= exp tV . In particular,

does not converge.

For the case of Kähler.manifolds with positive first ehern

class, we get

Proposition 5.3 A Kähler metric g in the first ehern

class is a quasi-Einstein metric if and only if r - g = Iv g

for some holomorphic vector field V. In particular, such a

Kähler metric is an Einstein metric if and only if Futaki's ob-

struction vanishes.

Proof Put r - g = aäf . Then by definition of V,
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(5.3.1)

(5.3.2)

where D denotes the covariant derivative. Therefore,

(5.3.3)

k k k
= Di ( - Dk D f + Dk V- + D Vk ) = 0 ,

which 1mplies that DiVj = 0 , i.e., V 1s holamorphie.

Assume that Futaki I 5 obstruction vanishes·. By definition

( [F] ) ,

(5.3.4) fV[fJvg = 0 •

On the other hand, there is a complex valued function n such

that V. = D.n , because the first ehern class 1s positive and
~ ~ .

so there are na non-trivial harmonie 1-farms. Substituting it

into equality (5.3.1), we get

(5.3.5) Di D'J (n + Ti - f) = 0 ,
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and so there is areal valued function v such that

n = ~ f + i=T v . We substitute i t into equali ty (5.3.4) and see

that df = 0 . Q.E.D.

Now we come back to the situation of 2 and 3 and assume

that Futaki's obstruction of M does not vanish, i.e., E * 0

in equality (2.4.1). Then we get

Proposition 5.4 The Kähler metric gO correspanding to

the pair (XO, <'pO) . is a quasi-Einstein metric but not. an Einstein

metric.

Proof Put rO - gO = ,aäf . By equalities (2.2.1) and (2.4.3)

we see that

(5.4.1)

i.e., gr.ad f .= - EH • Thus Q.E.D.

If we salve Hamilton's equation with an initial metric

then by equality (2.7.1) and Lemmas 3.2 and 3.3 the functian

2D t x daes not converge to 0, hence the Kähler metric gt

does not converge. Therefore we analyse the behaviour of the one­

-1 *........
-parameter family Yt gt of Kähler metries, where

-1*
Yt = exp (- ~ E t H) · Remark that Yt. gt corresponds to the



pair
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-1
(xt ° Y t ' <Pt) • (See Lemma 2. 3) •

Theorem 5.5 The family converges to a quasi-

-Einstein metric E M in
00

C norm.

-1
Proof If we can show that Dt(XtoYt ) converges uniformly

to 0 in exponential order, then the proof will be completed by a

similar way to 4. Byequality (2.7.1) we see that

(5.5.1)

= 2D x - E -t,p (x)t

= <pa (x) ~t tP (x) + (E·<,p° (x) - 2x) tP (x) - E· (tp(x) - <,pa (x»

and the last line converges to 0 by Lemmas 3.2 and 3.3.

Q.E.D.

Remark 5.6 The Kähler metric gO i8 not extremal in the

sence of Calabi [Cl]. A Kähler metric is extremal if and only if

the gradient of its scalar curvature is holomorphic. In our case,

it is equivalent to the equation

(5.6.1) a2 a---2 (~-- f) = constant,
dX dX

and by condition (2) in Lemma 2.2 we get a unique solution



(5.6.2)
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<.0 (x) = - f ~d {C (d 1 + x) (d2 - x) + 2x }Q (x) dx / Q (x) ,
1

where the constant C is chosen so that <.0 (d2) = 0 . We can

easily check that this function ~ defines an (extrernal) Kähler

metric by Lemma 2.3, but it is a quasi-Einstein metric if and only

if E = 0 and C = 0 , i.e., if they are Einstein metrics.
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(2.5. 9)

But here we know that Dtx- = 0 and ~x t,p + 2x + ~ ~x Q

=- t,p ~x f = 0 at x =- d-1 , d-2 • Thus

(2.5.10)

Using the function t,p°(x) defined by (2.4.2), we put

(2.5.11) q, (x) - t,p 0 (x) - 1tO Cx) - 1 •

Then by Lemma 2.2 (2) we see

Lemma 2.6 The function q,(~)
00

is a C function such that

q,(x) = 0 at x=- d 1 , d 2 and 1+4> > 0 on [-d 1 , d 2 ] •

Lemma 2.7

(2.7.1)

(2.7.2) ,

2D
t

X = c.p0 (x) ~x q, (x) + (Et,p° (x) - 2x) 4> (x) + Et,p° (x) ,

Proof Equation (2.7.1) is easy to see by equations (2.5.10)

and (2.4.3). Substituting it into equation (2.5.7), we get

equation (2.7.2). Q.E.D.




